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Abstract. Let (R,m) be a commutative Noetherian local ring, a an ideal of R, and M a
finitely generated R-module. We show that for a non-negative integer t the following cases
are equivalent:

(a) The formal local cohomology modules lim←−
n

H i
m(M/anM) are Artinian for all i < t;

(b) a⊆ Rad(Ann(lim←−
n

H i
m(M/anM))) for all i < t.

If one of the above cases holds, then lim←−
n

Ht
m(M/anM)/alim←−

n
Ht

m(M/anM) is Artinian. Also,

there are some results concerning finiteness properties of formal local cohomology modules.
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1. Introduction

Throughout this paper, we assume that (R,m) is a commutative Noetherian local ring with
non-zero identity and a an ideal of R. For an integer i and a finitely generated R-module
M let H i

a(M) denote the local cohomology module of M with respect to a (see [3] for
the basic definitions). Huneke [11] asked the question: When the modules H i

a(M) are
Artinian. In general, this question is not true see for example [14] and [10], also the question
is still true in many situations (see [16], [6], [13] and [1]). Recently Schenzel [19] has
examined the structure of the modules lim←−

n
H i

m(M/anM) extensively. For each i, he called

Fi
a(M) := lim←−

n
H i

m(M/anM) the ith formal local cohomology module of M with respect to

a. Not so much is known about these modules. In the case of a regular local ring they have
been studied by Peskine and Szpiro (cf. [18], Chapter III) in relation to the vanishing of
local cohomology modules. Another kind of investigations about formal cohomology has
been done by Faltings (cf. [7]). For more details on the notion of formal cohomology, we
refer the reader to [12] and [2]. Now it is natural to ask the following question for the formal
cohomology: When are the formal local cohomology modules Fi

a(M) Artinian?
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The main aim of this paper is to prove the following theorems.

Theorem 1.1. Let t be a non-negative integer and M be a finitely generated R-module. Then
the following statements are equivalent:

(a) Fi
a(M) is Artinian for all i < t;

(b) a⊆ Rad(Ann(Fi
a(M))) for all i < t.

Moreover if one of the above cases holds, then Ft
a(M)/aFt

a(M) is Artinian.

Note that if R = M and R is Gorenstein, then the formal local cohomology is the Matlis
dual of local cohomology this was observed in [9, see 7.1.1]. In this sense Theorem 1.1
seems to be the precise dual of a well known finiteness criterion for local cohomology
[Proposition 9.1.2, see [3]].

The following result extends [19, Theorem 3.9].

Theorem 1.2. Let M be an a-cofinite R-module. Then for all j, there are the following
isomorphisms

Ha
i (F j

a(M))∼=

{
F

j
a(M) i = 0

0 i 6= 0.

2. The results

For an R-module N, a prime ideal p of R is said to be a co-support of N if the module
HomR(Rp,N) 6= 0. The set of all co-support prime ideals of N is denoted by CosR(N) (cf.
[17]).

Proposition 2.1. Let M be an R-module. Then for all i, ∩t>0a
tFi

a(M) = 0.

Proof. Note that for any inverse system {Nt}, alim←−
t

Nt ⊆ lim←−
t

aNt . Thus

∩
t>0

atFi
a(M)∼= lim←−

t
at lim←−

n
H i

m(M/anM)⊆ lim←−
t

lim←−
n

atH i
m(M/anM)∼= lim←−

n
lim←−

t
atH i

m(M/anM) = 0,

as atH i
m(M/anM) = 0 for all t ≥ n.

Lemma 2.1. Let M be an R-module and S be a multiplicative set of R such that S∩a 6= ∅.
Then for all i, HomR(S−1R,Fi

a(M)) = 0.

Proof. Since S∩a 6= ∅, there is an element s1 ∈ S∩a. Assume that f ∈HomR(S−1R,Fi
a(M))

and so f (r/s) = s1
t f (r/s1

ts) ∈ atFi
a(M) for all r/s ∈ S−1R and all t > 0. Therefore f ∈

∩t>0a
tFi

a(M) = 0. Hence f = 0, that means HomR(S−1R,Fi
a(M)) = 0.

Corollary 2.1. Let M be an R-module. Then for all i, Cos(Fi
a(M))⊆V (a).

Proof. Assume that p ∈ Cos(Fi
a(M)). Then HomR(Rp,Fi

a(M)) 6= 0 and hence, by Lemma
2.1, a∩ (R\p) = ∅. Thus a⊆ p.

A module M is a-cofinite if Supp(M)⊆V (a) and ExtiR(R/a,M) is finitely generated for
all i.

Lemma 2.2. [15, Section 2]. Let M be an a-cofinite R-module. Then the following cases
hold:

(1) N⊗R M is finitely generated for all finitely generated module N with a⊆ Ann(N).
(2) M/anM is finitely generated for all n≥ 1.
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Proof. See Section 2 of [15].
Let La

i (−) denote the ith left derived functor of the a-adic completion functor lim←−
n

(R/an⊗R

−) (cf.[8] and [20] for the basic results). Cuong and Nam [4], for an R-module M, define
the ith local homology module Ha

i (M) by Ha
i (M) = lim←−

n
TorR

i (R/an,M). Furthermore they

proved for an Artinian module M, Ha
i (M)∼= La

i (M) [4, Proposition 4.1].

Theorem 2.1. (Compare with [19, Theorem 3.9]) Let M be an a-cofinite R-module. Then
for all j, there are the following isomorphisms

Ha
i (F j

a(M))∼=

{
F

j
a(M) i = 0

0 i 6= 0.

Proof of Theorem 1.2. Note that H i
m(M/anM) is Artinian for all i by Lemma 2.4 and [3,

Exercise 7.1.4]. Hence, by [5, Proposition 3.4] we have

Ha
i (F j

a(M))∼= lim←−
n

Ha
i (H j

m(M/anM)).

Let x = (x1, . . . ,xm) be a system of generators of a and x(t) = (xt
1, . . . ,x

t
m). Then by [4,

Theorem 3.6] Ha
i (F j

a(M))∼= lim←−
n

lim←−
t

Hi(x(t),H
j
m(M/anM)). Since x(t)H j

m(M/anM) = 0 for

all t ≥ n, we get

lim←−
t

H0(x(t),H
j
m(M/anM)) = H j

m(M/anM) and lim←−
t

Hi(x(t),H
j
m(M/anM)) = 0

for all i > 0. This finishes the proof.

Remark 2.1. As the referee suggested, in the proof of Theorem 2.5, let Ua
i (.) denote

the left derived functor on the a-adic completion functor (see [20]). Then it seems that
Ua

j (F
i
a(M)) = 0 for all j > 0. Therefore Ha

j (Fi
a(M)) = 0 for all j > 0 is a consequence of

[21, Theorem 3.5.8].

Corollary 2.2. (Compare with [19, Corollary 3.10]) Let M be an a-cofinite R-module. Let
j ∈ Z. Suppose that F

j
a(M) = aF

j
a(M). Then F

j
a(M) = 0.

Proof. Set X = F
j
a(M). Then the assumption provides X = anX ,n ∈ N. Therefore by The-

orem 2.5 we have lim←−
n

X/anX = X and so X = 0, as required.

Theorem 2.2. Let t be a non-negative integer and M be a finitely generated R-module. Then
the following statements are equivalent:

(a) Fi
a(M) is Artinian for all i < t;

(b) a⊆ Rad(Ann(Fi
a(M))) for all i < t.

Proof of Theorem 1.1. (a) =⇒ (b). Let i < t. Since Fi
a(M) is Artinian for all i < t, we have

asFi
a(M) = 0 for some positive integer s by Proposition 2.1. Hence a⊆ Rad(Ann(Fi

a(M)))
for all i < t.
(b) =⇒ (a). We use induction on t. Let t = 1. Without loss of generality we may and do
assume that R is complete with respect to m-adic completion (cf. [19, Proposition 3.3]).
Then it follows that F0

a(M) is a finitely generated R-module. From [19, Lemma 4.1] we get
that Ass(F0

a(M)) = {p ∈Ass(M) : dimR/a+p = 0}. Therefore, by the hypothesis we have
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Supp(F0
a(M)) ⊆ {m} and so F0

a(M) has finite length. Hence in this case the claim holds.
Now, let t > 1 and assume that the claim holds for all values less than t− 1. Since Γa(M)
is annihilated by some power of a, by [19, Theorem 3.11] one has the following long exact
sequence

(2.1) . . .−→ H i
m(Γa(M))−→ Fi

a(M)−→ Fi
a(M/Γa(M))−→ H i+1

m (Γa(M))−→ . . . .

Hence, it is enough to prove that Fi
a(M/Γa(M)) is Artinian for all i < t. Thus, we may

and do assume that M is a-torsion free. Take x ∈ a \∪p∈Ass(M)p (cf. [3, Lemma 2.1.1]).
Therefore, by the hypothesis there exists a positive integer s such that xsFi

a(M) = 0 for all

i < t. By [19, Theorem 3.11] the exact sequence 0−→M xs
−→M −→M/xsM −→ 0 implies

the following exact sequence of formal local cohomology modules

0−→ Fi
a(M)−→ Fi

a(M/xsM)−→ Fi+1
a (M)−→ 0

for all i < t−1. It follows that a⊆Rad(Ann(Fi
a(M/xsM))) and by the inductive hypothesis

that Fi
a(M/xsM) is Artinian for all i < t−1. Hence Fi

a(M) is Artinian for all i < t. This
finishes the inductive step.

Theorem 2.3. Let M be a finitely generated R-module and t be a non-negative integer such
that Fi

a(M) is Artinian for all i < t. Then Ft
a(M)/aFt

a(M) is Artinian.

Proof. We proceed by induction on t. When t = 0, F0
a(M)/aF0

a(M) is Artinian by [2,
Theorem 3.7] Now, let t > 0 and the claim has been proved for t − 1. From the exact
sequence (2.1) that used in the proof of Theorem 1.1, we deduce that Fi

a(M/Γa(M)) is
Artinian for all i < t. We split the exact sequence

Ht
m(Γa(M))−→ Ft

a(M)
f−→ Ft

a(M/Γa(M))
g−→ Ht+1

m (Γa(M))

to the exact sequences

0−→ ker f −→ Ft
a(M)−→ im f −→ 0

and
0−→ im f −→ Ft

a(M/Γa(M))−→ img−→ 0.

From these exact sequences, we deduce the following exact sequences

(2.2) ker f /aker f −→ Ft
a(M)/aFt

a(M)−→ im f /a im f −→ 0

and
TorR

1 (R/a, img)−→ im f /a im f −→ Ft
a(M/Γa(M))/aFt

a(M/Γa(M))

−→ img/a img−→ 0.
(2.3)

Since ker f and img are Artinian, in view of (2.2) and (2.3), it turn out that if Ft
a(M/Γa(M))/

aFt
a(M/Γa(M)) is Artinian, then Ft

a(M)/aFt
a(M) is also Artinian. Hence we may and do

assume that M is a-torsion free and so there exists x ∈ a\∪p∈Ass(M)p. Thus by Theorem 1.1
there exists a positive integer s such that xsFi

a(M) = 0 for all i < t. From the exact sequence

0−→M xs
−→M −→M/xsM −→ 0 we deduce the following exact sequence

(2.4) 0−→ Fi
a(M)−→ Fi

a(M/xsM)−→ Fi+1
a (M)−→ 0

for all i < t−1. Hence Fi
a(M/xsM) is Artinian for all i < t − 1 and so by the inductive

hypothesis Ft−1
a (M/xsM)/aFt−1

a (M/xsM) is Artinian. By using the functor R/a⊗R− on
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the exact sequence (2.4), we deduce that Ft
a(M)/aFt(M) is Artinian. This complete the

inductive step.
The following consequence immediately follows by Theorem 2.1 and [19, Theorem 1.1].

Corollary 2.3. Let M be a finitely generated R-module. Then

F
fgrade(a,M)
a (M)/aF

fgrade(a,M)
a (M)

is Artinian.
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