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1. Introduction

The Wiener index is a distance-based topological invariant much used in the study of the
structure-property and the structure-activity relationships of various classes of biochemi-
cally interesting compounds [12]. It has been also much researched from the purely mathe-
matical viewpoint, giving rise to a vast corpus of literature over the last decades. A number
of derivative invariants have been investigated and many formulas for particular classes of
graphs were obtained. We refer the reader to a comprehensive survey of results for trees by
Dobrynin, Entringer and Gutman as an illustration of that effort [1]. Typical results of such
work are usually formulas expressing the Wiener index of graphs from the considered class
via some other graph invariants [4,7,8]. Another line of research, started by a paper by Yeh
and Gutman [14], has been concerned with establishing the relationship between the Wiener
index of a composite graph and Wiener indices of its components. (By a composite graph
we mean a graph that arises from two or more graphs via binary operations known as graph
products [3].) The main goal of the present paper is to investigate how the Wiener index of
a composite graph can be expressed in terms of the Wiener indices and the clique numbers
of its components.
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In the next section we give the necessary definitions and some preliminary results. Sec-
tion 3 is concerned with six types of graph products and the behavior of the clique and the
stability number under those operations. The fourth section contains the main results, i.e.,
the explicit formulas for the relationship between Wiener index and the clique and stability
numbers of the considered composite graphs. The paper is concluded by a short section
containing a couple of results not fitting in the other sections and outlining some possible
directions for future research.

2. Definitions and preliminaries

Our notation is standard and mainly taken from standard books of graph theory such as,
e.g., [11]. All graphs considered in this paper are simple and connected. The vertex and
edge sets of a graph G are denoted by V (G) and E(G), respectively.

A stable set in a graph is a set of vertices no two of which are adjacent. (Stable sets are
also commonly known as independent sets.) A stable set in a graph is maximum if the
graph contains no larger stable set and maximal if the set cannot be extended to a larger
stable set; a maximum stable set is necessarily maximal, but not conversely. The cardinality
of any maximum stable set in a graph G is called the stability number of G and is denoted
by α(G).

A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique
in a graph G is called the clique number of G and denoted by ω(G). Clearly, a set of
vertices S is a clique of a simple graph G if and only if it is a stable set of its complement
G. In particular, α(G) = ω(G).

The distance dG(x,y) between two vertices x and y of V (G) is defined as the length of
any shortest path in G connecting x and y. The Wiener index W (G) of a graph G is defined
as

W (G) = ∑
{u,v}⊂V (G)

dG(u,v)

where dG(u,v) denotes the distance between vertices u and v in G.

3. Composite graphs

In this section we introduce six classes of composite graphs that arise via graph products
and study the way their stability number and clique number depend on the stability and
clique number(s) of their components. For the case of stability number we rely heavily on
the classical paper by Nowakowski and Rall [6], while for the clique numbers we provide
proofs. The mentioned reference is mostly concerned with the question when a given pair
of a graph product G⊗H and a graph invariant i(G) is multiplicative, i.e., under what
conditions we have that either i(G⊗H)≤ i(G)i(H) or i(G⊗H)≥ i(G)i(H). For the stability
number the question is answered in positive for five out of the six graph products considered
here. For three of those five products we will show that they also make a multiplicative pair
with the clique number, while the remaining two products treat the clique number in a
markedly different manner. Finally, the sixth product does not make a multiplicative pair
with neither stability number nor the clique number.

We introduce the products roughly in the order of decreased multiplicativity with respect
to the considered invariants. We start from the strong product and disjunction, that form
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multiplicative pairs with both stability and clique number. The lexicographic product be-
haves even better, achieving equalities in both cases. We proceed with Cartesian product
and the symmetric difference and conclude our list with operation of join.

3.1. Strong product

For given graphs G1 and G2 their strong product G1 � G2 is defined as the graph on the
vertex set V (G1)×V (G2) with vertices u = (u1,u2) and v = (v1,v2) connected by an edge
if and only if either (u1 = v1 and u2v2 ∈ E(G2)) or (u2 = v2 and u1v1 ∈ E(G1)) or (u1v1 ∈
E(G1) and u2v2 ∈ E(G2)).

Lemma 3.1. α(G�H)≥ α(G)α(H) and ω(G�H) = ω(G)ω(H).

Proof. The first claim follows from reference [6, Lemma 2.7 and Table 1].
In order to prove the second result, suppose that C = {u1,u2, · · · ,uω(G)} and C

′
= {v1,v2,

· · · ,vω(H)} are maximum cliques of G and H, respectively. We claim that C×C
′

is a clique
of G�H. For this consider the vertices a = (ui,v j), b = (uk,vl) ∈C×C

′
, where 1≤ i,k ≤

ω(G) and 1≤ j, l ≤ω(H). We distinguish three cases. In the first case, ui = uk. Then, since
v jvl ∈E(H), we have ab∈E(G�H). Similarly, when v j = vl , we have ab∈E(G�H) since
uiuk ∈ E(G). Finally, in the third case, when ui 6= uk,v j 6= vl , we must have ab ∈ E(G�H),
since uiuk ∈ E(G) and v jvl ∈ E(H). Hence, ω(G�H)≥ ω(G)ω(H).

Let C⊆ {(u1,v1),(u1,v2), · · · ,(u1,vs), · · · ,(ur,v1), · · · ,(ur,vs)} be a maximum clique of
G � H, where r ≤ |V (G)| and s ≤ |V (H)|. For every 1 ≤ i < j ≤ r, we have uiu j ∈ E(G).
Thus, r ≤ ω(G). On the other hand, for every 1 ≤ i < j ≤ s, we have viv j ∈ E(H) and so,
s≤ ω(H). Hence, ω(G�H)≤ ω(G)ω(H).

3.2. Disjunction

The disjunction G1 ∨G2 of two graphs G1 and G2 is the graph with vertex set V (G1)×
V (G2) in which (u1,v1) is adjacent with (u2,v2) whenever u1 is adjacent with u2 in G1 or
v1 is adjacent with v2 in G2.

Lemma 3.2. α(G∨H)≥ α(G)α(H) and ω(G∨H)≥ ω(G)ω(H).

Again, the claim about the stability number follows from reference [6]. The proof of
second claim is similar to the proof for the strong product and we omit the details.

3.3. Composition

The composition G = G1[G2] of graphs G1 and G2 with disjoint vertex sets V1 and V2 and
edge sets E1 and E2 is the graph with vertex set V1×V2 and u = (u1,v1) is adjacent with
v = (u2,v2) whenever (u1 is adjacent with u2) or (u1 = u2 and v1 is adjacent with v2). The
composition of two graphs is also known as their lexicographic product.

Theorem 3.1. α(G[H]) = α(G)α(H) and ω(G[H]) = ω(G)ω(H).

Proof. Again, the first claim is established in reference [6, Lemma 2.8].
To prove the second inequality suppose that C = {u1, · · · ,uω(G)} and C

′
= {v1, · · · ,vω(H)}

are maximum cliques of G and H, respectively. Furthermore consider the vertices a =
(ui,v j), b = (uk,vl) ∈C×C

′
, where 1 ≤ i,k ≤ ω(G) and 1 ≤ j, l ≤ ω(H). We distinguish

two cases. In the first case, ui = uk. Since v jvl ∈ E(H), we have ab ∈ E(G[H]). In the
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second case, ui 6= uk. Since uiuk ∈ E(G) and v jvl ∈ E(H), we must have ab ∈ E(G[H]).
So C×C

′
is a clique of G[H] and thus ω(G[H]) ≥ ω(G)ω(H). The proof of the converse

inequality follows as in the case of strong product.

3.4. Cartesian product

For given graphs G1 and G2 their Cartesian product G1�G2 is defined as the graph on the
vertex set V (G1)×V (G2) with vertices u = (u1,u2) and v = (v1,v2) connected by an edge
if and only if either (u1 = v1 and u2v2 ∈ E(G2)) or (u2 = v2 and u1v1 ∈ E(G1)).

The Cartesian product of more than two graphs is defined inductively, G1� . . .�Gs =
(G1� . . .�Gs−1)�Gs. We denote G1�G2� · · ·�Gs by �s

i=1Gi. If G1 = G2 = · · ·= Gs = G,
we have the s-th Cartesian power of G and denote it by Gs.

The following bounds on α(G�H) were derived by Vizing [10] in 1963.

Theorem 3.2. For any graphs G and H,
(i) α(G�H)≤min{α(G)|V (H)|,α(H)|V (G)|}

(ii) α(G�H)≥ α(G)α(H)+min{|V (G)|−α(G), |V (H)|−α(H)}.
The first inequality in the following lemma, although weaker than the Vising’s one, is better
suited for generalization to Cartesian products with more than two factors.

Lemma 3.3. α(G�H)≥ α(G)α(H) and ω(G�H)≥max{ω(G),ω(H)}.
Proof. Besides following from Theorem 3.2, the first inequality was also established in
[6] where it was shown that the Cartesian product and the independence number form a
multiplicative pair (see Lemma 2.7 and Table 1 of the reference).

Regarding the second inequality, we can suppose that max{ω(G),ω(H)} = ω(G), be-
cause the Cartesian product is commutative. Let C = {u1,u2, · · · ,uω(G)} be a maximum
clique of G, v ∈V (H) and K ⊂V (G�H), such that K = {(u1,v),(u2,v), . . . ,(uω(G),v)}. It
is easy to see that for 1≤ i, j ≤ ω(G) and i 6= j we have uiu j ∈ E(G) and so K is a clique in
G�H. That completes the proof.

Corollary 3.1. α(�s
i=1Gi)≥∏

s
i=1 α(Gi) and ω(�s

i=1Gi)≥max{ω(G1),ω(G2), · · · ,ω(Gs)}.
Example 3.1. The C4 nanotubes and nanotori arise as Cartesian products of paths and cy-
cles and of two cycles, respectively. By using the above results combining them with known
values for the stability numbers of paths and cycles, we obtain the following explicit for-
mulas for C4 nanotubes and nanotori. We denote R = Pn�Cm and S = Ck�Cm and assume
k,m≥ 3.

α(R)≥ dn/2ebm/2c+min{bn/2c,dm/2e}, ω(R) = 2+δm,3,

α(S)≥ bm/2cbk/2c+min{dm/2e,dk/2e}, ω(S) = 2+max{δm,3,δk,3}.
Here δp,3 = 1 if p = 3 and 0 otherwise.

3.5. Symmetric difference

The symmetric difference G1⊕G2 of two graphs G1 and G2 is the graph with vertex set
V (G1)×V (G2) in which (u1,v1) is adjacent with (u2,v2) whenever u1 is adjacent with u2
in G1 or v1 is adjacent with v2 in G2, but not both together.

Lemma 3.4. α(G⊕H)≥ α(G)α(H) and ω(G⊕H)≥max{ω(G),ω(H)}.
The proof is similar to the proof for the case of Cartesian product and we omit the details.
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3.6. Join

The join G = G1 +G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets
E1 and E2 is the graph union G1 ∪G2 together with all the edges joining V1 and V2. The
definition generalizes to the case of s≥ 3 graphs in a straightforward manner. The following
formula for the number of edges is easily verified by induction on s.

Lemma 3.5. Let Gi, i = 1, . . . ,s, be some graphs. Then

|E(G1 + · · ·+Gs)|=
s

∑
i=1
|E(Gi)|+

1
2

s

∑
i=1
|V (Gi)|

s

∑
j=1, j 6=i

|V (G j)|.

Theorem 3.3. α(G+H) = max{α(G),α(H)} and ω(G+H) = ω(G)+ω(H).

Proof. Without loss of generality we can suppose max{α(G),α(H)} = α(G). Let S =
{u1,u2, · · · ,uα(G)} be the maximum stable set of G. For every pair (ui,u j), 1≤ i, j≤ α(G).
i 6= j, of S, the edge uiu j is not in E(G) and so uiu j 6∈ E(G + H). This implies the S is a
stable set of G+H. In other words, α(G+H)≥max{α(G),α(H)}.

Conversely, suppose that S
′

is a maximum stable set of G + H. The elements of S
′

do
not belong to V (G) and V (H) simultaneously. If S

′ ⊂ V (G), then α(G + H) ≤ α(G), else
α(G+H)≤ α(H). Therefore α(G+H)≤max{α(G),α(H)}. For an arbitrary clique C of
G + H we can suppose C = C1 ∪C2 in which C1 ⊆ V (G) and C2 ⊆ V (H). It is easy to see
that |C1| ≤ ω(G) and |C2| ≤ ω(H). So, ω(G + H) ≤ ω(G)+ ω(H). Clearly ω(G + H) ≥
ω(G)+ω(H) and this completes the proof.

As a consequence, we have the following formulas for a join of more than two graphs.
α(G1 + · · ·+Gs) = max{α(G1), · · · ,α(Gs)} and ω(G1 + · · ·+Gs) = ∑

s
i=1 ω(Gi).

4. Main results

Let us denote by En the empty (or trivial) graph on n vertices and let G(n1,n2) (n1,n2 ∈N) be
the join of complete graph Kn1 and En2 . It is easy to see that G(1,n)∼= Sn and G(n−1,1)∼=
Kn, where Sn is the star graph on n + 1 vertices. By Theorem 3.3, α(G(n1,n2)) = n2 and
ω(G(n1,n2)) = n1 + 1. In the following let ω = ω(G) and α = α(G). Obviously, for a
graph on n vertices, α = 1 if and only if G∼= Kn.

Theorem 4.1. Let G be a nontrivial graph. Then we have: W (G) = ω(ω−1)/2+α(α−1)
if and only if G∼= Kn.

Proof. If G ∼= Kn then it is obvious that W (G) = ω(ω − 1)/2 + α(α − 1). Conversely,
suppose W (G) = ω(ω − 1)/2 + α(α − 1). Furthermore, let S and C be the maximum sta-
ble set and the maximum set of cliques of G respectively. It is easy to see that W (G) ≥
∑u,v∈C d(u,v) + ∑u,v∈S d(u,v) + ∑u∈C,v∈S d(u,v) ≥ ω(ω − 1)/2 + α(α − 1). This implies
∑u∈C,v∈S d(u,v) = 0. So, |S|= 1 and then α = 1. Hence G must be equal to Kn and the proof
is completed.

Lemma 4.1. W (G(n1,n2)) =
(n1

2

)
+2
(n2

2

)
+n1n2.

Proof.

W (G(n1,n2)) = ∑
u,v∈Kn1

d(u,v)+ ∑
u,v∈En2

d(u,v)+ ∑
u∈Kn1 ,v∈En2

d(u,v)
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= n1(n1−1)/2+n2(n2−1)+n1n2 =
(

n1

2

)
+2
(

n2

2

)
+n1n2.

The quantities n1 and n2 appear symmetrically in the above relations. By a direct com-
putation one can readily verify that the symmetry remains preserved if the first parameter is
decreased by one.

Corollary 4.1. W (G(n1−1,n2)) =
(n1

2

)
+2
(n2

2

)
+(n1−1)(n2−1).

Theorem 4.2. W (G)≥ ω(ω−1)/2+α(α−1)+(ω−1)(α−1) with equality if and only
if G∼= G(ω−1,α).

Proof. Let S and C be a maximum stable set and a maximum clique of G, respectively. We
have ∀ u,v ∈C : d(u,v) = 1, ∀ u,v ∈ S : d(u,v)≥ 2. On the other hand, |S∩C| ≤ 1. So

W (G)≥ ∑
u,v∈C

d(u,v)+ ∑
u,v∈S

d(u,v)+ ∑
u∈C,v∈S

d(u,v)

≥ ω(ω−1)/2+α(α−1)+(ω−1)(α−1).

If G∼= G(ω−1,α), then by Corollary 4.1 the equality holds. Conversely, if W (G) = ω(ω−
1)/2+α(α−1)+(ω−1)(α−1) then S∪C = V (G). Since ∑u,v∈C d(u,v) = ω(ω−1)/2,
thus ∑u,v∈S d(u,v) = α(α−1) and ∑u∈C,v∈S d(u,v) = (ω−1)(α−1). This implies |C∩S|=
1. Let C∩S = {u}. Since u ∈C, then for every v ∈C we have uv ∈ E(G). Similarly, u ∈ S
and ∑u∈C,v∈S d(u,v) = (ω−1)(α−1) results for every x ∈ S and y ∈C−{u}, xy ∈ E(G).
Therefore G∼= G(ω−1,α).

Theorem 4.3. Let G be a graph and n = |V (G)|. Then W (G) ≥ (n−α)(n−α − 1)/2 +
α(n−1) with equality if and only if G∼= G(n−α,α).

Proof. Let S be a maximum stable set of G. Then

W (G) = ∑
u,v∈G−S

d(u,v)+ ∑
u,v∈S

d(u,v)+ ∑
u∈G−S, v∈S

d(u,v)

≥
(

n−α

2

)
+2
(

α

2

)
+α(n−α) = (n−α)(n−α−1)/2+α(n−1).

If the equality holds, then for every u,v ∈V (G)−S the edge uv is in E(G) and every vertex
of S is adjacent to all vertices of V (G)− S. This implies G ∼= G(n−α,α). The converse
follows from Lemma 4.1.

Corollary 4.2. Let G be an arbitrary graph and G be a connected graph. Then

W (G)≥
(

α

2

)
+(ω−1)(α +ω−1)

with equality if and only if G∼= Eα−1∪Kω , and

W (G)≥
(

n−ω

2

)
+ω(n−1)

with equality if and only if G∼= En−ω−1∪Kω .

Proof. Follows from Theorem 4.2 and equality α(G) = ω(G).

Corollary 4.3. Let αm = max{αi = α(Gi),1≤ i≤ n}, ωm = max{ωi = ω(Gi),1≤ i≤ n},
ω
′
m = max{ωi = ω(Gi),1≤ i≤ 2}, ωΣ = ∑

n
i=1 ωi, and ni = |V (Gi)|. We have the following

formulas for the Wiener index:



Wiener Index, Stability Number and Clique Number of Composite Graphs 171

• W (G1 �G2)≥
(

ω1ω2
2

)
+(α1α2−1)(α1α2 +ω1ω2−1),

• W (�n
i=1Gi)≥

(
ωm
2

)
+(Πn

i=1αi−1)(Πn
i=1αi +ωm−1),

• W (G1 +G2 + · · ·+Gn)≥
(

ωΣ

2

)
+(αm−1)(αm +ωΣ−1),

• W (G1[G2])≥
(

ω1ω2
2

)
+(α1α2−1)(α1α2 +ω1ω2−1),

• W (G1∨G2)≥
(

ω1ω2
2

)
+(α1α2−1)(α1α2 +ω1ω2−1),

• W (G1⊕G2)≥
(

ω
′
m

2

)
+(α1α2−1)(α1α2 +ω

′
m−1).

5. Digressions and concluding remarks

Here we present a couple of results concerned with uniquely colorable and Hamiltonian
graphs that do not fit into other sections.

An s-chromatic graph G is uniquely colorable if it has only one possible proper s-coloring
up to permutation of the colors. We refer the reader to [9, 13] for some basic facts about
uniquely colorable graphs.

Theorem 5.1. Let G be a uniquely colorable graph with color classes V1, · · · ,Vs, such that
ni = |Vi|,1≤ i≤ s. Then

W (G)≥ 1
2

[
s

∑
i=1

n2
i +n2−2n

]
,

with equality if and only if G∼= Kn1,··· ,ns .

Proof.

W (G) = ∑
x,y∈V (G)

d(x,y) =
1
2

s

∑
i=1

s

∑
j=1

∑
x∈Vi

∑
y∈V j

d(x,y)

=
s

∑
i=1

∑
x,y∈Vi

d(x,y)+
1
2

s

∑
i=1

s

∑
j=1, j 6=i

∑
x∈Vi

∑
y∈V j

d(x,y)

≥
s

∑
i=1

2
(

ni

2

)
+

1
2

s

∑
i=1

s

∑
j=1, j 6=i

∑
x∈Vi

∑
y∈V j

1 =
s

∑
i=1

2
(

ni

2

)
+

1
2

s

∑
i=1

ni(n−ni).

The first claim now follows by simplifying the above result.
Let W (G) = 1/2

[
∑

s
i=1 n2

i +n2−2n
]
. Since the vertices of Vi are independent, then for

every pair x,y ∈Vi, we have d(x,y)≥ 2. This implies

(5.1)
s

∑
i=1

∑
x,y∈Vi

d(x,y)≥
s

∑
i=1

2
(

ni

2

)
.

Suppose now that x ∈Vi and y ∈Vj(1≤ i < j ≤ s). Then d(x,y)≥ 1 and so,

(5.2)
s

∑
i=1

s

∑
j=1, j 6=i

∑
x∈Vi

∑
y∈V j

d(x,y)≥
s

∑
i=1

ni(n−ni).

In order to satisfy our assumption, both inequalities must be equalities. The first equality
means that the vertices from the same color class are at distance 2; the second equality
means that all pairs of vertices belonging to different color classes are adjacent. Hence
G∼= Kn1,··· ,ns . The converse implication is obvious.
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Corollary 5.1. Let G be a graph with chromatic number χ(G) = s and ni = |Vi|. Then

W (G)≥ n(n−2)
2

+
1
2

min

{
s

∑
i=1

ni
2;

s

∑
i=1

ni = n

}
,

with equality if and only if G∼= Kn1,··· ,ns .

It is well known that the sum in the right hand side of the above inequality is minimized
when all terms are equal to bn/sc or dn/se.

Our last result is an observation on Hamiltonian graphs.

Theorem 5.2. Let G be an n-vertex graph with a Hamiltonian cycle. Then W (G)≤W (Cn)
with equality if and only if G∼= Cn.

Proof. Clearly W (G) ≤W (Cn). Let now W (G) = W (Cn). Since Cn is a sub graph of G,
then for every pair of vertices belong to V (G) such as x,y, dG(x,y)≤ dCn(x,y). This implies
dG(x,y) = dCn(x,y) and so G∼= Cn. Conversely, if G∼= Cn, then W (G) = W (Cn).

Coming back to the main topic of this paper, it would be interesting to further investigate
the relationship between the Wiener index and the stability and clique numbers of various
classes of graphs. Among classes that could allow for nice and compact formulas are many
that have chemical relevance, such as, e.g., benzenoid graphs [2], linear polymers, thorny
graphs [5], fullerenes, and others.
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