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Abstract. In this paper, we establish a Marcinkiewicz-Zygmund type strong law for se-
quences of blockwise and pairwise negative quadrant m-dependent random variables. The
sharpness of the results is illustrated by an example.
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1. Introduction

The concept of negative quadrant dependence was introduced by Lehmann [1]. The concept
of blockwise m-dependence and blockwise quasiorthogonality for a sequence of random
variables was introduced by Móricz [3]. The strong laws for blockwise independence case
or blockwise orthogonal case then was studied by some authors. We refer to Rosalsky and
Thanh [7], Quang and Thanh [5] for Banach spaces valued case and Quang and Thanh [6],
Thanh [10] for multi-dimension case. Thanh and Anh [11] established a strong law of large
numbers for blockwise and pairwise m-dependent random variables which extends the result
of Thanh [8] to the arbitrary blocks case and also provided an example to illustrate the main
result. In Thanh and Anh [11], authors considered a sequence of random variables which is
blockwise and pairwise m-dependent with respect to the arbitrary blocks.

In this note, we consider a sequence of blockwise and pairwise negative quadrant m-
dependent random variables {Xn,n ≥ 1} which is stochastically dominated by a random
variable X . We establish a Marcinkiewicz-Zygmund type strong law of large numbers which
extends the result of Thanh and Anh [11] to the blockwise and pairwise negative quadrant
m-dependent case. We also provide an example to illustrate the main result.

Let X and Y be random variables. We say that X and Y are negative quadrant dependent
if

P(X ≤ x,Y ≤ y)≤ P(X ≤ x)P(Y ≤ y), ∀x, y ∈ R.
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A sequence of random variables {Xn, n ≥ 1} is said to be pairwise negative quadrant
dependent if for all i 6= j, Xi and X j are negative quadrant dependent.

Let m be a fixed nonnegative integer. We say that a collection {X j, 1 ≤ j ≤ n} of n
random variables is pairwise negative quadrant m-dependent if either n≤m+1 or n > m+1
and Xi and X j are negative quadrant dependent whenever j− i > m.

Let {βk, k ≥ 1} be a strictly increasing sequence of positive integers with β1 = 1 and set
Bk = [βk, βk+1).

A sequence of random variables {Xn, n≥ 1} is said to be blockwise and pairwise negative
quadrant m-dependent with respect to the blocks {Bk, k ≥ 1} if for each k ≥ 1, the random
variables {Xi, i ∈ Bk} are pairwise negative quadrant m-dependent.

For {βk, k ≥ 1} and {Bk, k ≥ 1} as above, we introduce the following notation:

B(l) = {k : 2l ≤ k < 2l+1}, l ≥ 0,

B(l)
k = Bk ∩B(l),k ≥ 1, l ≥ 0,

Il = {k ≥ 1 : B(l)
k 6= /0}, l ≥ 0,

r(l)
k = min{r : r ∈ B(l)

k },k ∈ Il , l ≥ 0,

cl = cardIl , l ≥ 0,

ϕ(n) =
∞

∑
l=0

clIB(l)(n),n≥ 1,

ψ(n) = max
k≤n

ϕ(k),n≥ 1

where IB(l) denotes the indicator function of the set B(l), l ≥ 0.
Random variables {Xn, n≥ 1} are said to be a stochastically dominated by random vari-

able X if for some constant C < ∞

P(|Xn|> t)≤CP(|X |> t),∀t ≥ 0,∀n≥ 1.

2. Main result

Throughout this section, the logarithms are to the base 2, the symbol C denotes a generic
constant (0 < C < ∞) which is not necessarily the same one in each appearance.

Before establishing main result, we state two lemmas. The first lemma can be obtained
by using a method similar to that used in the proof the Rademacher-Menshov inequality and
Lemma 2.2 of Li, Rosalsky and Volodin [2].

Lemma 2.1. If {Xn, n≥ 1} is a sequence of pairwise negative quadrant dependent mean 0
random variables, then

E

(
max

1≤k≤n

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
)2

≤C(log4n)2
n

∑
j=1

EX2
j .

The second lemma can be obtained by using a method similar to that used in the proof
the Lemma 3 of Thanh [8] and Lemma 2.2. It extends the Lemma 3 of Thanh [8] to the
blockwise and pairwise negative quadrant m-dependent case.



Strong Limit Theorem for Sequences of Blockwise and Pairwise Negative Quadrant Variables 161

Lemma 2.2. If {X j, 1≤ j ≤ n} is a collection of pairwise negative quadrant m-dependent
mean 0 random variables, then

E

(
max

1≤k≤n

∣∣∣∣∣ k

∑
j=1

X j

∣∣∣∣∣
)2

≤C(m+1)(log4n)2
n

∑
j=1

EX2
j .

With the preliminaries accounted for, the main result may be established.

Theorem 2.1. Let 1 ≤ r < 2 and {Xn, n ≥ 1} be a sequence of random variables which is
blockwise and pairwise negative quadrant m-dependent with respect to the blocks {Bk, k ≥
1}. Suppose that {Xn, n≥ 1} is stochastically dominated by a random variable X. If

(2.1) E(|X |r(log+ |X |)2) < ∞,

then

(2.2) lim
n→∞

1
n1/rψ1/2(n)

n

∑
j=1

(X j−EX j) = 0 a.s.

Proof. Set

Yn = XnI(|Xn| ≤ n1/r)+n1/rI(Xn > n1/r)−n1/rI(Xn <−n1/r),

Y (+)
n = X+

n I(Xn ≤ n1/r)+n1/rI(Xn > n1/r),

Y (−)
n = X−n I(Xn ≥−n1/r)+n1/rI(Xn <−n1/r), n≥ 1

and

T (+)
k(l) = max

j∈B(l)
k

∣∣∣∣ j

∑
i=r(l)

k

(Y (+)
i −EY (+)

i )
∣∣∣∣, k ∈ Il , l ≥ 0,

τ
(+)
l =

1(
2

l+1
r −2

l
r

)
ψ

1
2 (2l)

∑
k∈Il

T (+)
k(l) , l ≥ 0.

It follows from Lemma 2.1 of Li, Rosalsky and Volodin [2] that {Y (+)
n , n≥ 1} and {Y (−)

n , n≥
1} are sequences of random variables which are blockwise and pairwise negative quadrant
m-dependent with respect to the blocks {Bk, k ≥ 1}.
Note at the outset that,

E(Y (+)
n )2 ≤ 2

n
1
r∫

0

xP(|Xn|> x)dx,

E|Xn−Yn| ≤C

n
1
r P(|Xn|> n

1
r )+

∞∫
n

1
r

P(|Xn|> x)dx

 , n≥ 1

and by using a method similar to that used in the proof of Theorem 1 of Thanh [8], we
obtain

∞

∑
n=1

log2 n
n2/r E(Y (+)

n )2 ≤CE(|X |r(log+ |X |)2) < ∞(2.3)
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and
∞

∑
n=1

1
n1/r E|Xn−Yn| ≤CE(|X |r log+ |X |) < ∞.(2.4)

Note that for l ≥ 0,

E(τ(+)
l )2 ≤C

1

2
2(l+1)

r ψ(2l)
cl ∑

k∈Il

E(T (+)
k(l) )2

≤C
1

2
2(l+1)

r
∑
k∈Il

(log(4cardB(l)
k ))2

∑
i∈B(l)

k

E|Y (+)
i −EY (+)

i |2

(by Lemma 2.3)

≤C
1

2
2(l+1)

r

(log2l+2)2
2l+1−1

∑
i=2l

E|Y (+)
i −EY (+)

i |2

≤C
2l+1−1

∑
i=2l

(log4i)2

i
2
r

E(Y (+)
i )2.

It follows from (2.3) that ∑
∞
l=0 E(τ(+)

l )2 < ∞ and so by the Markov inequality and the Borel-
Cantelli lemma ensures that

(2.5) lim
l→∞

τ
(+)
l = 0 a.s.

Note that for n≥ 1, letting M ≥ 0 be such that 2M ≤ n < 2M+1,

|∑n
i=1(Y

(+)
i −EY (+)

i )|
n

1
r ψ

1
2 (n)

≤
∑

M
l=0 ∑k∈Il T (+)

k(l)

2
M
r ψ

1
2 (2M)

≤
M

∑
l=0

2
l+1

r −2
l
r

2
M
r

τ
(+)
l

and so (2.5) and Toeplitz lemma ensures that

lim
n→∞

1

n
1
r ψ

1
2 (n)

n

∑
i=1

(Y (+)
i −EY (+)

i ) = 0 a.s.

Similarly,

lim
n→∞

1

n
1
r ψ

1
2 (n)

n

∑
i=1

(Y (−)
i −EY (−)

i ) = 0 a.s.

and so Yn = Y (+)
n −Y (−)

n , n≥ 1, we get

(2.6) lim
n→∞

1

n
1
r ψ

1
2 (n)

n

∑
i=1

(Yi−EYi) = 0 a.s.

By (2.4), (2.6) and by using a method similar to that used in the proof of Theorem 2.1 of
Thanh and Anh [11], we obtain (2.2).
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Note that if {Xn, n≥ 1} is blockwise and pairwise m-dependent with respect to the blocks
{Bk, k≥ 1}, then {Xn,n≥ 1} is blockwise and pairwise negative quadrant m-dependent with
respect to the blocks {Bk, k≥ 1}. So we get the following corollary which is the main result
of Thanh and Anh [11].

Corollary 2.1. Let 1≤ r < 2 and {Xn, n≥ 1} be a sequence of random variables which is
blockwise and pairwise m-dependent with respect to the blocks {Bk, k ≥ 1} and if (2.1) is
satisfied, then (2.2) holds.

Note that if βk = [qk−1] for all large k and q > 1, then cl = O(1), ψ(n) = O(1). So we
get the following corollary.

Corollary 2.2. Let {Xn,n≥ 1} be a sequence of blockwise and pairwise negative quadrant
m-dependent random variables with respect to the blocks {[2k−1,2k),k ≥ 1} (or, more gen-
erally, with respect to the blocks {[βk,βk+1),k ≥ 1} where βk = [qk−1] for all large k and
q > 1) and if (2.1) is satisfied, then

(2.7) lim
n→∞

1
n1/r

n

∑
j=1

(X j−EX j) = 0 a.s.

The following example is a modify of Example 2.6 in Thanh and Anh [11]. However,
we try to construct with large blocks.

Example 2.1. Let {Yn,n ≥ 1} be a sequence of 0-dependent identically distributed of
N(0,1) random variables and let 3/2≤ r < 2. Let

Xn = Yn−k3+1, k3 ≤ n < (k +1)3, k ≥ 1.

Then {Xn,n ≥ 1} is blockwise and pairwise negative quadrant 0-dependent with respect to
the blocks {[k3,(k +1)3),k ≥ 1} and (2.1) is satisfied, but {Xn,n≥ 1} is not blockwise and
pairwise negative quadrant m-dependent with respect to the blocks {[2k,2(k+1)),k ≥ 0} for
any non-negative integer m. Now, by noting that in βk = k3,k ≥ 1 case ψ(n) = O(n1/3), so
that by Corollary 2.4 we have

lim
n→∞

∑
n
i=1 Xi

n1/r+1/6 = 0 a.s.

Now, for n = (M +1)3−1, we have

∑
n
i=1 Xi

n1/r

=
MY1 +M(Y2 + · · ·+Y7)+ · · ·+(YM3−(M−1)3+1 + · · ·+Y(M+1)3−M3)

((M +1)3−1)1/r

= S(M+1)3−1,

where

S(M+1)3−1 ∼ N
(

0,
M4 +4M3 +7M2 +2M

2((M +1)3−1)2/r

)
,

so that (2.7) fails since r ≥ 3/2.

Remark 2.1. Sequence {Xn, n≥ 1} of random variables in Example 2.6 of Thanh and Anh
[11] also is not blockwise and pairwise negative quadrant m-dependent with respect to the
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blocks {[2k−1,2k),k≥ 1} for any non-negative integer m and (2.1) is satisfied but (2.7) fails.
So it also shows that Theorem 2.3 is sharp. More precisely, it shows that for all ε > 0,

limsup
n→∞

|∑n
i=1 Xi|

n1/r−ε ψ1/2(n)
= ∞ a.s.
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