Combinatorial Results for Certain Semigroups of Transformations Preserving Orientation and a Uniform Partition

LEI SUN
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan, 454003, P. R.China
sunlei97@163.com

Abstract

Let \mathscr{T}_{X} be the full transformation semigroup on a set X and E be a non-trivial equivalence on X. The set $$
T_{E}(X)=\left\{f \in \mathscr{T}_{X}: \forall(x, y) \in E,(f(x), f(y)) \in E\right\}
$$ is a subsemigroup of \mathscr{T}_{X}. For a finite totally ordered set X and a convex equivalence E on X, the set of all the orientation-preserving transformations in $T_{E}(X)$ forms a subsemigroup of $T_{E}(X)$ denoted by $O P_{E}(X)$. In this paper, under the hypothesis that the totally ordered set X is of cardinality $m n(m, n \geq 2)$ and the equivalence E has m classes such that each E-class contains n consecutive points, we calculate the cardinality of the semigroup $O P_{E}(X)$, and that of its idempotents.

2010 Mathematics Subject Classification: 20M20, 05A10
Keywords and phrases: Orientation-preserving transformation, cardinality, idempotent.

1. Introduction

Let $X=\{1,2, \cdots, n\}$ with the usual order and let \mathscr{P}_{X} and \mathscr{T}_{X} denote the partial transformation semigroup and the full transformation semigroup on X, respectively. A map $f \in \mathscr{T}_{X}$ is said to be order-preserving if $x \leq y$ implies $f(x) \leq f(y)$ for $x, y \in X$. The collection of all the order-preserving maps on X is denoted by O_{X} in [6] (the symbol O_{X} is replaced by O_{n} in [2]). A sequence $A=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is said to be cyclic if there exists no more than one subscript i such that $a_{i}>a_{i+1}$. A map $f \in \mathscr{T}_{X}$ is said to be orientation-preserving, if $(f(1), f(2), \cdots, f(n))$ is cyclic, which implies that there exists some $j \in\{0,1, \cdots, n-1\}$ such that

$$
f(j+1) \leq f(j+2) \leq \cdots \leq f(n) \leq f(1) \leq \cdots \leq f(j)
$$

(where we adopt the convention that $f(1) \leq f(2) \leq \cdots \leq f(n)$ if $j=0$). Clearly, if f is order-preserving, then it is also orientation-preserving. The collection of all the orientationpreserving maps on X is denoted by $O P_{n}$ and has been investigated by Catarino and Higgins in [2]. Combinatorial results of various classes of transformation subsemigroups of \mathscr{P}_{X} and
\mathscr{T}_{X} have been studied over a long period and many interesting results have emerged. For example, Howie [6] calculated the cardinality of O_{X} and the number of idempotents. Catarino and Higgins [2] gave formulas for the cardinality of $O P_{n}$ and the number of idempotents. Umar [15] considered the cardinality and the number of nilpotents and idempotents of the semigroup S_{n}^{-}of all the order-decreasing maps on X. Higgins [5] studied the combinatorial properties of \mathscr{C}_{n}, the semigroup of all the decreasing and order-preserving full transformations on X. Laradji and Umar [8] investigated the cardinality and the number of idempotents of $\mathscr{P} O_{n}$, the semigroup of all the order-preserving partial transformations on a finite chain X.

We may regard the elements of $X=\{1,2, \cdots, n\}$ as being placed clockwise on a circle so that the integer i lies between $i-1$ and $i+1$ for $1<i<n, n$ between $n-1$ and 1 , and 1 between n and 2. A closed interval $[i, j]$ for $i, j \in X$ may be expressed clockwise by $[i, j]=\{i, i+1, \cdots, j-1, j\}$. A subset Y of X is said to be convex if Y is a closed interval. An equivalence E on X is said to be convex if each E-class is convex. For two convex disjoint subsets P, Q of X, the generalized interval $[P, Q]$ can be expressed clockwise by $[P, Q]=\{p, p+1, \cdots, q-1, q\}$ where $p=\min P$ and $q=\max Q$. For example, let $n=$ 10, then $[3,8]=\{3,4, \cdots, 8\}$ and $[9,2]=\{9,10,1,2\}$. If $P=[5,6], Q=[10,2]$, then the generalized intervals $[P, Q]=\{5,6,7,8,9,10,1,2\},[8, Q]=\{8,9,10,1,2\}$.

Let X be a set with $|X| \geq 3$ and E be an equivalence on X. Set

$$
T_{E}(X)=\left\{f \in \mathscr{T}_{X}: \forall(x, y) \in E,(f(x), f(y)) \in E\right\} .
$$

Clearly, $T_{E}(X)$ is a subsemigroup of \mathscr{T}_{X} and if $E=\{(x, x): x \in X\}$ or $E=X \times X$, then $T_{E}(X)=\mathscr{T}_{X}$. In [14], for a finite totally ordered set X and the convex equivalence E on X, the authors considered the subsemigroup of $T_{E}(X)$

$$
O P_{E}(X)=\left\{f \in T_{E}(X): f \text { is orientation-preserving }\right\},
$$

and under the supposition that all E-classes were of the same size, the regularity and Green's relations for the semigroup $O P_{E}(X)$ were described.

In this paper, as in [14], we always assume the totally ordered set $X=\{1<2<\cdots<$ $m n\}(m, n \geq 2)$ and the equivalence E to be

$$
E=\left(A_{1} \times A_{1}\right) \cup\left(A_{2} \times A_{2}\right) \cup \cdots \cup\left(A_{m} \times A_{m}\right),
$$

where $A_{i}=[(i-1) n+1, i n]$ for $1 \leq i \leq m$. We investigate combinatorial properties of the semigroup $O P_{E}(X)$. The paper is organized as follows. In Section 2, we determine the cardinality of $O P_{E}(X)$. In Section 3, we characterize the idempotents in the semigroup $O P_{E}(X)$ and calculate their number.

Denote by X / E the quotient set of X. The following result whose proof is routine describes an essential property of the transformations in the semigroup $T_{E}(X)$ where X is an arbitrary set and E is an arbitrary equivalence on X.

Lemma 1.1. Let $f \in T_{E}(X)$, then for each $B \in X / E$, there exists $B^{\prime} \in X / E$ such that $f(B) \subseteq$ B^{\prime}. Consequently, for each $A \in X / E$, the set $f^{-1}(A)$ is either \emptyset or a union of some E-classes.

For each $f \in T_{E}(X)$, let

$$
E(f)=\left\{f^{-1}(A): A \in X / E \text { and } f^{-1}(A) \neq \emptyset\right\} .
$$

Then $E(f)$ is a partition of X. The following result shows that each orientation-preserving transformation induces a partition of convex subsets.

Lemma 1.2. Let $f \in O P_{E}(X)$. Then each $U \in E(f)$ is a convex subset of X.

2. The cardinality of $O P_{E}(X)$

In this section, we focus our attention on the cardinality of $O P_{E}(X)$. We notice that for each $f \in O P_{E}(X)$, there exists some j such that $f(j+1)=\min f(X)$ and $f(j)=\max f(X)$ and j is unique if f is not constant. Therefore, there are two cases: $(j, j+1) \notin E$ or $(j, j+1) \in E$. We first consider subsets of $O P_{E}(X)$ consisting of those elements for which $(j, j+1) \notin E$. It is not hard to see that in this case, j is the greatest number in some E-class A_{i} while $j+1$ is the smallest number in the next E-class A_{i+1}. Define certain subsets $\mathscr{A}_{1}, \mathscr{A}_{2}, \cdots, \mathscr{A}_{m}$ of $O P_{E}(X)$ by:

$$
\begin{aligned}
& \mathscr{A}_{1}=\left\{f \in O P_{E}(X): f(1)=\right.\min f(X) \text { and } f(m n)=\max f(X)\}, \\
& \mathscr{A}_{2}=\left\{f \in O P_{E}(X): f(n+1)=\right.\min f(X) \text { and } f(n)=\max f(X)\}, \\
& \cdots,
\end{aligned} \mathscr{A}_{m}=\left\{f \in O P_{E}(X): f((m-1) n+1)=\min f(X) \text { and } f((m-1) n)=\max f(X)\right\} .
$$

Obviously, if $f \in \mathscr{A}_{i}(1 \leq i \leq m)$, then $|f(X)| \leq m n$ and

$$
f((i-1) n+1) \leq f((i-1) n+2) \leq \cdots \leq f(m n) \leq f(1) \leq \cdots \leq f((i-1) n)
$$

Next, we consider anther subsets consisting of those elements for which $(j, j+1) \in E$ and $f(j+1)=\min f(X), f(j)=\max f(X)$. For each $1 \leq s \leq m$, define certain subsets $\mathscr{B}_{s, 1}, \mathscr{B}_{s, 2}, \cdots, \mathscr{B}_{s, n-1}$ of $O P_{E}(X)$ by

$$
\begin{aligned}
\mathscr{B}_{s, 1}=\left\{f \in O P_{E}(X): f((s-1) n+2)=\right. & \min f(X) \text { and } f((s-1) n+1)=\max f(X)\}, \\
\mathscr{B}_{s, 2}=\left\{f \in O P_{E}(X): f((s-1) n+3)=\right. & \min f(X) \text { and } f((s-1) n+2)=\max f(X)\}, \\
& \cdots, \\
\mathscr{B}_{s, n-1}=\left\{f \in O P_{E}(X): f(s n)=\right. & \min f(X) \text { and } f(s n-1)=\max f(X)\} .
\end{aligned}
$$

If $f \in \mathscr{B}_{s, t}(1 \leq t \leq n-1)$, then f maps all the elements of X into some E-class and

$$
f((s-1) n+t+1) \leq f((s-1) n+t+2) \leq \cdots \leq f(m n) \leq f(1) \leq \cdots \leq f((s-1) n+t) .
$$

Therefore,

$$
O P_{E}(X)=\left(\bigcup_{s=1}^{m} \mathscr{A}_{s}\right) \bigcup\left(\bigcup_{s=1}^{m} \bigcup_{t=1}^{n-1} \mathscr{B}_{s, t}\right)
$$

and for $s \neq s^{\prime}, t \neq t^{\prime}$,

$$
\mathscr{A}_{s} \cap \mathscr{A}_{s^{\prime}}=\mathscr{B}_{s, t} \cap \mathscr{B}_{s^{\prime}, t^{\prime}}=\mathscr{B}_{s, t} \cap \mathscr{A}_{s^{\prime}}=\{\langle 1\rangle,\langle 2\rangle, \cdots,\langle m n\rangle\},
$$

where $\langle x\rangle$ denotes the constant map which maps all the elements of X into x.
We give two properties for the subsets $\mathscr{A}_{1}, \mathscr{A}_{2}, \cdots, \mathscr{A}_{m}$ and $\mathscr{B}_{s, 1}, \mathscr{B}_{s, 2}, \cdots, \mathscr{B}_{s, n-1}(1 \leq$ $s \leq m)$.
Lemma 2.1. Let $\mathscr{A}_{1}, \mathscr{A}_{2}, \cdots, \mathscr{A}_{m}$ be as defined above. Then

$$
\left|\mathscr{A}_{1}\right|=\left|\mathscr{A}_{2}\right|=\cdots=\left|\mathscr{A}_{m}\right| .
$$

Proof. For $f \in \mathscr{A}_{1}$, define $\psi_{1}: \mathscr{A}_{1} \rightarrow \mathscr{A}_{2}$ by $\psi_{1}(f)=g$ where

$$
g(x)= \begin{cases}f(m n+x-n) & 1 \leq x \leq n \\ f(x-n) & \text { otherwise }\end{cases}
$$

Then ψ_{1} is well defined. To see $g \in \mathscr{A}_{2}$, let $(x, y) \in E$, if $x, y \in A_{1}$, then ($m n+x-n, m n+y-$ $n) \in E$ and $(g(x), g(y))=(f(m n+x-n), f(m n+y-n)) \in E$. If $x, y \notin A_{1}$, then $(x-n, y-$ $n) \in E$ and $(g(x), g(y))=(f(x-n), f(y-n)) \in E$ which implies that $g \in T_{E}(X)$. Moreover,

$$
\begin{aligned}
g(n+1) & =f(1) \leq g(n+2)=f(2) \leq \cdots \leq g(m n)=f(m n-n) \\
& \leq g(1)=f(m n+1-n) \leq g(2)=f(m n+2-n) \cdots \leq g(n)=f(m n) .
\end{aligned}
$$

So $g \in \mathscr{A}_{2}$. It is clear that ψ_{1} is a bijection from \mathscr{A}_{1} onto \mathscr{A}_{2}. Therefore, $\left|\mathscr{A}_{1}\right|=\left|\mathscr{A}_{2}\right|$. Similarly, we can define $\psi_{2}, \psi_{3}, \cdots, \psi_{m-1}$ and show that $\left|\mathscr{A}_{2}\right|=\left|\mathscr{A}_{3}\right|,\left|\mathscr{A}_{3}\right|=\left|\mathscr{A}_{4}\right|, \cdots,\left|\mathscr{A}_{m-1}\right|=$ $\left|\mathscr{A}_{m}\right|$. Consequently, $\left|\mathscr{A}_{1}\right|=\left|\mathscr{A}_{2}\right|=\cdots=\left|\mathscr{A}_{m}\right|$.

Lemma 2.2. For $1 \leq s \leq m$, let $\mathscr{B}_{s, 1}, \mathscr{B}_{s, 2}, \cdots, \mathscr{B}_{s, n-1}$ be as defined above. Then
(1) $\left|\mathscr{B}_{s, 1}\right|=\left|\mathscr{B}_{s, 2}\right|=\cdots=\left|\mathscr{B}_{s, n-1}\right|$.
(2) $\left|\mathscr{B}_{s, l}\right|=\left|\mathscr{B}_{s^{\prime}, l}\right|$ for $1 \leq s, s^{\prime} \leq m$ and $1 \leq l \leq n-1$.

Proof. (1) For $f \in \mathscr{B}_{s, t}(1 \leq t \leq n-1)$, define $\rho: \mathscr{B}_{s, t} \rightarrow \mathscr{B}_{s, t+1}$ by $\rho(f)=g$ where

$$
g(x)= \begin{cases}f(m n) & x=1 \\ f(x-1) & \text { otherwise } .\end{cases}
$$

Since f maps X into some E-class and $g(X)=f(X)$, we have $g \in T_{E}(X)$. Moreover,

$$
\begin{aligned}
& g((s-1) n+t+2)=f((s-1) n+t+1) \leq g((s-1) n+t+3)=f((s-1) n+t+2) \leq \cdots \\
& \leq g(m n)=f(m n-1) \leq g(1)=f(m n) \leq \cdots \leq g((s-1) n+t+1)=f((s-1) n+t) .
\end{aligned}
$$

Thus $g \in \mathscr{B}_{s, t+1}$. One easily verifies that ρ is a bijection from $\mathscr{B}_{s, t}$ onto $\mathscr{B}_{s, t+1}$. Hence $\left|\mathscr{B}_{s, t}\right|=\left|\mathscr{B}_{s, t+1}\right|$ and $\left|\mathscr{B}_{s, 1}\right|=\left|\mathscr{B}_{s, 2}\right|=\cdots=\left|\mathscr{B}_{s, n-1}\right|$.
(2) Similar to that of Lemma 2.1.

As we know, the number of r-combinations of k distinct objects each available in unlimited supply is $\binom{r+k-1}{r}$ (see [1, Theorem 3.5.1, p. 72]).

We now can state and prove the main result of this section.

Theorem 2.1.

$\left|O P_{E}(X)\right|=m \sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{s}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n}+m^{2}(n-1)\binom{n(m+1)-1}{m m}-m n(m n-1)$,
where $\left(k_{1}, k_{2}, \cdots, k_{m}\right)$ is any non-negative integer solution to the equation $\sum_{s=1}^{m} k_{s}=m$.
Proof. By Lemmas 2.1 and 2.2, in order to calculate $\left|O P_{E}(X)\right|$, we need only consider $\left|\mathscr{A}_{1}\right|$ and $\left|\mathscr{B}_{1,1}\right|$. We first calculate $\left|\mathscr{A}_{1}\right|$. Suppose that
(2.1) $\quad f\left(\left[A_{1}, A_{k_{1}}\right]\right) \subseteq A_{1}, f\left(\left[A_{k_{1}+1}, A_{k_{1}+k_{2}}\right]\right) \subseteq A_{2}, \cdots, f\left(\left[A_{k_{1}+k_{2}+\cdots+k_{m-1}+1}, A_{m}\right]\right) \subseteq A_{m}$,
where $\left(k_{1}, k_{2}, \cdots, k_{m}\right)$ is one non-negative integer solution to the equation $\sum_{s=1}^{m} k_{s}=m$. Then the number of maps f satisfying (2.1) is $\prod_{s=1}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n}$. Thus,

$$
\left|\mathscr{A}_{1}\right|=\sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{k_{s} n}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n},
$$

where $\left(k_{1}, k_{2}, \cdots, k_{m}\right)$ is any non-negative integer solution to the equation $\sum_{s=1}^{m} k_{s}=m$. Hence it follows from Lemma 2.1 that

$$
\left|\mathscr{A}_{1}\right|=\left|\mathscr{A}_{2}\right|=\cdots=\left|\mathscr{A}_{m}\right|=\sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{k_{s} n}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n} .
$$

Notice that, for any distinct s and s^{\prime},

$$
\mathscr{A}_{s} \cap \mathscr{A}_{s^{\prime}}=\{\langle 1\rangle,\langle 2\rangle, \cdots,\langle m n\rangle\},
$$

so the number of distinct maps $f \in \bigcup_{s=1}^{m} \mathscr{A}_{s}$ is

$$
m \sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{s=1}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n}-m n(m-1) .
$$

We now calculate $\left|\mathscr{B}_{1,1}\right|$. If $f \in \mathscr{B}_{1,1}$, then $f(X) \subseteq A$ for some $A \in X / E$. Set

$$
\mathscr{F}_{i}=\left\{f \in \mathscr{B}_{1,1}: f(X) \subseteq A_{i}\right\},
$$

where $1 \leq i \leq m$. It follows that $\left|\mathscr{F}_{i}\right|=\binom{n(m+1)-1}{m n}$ and so $\left|\mathscr{B}_{1,1}\right|=\left|\bigcup_{i=1}^{m} \mathscr{F}_{i}\right|=m\binom{n(m+1)-1}{m n}$. By virtue of Lemma 2.2, for $1 \leq s \leq m$ and $1 \leq t \leq n-1$, we have $\left|\mathscr{B}_{s, t}\right|=m\binom{n(m+1)-1}{m n}$. Since

$$
\mathscr{B}_{s, t} \cap \mathscr{B}_{s^{\prime}, t^{\prime}}=\mathscr{B}_{s, t} \cap \mathscr{A}_{s^{\prime}}=\{\langle 1\rangle,\langle 2\rangle, \cdots,\langle m n\rangle\},
$$

the number of distinct non-constant maps $f \in \bigcup_{s=1}^{m} \bigcup_{t=1}^{n-1} \mathscr{B}_{s, t}$ is

$$
m^{2}(n-1)\binom{n(m+1)-1}{m n}-m^{2} n(n-1) .
$$

Therefore,

$$
\left|O P_{E}(X)\right|=m \sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{s=1}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n}+m^{2}(n-1)\binom{n(m+1)-1}{m n}-m n(m n-1),
$$

as required.
Earlier the authors [12] considered the class of transformation semigroups

$$
O_{E}(X)=\left\{f \in T_{E}(X): \forall x, y \in X, x \leq y \Rightarrow f(x) \leq f(y)\right\},
$$

where the set X and the equivalence E are as defined in this paper. It is clear that $O_{E}(X) \subset$ $O P_{E}(X)$, and in fact, the semigroup $O_{E}(X)$ whose cardinality is not known hitherto, is exactly $\left|\mathscr{A}_{1}\right|$. Thus, an immediate consequence of Theorem 2.1 is the following corollary.

Corollary 2.1.

$$
\left|O_{E}(X)\right|=\sum_{k_{1}+k_{2}+\cdots+k_{m}=m s=1} \prod_{k_{s}}^{m}\binom{\left(k_{s}+1\right) n-1}{k_{s} n},
$$

where $\left(k_{1}, k_{2}, \cdots, k_{m}\right)$ is any non-negative integer solution to the equation $\sum_{s=1}^{m} k_{s}=m$.
Remark 2.1. Recently I have been told that Fernandes and Quinteiro [4] had calculated the size of the semigroups $O P_{E}(X)$ and $O_{E}(X)$. However, the approach used differs greatly from that in this paper.

The following Tables 1 and 2 give the size of the semigroups $O P_{E}(X)$ and $O_{E}(X)$ for smaller m and n, respectively.

Table 1. The cardinality of $O P_{E}(X)$

$m \backslash n$	2	3	4	5	6
2	46	506	5034	51682	575268
3	447	9453	248823	8445606	349109532
4	4324	223852	17184076	1819339324	247307947608
5	42075	5555990	1207660095	387720453255	170017607919290
6	405828	136530144	83547682248	81341248206546	114804703283314542

Table 2. The cardinality of $O_{E}(X)$

$m \backslash n$	2	3	4	5	6
2	19	156	1555	17878	225820
3	138	2845	78890	2768760	115865211
4	1059	55268	4284451	454664910	61824611940
5	8378	1109880	241505530	77543615751	34003513468232
6	67582	22752795	13924561150	13556873588212	19134117191404027

3. The number of idempotents in $O P_{E}(X)$

For a given subset M of the semigroup $O P_{E}(X)$, we denote by $E(M)$ its set of idempotents. In this section, we aim to calculate the cardinality of $E\left(O P_{E}(X)\right)$. Since the semigroup $O P_{E}(X)$ has been divided into some subsets $\mathscr{A}_{1}\left(=O_{E}(X)\right), \mathscr{A}_{2}, \cdots, \mathscr{A}_{m}, \mathscr{B}_{s, 1}, \mathscr{B}_{s, 2}, \cdots$, $\mathscr{B}_{s, n-1}(1 \leq s \leq m)$, that is,

$$
O P_{E}(X)=\left(\bigcup_{s=1}^{m} \mathscr{A}_{s}\right) \bigcup\left(\bigcup_{s=1}^{m} \bigcup_{t=1}^{n-1} \mathscr{B}_{s, t}\right),
$$

we need only calculate the cardinality of the sets $E\left(\mathscr{A}_{1}\right), E\left(\mathscr{A}_{2}\right), \cdots, E\left(\mathscr{A}_{m}\right), \bigcup_{t=1}^{n-1} E\left(\mathscr{B}_{s, t}\right)$ ($1 \leq s \leq m$), respectively.

We begin with considering the number of idempotents in the semigroup $O_{E}(X)$. Recall that, the Fibonacci numbers are recursively defined by

$$
F_{0}=0, F_{1}=1, F_{k+1}=F_{k}+F_{k-1}, \quad k \geq 1 .
$$

The following lemma which comes from [6, Theorem 2.3] was reproved in [2, Lemma 2.9].
Lemma 3.1. $\left|E\left(O_{n}\right)\right|=F_{2 n}$.
Lemma 3.2. Let $f \in O_{E}(X)$ and $f^{-1}\left(A_{j}\right)=\left[A_{i+1}, A_{i+t}\right]$ for $1 \leq i, t \leq m-1, i+1 \leq j \leq i+t$. Then the restriction of f to $\left[A_{i+1}, A_{i+t}\right]$

$$
\left.f\right|_{\left[A_{i+1}, A_{i+t}\right]}:\left[A_{i+1}, A_{i+t}\right] \rightarrow A_{j}
$$

is an idempotent in $\mathscr{T}_{\left[A_{i+1}, A_{i+t}\right]}$ if and only if the restriction of f to the E-class A_{j}

$$
\left.f\right|_{A_{j}}: A_{j} \rightarrow A_{j}
$$

is an idempotent in $\mathscr{T}_{A_{j}}$ and $f\left(\left[A_{i+1}, A_{j-1}\right]\right)=f(a), f\left(\left[A_{j+1}, A_{i+t}\right]\right)=f(b)$ where $a=$ $\operatorname{minA}_{j}=(j-1) n+1$ and $b=\max _{j}=j n$.

Proof. It is immediate for an order-preserving transformation in $T_{E}(X)$.

Remark 3.1. From Lemma 3.2, in order to construct an idempotent

$$
\left.f\right|_{\left[A_{i+1}, A_{i+t}\right]}:\left[A_{i+1}, A_{i+t}\right] \rightarrow A_{j}
$$

in $\mathscr{T}_{\left[A_{i+1}, A_{i+t}\right]}$, we go along the following line:
Step 1. Construct an idempotent $\left.f\right|_{A_{j}}: A_{j} \rightarrow A_{j}$ in $\mathscr{T}_{A_{j}}$;
Step 2. Let $f\left(\left[A_{i+1}, A_{j-1}\right]\right)=f(a)$ and $f\left(\left[A_{j+1}, A_{i+1}\right]\right)=f(b)$ where $a=\min A_{j}=(j-$ 1) $n+1$ and $b=\max A_{j}=j n$.

From Lemma 3.2 and Remark 3.1, we can deduce
Lemma 3.3. Let $f \in O_{E}(X)$ and $f^{-1}\left(A_{j}\right)=\left[A_{i+1}, A_{i+t}\right]$ for $1 \leq i, t \leq m-1, i+1 \leq j \leq i+t$. Then the number of idempotents

$$
\left.f\right|_{\left[A_{i+1}, A_{i+t}\right]}:\left[A_{i+1}, A_{i+t}\right] \rightarrow A_{j}
$$

in $\mathscr{T}_{\left[A_{i+1}, A_{i+t}\right]}$ equals that of idempotents in $\mathscr{T}_{A_{j}}$.

Theorem 3.1.

$$
\left|E\left(O_{E}(X)\right)\right|=\sum_{t=1}^{m}\left(\sum_{k_{1}+k_{2}+\cdots+k_{t}=m} \prod_{i=1}^{t} k_{i} F_{2 n}\right),
$$

where $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is any positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$.
Proof. Let $f \in E\left(O_{E}(X)\right)$. Denote

$$
t=|\{A \in X / E: A \cap f(X) \neq \emptyset\}|,
$$

where $1 \leq t \leq m$. Suppose that

$$
\begin{equation*}
f\left(\left[A_{1}, A_{k_{1}}\right]\right) \subseteq A_{s_{1}}, f\left(\left[A_{k_{1}+1}, A_{k_{1}+k_{2}}\right]\right) \subseteq A_{s_{2}}, \cdots, f\left(\left[A_{k_{1}+k_{2}+\cdots+k_{t-1}+1}, A_{m}\right]\right) \subseteq A_{s_{t}}, \tag{3.1}
\end{equation*}
$$

where $A_{s_{i}} \in X / E$ for $1 \leq i \leq t$, the subscript set $\left\{s_{1}, s_{2}, \cdots, s_{t}\right\} \subseteq\{1,2, \cdots, m\}$ and $\left(k_{1}, k_{2}\right.$, \cdots, k_{t}) is one positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$. Then, for each i, there are k_{i} choices for $A_{s_{i}}$. By Lemma 3.3, for the fixed positive integer solution $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ to the equation $\sum_{i=1}^{t} k_{i}=m$, the number of idempotents f satisfying (3.1) is $\prod_{i=1}^{t} k_{i} F_{2 n}$. So the number of idempotents f satisfying (3.1) is $\sum_{k_{1}+k_{2}+\cdots+k_{t}=m} \prod_{i=1}^{t} k_{i} F_{2 n}$, where ($k_{1}, k_{2}, \cdots, k_{t}$) is any positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$. Noting that $1 \leq t \leq m$, we have

$$
\left|E\left(O_{E}(X)\right)\right|=\sum_{t=1}^{m}\left(\sum_{k_{1}+k_{2}+\cdots+k_{t}=m} \prod_{i=1}^{t} k_{i} F_{2 n}\right) .
$$

Remark 3.2. From Lemma 2.1, $\left|\mathscr{A}_{1}\right|=\left|\mathscr{A}_{2}\right|=\cdots=\left|\mathscr{A}_{m}\right|$. However, in general, the number of idempotents in \mathscr{A}_{1} doesn't equal that of \mathscr{A}_{j} for $j \neq 1$. For example, let $m=2, n=2$, that is, $A_{1}=\{1,2\}, A_{2}=\{3,4\}$. By Theorem 3.1, we have

$$
\left|E\left(\mathscr{A}_{1}\right)\right|=2 F_{4}+F_{4} F_{4}=15 .
$$

Denote by $(a b c d)$ the map $f \in O P_{E}(X)$ which maps 1,2,3,4 into a, b, c, d, respectively, and

$$
\begin{aligned}
& E\left(\mathscr{A}_{1}\right)=\{\langle 1\rangle,(1222),\langle 2\rangle,(1133),(1134),(1144),(1233),(1234),(1244),(2233), \\
&(2234),(2244),\langle 3\rangle,(3334),\langle 4\rangle\} .
\end{aligned}
$$

However, there are only 6 idempotents in \mathscr{A}_{2}, and

$$
E\left(\mathscr{A}_{2}\right)=\{\langle 1\rangle,(1211),\langle 2\rangle,\langle 3\rangle,(4434),\langle 4\rangle\} .
$$

Now we calculate the number of idempotents in \mathscr{A}_{l} for $2 \leq l \leq m$.
Lemma 3.4. Let $f \in \mathscr{A}_{l}(2 \leq l \leq m)$ and $f^{-1}\left(A_{p}\right)=\left[A_{l}, A_{l^{\prime}}\right]$ for some E-class A_{p} with $p \leq l^{\prime}<l$. Then the restriction of f to $\left[A_{l}, A_{l^{\prime}}\right]$

$$
\left.f\right|_{\left[A_{l}, A_{l^{\prime}}\right]}:\left[A_{l}, A_{l^{\prime}}\right] \rightarrow A_{p}
$$

is an idempotent in $\mathscr{T}_{\left[A_{l}, A_{l}\right]}$ if and only if the restriction of f to A_{p}

$$
\left.f\right|_{A_{p}}: A_{p} \rightarrow A_{p}
$$

is an idempotent in $\mathscr{T}_{A_{p}}$ and $f\left(\left[A_{l}, A_{p-1}\right]\right)=f(a), f\left(\left[A_{p+1}, A_{l^{\prime}}\right]\right)=f(b)$ where $a=\min _{p}=$ $(p-1) n+1$ and $b=\max _{p}=p n$.

Remark 3.3. In Lemma 3.4, there are two special cases.
(1) if $p=l^{\prime}=1$, then the restriction of f to $\left[A_{l}, A_{1}\right]$

$$
\left.f\right|_{\left[A_{l}, A_{1}\right]}:\left[A_{l}, A_{1}\right] \rightarrow A_{1}
$$

is an idempotent in $\mathscr{T}_{\left[A_{l}, A_{1}\right]}$ if and only if the restriction of f to A_{1}

$$
\left.f\right|_{A_{1}}: A_{1} \rightarrow A_{1}
$$

is an idempotent in $\mathscr{T}_{A_{1}}$ and $f\left(\left[A_{l}, A_{m}\right]\right)=f(1)$.
(2) if $p=l^{\prime} \geq 2$, then the restriction of f to $\left[A_{l}, A_{l^{\prime}}\right]$

$$
\left.f\right|_{\left[A_{l}, A_{l^{\prime}}\right]}:\left[A_{l}, A_{l^{\prime}}\right] \rightarrow A_{p}
$$

is an idempotent in $\mathscr{T}_{\left[A_{l}, A_{l^{\prime}}\right]}$ if and only if the restriction of f to A_{p}

$$
\left.f\right|_{A_{p}}: A_{p} \rightarrow A_{p}
$$

is an idempotent in $\mathscr{T}_{A_{p}}$ and $f\left(\left[A_{l}, A_{p-1}\right]\right)=f((p-1) n+1)$.
To illustrate Lemma 3.4, let $m=4, n=2$ and $A_{1}=\{1,2\}, A_{2}=\{3,4\}, A_{3}=\{5,6\}, A_{4}=$ $\{7,8\}$. Then $f_{1}=(12111111) \in E\left(\mathscr{A}_{2}\right), f_{2}=(12221111) \in E\left(\mathscr{A}_{3}\right)$ and $f_{3}=(33344433) \in$ $E\left(\mathscr{A}_{4}\right)$. Clearly, $\left.f_{1}\right|_{A_{1}}$ is an idempotent in $\mathscr{T}_{A_{1}}, f_{1}\left(\left[A_{2}, A_{4}\right]\right)=f_{1}(1)$, and $\left.f_{2}\right|_{A_{1}}$ is an idempotent in $\mathscr{T}_{A_{1}}, f_{2}\left(\left[A_{3}, A_{4}\right]\right)=f_{2}(1), f_{2}\left(A_{2}\right)=f_{2}(2)$, and $\left.f_{3}\right|_{A_{2}}$ is an idempotent in $\mathscr{T}_{A_{2}}, f_{3}\left(\left[A_{4}\right.\right.$, $\left.\left.A_{1}\right]\right)=f_{3}(3), f_{3}\left(A_{3}\right)=f_{3}(4)$.

Lemma 3.5. For $2 \leq l \leq m$,
$\left|E\left(\mathscr{A}_{l}\right)\right|=\sum_{v=1}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}+\sum_{t=1}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m}\left(\prod_{i=1}^{t-1} k_{i} F_{2 n}\right)\left(\left(k_{t}-l+1\right) F_{2 n}\right)$,
where $\left(j_{1}, j_{2}, \cdots, j_{v}\right)$ is any positive integer solution to the equation $\sum_{w=1}^{v} j_{w}=l-1$, and $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is any positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$ and the final positive integer $k_{t} \geq l$.

Proof. Let $f \in E\left(\mathscr{A}_{l}\right)$. There are two cases to consider.
Case 1. $f\left(A_{l}\right) \subseteq A_{p}$ for $p \in\{1,2, \cdots, l-1\}$. Since f is an idempotent, we can deduce that $f\left(\left[A_{l}, A_{m}\right]\right) \subseteq A_{p}$. Let

$$
v=|\{A \in X / E: A \cap f(X) \neq \emptyset\}|,
$$

where $1 \leq v \leq l-1$. Suppose

$$
\begin{align*}
f\left(\left[A_{l}, A_{j_{1}}\right]\right) \subseteq & A_{s_{1}}, f\left(\left[A_{j_{1}+1}, A_{j_{1}+j_{2}}\right]\right) \subseteq A_{s_{2}}, \cdots, \\
& f\left(\left[A_{j_{1}+j_{2}+\cdots+j_{v-1}+1}, A_{j_{1}+j_{2}+\cdots+j_{v-1}+j_{v}}=A_{l-1}\right]\right) \subseteq A_{s_{v}}, \tag{3.2}
\end{align*}
$$

where $\left(j_{1}, j_{2}, \cdots, j_{v}\right)$ is one positive integer solution to the equation $\sum_{w=1}^{v} j_{w}=l-1$, the subscript set $\left\{s_{1}, s_{2}, \cdots, s_{v}\right\} \subseteq\{1,2, \cdots, l-1\}$ and

$$
A_{p}=A_{s_{1}}<A_{s_{2}}<\cdots<A_{s_{v}} \leq A_{l-1} .
$$

If $v=1$, then f maps all the elements of X into A_{p} which has $l-1$ possible choices and so the number of f is $(l-1) F_{2 n}$. Suppose that $v>1$ and then, for each $w(1 \leq w \leq v)$, there are j_{w} possible choices for $A_{s_{w}}$. By Lemma 3.4, for the fixed positive integer solution $\left(j_{1}, j_{2}, \cdots, j_{v}\right)$ to the equation $\sum_{w=1}^{v} j_{w}=l-1$, the number of f satisfying (3.2) should be $\prod_{w=1}^{v} j_{w} F_{2 n}$. So the number of all f satisfying (3.2) is $\sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}$. Taking the sum v from 2 to $l-1$, we obtain that the number of f satisfying (3.2) is $\sum_{v=2}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}$. Therefore, the number of f satisfying the condition that $f\left(A_{l}\right) \subseteq A_{p}$ for $p \in\{1,2, \cdots, l-1\}$ is

$$
(l-1) F_{2 n}+\sum_{v=2}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}=\sum_{v=1}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n} .
$$

Case 2. $f\left(A_{l}\right) \subseteq A_{p}$ for $p \in\{l, l+1, \cdots, m\}$. Set

$$
t=|\{A \in X / E: A \cap f(X) \neq \emptyset\}|
$$

where $1 \leq t \leq m-(l-1)$. Suppose

$$
\begin{align*}
f\left(\left[A_{l}, A_{l+k_{1}}\right]\right) \subseteq & A_{s_{1}}, f\left(\left[A_{l+k_{1}+1}, A_{l+k_{1}+k_{2}}\right]\right) \subseteq A_{s_{2}}, \cdots \\
& f\left(\left[A_{l+k_{1}+k_{2}+\cdots+k_{t-1}+1}, A_{l+k_{1}+k_{2}+\cdots+k_{t-1}+k_{t}}=A_{l-1}\right]\right) \subseteq A_{s_{t}} \tag{3.3}
\end{align*}
$$

where $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is any integer solution to the equation $\sum_{i=1}^{t} k_{i}=m-1$ and $k_{1} \geq 0, k_{2} \geq$ $1, k_{3} \geq 1, \cdots, k_{t-1} \geq 1, k_{t} \geq l$ (since f maps at least E-classes $A_{m}, A_{1}, \cdots, A_{l-1}$ into $A_{s_{t}}$), the subscript set $\left\{s_{1}, s_{2}, \cdots, s_{t}\right\} \subseteq\{l, l+1, \cdots, m\}$ and

$$
A_{l} \leq A_{p}=A_{s_{1}}<A_{s_{2}}<\cdots<A_{s_{t}} \leq A_{m}
$$

If $t=1$, it is clear that the number of f is $(m-l+1) F_{2 n}$. If $t=2$, then there are $\left(k_{1}+1\right)$ choices for $A_{s_{1}}$ and $\left(k_{2}-l+1\right)\left(k_{2} \geq l\right)$ choices for $A_{s_{2}}$. Thus the number of f is

$$
\sum_{k_{1}+k_{2}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\right)\left(\left(k_{2}-l+1\right) F_{2 n}\right) .
$$

If $3 \leq t \leq m-(l-1)$, there are $\left(k_{1}+1\right)$ choices for $A_{s_{1}}$, and, for each $i(2 \leq i \leq t-$ 1), k_{i} choices for $A_{s_{i}}$, and $\left(k_{t}-l+1\right)$ choices for $A_{s_{t}}$. So, for the fixed integer solution $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ to the equation $\sum_{i=1}^{t} k_{i}=m-1$, the number of f satisfying (3.3) is $\left(k_{1}+1\right) F_{2 n}\left(\prod_{i=2}^{t-1} k_{i} F_{2 n}\right)\left(k_{t}-l+1\right) F_{2 n}$. Thus, the number of all f satisfying (3.3) is

$$
\sum_{k_{1}+k_{2}+\cdots+k_{t}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\left(\prod_{i=2}^{t-1} k_{i} F_{2 n}\right)\left(k_{t}-l+1\right) F_{2 n}\right) .
$$

Taking the sum t from 3 to $m-l+1$ yields

$$
\sum_{t=3}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\left(\prod_{i=2}^{t-1} k_{i} F_{2 n}\right)\left(k_{t}-l+1\right) F_{2 n}\right) .
$$

Therefore, the number of f satisfying the condition that $f\left(A_{l}\right) \subseteq A_{p}$ for $p \in\{l, l+1, \cdots, m\}$ is

$$
\begin{aligned}
& (m-l+1) F_{2 n}+\sum_{k_{1}+k_{2}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\right)\left(\left(k_{2}-l+1\right) F_{2 n}\right) \\
& +\sum_{t=3}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\left(\prod_{i=2}^{t-1} k_{i} F_{2 n}\right)\left(k_{t}-l+1\right) F_{2 n}\right) \\
& =\sum_{t=1}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m-1}\left(\left(k_{1}+1\right) F_{2 n}\left(\prod_{i=2}^{t-1} k_{i} F_{2 n}\right)\left(k_{t}-l+1\right) F_{2 n}\right), \\
& =\sum_{t=1}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m}\left(\prod_{i=1}^{t-1} k_{i} F_{2 n}\right)\left(\left(k_{t}-l+1\right) F_{2 n}\right),
\end{aligned}
$$

where $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is any positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$ and the final positive integer $k_{t} \geq l$. Consequently,
$\left|E\left(\mathscr{A}_{l}\right)\right|=\sum_{v=1}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}+\sum_{t=1}^{m-l+1} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m}\left(\prod_{i=1}^{t-1} k_{i} F_{2 n}\right)\left(\left(k_{t}-l+1\right) F_{2 n}\right)$.
Remark 3.4. In Lemma 3.5, when $t=1$, we have

$$
\sum_{k_{1}+k_{2}+\cdots+k_{t}=m}\left(\prod_{i=1}^{t-1} k_{i} F_{2 n}\right)\left(\left(k_{t}-l+1\right) F_{2 n}\right)=(m-l+1) F_{2 n} .
$$

Example 3.1. By virtue of Lemma 3.5, we calculate $\left|E\left(\mathscr{A}_{2}\right)\right|,\left|E\left(\mathscr{A}_{3}\right)\right|,\left|E\left(\mathscr{A}_{4}\right)\right|$ for $m=$ $4, n=3$ and have

$$
\begin{gathered}
\left|E\left(\mathscr{A}_{2}\right)\right|=F_{6}+\left(3 F_{6}+2 F_{6} F_{6}+F_{6}\left(2 F_{6}\right)+F_{6} F_{6} F_{6}\right)=800, \\
\left|E\left(\mathscr{A}_{3}\right)\right|=\left(2 F_{6}+F_{6} F_{6}\right)+\left(2 F_{6}+F_{6} F_{6}\right)=160
\end{gathered}
$$

and

$$
\left|E\left(\mathscr{A}_{4}\right)\right|=\left(3 F_{6}+F_{6}\left(2 F_{6}\right)+2 F_{6} F_{6}+F_{6} F_{6} F_{6}\right)+F_{6}=800 .
$$

Finally we consider the number of idempotents in $\bigcup_{t=1}^{n-1} \mathscr{B}_{s, t}(1 \leq s \leq m)$. The following lemma comes from [2, Theorem 2.10].

Lemma 3.6. $\left|E\left(O P_{n}\right)\right|=F_{2 n-1}+F_{2 n+1}-\left(n^{2}-n+2\right)$.
Lemma 3.7. Let $f \in \mathscr{B}_{s, t}$ with $1 \leq s \leq m$ and $1 \leq t \leq n-1$.
(1) If $f(X) \subseteq A_{q}$ for $q \neq s$, then $f: X \rightarrow A_{q}$ is an idempotent in $O P_{E}(X)$ if and only if $\left.f\right|_{A_{q}}: A_{q} \rightarrow A_{q}$ is an idempotent in $\mathscr{T}_{A_{q}}$ and

$$
f\left(\left[(s-1) n+t+1, A_{q-1}\right]\right)=f(a), \quad f\left(\left[A_{q+1},(s-1) n+t\right]\right)=f(b),
$$

where $a=\operatorname{minA}_{q}=(q-1) n+1$ and $b=\max _{q}=q n$.
(2) If $f(X) \subseteq A_{s}$, then $f: X \rightarrow A_{s}$ is an idempotent in $O P_{E}(X)$ if and only if $\left.f\right|_{A_{s}}: A_{s} \rightarrow$ A_{s} is an idempotent in $\mathscr{T}_{A_{s}}$, moreover, if $f((s-1) n+t+1) \leq(s-1) n+t$, then $f([(s-1) n+t+1, f((s-1) n+t+1)])=f((s-1) n+t+1)$, and if $f((s-1) n+$ $t+1)>(s-1) n+t$, then $f\left(\left[A_{s+1},(s-1) n+t\right]=f(s n)\right.$.
Proof. Here we only show (2). Since $f \in \mathscr{B}_{s, t}$, we have

$$
f((s-1) n+t+1) \leq f((s-1) n+t+2) \leq \cdots \leq f(m n) \leq f(1) \leq \cdots \leq f((s-1) n+t)
$$

We now suppose that $f: X \rightarrow A_{s}$ is an idempotent in $O P_{E}(X)$, then $\left.f\right|_{A_{s}}: A_{s} \rightarrow A_{s}$ is also an idempotent in $\mathscr{T}_{A_{s}}$. Let $c=f((s-1) n+t+1)$ and $x \in[(s-1) n+t+1, c]$. If $c \leq(s-1) n+t$, then $f(x) \leq f(c)=c$ and $f(x) \geq f((s-1) n+t+1)=c$. Thus $f(x)=c$. If $c>(s-1) n+t$ and $x \in\left[A_{s+1},(s-1) n+t\right]$, then $f(s n) \leq f(x)$ and we can assert that $f(s n)=f(x)$. Indeed, if $f(s n)<f(x)$. Noting that f maps X into A_{s}, we have $f(x) \leq s n$ and $f(x)=f^{2}(x) \leq f(s n)$, a contradiction. The sufficiency is clear and the proof is completed.
Remark 3.5. In Lemma 3.7(1), we consider two special cases.
(1) If $q=1$, then $f: X \rightarrow A_{1}$ is an idempotent in $O P_{E}(X)$ if and only if $\left.f\right|_{A_{1}}: A_{1} \rightarrow A_{1}$ is an idempotent in $\mathscr{T}_{A_{1}}$ and

$$
f\left(\left[(s-1) n+t+1, A_{m}\right]\right)=f(1), f\left(\left[A_{2},(s-1) n+t\right]\right)=f(n) .
$$

(2) If $q=m$, then $f: X \rightarrow A_{m}$ is an idempotent in $O P_{E}(X)$ if and only if $\left.f\right|_{A_{m}}: A_{m} \rightarrow A_{m}$ is an idempotent in $\mathscr{T}_{A_{m}}$ and

$$
f\left(\left[(s-1) n+t+1, A_{m-1}\right]\right)=f((m-1) n+1), f\left(\left[A_{1},(s-1) n+t\right]\right)=f(m n) .
$$

To illustrate Lemma 3.7, let $m=3, n=5$ and $A_{1}=\{1,2,3,4,5\}, A_{2}=\{6,7,8,9,10\}$, $A_{3}=\{11,12,13,14,15\}$. Let

$$
\begin{gathered}
g_{1}=\left(\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
14 & 14 & 14 & 14 & 14 & 14 & 14 & 12 & 12 & 12 & 12 & 12 & 13 & 14 & 14
\end{array}\right) \in E\left(\mathscr{B}_{2,2}\right), \\
g_{2}
\end{gathered}=\left(\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
6 & 6 & 6 & 6 & 6 & 6 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6
\end{array}\right) \in E\left(\mathscr{B}_{2,2}\right),
$$

and
$g_{3}=\left(\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 9 & 9 & 10 & 10 & 10 & 10 & 10 & 10\end{array}\right) \in E\left(\mathscr{B}_{2,2}\right)$.
Clearly, $\left.g_{1}\right|_{A_{3}}$ is an idempotent in $\mathscr{T}_{A_{3}}, g_{1}([8,10])=g_{1}(11), g_{1}\left(\left[A_{1}, 7\right]\right)=g_{1}(15)$, and $\left.g_{2}\right|_{A_{2}}$ is an idempotent in $\mathscr{T}_{A_{2}}, g_{2}\left(\left[8, g_{2}(8)\right]\right)=g_{2}(8)$, and $\left.g_{3}\right|_{A_{2}}$ is an idempotent in $\mathscr{T}_{A_{2}}$, $g_{3}\left(\left[A_{3}, 7\right]\right)=g_{3}(10)$.
Lemma 3.8. For $1 \leq s \leq m$,

$$
\sum_{t=1}^{n-1}\left|E\left(\mathscr{B}_{s, t}\right)\right|=(n-1)(m-1) F_{2 n}+2\left(F_{2 n-1}-1\right)
$$

Proof. Let $f \in E\left(\mathscr{B}_{s, t}\right)$ for $1 \leq t \leq n-1$. Set

$$
M_{q}^{\mathscr{B}_{s, t}}=\left\{f \in E\left(\mathscr{B}_{s, t}\right): f(X) \subseteq A_{q}\right\} .
$$

There are two cases to consider.

Case 1. $q \neq s$. Then, by Lemmas 3.1 and 3.7 (1), $\left|M_{q}^{\mathscr{B}_{s, t}}\right|=F_{2 n}$ since f is order-preserving on the E-class A_{q}. Thus $\left|\cup_{q \neq s} M_{q}^{\mathscr{B}_{s, t}}\right|=(m-1) F_{2 n}$.

Case 2. $q=s$. Then, by Lemma 3.7(2),
$\left|M_{s}^{\mathscr{B}_{s, t}}\right|=\left|\left\{f \in E\left(O P_{n}\right): f(t+1) \leq f(t+2) \leq \cdots \leq f(n-1) \leq f(n) \leq f(1) \leq \cdots \leq f(t)\right\}\right|$.
Noting that in $O P_{n}$, by Lemmas 3.6, the number of idempotents which are not orderpreserving is $F_{2 n-1}+F_{2 n+1}-\left(n^{2}-n+2\right)-F_{2 n}$, we have

$$
\sum_{t=1}^{n-1}\left|M_{s}^{\mathscr{B}_{s, t}}\right|=F_{2 n-1}+F_{2 n+1}-\left(n^{2}-n+2\right)-F_{2 n}+(n-1) n=2\left(F_{2 n-1}-1\right) .
$$

Consequently,

$$
\sum_{t=1}^{n-1}\left|E\left(\mathscr{B}_{s, t}\right)\right|=(n-1)(m-1) F_{2 n}+\sum_{t=1}^{n-1}\left|M_{s}^{\mathscr{B}_{s, t}}\right|=(n-1)(m-1) F_{2 n}+2\left(F_{2 n-1}-1\right)
$$

Observing that for $1 \leq s, s^{\prime} \leq m, 1 \leq t, t^{\prime} \leq n-1$,

$$
E\left(\mathscr{A}_{s}\right) \cap E\left(\mathscr{A}_{s^{\prime}}\right)=E\left(\mathscr{B}_{s, t}\right) \cap E\left(\mathscr{B}_{s^{\prime}, t^{\prime}}\right)=E\left(\mathscr{B}_{s, t}\right) \cap E\left(\mathscr{A}_{s}\right)=\{\langle 1\rangle,\langle 2\rangle, \cdots,\langle m n\rangle\}
$$

and that the total number of idempotents $\langle 1\rangle,\langle 2\rangle, \cdots,\langle m n\rangle$ in $\mathscr{A}_{2}, \mathscr{A}_{3}, \cdots, \mathscr{A}_{m}, \bigcup_{t=1}^{n-1} \mathscr{B}_{s, t}$ $(1 \leq s \leq m)$ is $(m-1) m n+(n-1) m^{2} n$, by Theorem 3.1, Lemma 3.5 and Lemma 3.8, we obtain the main result in this section.

Theorem 3.2.

$$
\begin{aligned}
\left|E\left(O P_{E}(X)\right)\right|= & \sum_{t=1}^{m} \sum_{k_{1}+k_{2}+\cdots+k_{t}=m} \prod_{i=1}^{t} k_{i} F_{2 n}+\sum_{l=2}^{m}\left\{\sum_{v=1}^{l-1} \sum_{j_{1}+j_{2}+\cdots+j_{v}=l-1} \prod_{w=1}^{v} j_{w} F_{2 n}\right. \\
& \left.+\sum_{t^{\prime}=1}^{m-l+1} \sum_{k_{1}^{\prime}+k_{2}^{\prime}+\cdots+k_{t^{\prime}}^{\prime}=m}\left(\prod_{i=1}^{t^{\prime}-1} k_{i}^{\prime} F_{2 n}\right)\left(\left(k_{t^{\prime}}^{\prime}-l+1\right) F_{2 n}\right)\right\} \\
& +m\left((n-1)(m-1) F_{2 n}+2\left(F_{2 n-1}-1\right)\right)-\left((m-1) m n+(n-1) m^{2} n\right),
\end{aligned}
$$

where $\left(k_{1}, k_{2}, \cdots, k_{t}\right)$ is any positive integer solution to the equation $\sum_{i=1}^{t} k_{i}=m$, and $\left(j_{1}, j_{2}, \cdots, j_{v}\right)$ is any positive integer solution to the equation $\sum_{w=1}^{v} j_{w}=l-1$, and $\left(k_{1}^{\prime}, k_{2}^{\prime}\right.$, $\left.\cdots, k_{t^{\prime}}^{\prime}\right)$ is any positive integer solution to the equation $\sum_{i=1}^{t^{\prime}} k_{i}^{\prime}=m$ and the final positive integer $k_{t^{\prime}}^{\prime} \geq l$.
Example 3.2. Let $m=4, n=3$. By Theorem 3.1,

$$
\begin{aligned}
\left|E\left(\mathscr{A}_{1}\right)\right|= & 4 F_{6}+\left(F_{6}\left(3 F_{6}\right)+\left(2 F_{6}\right)\left(2 F_{6}\right)+3 F_{6}\left(F_{6}\right)\right) \\
& +\left(F_{6} F_{6}\left(2 F_{6}\right)+F_{6}\left(2 F_{6}\right) F_{6}+\left(2 F_{6}\right) F_{6} F_{6}\right)+F_{6} F_{6} F_{6} F_{6}=7840 .
\end{aligned}
$$

From Example 3.1, we know $\left|E\left(\mathscr{A}_{2}\right)\right|=800,\left|E\left(\mathscr{A}_{3}\right)\right|=160$ and $\left|E\left(\mathscr{A}_{4}\right)\right|=800$. It follows from Lemma 3.8 that $\sum_{t=1}^{2}\left|E\left(\mathscr{B}_{s, t}\right)\right|=6 F_{6}+2\left(F_{5}-1\right)=56$ for $1 \leq s \leq 4$. Thus,

$$
\left|E\left(O P_{E}(X)\right)\right|=7840+800+160+800+56 \times 4-(36+96)=9692 .
$$

To conclude this section, we give the following Tables 3 and 4 providing the number of idempotents in $O P_{E}(X)$ and $O_{E}(X)$ for smaller m, n, respectively.

Table 3. The number of idempotents in $O P_{E}(X)$

$m \backslash n$	2	3	4	5	6
2	19	114	643	3727	22972
3	102	1016	12414	186328	3116238
4	513	9692	278337	10545529	454295384
5	2503	95198	6376621	600770505	66322745434
6	12066	941118	146363082	34233146606	9682664464596

Table 4. The number of idempotents in $O_{E}(X)$

$m \backslash n$	2	3	4	5	6
2	15	80	483	3135	21024
3	72	792	11088	178640	3069360
4	345	7840	254541	10179345	448105536
5	1653	77608	5843355	580044025	65420338896
6	7920	768240	134142624	33052330080	9550921373280

Acknowledgement. I would like to thank the referee for his/her valuable suggestions and comments which help to improve the presentation of this paper. The paper is partly supported by National Natural Science Foundation of China (No.10971086), Natural Science Foundation of Henan Province (No.112300410120) and Young Backbone Teachers Funded Project.

References

[1] R. A. Brualdi, Introductory Combinatorics (the third edition), Pearson Education, 2002.
[2] P. M. Catarino and P. M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), no. 2, 190-206.
[3] V. H. Fernandes, G. M. S. Gomes and M. M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 79-85.
[4] V. H. Fernandes and T. M. Quinteiro, The cardinal of various monoids of transformations that preserve a uniform partition, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 885-869.
[5] P. M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 281-296.
[6] J. M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. (2) $\mathbf{1 7}$ (1970/71), 223-236.
[7] J. M. Howie, E. L. Lusk and R. B. McFadden, Combinatorial results relating to products of idempotents in finite full transformation semigroups, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 3-4, 289-299.
[8] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra 278 (2004), no. 1, 342-359.
[9] A. Laradji and A. Umar, On certain finite semigroups of order-decreasing transformations. I, Semigroup Forum 69 (2004), no. 2, 184-200.
[10] A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), no. 3, Article 04.3.8, 14 pp. (electronic).
[11] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), no. 1, 51-62.
[12] H. Pei and D. Zhou, Green's equivalences on semigroups of transformations preserving order and an equivalence relation, Semigroup Forum 71 (2005), no. 2, 241-251.
[13] H. Pei and H. Zhou, Abundant semigroups of transformations preserving an equivalence relation, Algebra Colloq. 18 (2011), no. 1, 77-82.
[14] L. Sun, H. Pei and Z. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, Semigroup Forum 74 (2007), no. 3, 473-486.
[15] A. Umar, On the semigroups of order-decreasing finite full transformations, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 129-142.
[16] A. Umar, On the semigroups of partial one-to-one order-decreasing finite transformations, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 2, 355-363.
[17] A. Umar, Enumeration of certain finite semigroups of transformations, Discrete Math. 189 (1998), no. 1-3, 291-297.

