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Abstract. Let TX be the full transformation semigroup on a set X and E be a non-trivial
equivalence on X . The set

TE (X) = { f ∈TX : ∀(x,y) ∈ E, ( f (x), f (y)) ∈ E}
is a subsemigroup of TX . For a finite totally ordered set X and a convex equivalence E on
X , the set of all the orientation-preserving transformations in TE (X) forms a subsemigroup
of TE (X) denoted by OPE (X). In this paper, under the hypothesis that the totally ordered set
X is of cardinality mn (m,n≥ 2) and the equivalence E has m classes such that each E-class
contains n consecutive points, we calculate the cardinality of the semigroup OPE (X), and
that of its idempotents.
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1. Introduction

Let X = {1,2, · · · ,n} with the usual order and let PX and TX denote the partial transfor-
mation semigroup and the full transformation semigroup on X , respectively. A map f ∈TX
is said to be order-preserving if x ≤ y implies f (x) ≤ f (y) for x,y ∈ X . The collection of
all the order-preserving maps on X is denoted by OX in [6] (the symbol OX is replaced by
On in [2]). A sequence A = (a1,a2, · · · ,an) is said to be cyclic if there exists no more than
one subscript i such that ai > ai+1. A map f ∈ TX is said to be orientation-preserving, if
( f (1), f (2), · · · , f (n)) is cyclic, which implies that there exists some j ∈ {0,1, · · · ,n− 1}
such that

f ( j +1)≤ f ( j +2)≤ ·· · ≤ f (n)≤ f (1)≤ ·· · ≤ f ( j)

(where we adopt the convention that f (1) ≤ f (2) ≤ ·· · ≤ f (n) if j = 0). Clearly, if f is
order-preserving, then it is also orientation-preserving. The collection of all the orientation-
preserving maps on X is denoted by OPn and has been investigated by Catarino and Higgins
in [2]. Combinatorial results of various classes of transformation subsemigroups of PX and
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TX have been studied over a long period and many interesting results have emerged. For ex-
ample, Howie [6] calculated the cardinality of OX and the number of idempotents. Catarino
and Higgins [2] gave formulas for the cardinality of OPn and the number of idempotents.
Umar [15] considered the cardinality and the number of nilpotents and idempotents of the
semigroup S−n of all the order-decreasing maps on X . Higgins [5] studied the combinatorial
properties of Cn, the semigroup of all the decreasing and order-preserving full transforma-
tions on X . Laradji and Umar [8] investigated the cardinality and the number of idempotents
of POn, the semigroup of all the order-preserving partial transformations on a finite chain
X .

We may regard the elements of X = {1,2, · · · ,n} as being placed clockwise on a circle
so that the integer i lies between i− 1 and i + 1 for 1 < i < n, n between n− 1 and 1, and
1 between n and 2. A closed interval [i, j] for i, j ∈ X may be expressed clockwise by
[i, j] = {i, i+1, · · · , j−1, j}. A subset Y of X is said to be convex if Y is a closed interval.
An equivalence E on X is said to be convex if each E-class is convex. For two convex
disjoint subsets P, Q of X , the generalized interval [P,Q] can be expressed clockwise by
[P,Q] = {p, p + 1, · · · ,q− 1,q} where p = minP and q = maxQ. For example, let n =
10, then [3,8] = {3,4, · · · ,8} and [9,2] = {9,10,1,2}. If P = [5,6], Q = [10,2], then the
generalized intervals [P,Q] = {5,6,7,8,9,10,1,2}, [8,Q] = {8,9,10,1,2}.

Let X be a set with |X | ≥ 3 and E be an equivalence on X . Set

TE(X) = { f ∈TX : ∀(x,y) ∈ E, ( f (x), f (y)) ∈ E}.
Clearly, TE(X) is a subsemigroup of TX and if E = {(x,x) : x ∈ X} or E = X ×X , then
TE(X) = TX . In [14], for a finite totally ordered set X and the convex equivalence E on X ,
the authors considered the subsemigroup of TE(X)

OPE(X) = { f ∈ TE(X) : f is orientation-preserving},
and under the supposition that all E-classes were of the same size, the regularity and Green’s
relations for the semigroup OPE(X) were described.

In this paper, as in [14], we always assume the totally ordered set X = {1 < 2 < · · · <
mn}(m,n≥ 2) and the equivalence E to be

E = (A1×A1)∪ (A2×A2)∪·· ·∪ (Am×Am),

where Ai = [(i− 1)n + 1, in] for 1 ≤ i ≤ m. We investigate combinatorial properties of the
semigroup OPE(X). The paper is organized as follows. In Section 2, we determine the
cardinality of OPE(X). In Section 3, we characterize the idempotents in the semigroup
OPE(X) and calculate their number.

Denote by X/E the quotient set of X . The following result whose proof is routine de-
scribes an essential property of the transformations in the semigroup TE(X) where X is an
arbitrary set and E is an arbitrary equivalence on X .

Lemma 1.1. Let f ∈ TE(X), then for each B∈ X/E, there exists B′ ∈ X/E such that f (B)⊆
B′. Consequently, for each A∈ X/E, the set f−1(A) is either /0 or a union of some E-classes.

For each f ∈ TE(X), let

E( f ) = { f−1(A) : A ∈ X/E and f−1(A) 6= /0}.
Then E( f ) is a partition of X . The following result shows that each orientation-preserving
transformation induces a partition of convex subsets.
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Lemma 1.2. Let f ∈ OPE(X). Then each U ∈ E( f ) is a convex subset of X.

2. The cardinality of OPE(X)

In this section, we focus our attention on the cardinality of OPE(X). We notice that for each
f ∈ OPE(X), there exists some j such that f ( j +1) = min f (X) and f ( j) = max f (X) and j
is unique if f is not constant. Therefore, there are two cases: ( j, j+1) 6∈ E or ( j, j+1)∈ E.
We first consider subsets of OPE(X) consisting of those elements for which ( j, j + 1) 6∈ E.
It is not hard to see that in this case, j is the greatest number in some E-class Ai while j +1
is the smallest number in the next E-class Ai+1. Define certain subsets A1,A2, · · · ,Am of
OPE(X) by:

A1 = { f ∈ OPE(X) : f (1) = min f (X)and f (mn) = max f (X)},

A2 = { f ∈ OPE(X) : f (n+1) = min f (X)and f (n) = max f (X)},

· · · ,

Am = { f ∈ OPE(X) : f ((m−1)n+1) = min f (X)and f ((m−1)n) = max f (X)}.
Obviously, if f ∈Ai (1≤ i≤ m), then | f (X)| ≤ mn and

f ((i−1)n+1)≤ f ((i−1)n+2)≤ ·· · ≤ f (mn)≤ f (1)≤ ·· · ≤ f ((i−1)n).

Next, we consider anther subsets consisting of those elements for which ( j, j + 1) ∈ E
and f ( j + 1) = min f (X), f ( j) = max f (X). For each 1 ≤ s ≤ m, define certain subsets
Bs,1,Bs,2, · · · ,Bs,n−1 of OPE(X) by

Bs,1 = { f ∈ OPE(X) : f ((s−1)n+2) = min f (X) and f ((s−1)n+1) = max f (X)},

Bs,2 = { f ∈ OPE(X) : f ((s−1)n+3) = min f (X) and f ((s−1)n+2) = max f (X)},

· · · ,

Bs,n−1 = { f ∈ OPE(X) : f (sn) = min f (X) and f (sn−1) = max f (X)}.
If f ∈Bs,t (1≤ t ≤ n−1), then f maps all the elements of X into some E-class and

f ((s−1)n+ t +1)≤ f ((s−1)n+ t +2)≤ ·· · ≤ f (mn)≤ f (1)≤ ·· · ≤ f ((s−1)n+ t).

Therefore,

OPE(X) =

(
m⋃

s=1

As

)⋃(
m⋃

s=1

n−1⋃
t=1

Bs,t

)
and for s 6= s′, t 6= t ′,

As∩As′ = Bs,t ∩Bs′,t ′ = Bs,t ∩As′ = {〈1〉,〈2〉, · · · ,〈mn〉},

where 〈x〉 denotes the constant map which maps all the elements of X into x.
We give two properties for the subsets A1,A2, · · · ,Am and Bs,1,Bs,2, · · · ,Bs,n−1(1 ≤

s≤ m).

Lemma 2.1. Let A1, A2, · · · , Am be as defined above. Then

|A1|= |A2|= · · ·= |Am|.
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Proof. For f ∈A1, define ψ1 : A1→A2 by ψ1( f ) = g where

g(x) =

{
f (mn+ x−n) 1≤ x≤ n
f (x−n) otherwise.

.

Then ψ1 is well defined. To see g∈A2, let (x,y)∈ E, if x,y∈ A1, then (mn+x−n,mn+y−
n) ∈ E and (g(x),g(y)) = ( f (mn+ x−n), f (mn+ y−n)) ∈ E. If x,y /∈ A1, then (x−n,y−
n) ∈ E and (g(x),g(y)) = ( f (x−n), f (y−n)) ∈ E which implies that g ∈ TE(X). Moreover,

g(n+1) = f (1)≤ g(n+2) = f (2)≤ ·· · ≤ g(mn) = f (mn−n)

≤ g(1) = f (mn+1−n)≤ g(2) = f (mn+2−n) · · · ≤ g(n) = f (mn).

So g ∈A2. It is clear that ψ1 is a bijection from A1 onto A2. Therefore, |A1|= |A2|. Simi-
larly, we can define ψ2,ψ3, · · · ,ψm−1 and show that |A2|= |A3|, |A3|= |A4|, · · · , |Am−1|=
|Am|. Consequently, |A1|= |A2|= · · ·= |Am|.

Lemma 2.2. For 1≤ s≤ m, let Bs,1, Bs,2, · · · , Bs,n−1 be as defined above. Then
(1) |Bs,1|= |Bs,2|= · · ·= |Bs,n−1|.
(2) |Bs,l |= |Bs′,l | for 1≤ s, s′ ≤ m and 1≤ l ≤ n−1.

Proof. (1) For f ∈Bs,t(1≤ t ≤ n−1), define ρ : Bs,t →Bs,t+1 by ρ( f ) = g where

g(x) =

{
f (mn) x = 1
f (x−1) otherwise.

.

Since f maps X into some E-class and g(X) = f (X), we have g ∈ TE(X). Moreover,

g((s−1)n+ t +2) = f ((s−1)n+ t +1)≤ g((s−1)n+ t +3) = f ((s−1)n+ t +2)≤ ·· ·
≤ g(mn) = f (mn−1)≤ g(1) = f (mn)≤ ·· · ≤ g((s−1)n+ t +1) = f ((s−1)n+ t).

Thus g ∈ Bs,t+1. One easily verifies that ρ is a bijection from Bs,t onto Bs,t+1. Hence
|Bs,t |= |Bs,t+1| and |Bs,1|= |Bs,2|= · · ·= |Bs,n−1|.

(2) Similar to that of Lemma 2.1.
As we know, the number of r-combinations of k distinct objects each available in unlim-

ited supply is
(r+k−1

r

)
(see [1, Theorem 3.5.1, p. 72]).

We now can state and prove the main result of this section.

Theorem 2.1.

|OPE(X)|= m ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
+m2(n−1)

(
n(m+1)−1

mm

)
−mn(mn−1),

where (k1, k2, · · · , km) is any non-negative integer solution to the equation ∑
m
s=1 ks = m.

Proof. By Lemmas 2.1 and 2.2, in order to calculate |OPE(X)|, we need only consider |A1|
and |B1,1|. We first calculate |A1|. Suppose that

(2.1) f ([A1,Ak1 ])⊆ A1, f ([Ak1+1,Ak1+k2 ])⊆ A2, · · · , f ([Ak1+k2+···+km−1+1,Am])⊆ Am,

where (k1, k2, · · · , km) is one non-negative integer solution to the equation ∑
m
s=1 ks = m.

Then the number of maps f satisfying (2.1) is ∏
m
s=1
((ks+1)n−1

ksn

)
. Thus,

|A1|= ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
,
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where (k1, k2, · · · , km) is any non-negative integer solution to the equation ∑
m
s=1 ks = m.

Hence it follows from Lemma 2.1 that

|A1|= |A2|= · · ·= |Am|= ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
.

Notice that, for any distinct s and s′,

As∩As′ = {〈1〉,〈2〉, · · · ,〈mn〉},

so the number of distinct maps f ∈
⋃m

s=1 As is

m ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
−mn(m−1).

We now calculate |B1,1|. If f ∈B1,1, then f (X)⊆ A for some A ∈ X/E. Set

Fi = { f ∈B1,1 : f (X)⊆ Ai},

where 1≤ i≤m. It follows that |Fi|=
(n(m+1)−1

mn

)
and so |B1,1|= |

⋃m
i=1 Fi|= m

(n(m+1)−1
mn

)
.

By virtue of Lemma 2.2, for 1 ≤ s ≤ m and 1 ≤ t ≤ n− 1, we have |Bs,t | = m
(n(m+1)−1

mn

)
.

Since
Bs,t ∩Bs′,t ′ = Bs,t ∩As′ = {〈1〉,〈2〉, · · · ,〈mn〉},

the number of distinct non-constant maps f ∈
⋃m

s=1
⋃n−1

t=1 Bs,t is

m2(n−1)
(

n(m+1)−1
mn

)
−m2n(n−1).

Therefore,

|OPE(X)|= m ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
+m2(n−1)

(
n(m+1)−1

mn

)
−mn(mn−1),

as required.
Earlier the authors [12] considered the class of transformation semigroups

OE(X) = { f ∈ TE(X) : ∀x, y ∈ X ,x≤ y⇒ f (x)≤ f (y)},

where the set X and the equivalence E are as defined in this paper. It is clear that OE(X)⊂
OPE(X), and in fact, the semigroup OE(X) whose cardinality is not known hitherto, is
exactly |A1|. Thus, an immediate consequence of Theorem 2.1 is the following corollary.

Corollary 2.1.

|OE(X)|= ∑
k1+k2+···+km=m

m

∏
s=1

(
(ks +1)n−1

ksn

)
,

where (k1, k2, · · · , km) is any non-negative integer solution to the equation ∑
m
s=1 ks = m.

Remark 2.1. Recently I have been told that Fernandes and Quinteiro [4] had calculated
the size of the semigroups OPE(X) and OE(X). However, the approach used differs greatly
from that in this paper.

The following Tables 1 and 2 give the size of the semigroups OPE(X) and OE(X) for
smaller m and n, respectively.
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Table 1. The cardinality of OPE (X)

m\n 2 3 4 5 6
2 46 506 5034 51682 575268
3 447 9453 248823 8445606 349109532
4 4324 223852 17184076 1819339324 247307947608
5 42075 5555990 1207660095 387720453255 170017607919290
6 405828 136530144 83547682248 81341248206546 114804703283314542

Table 2. The cardinality of OE (X)

m\n 2 3 4 5 6
2 19 156 1555 17878 225820
3 138 2845 78890 2768760 115865211
4 1059 55268 4284451 454664910 61824611940
5 8378 1109880 241505530 77543615751 34003513468232
6 67582 22752795 13924561150 13556873588212 19134117191404027

3. The number of idempotents in OPE(X)

For a given subset M of the semigroup OPE(X), we denote by E(M) its set of idempotents.
In this section, we aim to calculate the cardinality of E(OPE(X)). Since the semigroup
OPE(X) has been divided into some subsets A1(= OE(X)),A2, · · · ,Am, Bs,1,Bs,2, · · · ,
Bs,n−1(1≤ s≤ m), that is,

OPE(X) =

(
m⋃

s=1

As

)⋃(
m⋃

s=1

n−1⋃
t=1

Bs,t

)
,

we need only calculate the cardinality of the sets E(A1),E(A2), · · · ,E(Am),
⋃n−1

t=1 E(Bs,t)
(1≤ s≤ m), respectively.

We begin with considering the number of idempotents in the semigroup OE(X). Recall
that, the Fibonacci numbers are recursively defined by

F0 = 0,F1 = 1,Fk+1 = Fk +Fk−1, k ≥ 1.

The following lemma which comes from [6, Theorem 2.3] was reproved in [2, Lemma 2.9].

Lemma 3.1. |E(On)|= F2n.

Lemma 3.2. Let f ∈OE(X) and f−1(A j) = [Ai+1,Ai+t ] for 1≤ i, t ≤m−1, i+1≤ j≤ i+t.
Then the restriction of f to [Ai+1,Ai+t ]

f |[Ai+1,Ai+t ] : [Ai+1,Ai+t ]→ A j

is an idempotent in T[Ai+1,Ai+t ] if and only if the restriction of f to the E-class A j

f |A j : A j→ A j

is an idempotent in TA j and f ([Ai+1,A j−1]) = f (a), f ([A j+1,Ai+t ]) = f (b) where a =
minA j = ( j−1)n+1 and b = maxA j = jn.

Proof. It is immediate for an order-preserving transformation in TE(X).
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Remark 3.1. From Lemma 3.2, in order to construct an idempotent

f |[Ai+1,Ai+t ] : [Ai+1,Ai+t ]→ A j

in T[Ai+1,Ai+t ], we go along the following line:
Step 1. Construct an idempotent f |A j : A j→ A j in TA j ;
Step 2. Let f ([Ai+1,A j−1]) = f (a) and f ([A j+1,Ai+t ]) = f (b) where a = minA j = ( j−

1)n+1 and b = maxA j = jn.

From Lemma 3.2 and Remark 3.1, we can deduce

Lemma 3.3. Let f ∈OE(X) and f−1(A j) = [Ai+1,Ai+t ] for 1≤ i, t ≤m−1, i+1≤ j≤ i+t.
Then the number of idempotents

f |[Ai+1,Ai+t ] : [Ai+1,Ai+t ]→ A j

in T[Ai+1,Ai+t ] equals that of idempotents in TA j .

Theorem 3.1.

|E(OE(X))|=
m

∑
t=1

(
∑

k1+k2+···+kt=m

t

∏
i=1

kiF2n

)
,

where (k1, k2, · · · , kt) is any positive integer solution to the equation ∑
t
i=1 ki = m.

Proof. Let f ∈ E(OE(X)). Denote

t = |{A ∈ X/E : A∩ f (X) 6= /0}|,
where 1≤ t ≤ m. Suppose that

(3.1) f ([A1,Ak1 ])⊆ As1 , f ([Ak1+1,Ak1+k2 ])⊆ As2 , · · · , f ([Ak1+k2+···+kt−1+1,Am])⊆ Ast ,

where Asi ∈ X/E for 1 ≤ i ≤ t, the subscript set {s1,s2, · · · ,st} ⊆ {1,2, · · · ,m} and (k1,k2,
· · · ,kt) is one positive integer solution to the equation ∑

t
i=1 ki = m. Then, for each i, there are

ki choices for Asi . By Lemma 3.3, for the fixed positive integer solution (k1, k2, · · · , kt) to
the equation ∑

t
i=1 ki = m, the number of idempotents f satisfying (3.1) is ∏

t
i=1 kiF2n. So the

number of idempotents f satisfying (3.1) is ∑k1+k2+···+kt=m ∏
t
i=1 kiF2n, where (k1, k2, · · · , kt)

is any positive integer solution to the equation ∑
t
i=1 ki = m. Noting that 1≤ t ≤ m, we have

|E(OE(X))|=
m

∑
t=1

(
∑

k1+k2+···+kt=m

t

∏
i=1

kiF2n

)
.

Remark 3.2. From Lemma 2.1, |A1|= |A2|= · · ·= |Am|. However, in general, the number
of idempotents in A1 doesn’t equal that of A j for j 6= 1. For example, let m = 2, n = 2, that
is, A1 = {1,2}, A2 = {3,4}. By Theorem 3.1, we have

|E(A1)|= 2F4 +F4F4 = 15.

Denote by (abcd) the map f ∈OPE(X) which maps 1,2,3,4 into a,b,c,d, respectively, and

E(A1) = {〈1〉, (1222), 〈2〉, (1133), (1134), (1144),(1233), (1234), (1244), (2233),

(2234), (2244), 〈3〉, (3334), 〈4〉}.
However, there are only 6 idempotents in A2, and

E(A2) = {〈1〉,(1211), 〈2〉,〈3〉, (4434), 〈4〉}.



186 L. Sun

Now we calculate the number of idempotents in Al for 2≤ l ≤ m.

Lemma 3.4. Let f ∈ Al (2 ≤ l ≤ m) and f−1(Ap) = [Al ,Al′ ] for some E-class Ap with
p≤ l′ < l. Then the restriction of f to [Al ,Al′ ]

f |[Al ,Al′ ]
: [Al ,Al′ ]→ Ap

is an idempotent in T[Al ,Al′ ]
if and only if the restriction of f to Ap

f |Ap : Ap→ Ap

is an idempotent in TAp and f ([Al ,Ap−1]) = f (a), f ([Ap+1,Al′ ]) = f (b) where a = minAp =
(p−1)n+1 and b = maxAp = pn.

Remark 3.3. In Lemma 3.4, there are two special cases.

(1) if p = l′ = 1, then the restriction of f to [Al ,A1]

f |[Al ,A1] : [Al ,A1]→ A1

is an idempotent in T[Al ,A1] if and only if the restriction of f to A1

f |A1 : A1→ A1

is an idempotent in TA1 and f ([Al ,Am]) = f (1).
(2) if p = l′ ≥ 2, then the restriction of f to [Al ,Al′ ]

f |[Al ,Al′ ]
: [Al ,Al′ ]→ Ap

is an idempotent in T[Al ,Al′ ]
if and only if the restriction of f to Ap

f |Ap : Ap→ Ap

is an idempotent in TAp and f ([Al ,Ap−1]) = f ((p−1)n+1).

To illustrate Lemma 3.4, let m = 4, n = 2 and A1 = {1,2}, A2 = {3,4}, A3 = {5,6}, A4 =
{7,8}. Then f1 = (12111111) ∈ E(A2), f2 = (12221111) ∈ E(A3) and f3 = (33344433) ∈
E(A4). Clearly, f1|A1 is an idempotent in TA1 , f1([A2,A4]) = f1(1), and f2|A1 is an idempo-
tent in TA1 , f2([A3,A4]) = f2(1), f2(A2) = f2(2), and f3|A2 is an idempotent in TA2 , f3([A4,
A1]) = f3(3), f3(A3) = f3(4).

Lemma 3.5. For 2≤ l ≤ m,

|E(Al)|=
l−1

∑
v=1

∑
j1+ j2+···+ jv=l−1

v

∏
w=1

jwF2n +
m−l+1

∑
t=1

∑
k1+k2+···+kt=m

(
t−1

∏
i=1

kiF2n

)
((kt− l +1)F2n

)
,

where ( j1, j2, · · · , jv) is any positive integer solution to the equation ∑
v
w=1 jw = l− 1, and

(k1,k2, · · · ,kt) is any positive integer solution to the equation ∑
t
i=1 ki = m and the final

positive integer kt ≥ l.

Proof. Let f ∈ E(Al). There are two cases to consider.

Case 1. f (Al)⊆ Ap for p ∈ {1,2, · · · , l−1}. Since f is an idempotent, we can deduce that
f ([Al ,Am])⊆ Ap. Let

v = |{A ∈ X/E : A∩ f (X) 6= /0}|,
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where 1≤ v≤ l−1. Suppose

f ([Al ,A j1 ])⊆ As1 , f ([A j1+1,A j1+ j2 ])⊆ As2 , · · · ,
f ([A j1+ j2+···+ jv−1+1,A j1+ j2+···+ jv−1+ jv = Al−1])⊆ Asv ,

(3.2)

where ( j1, j2, · · · , jv) is one positive integer solution to the equation ∑
v
w=1 jw = l− 1, the

subscript set {s1,s2, · · · ,sv} ⊆ {1,2, · · · , l−1} and

Ap = As1 < As2 < · · ·< Asv ≤ Al−1.

If v = 1, then f maps all the elements of X into Ap which has l− 1 possible choices and
so the number of f is (l− 1)F2n. Suppose that v > 1 and then, for each w (1 ≤ w ≤ v),
there are jw possible choices for Asw . By Lemma 3.4, for the fixed positive integer solu-
tion ( j1, j2, · · · , jv) to the equation ∑

v
w=1 jw = l−1, the number of f satisfying (3.2) should

be ∏
v
w=1 jwF2n. So the number of all f satisfying (3.2) is ∑ j1+ j2+···+ jv=l−1 ∏

v
w=1 jwF2n.

Taking the sum v from 2 to l − 1, we obtain that the number of f satisfying (3.2) is
∑

l−1
v=2 ∑ j1+ j2+···+ jv=l−1 ∏

v
w=1 jwF2n. Therefore, the number of f satisfying the condition that

f (Al)⊆ Ap for p ∈ {1,2, · · · , l−1} is

(l−1)F2n +
l−1

∑
v=2

∑
j1+ j2+···+ jv=l−1

v

∏
w=1

jwF2n =
l−1

∑
v=1

∑
j1+ j2+···+ jv=l−1

v

∏
w=1

jwF2n.

Case 2. f (Al)⊆ Ap for p ∈ {l, l +1, · · · ,m}. Set

t = |{A ∈ X/E : A∩ f (X) 6= /0}|,

where 1≤ t ≤ m− (l−1). Suppose

f ([Al ,Al+k1 ])⊆ As1 , f ([Al+k1+1,Al+k1+k2 ])⊆ As2 , · · · ,
f ([Al+k1+k2+···+kt−1+1,Al+k1+k2+···+kt−1+kt = Al−1])⊆ Ast ,

(3.3)

where (k1,k2, · · · ,kt) is any integer solution to the equation ∑
t
i=1 ki = m−1 and k1 ≥ 0, k2 ≥

1,k3 ≥ 1, · · · ,kt−1 ≥ 1,kt ≥ l(since f maps at least E-classes Am,A1, · · · ,Al−1 into Ast ), the
subscript set {s1,s2, · · · ,st} ⊆ {l, l +1, · · · ,m} and

Al ≤ Ap = As1 < As2 < · · ·< Ast ≤ Am.

If t = 1, it is clear that the number of f is (m− l + 1)F2n. If t = 2, then there are (k1 + 1)
choices for As1 and (k2− l +1)(k2 ≥ l) choices for As2 . Thus the number of f is

∑
k1+k2=m−1

((k1 +1)F2n)((k2− l +1)F2n).

If 3 ≤ t ≤ m− (l − 1), there are (k1 + 1) choices for As1 , and, for each i (2 ≤ i ≤ t −
1), ki choices for Asi , and (kt − l + 1) choices for Ast . So, for the fixed integer solu-
tion (k1,k2, · · · ,kt) to the equation ∑

t
i=1 ki = m− 1, the number of f satisfying (3.3) is

(k1 +1)F2n
(
∏

t−1
i=2 kiF2n

)
(kt − l +1)F2n. Thus, the number of all f satisfying (3.3) is

∑
k1+k2+···+kt=m−1

(
(k1 +1)F2n(

t−1

∏
i=2

kiF2n)(kt − l +1)F2n

)
.



188 L. Sun

Taking the sum t from 3 to m− l +1 yields

m−l+1

∑
t=3

∑
k1+k2+···+kt=m−1

(
(k1 +1)F2n(

t−1

∏
i=2

kiF2n)(kt − l +1)F2n

)
.

Therefore, the number of f satisfying the condition that f (Al)⊆ Ap for p ∈ {l, l +1, · · · ,m}
is

(m− l +1)F2n + ∑
k1+k2=m−1

((k1 +1)F2n)((k2− l +1)F2n)

+
m−l+1

∑
t=3

∑
k1+k2+···+kt=m−1

(
(k1 +1)F2n(

t−1

∏
i=2

kiF2n)(kt − l +1)F2n

)

=
m−l+1

∑
t=1

∑
k1+k2+···+kt=m−1

(
(k1 +1)F2n(

t−1

∏
i=2

kiF2n)(kt − l +1)F2n

)
,

=
m−l+1

∑
t=1

∑
k1+k2+···+kt=m

(
t−1

∏
i=1

kiF2n)((kt − l +1)F2n
)
,

where (k1,k2, · · · ,kt) is any positive integer solution to the equation ∑
t
i=1 ki = m and the

final positive integer kt ≥ l. Consequently,

|E(Al)|=
l−1

∑
v=1

∑
j1+ j2+···+ jv=l−1

v

∏
w=1

jwF2n +
m−l+1

∑
t=1

∑
k1+k2+···+kt=m

(
t−1

∏
i=1

kiF2n

)
((kt−l+1)F2n

)
.

Remark 3.4. In Lemma 3.5, when t = 1, we have

∑
k1+k2+···+kt=m

(
t−1

∏
i=1

kiF2n

)
((kt − l +1)F2n

)
= (m− l +1)F2n.

Example 3.1. By virtue of Lemma 3.5, we calculate |E(A2)|, |E(A3)|, |E(A4)| for m =
4, n = 3 and have

|E(A2)|= F6 +(3F6 +2F6F6 +F6(2F6)+F6F6F6) = 800,

|E(A3)|= (2F6 +F6F6)+(2F6 +F6F6) = 160

and
|E(A4)|= (3F6 +F6(2F6)+2F6F6 +F6F6F6)+F6 = 800.

Finally we consider the number of idempotents in
⋃n−1

t=1 Bs,t(1≤ s≤ m). The following
lemma comes from [2, Theorem 2.10].

Lemma 3.6. |E(OPn)|= F2n−1 +F2n+1− (n2−n+2).

Lemma 3.7. Let f ∈Bs,t with 1≤ s≤ m and 1≤ t ≤ n−1.
(1) If f (X) ⊆ Aq for q 6= s, then f : X → Aq is an idempotent in OPE(X) if and only if

f |Aq : Aq→ Aq is an idempotent in TAq and

f ([(s−1)n+ t +1,Aq−1]) = f (a), f ([Aq+1,(s−1)n+ t]) = f (b),

where a = minAq = (q−1)n+1 and b = maxAq = qn.
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(2) If f (X)⊆ As, then f : X→ As is an idempotent in OPE(X) if and only if f |As : As→
As is an idempotent in TAs , moreover, if f ((s− 1)n + t + 1) ≤ (s− 1)n + t, then
f ([(s−1)n + t +1, f ((s−1)n + t +1)]) = f ((s−1)n + t +1), and if f ((s−1)n +
t +1) > (s−1)n+ t, then f ([As+1,(s−1)n+ t] = f (sn).

Proof. Here we only show (2). Since f ∈Bs,t , we have

f ((s−1)n+ t +1)≤ f ((s−1)n+ t +2)≤ ·· · ≤ f (mn)≤ f (1)≤ ·· · ≤ f ((s−1)n+ t).

We now suppose that f : X → As is an idempotent in OPE(X), then f |As : As→ As is also an
idempotent in TAs . Let c = f ((s−1)n+t +1) and x∈ [(s−1)n+t +1,c]. If c≤ (s−1)n+t,
then f (x)≤ f (c) = c and f (x)≥ f ((s−1)n+ t +1) = c. Thus f (x) = c. If c > (s−1)n+ t
and x ∈ [As+1,(s−1)n+ t], then f (sn)≤ f (x) and we can assert that f (sn) = f (x). Indeed,
if f (sn) < f (x). Noting that f maps X into As, we have f (x)≤ sn and f (x) = f 2(x)≤ f (sn),
a contradiction. The sufficiency is clear and the proof is completed.

Remark 3.5. In Lemma 3.7(1), we consider two special cases.
(1) If q = 1, then f : X → A1 is an idempotent in OPE(X) if and only if f |A1 : A1→ A1

is an idempotent in TA1 and

f ([(s−1)n+ t +1,Am]) = f (1), f ([A2,(s−1)n+ t]) = f (n).

(2) If q = m, then f : X→ Am is an idempotent in OPE(X) if and only if f |Am : Am→ Am
is an idempotent in TAm and

f ([(s−1)n+ t +1,Am−1]) = f ((m−1)n+1), f ([A1,(s−1)n+ t]) = f (mn).

To illustrate Lemma 3.7, let m = 3, n = 5 and A1 = {1,2,3,4,5}, A2 = {6,7,8,9,10},
A3 = {11,12,13,14,15}. Let

g1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 14 14 14 14 14 14 12 12 12 12 12 13 14 14

)
∈E(B2,2),

g2 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 6 6 6 6 6 7 6 6 6 6 6 6 6 6

)
∈ E(B2,2),

and

g3 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 10 10 10 10 10 10 9 9 10 10 10 10 10 10

)
∈E(B2,2).

Clearly, g1|A3 is an idempotent in TA3 , g1([8,10]) = g1(11),g1([A1,7]) = g1(15), and
g2|A2 is an idempotent in TA2 , g2([8,g2(8)]) = g2(8), and g3|A2 is an idempotent in TA2 ,
g3([A3,7]) = g3(10).

Lemma 3.8. For 1≤ s≤ m,
n−1

∑
t=1
|E(Bs,t)|= (n−1)(m−1)F2n +2(F2n−1−1).

Proof. Let f ∈ E(Bs,t) for 1≤ t ≤ n−1. Set

MBs,t
q = { f ∈ E(Bs,t) : f (X)⊆ Aq}.

There are two cases to consider.
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Case 1. q 6= s. Then, by Lemmas 3.1 and 3.7 (1), |MBs,t
q |= F2n since f is order-preserving

on the E-class Aq. Thus |∪q6=s MBs,t
q |= (m−1)F2n.

Case 2. q = s. Then, by Lemma 3.7(2),

|MBs,t
s |= |{ f ∈ E(OPn) : f (t +1)≤ f (t +2)≤ ·· · ≤ f (n−1)≤ f (n)≤ f (1)≤ ·· · ≤ f (t)}|.

Noting that in OPn, by Lemmas 3.6, the number of idempotents which are not order-
preserving is F2n−1 +F2n+1− (n2−n+2)−F2n, we have

n−1

∑
t=1
|MBs,t

s |= F2n−1 +F2n+1− (n2−n+2)−F2n +(n−1)n = 2(F2n−1−1).

Consequently,
n−1

∑
t=1
|E(Bs,t)|= (n−1)(m−1)F2n +

n−1

∑
t=1
|MBs,t

s |= (n−1)(m−1)F2n +2(F2n−1−1).

Observing that for 1≤ s,s′ ≤ m, 1≤ t, t ′ ≤ n−1,

E(As)∩E(As′) = E(Bs,t)∩E(Bs′,t ′) = E(Bs,t)∩E(As) = {〈1〉,〈2〉, · · · ,〈mn〉},

and that the total number of idempotents 〈1〉,〈2〉, · · · ,〈mn〉 in A2,A3, · · · ,Am,
⋃n−1

t=1 Bs,t

(1 ≤ s ≤ m) is (m− 1)mn +(n− 1)m2n, by Theorem 3.1, Lemma 3.5 and Lemma 3.8, we
obtain the main result in this section.

Theorem 3.2.

|E(OPE(X))|=
m

∑
t=1

∑
k1+k2+···+kt=m

t

∏
i=1

kiF2n +
m

∑
l=2

{
l−1

∑
v=1

∑
j1+ j2+···+ jv=l−1

v

∏
w=1

jwF2n

+
m−l+1

∑
t ′=1

∑
k′1+k′2+···+k′

t′=m

(
t ′−1

∏
i=1

k′iF2n

)
((k′t ′ − l +1)F2n)

}
+m((n−1)(m−1)F2n +2(F2n−1−1))− ((m−1)mn+(n−1)m2n),

where (k1, k2, · · · , kt) is any positive integer solution to the equation ∑
t
i=1 ki = m, and

( j1, j2, · · · , jv) is any positive integer solution to the equation ∑
v
w=1 jw = l−1, and (k′1,k

′
2,

· · · ,k′t ′) is any positive integer solution to the equation ∑
t ′
i=1 k′i = m and the final positive

integer k′t ′ ≥ l.

Example 3.2. Let m = 4, n = 3. By Theorem 3.1,

|E(A1)|= 4F6 +(F6(3F6)+(2F6)(2F6)+3F6(F6))

+(F6F6(2F6)+F6(2F6)F6 +(2F6)F6F6)+F6F6F6F6 = 7840.

From Example 3.1, we know |E(A2)|= 800, |E(A3)|= 160 and |E(A4)|= 800. It follows
from Lemma 3.8 that ∑

2
t=1 |E(Bs,t)|= 6F6 +2(F5−1) = 56 for 1≤ s≤ 4. Thus,

|E(OPE(X))|= 7840+800+160+800+56×4− (36+96) = 9692.
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To conclude this section, we give the following Tables 3 and 4 providing the number of
idempotents in OPE(X) and OE(X) for smaller m,n, respectively.

Table 3. The number of idempotents in OPE (X)

m\n 2 3 4 5 6
2 19 114 643 3727 22972
3 102 1016 12414 186328 3116238
4 513 9692 278337 10545529 454295384
5 2503 95198 6376621 600770505 66322745434
6 12066 941118 146363082 34233146606 9682664464596

Table 4. The number of idempotents in OE (X)

m\n 2 3 4 5 6
2 15 80 483 3135 21024
3 72 792 11088 178640 3069360
4 345 7840 254541 10179345 448105536
5 1653 77608 5843355 580044025 65420338896
6 7920 768240 134142624 33052330080 9550921373280
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