A Strong Limit Theorem for Sequences of Blockwise and Pairwise Negative Quadrant M-Dependent Random Variables

Vu Thi Ngoc Anh
Department of Mathematics, Hoa Lu University, Ninh Binh, Vietnam anhyk86@gmail.com

Abstract

In this paper, we establish a Marcinkiewicz-Zygmund type strong law for sequences of blockwise and pairwise negative quadrant m-dependent random variables. The sharpness of the results is illustrated by an example.

2010 Mathematics Subject Classification: 60F15
Keywords and phrases: Blockwise and pairwise negative quadrant m-dependent random variables, strong law of large numbers.

1. Introduction

The concept of negative quadrant dependence was introduced by Lehmann [1]. The concept of blockwise m-dependence and blockwise quasiorthogonality for a sequence of random variables was introduced by Móricz [3]. The strong laws for blockwise independence case or blockwise orthogonal case then was studied by some authors. We refer to Rosalsky and Thanh [7], Quang and Thanh [5] for Banach spaces valued case and Quang and Thanh [6], Thanh [10] for multi-dimension case. Thanh and Anh [11] established a strong law of large numbers for blockwise and pairwise m-dependent random variables which extends the result of Thanh [8] to the arbitrary blocks case and also provided an example to illustrate the main result. In Thanh and Anh [11], authors considered a sequence of random variables which is blockwise and pairwise m-dependent with respect to the arbitrary blocks.

In this note, we consider a sequence of blockwise and pairwise negative quadrant m dependent random variables $\left\{X_{n}, n \geq 1\right\}$ which is stochastically dominated by a random variable X. We establish a Marcinkiewicz-Zygmund type strong law of large numbers which extends the result of Thanh and Anh [11] to the blockwise and pairwise negative quadrant m-dependent case. We also provide an example to illustrate the main result.

Let X and Y be random variables. We say that X and Y are negative quadrant dependent if

$$
P(X \leq x, Y \leq y) \leq P(X \leq x) P(Y \leq y), \quad \forall x, y \in \mathbb{R}
$$

A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is said to be pairwise negative quadrant dependent if for all $i \neq j, X_{i}$ and X_{j} are negative quadrant dependent.

Let m be a fixed nonnegative integer. We say that a collection $\left\{X_{j}, 1 \leq j \leq n\right\}$ of n random variables is pairwise negative quadrant m-dependent if either $n \leq m+1$ or $n>m+1$ and X_{i} and X_{j} are negative quadrant dependent whenever $j-i>m$.

Let $\left\{\beta_{k}, k \geq 1\right\}$ be a strictly increasing sequence of positive integers with $\beta_{1}=1$ and set $B_{k}=\left[\beta_{k}, \beta_{k+1}\right)$.

A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is said to be blockwise and pairwise negative quadrant m-dependent with respect to the blocks $\left\{B_{k}, k \geq 1\right\}$ if for each $k \geq 1$, the random variables $\left\{X_{i}, i \in B_{k}\right\}$ are pairwise negative quadrant m-dependent.

For $\left\{\beta_{k}, k \geq 1\right\}$ and $\left\{B_{k}, k \geq 1\right\}$ as above, we introduce the following notation:

$$
\begin{aligned}
B^{(l)} & =\left\{k: 2^{l} \leq k<2^{l+1}\right\}, l \geq 0, \\
B_{k}^{(l)} & =B_{k} \cap B^{(l)}, k \geq 1, l \geq 0, \\
I_{l} & =\left\{k \geq 1: B_{k}^{(l)} \neq \emptyset\right\}, l \geq 0, \\
r_{k}^{(l)} & =\min \left\{r: r \in B_{k}^{(l)}\right\}, k \in I_{l}, l \geq 0, \\
c_{l} & =\operatorname{card} I_{l}, l \geq 0, \\
\varphi(n) & =\sum_{l=0}^{\infty} c_{l} I_{B^{(l)}}(n), n \geq 1, \\
\psi(n) & =\max _{k \leq n} \varphi(k), n \geq 1
\end{aligned}
$$

where $I_{B^{(l)}}$ denotes the indicator function of the set $B^{(l)}, l \geq 0$.
Random variables $\left\{X_{n}, n \geq 1\right\}$ are said to be a stochastically dominated by random variable X if for some constant $C<\infty$

$$
P\left(\left|X_{n}\right|>t\right) \leq C P(|X|>t), \forall t \geq 0, \forall n \geq 1 .
$$

2. Main result

Throughout this section, the logarithms are to the base 2, the symbol C denotes a generic constant $(0<C<\infty)$ which is not necessarily the same one in each appearance.

Before establishing main result, we state two lemmas. The first lemma can be obtained by using a method similar to that used in the proof the Rademacher-Menshov inequality and Lemma 2.2 of Li, Rosalsky and Volodin [2].

Lemma 2.1. If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of pairwise negative quadrant dependent mean 0 random variables, then

$$
E\left(\max _{1 \leq k \leq n}\left|\sum_{j=1}^{k} X_{j}\right|\right)^{2} \leq C(\log 4 n)^{2} \sum_{j=1}^{n} E X_{j}^{2}
$$

The second lemma can be obtained by using a method similar to that used in the proof the Lemma 3 of Thanh [8] and Lemma 2.2. It extends the Lemma 3 of Thanh [8] to the blockwise and pairwise negative quadrant m-dependent case.

Lemma 2.2. If $\left\{X_{j}, 1 \leq j \leq n\right\}$ is a collection of pairwise negative quadrant m-dependent mean 0 random variables, then

$$
E\left(\max _{1 \leq k \leq n}\left|\sum_{j=1}^{k} X_{j}\right|\right)^{2} \leq C(m+1)(\log 4 n)^{2} \sum_{j=1}^{n} E X_{j}^{2}
$$

With the preliminaries accounted for, the main result may be established.
Theorem 2.1. Let $1 \leq r<2$ and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables which is blockwise and pairwise negative quadrant m-dependent with respect to the blocks $\left\{B_{k}, k \geq\right.$ 1\}. Suppose that $\left\{X_{n}, n \geq 1\right\}$ is stochastically dominated by a random variable X. If

$$
\begin{equation*}
E\left(|X|^{r}\left(\log ^{+}|X|\right)^{2}\right)<\infty, \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / r} \psi^{1 / 2}(n)} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right)=0 \text { a.s. } \tag{2.2}
\end{equation*}
$$

Proof. Set

$$
\begin{aligned}
& Y_{n}=X_{n} I\left(\left|X_{n}\right| \leq n^{1 / r}\right)+n^{1 / r} I\left(X_{n}>n^{1 / r}\right)-n^{1 / r} I\left(X_{n}<-n^{1 / r}\right), \\
& Y_{n}^{(+)}=X_{n}^{+} I\left(X_{n} \leq n^{1 / r}\right)+n^{1 / r} I\left(X_{n}>n^{1 / r}\right), \\
& Y_{n}^{(-)}=X_{n}^{-} I\left(X_{n} \geq-n^{1 / r}\right)+n^{1 / r} I\left(X_{n}<-n^{1 / r}\right), n \geq 1
\end{aligned}
$$

and

$$
\begin{aligned}
T_{k(l)}^{(+)} & =\max _{j \in B_{k}^{(l)}}\left|\sum_{i=r_{k}^{(l)}}^{j}\left(Y_{i}^{(+)}-E Y_{i}^{(+)}\right)\right|, k \in I_{l}, l \geq 0 \\
\tau_{l}^{(+)} & =\frac{1}{\left(2^{\frac{l+1}{r}}-2^{\frac{l}{r}}\right) \psi^{\frac{1}{2}}\left(2^{l}\right)} \sum_{k \in I_{l}} T_{k(l)}^{(+)}, l \geq 0
\end{aligned}
$$

It follows from Lemma 2.1 of Li, Rosalsky and Volodin [2] that $\left\{Y_{n}^{(+)}, n \geq 1\right\}$ and $\left\{Y_{n}^{(-)}, n \geq\right.$ $1\}$ are sequences of random variables which are blockwise and pairwise negative quadrant m-dependent with respect to the blocks $\left\{B_{k}, k \geq 1\right\}$.
Note at the outset that,

$$
\begin{aligned}
& E\left(Y_{n}^{(+)}\right)^{2} \leq 2 \int_{0}^{n^{\frac{1}{r}}} x P\left(\left|X_{n}\right|>x\right) d x \\
& E\left|X_{n}-Y_{n}\right| \leq C\left(n^{\frac{1}{r}} P\left(\left|X_{n}\right|>n^{\frac{1}{r}}\right)+\int_{n^{\frac{1}{r}}}^{\infty} P\left(\left|X_{n}\right|>x\right) d x\right), n \geq 1
\end{aligned}
$$

and by using a method similar to that used in the proof of Theorem 1 of Thanh [8], we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\log ^{2} n}{n^{2 / r}} E\left(Y_{n}^{(+)}\right)^{2} \leq C E\left(|X|^{r}\left(\log ^{+}|X|\right)^{2}\right)<\infty \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{1 / r}} E\left|X_{n}-Y_{n}\right| \leq C E\left(|X|^{r} \log ^{+}|X|\right)<\infty \tag{2.4}
\end{equation*}
$$

Note that for $l \geq 0$,

$$
\begin{aligned}
E\left(\tau_{l}^{(+)}\right)^{2} & \leq C \frac{1}{2^{\frac{2(l+1)}{r}} \psi\left(2^{l}\right)} c_{l} \sum_{k \in I_{l}} E\left(T_{k(l)}^{(+)}\right)^{2} \\
& \leq C \frac{1}{2^{\frac{2(l+1)}{r}}} \sum_{k \in I_{l}}\left(\log \left(4 \operatorname{card} B_{k}^{(l)}\right)\right)^{2} \sum_{i \in B_{k}^{(l)}} E\left|Y_{i}^{(+)}-E Y_{i}^{(+)}\right|^{2}
\end{aligned}
$$

(by Lemma 2.3)

$$
\begin{aligned}
& \leq C \frac{1}{2^{\frac{2(l+1)}{r}}}\left(\log 2^{l+2}\right)^{2^{2}} \sum_{i=2^{l}}^{2^{l+1}-1} E\left|Y_{i}^{(+)}-E Y_{i}^{(+)}\right|^{2} \\
& \leq C \sum_{i=2^{l}}^{2^{l+1}-1} \frac{(\log 4 i)^{2}}{i^{\frac{2}{r}}} E\left(Y_{i}^{(+)}\right)^{2}
\end{aligned}
$$

It follows from (2.3) that $\sum_{l=0}^{\infty} E\left(\tau_{l}^{(+)}\right)^{2}<\infty$ and so by the Markov inequality and the BorelCantelli lemma ensures that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \tau_{l}^{(+)}=0 \text { a.s. } \tag{2.5}
\end{equation*}
$$

Note that for $n \geq 1$, letting $M \geq 0$ be such that $2^{M} \leq n<2^{M+1}$,

$$
\begin{aligned}
\frac{\left|\sum_{i=1}^{n}\left(Y_{i}^{(+)}-E Y_{i}^{(+)}\right)\right|}{n^{\frac{1}{r}} \psi^{\frac{1}{2}}(n)} & \leq \frac{\sum_{l=0}^{M} \sum_{k \in I_{l}} T_{k(l)}^{(+)}}{\left.2^{\frac{M}{r}} \psi^{\frac{1}{2}} 2^{M}\right)} \\
& \leq \sum_{l=0}^{M} \frac{2^{\frac{l+1}{r}}-2^{\frac{l}{r}}}{2^{\frac{M}{r}}} \tau_{l}^{(+)}
\end{aligned}
$$

and so (2.5) and Toeplitz lemma ensures that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{r}} \psi^{\frac{1}{2}}(n)} \sum_{i=1}^{n}\left(Y_{i}^{(+)}-E Y_{i}^{(+)}\right)=0 \text { a.s. }
$$

Similarly,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{r}} \psi^{\frac{1}{2}}(n)} \sum_{i=1}^{n}\left(Y_{i}^{(-)}-E Y_{i}^{(-)}\right)=0 \text { a.s. }
$$

and so $Y_{n}=Y_{n}^{(+)}-Y_{n}^{(-)}, n \geq 1$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{r}} \psi^{\frac{1}{2}}(n)} \sum_{i=1}^{n}\left(Y_{i}-E Y_{i}\right)=0 \text { a.s. } \tag{2.6}
\end{equation*}
$$

By (2.4), (2.6) and by using a method similar to that used in the proof of Theorem 2.1 of Thanh and Anh [11], we obtain (2.2).

Note that if $\left\{X_{n}, n \geq 1\right\}$ is blockwise and pairwise m-dependent with respect to the blocks $\left\{B_{k}, k \geq 1\right\}$, then $\left\{X_{n}, n \geq 1\right\}$ is blockwise and pairwise negative quadrant m-dependent with respect to the blocks $\left\{B_{k}, k \geq 1\right\}$. So we get the following corollary which is the main result of Thanh and Anh [11].

Corollary 2.1. Let $1 \leq r<2$ and $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables which is blockwise and pairwise m-dependent with respect to the blocks $\left\{B_{k}, k \geq 1\right\}$ and if (2.1) is satisfied, then (2.2) holds.

Note that if $\beta_{k}=\left[q^{k-1}\right]$ for all large k and $q>1$, then $c_{l}=\mathscr{O}(1), \psi(n)=\mathscr{O}(1)$. So we get the following corollary.

Corollary 2.2. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of blockwise and pairwise negative quadrant m-dependent random variables with respect to the blocks $\left\{\left[2^{k-1}, 2^{k}\right.\right.$), $\left.k \geq 1\right\}$ (or, more generally, with respect to the blocks $\left\{\left[\beta_{k}, \beta_{k+1}\right), k \geq 1\right\}$ where $\beta_{k}=\left[q^{k-1}\right]$ for all large k and $q>1)$ and if (2.1) is satisfied, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{1 / r}} \sum_{j=1}^{n}\left(X_{j}-E X_{j}\right)=0 \text { a.s. } \tag{2.7}
\end{equation*}
$$

The following example is a modify of Example 2.6 in Thanh and Anh [11]. However, we try to construct with large blocks.

Example 2.1. Let $\left\{Y_{n}, n \geq 1\right\}$ be a sequence of 0-dependent identically distributed of $N(0,1)$ random variables and let $3 / 2 \leq r<2$. Let

$$
X_{n}=Y_{n-k^{3}+1}, k^{3} \leq n<(k+1)^{3}, k \geq 1 .
$$

Then $\left\{X_{n}, n \geq 1\right\}$ is blockwise and pairwise negative quadrant 0 -dependent with respect to the blocks $\left\{\left[k^{3},(k+1)^{3}\right), k \geq 1\right\}$ and (2.1) is satisfied, but $\left\{X_{n}, n \geq 1\right\}$ is not blockwise and pairwise negative quadrant m-dependent with respect to the blocks $\left\{\left[2^{k}, 2^{(k+1)}\right), k \geq 0\right\}$ for any non-negative integer m. Now, by noting that in $\beta_{k}=k^{3}, k \geq 1$ case $\psi(n)=\mathscr{O}\left(n^{1 / 3}\right)$, so that by Corollary 2.4 we have

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} X_{i}}{n^{1 / r+1 / 6}}=0 \text { a.s. }
$$

Now, for $n=(M+1)^{3}-1$, we have

$$
\begin{aligned}
& \frac{\sum_{i=1}^{n} X_{i}}{n^{1 / r}} \\
= & \frac{M Y_{1}+M\left(Y_{2}+\cdots+Y_{7}\right)+\cdots+\left(Y_{M^{3}-(M-1)^{3}+1}+\cdots+Y_{(M+1)^{3}-M^{3}}\right)}{\left((M+1)^{3}-1\right)^{1 / r}} \\
= & S_{(M+1)^{3}-1},
\end{aligned}
$$

where

$$
S_{(M+1)^{3}-1} \sim N\left(0, \frac{M^{4}+4 M^{3}+7 M^{2}+2 M}{2\left((M+1)^{3}-1\right)^{2 / r}}\right)
$$

so that (2.7) fails since $r \geq 3 / 2$.
Remark 2.1. Sequence $\left\{X_{n}, n \geq 1\right\}$ of random variables in Example 2.6 of Thanh and Anh [11] also is not blockwise and pairwise negative quadrant m-dependent with respect to the
blocks $\left\{\left[2^{k-1}, 2^{k}\right), k \geq 1\right\}$ for any non-negative integer m and (2.1) is satisfied but (2.7) fails. So it also shows that Theorem 2.3 is sharp. More precisely, it shows that for all $\varepsilon>0$,

$$
\limsup _{n \rightarrow \infty} \frac{\left|\sum_{i=1}^{n} X_{i}\right|}{n^{1 / r-\varepsilon} \psi^{1 / 2}(n)}=\infty \text { a.s. }
$$

Acknowledgement. The author is grateful to Dr. Le Van Thanh (Vinh University) for some helpful comments.

References

[1] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
[2] D. Li, A. Rosalsky and A. I. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.
[3] F. Móricz, Strong limit theorems for blockwise m-dependent and blockwise quasi-orthogonal sequences of random variables, Proc. Amer. Math. Soc. 101 (1987), no. 4, 709-715.
[4] V. H. Nguyen, V. Q. Nguyen and A. Volodin, Strong laws for blockwise martingale difference arrays in Banach spaces, Lobachevskii J. Math. 31 (2010), no. 4, 326-335.
[5] V. Q. Nguyen and L. V. Thanh, On the strong law of large numbers under rearrangements for sequences of blockwise orthogonal random elements in Banach spaces, Aust. N. Z. J. Stat. 49 (2007), no. 4, 349-357.
[6] V. Q. Nguyen and L. V. Thanh, On the strong laws of large numbers for two-dimensional arrays of blockwise independent and blockwise orthogonal random variables, Probab. Math. Statist. 25 (2005), no. 2, Acta Univ. Wratislav. No. 2784, 385-391.
[7] A. Rosalsky and L. Van Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces, Probab. Math. Statist. 27 (2007), no. 2, 205-222.
[8] L. V. Thanh, Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 4, 397-405.
[9] L. V. Thanh, On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables, ESAIM Probab. Stat. 10 (2006), 258-268 (electronic).
[10] L. V. Thanh, On the strong law of large numbers for d-dimensional arrays of random variables, Electron. Comm. Probab. 12 (2007), 434-441 (electronic).
[11] L. V. Thanh and N. V. Anh, A strong limit theorem for sequences of blockwise and pairwise m-dependent random variables, Bull. Korean Math. Soc. 48 (2011), no. 2, 343-351.

