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Abstract. In this paper, we consider a diffusion approximation to a classical risk process
with the possibility of quota-share and excess-of-loss reinsurance, while in addition the
company controls the amount of dividends paid out to the shareholders as well as the cap-
ital injections. The objective is to maximize the cumulative expected discounted dividends
minus the penalized discounted capital injections until the time of bankruptcy. We show
that the optimal combinational reinsurance strategy must be pure excess-of-loss reinsur-
ance. The control problem is solved by constructing some suboptimal model which allows
no bankruptcy by capital injection. Then we obtain the analytical expressions for the value
function and the optimal strategies and it is concluded that they are the same as those in the
case of no bankruptcy.
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1. Introduction

A traditional method to measure the risk of an insurance company is to calculate the ruin
probabilities, (see Asmussen [2], Browne [5]). However many practitioners seek some other
measures of risk such as the expected discounted value of its future dividends payments pro-
posed by De Finetti [7]. Recently, there has been an upsurge on optimizing dividends pay-
out with (re)-insurance setting in diffusion models (see Asmussen and Taksar [1]; Paulsen
and Gjessing [14]; Asmussen et al. [3]; Højgaard and Taksar [10,11]; Paulsen [15]). They
showed that the optimal dividend strategy is the barrier strategy.

However, a problem with the optimal strategy of De Finetti’s problem is that ruin will
occur almost surely. Therefore , Sethe and Taksar [16] suggested a model that can control its
risk by injecting capitals whenever the surplus becomes negative. The value of the company
is associated with the expected present value of the net dividends payout minus the injected
capitals until the ruin time. We refer to three papers in which sufficient deposit must be
made to make the reserve process nonnegative: Shreve et al. [17] in the general diffusion
model, Avram et al. [4] in a Lévy setting, and Kulenko and Schmidli [12] in the classical

Communicated by M. Ataharul Islam.
Received: February 25, 2010; Revised: April 19, 2011.



194 Y. Wu

risk model. Here we mention another paper Løkka and Zervos [13] in which the model
is a particular case in Shreve et al. [17], however, there was no constraint on the capital
injection or the bankruptcy, i.e., when there is deficit, the insurer can choose inject capitals
or not (see also He and Liang [9], which incorporate a fixed cost for each deposit ).

Most of the papers dealing with reinsurance only consider pure quota-share or excess-
of-loss reinsurance, however, the insurer has the choice of a combination of the two in
reality. Løkka and Zervos [13] considered the optimal dividend and injecting strategies in
the diffusion model without reinsurance, which concluded whenever there is deficit it is
optimal to inject capitals to guarantee no bankruptcy when the costs of collecting capitals
are relatively low, otherwise it should not inject capitals and let it go bankrupt. Asmussen et
al. [3] studies the optimal excess-of-loss reinsurance and dividend policies in the diffusion
model without capital injection. Inspired by the ideas above, we consider the combination
of proportional and excess-of-loss reinsurance with the possibility of capital injection in the
diffusion model.

The paper is organized as follows. In Section 2 we give a rigorous mathematical formu-
lation of the problem. We show that the optimal combinational reinsurance must be the pure
excess-of-loss reinsurance in Section 3. Section 4 is devoted to the associated suboptimal
problem, which doesn’t allow bankruptcy (Vc(x)), and we solve it analytically. Section 5 is
concerned with the solution to the general control problem that involves no constraints on
the capital injection or the bankruptcy. We prove the value function and the optimal strate-
gies are the same as those in the case of no bankruptcy Vc(x), which is different from the
results in Løkka and Zervos [13].

2. Formulation of the control problem

We make some notations which will be used in the following:
EX : the expectation of r.v. X ;
DX : the variance of r.v. X ;
C2: the set of all the twice continuously differentiable functions;
I: indicator function;
x∧ y := min{x,y};
x+ := max{x,0}.

Our results will be formulated within the framework of controlled diffusion approxi-
mation models. Let (Ω,F , Ft ,P) be a filtered probability space supporting a standard
Brownian motion {Bt}. For convenience we start from the classical risk process:

X0
t = x+ pt−

Nt

∑
i=1

Yi,

where x≥ 0 is the initial reserve; {Nt}, representing the claim times up to time t, is a Poisson
process with intensity η > 0; {Yi, i = 1,2, · · ·}, independent of {Nt}, is an i.i.d. sequence of
positive random variables representing the successive individual claim amounts and having
cumulative distribution function (c.d.f.) F(x) with finite first and second moments µ∞, σ2

∞,
respectively. In this paper we assume the premium is calculated via expected value principle,
then we have

p = (1+θ)ηµ∞,
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where θ > 0 is the relative safety loading of the insurer.
Assume the insurer takes a combination of quota-share and excess-of-loss reinsurance

in the way of Centeno [6]: Firstly, the insurer chooses a quota-share retention level k
(0 ≤ k ≤ 1), i.e., the insurer’s aggregate claims, net of quota-share reinsurance, are kY .
Secondly, the insurer chooses excess-of-loss reinsurance retention level a ∈ [0,A], where
A := sup{a : F(a) < 1}, i.e., the insurer’s aggregate claims, net of quota-share and excess-
of-loss reinsurance, are kY ∧a. Although non-cheap reinsurance (the reinsurer uses a higher
relative safety loading than the insurer’s) is more realistic, we still consider the cheap rein-
surance (the reinsurer uses the same relative safety loading as the insurer’s) in this paper
since the problem becomes too difficult to solve in the case of non-cheap reinsurance. Then
the surplus process is given by

X (k,a)
t = x+ p(k,a)t−

Nt

∑
i=1

(kYi∧a),

where the premium rate is

p(k,a) = (1+θ)ηE[kYi∧a].

Since the stochastic process {X (k,a)
t − x} has stationary independent increments and

E[X (k,a)
t − x] = ηθktE[Yi∧

a
k
]

and

D[X (k,a)
t − x] = ηk2tE[Yi∧

a
k
]2,

then the diffusion approximation to the surplus process X (k,a)
t is given by

dX (k,a)
t = ηθkµ(

a
k
)dt +

√
ηkσ(

a
k
)dBt ,

where

µ(a) = E[Yi∧a] =
∫ a

0
F̄(x)dx,(2.1)

σ(a) =
√

E[Yi∧a]2 =
√∫ a

0
2xF̄(x)dx.(2.2)

We use {(k(t),a(t))} to describe a dynamic reinsurance strategy. In addition to purchas-
ing reinsurance, the insurance company pays dividends to its shareholders and allows for
capital injections when necessary. We denote by D(t) and Z(t), which are increasing and
càdlàg with D0− = 0, Z0− = 0 , the accumulated amount of dividends and injected capitals
up to time t, respectively. A control policy {(k(t),a(t);D(t),Z(t))}, denoted by (k,a;D,Z)
for simplicity, is said to be admissible if it is a four-dimensional (Ft)-adapted stochastic
process and satisfies ∆D ≤ X , because otherwise, we can realize arbitrary high payoffs by
making arbitrary high dividend payment at time 0, which is unrealistic. Without loss of
generality, we assume η = 1, then the controlled surplus process {X (k,a;D,Z)

t } becomes

dX (k,a;D,Z)
t = θkt µ(

at

kt
)dt + ktσ(

at

kt
)dBt −dD(t)+dZ(t).(2.3)
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We denote by ϕ(x) the set of all admissible control policies with initial reserve x. For
any π = (k,a;D,Z) ∈ ϕ(x), the corresponding performance is defined as

V (k,a;D,Z)(x) = Ex

[
β1

∫
τπ

0−
e−δ tdD(t)−β2

∫
τπ

0−
e−δ tdZ(t)

]
,(2.4)

where δ is the discounted rate, β2 > 1 and β1 < 1. We interpret 1−β1 as the tax rate for div-
idend and β2−1 as the proportional costs rate for capital injection. τπ is the corresponding
ruin time defined by τπ = inf

{
t ≥ 0 : X (π)

t < 0
}

. The objective is to find the value function
which is defined as

V (x) = sup
π∈ϕ(x)

V π(x)(2.5)

and the optimal policy π∗ = (k∗,a∗;D∗,Z∗) such that V (x) = V π∗(x).

Inspired by the idea in Løkka and Zervos [13], we get the following arguments: in view
of the Markovian structure of the above problem, once the model parameters are fixed, we
can expect that the optimal strategy should either allow for the surplus process to hit (−∞,0)
by no injection at any time, or should keep the company never bankrupt by the means of
capital injection, which corresponds to the subpoptimal model Vc(x) in Section 4.

In the following, we first show that the optimal combinational reinsurance must be the
pure excess-of-loss, i.e. k∗(t) ≡ 1. Then we solve the suboptimal problem Vc(x). Finally
from the properties of Vc(x) it is concluded that, whatever the model parameters are, the
optimal choice is to guarantee no bankruptcy, that is, the optimal strategies and the value
function are the same as those in the model Vc(x).

3. The optimal reinsurance

In this section we will show the optimal combinational reinsurance is always the pure
excess-of-loss reinsurance.

Lemma 3.1. Let

R(a) =
σ2(a)
[µ(a)]2

,(3.1)

then R(a) is an increasing function of a for a≥ 0.

Proof. It is proved in Proposition 3.1 in Asmussen et al. [3].

Proposition 3.1. For any fixed (k,a;D,Z) ∈ ϕ(x), there exists (1, ã; D̃, Z̃) ∈ ϕ(x) such that

V (k,a;D,Z)(x)≤V (1,ã;D̃,Z̃)(x).(3.2)

Proof. For any fixed (k(t),a(t);D(t),Z(t)) ∈ ϕ(x), there exists ã(t) such that

ktσ

(
at

kt

)
= σ(ãt).(3.3)

Easy to see ãt ≤ at
kt

, so in view of Lemma 3.1, we have

σ2(ãt)
[µ(ãt)]2

≤ σ2(at/kt)
[µ(at/kt)]2

,
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which implies

kt µ

(
at

kt

)
≤ µ(ãt).

Let D̃(t) := D(t)+θ
∫ t

0

[
µ(ãs)− ksµ

(
as
ks

)]
ds≥ D(t), Z̃(t) := Z(t), then D̃(t) and Z̃(t) are

both increasing and

dX (1,ã;D̃,Z̃)
t = θ µ(ãt)dt +σ(ãt)dBt −dD̃(t)+dZ̃(t)

= θkt µ(
at

kt
)dt + ktσ(

at

kt
)dBt −dD(t)+dZ(t).

Hence we get τ
(k,a;D,Z)
x = τ

(1,ã;D̃,Z̃)
x , while D̃(t)≥ D(t) and Z̃(t) = Z(t), so we get

V (k,a;D,Z)(x)≤V (1,ã;D̃,Z̃)(x).

The following corollary is a direct consequence of Proposition 3.1.

Corollary 3.1.

V (x) = sup
(1,a;D,Z)∈ϕ(x)

V (1,a;D,Z)(x).(3.4)

Remark 3.1. For simplicity we write (a,D,Z) for (1,a;D,Z) in the following.

4. The solution to the suboptimal problem

4.1. The associated suboptimal problem

We consider an associated suboptimal problem corresponding to the maximum of the per-
formance index over a set of appropriate admissible strategies.

Definition 4.1. (The company never bankrupt)
Given an initial reserve x ≥ 0, Let ϕc(x) = {(a,D,Z) ∈ ϕ(x)|X(t)≥ 0, for all t ≥ 0}. We
define the associated value function Vc(x) by

Vc(x) = sup
(a,D,Z)∈ϕc(x)

V (a,D,Z)(x).(4.1)

Through the above definition we can easily get the relationship

V (x)≥Vc(x), for all x≥ 0.(4.2)

Lemma 4.1. µ ◦σ−1 is an concave function.

Proof. From (2.1) and (2.2), it is obvious that µ(a) and σ(a) is strictly increasing on [0,A],
thus the inverses of µ(·) and σ(·) exist, which are denoted by µ−1(·) and σ−1(·), respec-
tively.

According to Asmussen et al. [3], Let ρ = µ−1 and φ = σ2 ◦ρ , then we have φ ′(u) =
2ρ(u), which implies

d
du

√
φ(u) =

a
σ(a)

|a=ρ(u).
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Now differentiating a
σ(a) w.r.t a yields

d
da

(
a

σ(a)

)
= σ2(a)−a2F̄(a)

σ3(a) = −
∫ a

0 x2dF̄(x)
σ3(a) ≥ 0, a ∈ [0,A],

where we use (2.2) in the first equality and integration by part is applied in the second
equality. Together with ρ ′(u) > 0, we come to the following

d2

du2

√
φ(u) =

d
da

a
σ(a)

|a=ρ(u) ·ρ ′(u)≥ 0,

that is,
√

φ(u) = σ ◦µ−1(u) is convex, from which we get the concavity of µ ◦σ−1.

In the model of no bankruptcy Vc(x), it is clear that it cannot be optimal to make capital
injections before they are really necessary because of the discounting, so we deduce that it
is optimal to inject capitals only when the surplus becomes negative, therefore we need only
to choose (a(t),D(t)), such that the corresponding injection process becomes

Z(a,D)(t) :=− inf
s≤t

([
X (a)(s)−D(s)

]
∧0
)

,(4.3)

where X (a) is the controlled surplus process connected to the strategy (1,a,0,0). We will
sometimes use the abbreviated notation X (a,D) and V (a,D) for the controlled surplus process
and the performance index connected to the strategy

{
a(t),D(t),Z(a,D)(t)

}
in the following.

Thus the formula (4.1) can be rewritten as

Vc(x) = sup
(a,D)∈ϕc(x)

V (a,D)(x).(4.4)

Proposition 4.1. Vc(x),x≥ 0 is a nonnegative, increasing and concave function.

Proof. The monotonicity of Vc(x) is obvious.
Next we show that Vc(x) ≥ 0 for all x ≥ 0. For any fixed x ≥ 0, it is easy to see that the

strategy (a0,D0,Z0) with a0(t) = D0(t) = Z0(t) = 0 for all t ≥ 0 is an admissible strategy
in ϕc(x). Therefore, we have

Vc(x)≥V (a0,D0,Z0)(x) = 0.

Lastly we show its concavity.
Let x1, x2 be two initial values and

(
a1,D1,Z

(a1,D1)
1

)
,
(

a2,D2,Z
(a2,D2)
2

)
be two admissi-

ble control strategies for x1 and x2 respectively. Let x3 = λx1 +(1−λ )x2, 0 ≤ λ ≤ 1. We
can construct an admissible strategy for x3 as follows:
Firstly, there existing {a(t)} such that

σ(a(t)) = λσ(a1(t))+(1−λ )σ(a2(t)),

so by Lemma 4.1, we get

µ(a(t))≥ λ µ(a1(t))+(1−λ )µ(a2(t)).

Define

Z(t) := λZ(a1,D1)
1 (t)+(1−λ )Z(a2,D2)

2 (t)(4.5)
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and

D(t) := λD1(t)+(1−λ )D2(t)+
∫ t

0

[
µ(a(s))−λ µ(a1(s))− (1−λ )µ(a2(s))

]
ds(4.6)

≥ λD1(t)+(1−λ )D2(t).

Noting that

Z(a,D)(t) =− inf
s≤t

([
X (a)(s)−D(s)

]
∧0
)

=− inf
s≤t

([
λ (X (a1)(s)−D1(s))+(1−λ )(X (a2)(s)−D2(s))

]
∧0
)

≤ λZ(a1,D1)(t)+(1−λ )Z(a2,D2)(t) = Z(t),

we have
X (a,D,Z)(t) = X (a,D)(t)+Z(t)−Z(a,D)(t)≥ X (a,D)(t)≥ 0,

which shows that the strategy (a,D,Z) is admissible for the initial value x3, then from (4.5)
and (4.6) we conclude that

Vc(x3)≥V (a,D,Z)
c (x3) = E

[
β1

∫
∞

0−
e−δ tdD(t)−β2

∫
∞

0−
e−δ tdZ(t)

]
≥ λV (a1,D1)(x1)+(1−λ )V (a2,D2)(x2).

Thus

Vc(x3)≥ λVc(x1)+(1−λ )Vc(x2),

from which the concavity of Vc(x) is derived.

4.2. The solution to the problem Vc(x)

For any fixed a ∈ R, we establish an operator L a on the space C2 which is frequently used
in the following and is defined by:

L a f (x) =
1
2

σ
2(a) f ′′(x)+θ µ(a) f ′(x)−δ f (x)

for any f ∈C2.

The following proposition is well-known from the dynamic programming principle in
Fleming and Soner [8] (It is actually the combination of Theorem 5.1 in Asmussen et al. [3]
and (4.1) and (4.2) in Løkka and Zervos [13]):

Proposition 4.2. If the function Vc(x) ∈C2, then it satisfies the following HJB equation

max

(
sup

a∈[0,A]
L aVc(x),−V ′c(x)+β1,V ′c(x)−β2

)
= 0,(4.7)

with the boundary condition

V ′c(0) = β2.(4.8)

Proposition 4.3. Assume there exists g ∈ C2 such that it is an increasing and concave
solution to the HJB equation (4.7) with the boundary condition (4.8). Then
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(i) The function g coincides with Vc. That is

Vc(x) = g(x), x≥ 0.

In addition, b1 := inf{x ≥ 0,V ′c(x) ≤ β1} > 0 exists, and g(x) (or Vc(x)) satisfies
the following equations

sup
a∈[0,A]

{
1
2

σ
2(a)g′′(x)+θ µ(a)g′(x)−δg(x)

}
= 0, for x ∈ [0,b1],(4.9)

g(x) = β1(x−b1)+g(b1), for x≥ b1,(4.10)

g′(0) = β2, .(4.11)

(ii) Further, pick a∗(·) be such that

sup
a∈[0,A]

L ag(x) = L a∗(x)g(x),(4.12)

holds for all x ≥ 0, then π∗ := (a∗(X∗t ),D∗(t),Z(a∗,D∗)(t)) is the optimal strategy,
where X∗t is the surplus process under the optimal strategy,

D∗(t) := (x− x∗)+I{t=0}+
∫

(0,t]
I{X∗s =b1}dD∗(s)(4.13)

and Z(a∗,D∗)(t) is defined in the same way as (4.3).

Proof. The proof of “Vc(x) = g(x)” in (i) is similar to those of Proposition 3.2 and Propo-
sition 3.3 in Højgaard and Taksar [10] (we can refer to Theorem 5.2 in Asmussen et al.
[3] and Theorem 4.1 in Løkka and Zervos [13], which also directly give the results without
showing the details). It is based on a slightly modified standard verification procedure for
the mixed singular/regular control.

For the rest part of i), from the properties that g(x) satisfies, it is obvious that b1 = inf{x :
g′(x)≤ β1}> 0 exists, moreover, we have g′(x) > β1 for x < b1 and g′(x) = β1 for x≥ b1.
Thus g(x) (or Vc(x)) satisfies the equations (4.9)-(4.11).

For (ii), we only need to show g(x) = V π∗(x).
Let π∗ be as in the statement. In fact, according to the theory of Skorohod’s equation,

there exists a unique stochastic process (D∗(t),Z∗(t)) such that the following conditions
hold:
(a) X∗(t) := X (a∗,0,0)(t)−D∗(t)+Z∗(t) ∈ [0,b1], for all t ≥ 0;
(b) D∗(0) = (x−b1)+, Z∗(0) = 0, and D∗(t), Z∗(t) are both nondecreasing on t;
(c) D∗(t) and Z∗(t) are flat off {t ≥ 0,X∗(t) = b1} and {t ≥ 0,X∗(t) = 0}, respectively.

Thus D∗(t) can be expressed as the form in (4.13), Z∗(t) is obviously the same as
Z(a∗,D∗)(t) defined in (4.3) and X∗(t) is the controlled process under the strategy (a∗(X∗t ),
D∗(t),Z(a∗,D∗)(t)). Actually D∗(t) and Z∗(t) are the local times of the reflected process
X∗(t) at the boundaries b1 and 0, respectively. Obviously, the bankruptcy time under this
strategy is τ∗ = ∞.

From (4.12), it follows that

max
(
L a∗g(x),−g′(x)+β1,g′(x)−β2

)
= 0.(4.14)
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For any stochastic process D, let Dc denote its continuous part. We consider g as in the
statement and obtain

e−δ tg(X∗t )−g(x)

=
∫ t

0
e−δ sL a∗g(X∗s )ds+

∫ t

0
e−δ s

θ µ(a∗s )g
′(X∗s )dB(s)

−
∫ t

0
e−δ sg′(X∗s )dD∗cs +

∫ t

0
e−δ sg′(X∗s )d(Z(a∗,D∗))c

s +[g(b1)−g(x)]I{x>b1}

=
∫ t

0
e−δ s

θ µ(a∗s )g
′(X∗s )dB(s)−β1

∫ t

0
e−δ sdD∗cs

+β2

∫ t

0
e−δ sdZ(a∗,D∗)

s −β1(x−b1)+,

(4.15)

where we use the generalized Itô’s formula in the first equality; the second equality holds
true for the following reason: In view of (4.14), the first term on the r.h.s. of the first equality
is equal to 0; Since, by definition, the dividend process D∗ continuously increases only at
the boundary b1, apart from a possible jump (x− b1)+ at time 0, and the injection process
Z(a∗,D∗) continuously increases only at the boundary 0 without any jump, together with the
conditions g′(x) = β1 for all x ≥ b1 and g′(0) = β2, we easily deduce that second equality
holds true.

In view of the boundness of g′(·) on [0,b1] and the fact that X∗ is a reflected process at the
boundaries 0 and b1, we conclude that M = {Mt}t≥0 is a uniformly integrable martingale,
where Mt :=

∫ t
0 e−δ sθ µ(a∗s )g

′(X∗s )dB(s). On the other hand, g(·) is obviously bounded on
[0,b1]. Therefore, taking expectation on both sides of (4.15) and letting t → ∞, we can
deduce that

g(x) = Ex[
∫

∞

0−
e−δ tdD∗(t)−β2

∫
∞

0−
e−δ tdZ(a∗,D∗)] = V π∗(x).

Thus π∗ is the optimal strategy.

From Proposition 4.3, we can see that what we need to do is to construct an increasing
and concave solution g(x) ∈ C2 to (4.7)–(4.8). Suppose such a function g(x) exists, then
g(x) = Vc(x).

We first establish a lemma which will be required in constructing the function g(x).
Define

d± :=
−θ µ∞±

√
θ 2µ2

∞ +2δσ2
∞

σ2
∞

,(4.16)

m∗ :=
1

d+−d−
ln

d−(θ +d+A)
d+(θ +d−A)

,(4.17)

and

H(x) :=
∫ x

0

σ2(y)

2y
[
−θ

σ2(y)
2y +θ µ(y)+ δy

θ

]dy, x≥ 0,(4.18)

then from the expressions (2.1) and (2.2) we easily conclude that H(x),x ≥ 0 is a non-
negative and strictly increasing function, so the inverse of H(·) exist, which is denoted by
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H−1(·). Thus we can define

p(x) := β2e
−
∫H(A)−H(x)

0
θ

H−1(y+H(x))
dy

, x ∈ [0,A].

Lemma 4.2. If and only if

β2 ≥
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,(4.19)

there exists a unique solution x ∈ [0,A] to the equation

p(x) =
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ .

Proof. By simple differentiation operations, we deduce that

p′(x) = p(x)θH ′(x)

1/A+
∫ H(A)−H(x)

0

1

[H−1(y+H(x))]2h
(

H−1(y+H(x))
)dy

> 0,

where

h(y) =
σ2(y)

2y
[
−θ

σ2(y)
2y +θ µ(y)+ δy

θ

] > 0,

which implies that p(x) is increasing on [0,∞).
By applying L’Hôspital, we deduce from (4.18), (2.1) and (2.2) that

lim
x↓0

H ′(x) = lim
x↓0

σ2(x)

2x
[
−θ

σ2(x)
2x +θ µ(x)+ δx

θ

] =
θ

θ 2 +2δ
> 0,

thus we have

e
∫H(A)

0
θ

H−1(y)
dy

=
∫ A

0

θ

x
H ′(x)dx = ∞.(4.20)

Therefore we can conclude that

p(0) = β2e
−
∫H(A)

0
θ

H−1(y)
dy

= 0 <
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ .

It is easy to see p(A) = β2, therefore there exists a unique solution x ∈ [0,A] if and only
if (4.19) holds.

To construct an increasing, concave function g(x) ∈C2 to the equations (4.7)-(4.8), we
first conjecture its expression according to the conditions which g(x) must satisfy. We have
conjectured the corresponding expressions for g(x) under two different parameter relation-
ships in the Appendix. In the following theorem we will show that they indeed satisfy the
conditions in Proposition 4.3, which implies Vc(x) = g(x):

Theorem 4.1. (i) If

β2 ≥
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,(4.21)
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then the value function Vc(x) is given by

Vc(x) =


c0 +β2

∫ x
0 e
−
∫ z

0
θ

H−1(y+H(a∗(0)))
dy

dz if 0≤ x≤ x1,

c1ed+x + c2ed−x if x1 ≤ x≤ b1,

β1(x−b1)+ c3 if x≥ b1,

(4.22)

where d±,m∗,H(·) are given by (4.16)–(4.18) and all the other parameters are determined
by (5.12)–(5.20) and the optimal strategies (a∗,D∗,Z∗) are given as follows:

The optimal excess-of-loss retention level a∗(t) = a∗
(

X (a∗,D∗,Z∗)(t)
)

, where a∗(x) is deter-

mined by (5.12) when x ≤ x1 and a∗(x) = A for x ≥ x1; The optimal dividend and capital
injection strategies (D∗,Z∗) reflect the surplus at the endpoints of the interval [0,b1], that
is, D∗ and Z∗ are the corresponding local times of the reflected process {X (a∗,D∗,Z∗)} at the
boundary b1 and 0, respectively, where X (a∗,D∗,Z∗) is the surplus process under the optimal
strategies.

(ii) If

β2 <
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,(4.23)

then the value function Vc(x) is given by

Vc(x) =

 F1ed+x +F2ed−x if 0≤ x≤ b2,

β1(x−b2)+Vc(b2) if x≥ b2;
(4.24)

where F1, F2 and b2 are given by (5.22)-(5.23) and the optimal strategies are given as
follows:
a∗ ≡ A, i.e., it is optimal to buy no reinsurance at all; The optimal dividend and capital
injection strategies (D∗,Z∗) reflect the surplus at the endpoints of the interval [0,b2].

Proof. First g(x) given by (5.18) and (5.21) are obviously twice continuously differentiable
from their construction. We will verify that g(x) given by (5.18) and (5.21) satisfy the other
conditions in Proposition 4.3 under the two different cases, respectively.

(i) In the case of

β2 ≥
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,

from the construction of g(x) given by (5.18), it suffices to prove the following conditions:

g′(x) > 0, g′′(x)≤ 0, x ∈ [0,∞),
β1 ≤ g′(x)≤ β2, x ∈ [0,b1],
sup

a∈[0,A]

{ 1
2 σ2(a)g′′(x)+θ µ(a)g′(x)−δg(x)

}
= 0, x ∈ [x1,b1],

sup
a∈[0,A]

{ 1
2 σ2(a)g′′(x)+θ µ(a)g′(x)−δg(x)

}
≤ 0, x ∈ [b1,∞).

(4.25)
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Firstly, it is obvious that g(x) is increasing on [0,∞) and concave on [0,x1] and [b1,∞).
Moreover, from (5.16) we obtain

e(d+−d−)x ≤ e(d+−d−)b1 =
−c2d2

−
c1d2

+
, for x ∈ [x1,b1],

which implies g(x) is concave on [x1,b1]. Together with the continuity of g′(x) at x1 and b1,
we deduce that g(x) is concave on [0,∞). In addition, g′(b1) = β1, hence the first and the
second condition in (4.25) hold.

Secondly, for any fixed x ∈ [x0,b0], we view L ag(x) as a function of a ∈ [0,A], then
d
daL ag(x) = F̄(a)[ag′′(x)+θg′(x)]. If we can prove

ag′′(x)+θg′(x)≥ 0, a ∈ [0,A],(4.26)

then by the construction of g(x) we have

sup
a∈[0,A]

L ag(x) = L Ag(x) = 0, for x ∈ [x1,b1],

which implies that the third condition in (4.25) is satisfied.
From (5.15) and (5.16), (4.26) is equivalent to

e(d+−d−)(x−b1) ≥ d+(θ +d−a)
d−(θ +d+a)

.

So we only need to show

e(d+−d−)(x1−b1) ≥ d+(θ +d−a)
d−(θ +d+a)

.

From (5.17), the above inequality can be reduced to

A+θ/d−
A+θ/d+

≥ a+θ/d−
a+θ/d+

,

which obviously holds.
Lastly, since g′′(x)≡ 0 and g′(x)≡ β1 for all x≥ b1, we have

sup
a∈[0,A]

{
1
2

σ
2(a)g′′(x)+θ µ(a)g′(x)−δg(x)

}
= sup

a∈[0,A]
{θβ1µ(a)−δg(x)}= θβ1µ∞−δg(x)

≤ θβ1µ∞−δg(b1) = sup
a∈[0,A]

L ag(b1) = 0.

Thus the last one in (4.25) holds true.
On the other hand, by the construction of g(x) it is easy to see that a∗(x) in the state-

ment (i) satisfies (4.12). From Proposition 4.3 (ii), we deduce that the strategies (a∗,D∗,Z∗)
stated in (i) are the optimal strategies under (4.21).

(ii) In the case of β2 < −β1d−
d+−d−

ed+m∗+ β1d+
d+−d−

ed−m∗ , it was showed in Løkka and Zervos [13]
that g(x) given by (5.21) is an increasing, concave function and satisfies the following HJB
equation

max
{
L Ag(x),−g′(x)+β1,g′(x)−β2

}
= 0,
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with the boundary condition g′(0)= β2. So it suffices to prove the maximum of sup
a∈[0,A]

{
1
2 σ2(a)

g′′(x) + θ µ(a)g′(x)− δg(x)
}

, where g(x) is given by (5.21), is such that a∗(x) ≡ A for
x ∈ [0,b2]:

For any fixed x ∈ [0,b2], differentiating L ag(x) w.r.t a leads to

d
da

L ag(x) = F̄(a)[ag′′(x)+θg′(x)], a ∈ [0,A].

Due to g′(x) > 0 and g′′(x) < 0, it is easy to see that the maximal point of L ag(x) on
a ∈ [0,∞) is equal to −θg′(x)

g′′(x) . So we only need to prove −θg′(x)
g′′(x) ≥ A for all x ∈ [0,b2], from

the expression (5.21), which is equivalent to show

e(d+−d−)(x−b2) ≥ d+(θ +d−A)
d−(θ +d+A)

= e(d+−d−)(x1−b1), x ∈ [0,b2],

where the last equality is deduced by (5.17). Therefore it is sufficient to show

b2 ≤ b1− x1,

due to the fact that b2 is the unique solution to (5.23) and β1(d+e−d−x− d−e−d+x) is in-
creasing on x, which obviously holds when

β2 <
−β1d−
d+−d−

ed+(x1−b1) +
β1d+

d+−d−
ed−(x1−b1).

Similar to the previous case, the strategies (a∗,D∗,Z∗) stated in (ii) are indeed the optimal
strategies under (4.23).

Remark 4.1. Since when β2 = −β1d−
d+−d−

ed+m∗ + β1d+
d+−d−

ed−m∗ we have x1 = 0, thus the value
function also has the form of (4.24) and the optimal dividend barrier b1 is the unique solution
to (5.23). Therefore it doesn’t matter to change ” < ” into ”≤ ” in (4.23).

Remark 4.2. In view of (5.17), when A = ∞, i.e., the claim size distribution has unbounded
support, we get x1 = b1, which means that the insurer begins to pay dividends out as soon
as the reinsurance stops.

Remark 4.3. From Theorem 4.1, in the case Vc(x) (no bankruptcy by capital injection), we
can see that whether reinsurance is needed depends on the model parameters. Specifically
speaking, the company needs reinsurance when the costs of collecting capitals are relatively
high ((4.21)) and needn’t when the costs are low ((4.23)). It is financially intuitive. Because
in the case of low costs the effect of dividend revenue is much stronger than that of capital
outflow, no reinsurance is purchased to prevent from reducing the potential profits; while
with high costs, the effects of capital outflow is stronger than that of dividend revenue,
reinsurance should be taken to reduce the cumulative amounts of injected capitals.

5. The solution to the control problem

Lemma 5.1. (Verification Lemma) If h(x) satisfies

max

(
sup

a∈[0,A]
L ah(x),−h′(x)+β1,h′(x)−β2

)
≤ 0,(5.1)
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h(0)≥ 0,(5.2)

where

L ah(x) =
1
2

σ
2(a)h′′(x)+θ µ(a)h′(x)−δh(x),(5.3)

then

h(x)≥V (x).(5.4)

Proof. For any fixed initial value x ≥ 0 and any admissible strategy π = (a,D,Z) ∈ ϕ(x),
denote the corresponding ruin time by τπ (sometimes τ for simplicity). We denote by Dc

and Zc the continuous part of the processes D, Z respectively, and ∆D and ∆Z be the jump
part of the processes D, Z respectively. Using the generalized Itô′s formula, we deduce that

e−δ (t∧τ)h(Xπ
t∧τ)−h(x)(5.5)

=
∫ t∧τ

0
e−δ s

[
−δh(Xπ

s )ds+h′(Xπ
s )d(Xπ

s )c +
1
2

h′′(Xπ
s )d〈Xπ〉cs

]
+ ∑

0≤s≤t∧τ

(h(Xπ
s )−h(Xπ

s−))

=
∫ t∧τ

0
e−δ s[−δh(Xπ

s )+θ µ(as)h′(Xπ
s )+

1
2

σ
2(as)h′′(Xπ

s )]ds

+
∫ t∧τ

0
e−δ s

θ µ(as)h′(Xπ
s )dB(s)−

∫ t∧τ

0
e−δ sh′(Xπ

s )dDc(s)(5.6)

+
∫ t∧τ

0
e−δ sh′(Xπ

s )dZc(s)+ ∑
0≤s≤t∧τ

e−δ s
∫ 4Ds

0
[−h′(Xπ

s − z)]dz

+ ∑
0≤s≤t∧τ

e−δ s
∫ 4Zs

0
h′(Xπ

s − z)dz,

≤
∫ t∧τ

0
e−δ sL ah(Xπ

s )ds+
∫ t∧τ

0
e−δ s

θ µ(as)h′(Xπ
s )dB(s)

−β1

∫ t∧τ

0
e−δ sh′(Xπ

s )dD(s)+β2

∫ t∧τ

0
e−δ sh′(Xπ

s )dZ(s).(5.7)

In view of (5.1), taking expectations on both sides of (5.7), we obtain

E
[
e−δ (t∧τ)h(Xπ

t∧τ)
]
−h(x)≤−β1Ex

[∫ t∧τ

0
e−δ sdD(s)

]
+β2Ex

[∫ t∧τ

0
e−δ sdZ(s)

]
.(5.8)

By the definition of τ and the boundary condition (5.2), we can prove

liminf
t→∞

E[e−δ (t∧τ)h(Xπ
t∧τ)] = e−δτ h(0)I(τ<∞) + liminf

t→∞
E[e−δ th(Xπ

t )I(τ=∞)]≥ 0,

together with (5.8), which implies

h(x)≥ Ex[β1

∫
τ

0−
e−δ tdD(t)−β2

∫
τ

0−
e−δ tdZ(t)] = V (π)(x), for any π ∈ ϕ(x).

Therefore, we get h(x)≥V (x).
The following theorem is the main result of this paper.

Theorem 5.1. V (x) = Vc(x) and the optimal strategies are the same as those in Vc(x).
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Proof. On the one hand, since Vc(0)≥ 0, which is proved in Proposition 4.1, together with
Proposition 4.3, which implies that Vc(x) satisfies the equations (5.1)-(5.2), then by Lemma
5.1 we get

Vc(x)≥V (x).

On the other hand, from (4.2), we have the inverse inequality Vc(x)≤V (x). So the conclu-
sion holds.

Remark 5.1. In Løkka and Zervos [13] in which there is no reinsurance, whether the com-
pany should inject capitals when there is deficit depends on the relationships between the
parameters in the model. They have either V (x) = Vc(x) or V (x) = Vd(x) under different
parameter conditions, see (5.3) and (5.4) in that paper, in which Vd(x) corresponds to the
model of no capital injection and it is defined in the following way:

Vd(x) := sup
(a,D,0)∈ϕ(x)

V (a,D,0)(x)),

that is, Vc(x) may have better or worse performance than Vd(x) under different conditions.
It is concluded in that paper that the company should not inject capitals when the costs of
collecting capitals are relatively high, otherwise it should inject capitals to guarantee no
bankruptcy. However, from Theorem 5.1 we find that once we add cheap excess-of-loss
reinsurance in the model, V (x) = Vc(x) whatever relationship the model parameters have.

Appendix

Suppose there exists an increasing and concave function g(x) ∈ C2 to the HJB equation
(4.7) with the boundary condition (4.8), then (4.9)-(4.11) in Proposition 4.3 holds, and the
function g(x) can be conjectured as follows:

For x≤ b1, Since g′′(x) < 0 and g′(x) > 0, by differentiation we find the maximum a∗(x)
satisfying

a∗(x) =−θ
g′(x)
g′′(x)

.(5.9)

Substituting (5.9) into (4.9) yields

[−θ
σ2(a∗)

2a∗
+θ µ(a∗)]g′(x)−δg(x) = 0(5.10)

with a∗ = a∗(x). Differentiating w.r.t. x in (5.10) and then using (5.9), eventually we get

(a∗(x))′ =
2a∗

σ2(a∗)

[
−θ

σ2(a∗)
2a∗

+θ µ(a∗)+
δ

θ
a∗
]

> 0.(5.11)

Then we can deduce that a∗(x) is an increasing function and

a∗(x) = H−1
(

x+H(a∗(0))
)
,(5.12)

where the initial value a∗(0) is to be determined. Suppose there exists x1 ∈ [0,b1] such that
a∗(x1) = A, which implies that a∗(x)≤ A for all x≤ x1 and

x1 = H(A)−H(a∗(0)),(5.13)
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From (4.11) and (5.9), we conclude that the solution of g(x) on [0,x1] takes the form of

g(x) = c0 +β2

∫ x

0
e−θ

∫ z
0

1
a∗(y) dydz, x ∈ [0,x1]

with c0 = g(0). Taking x = 0 in (5.10), we get

c0 =
θβ2

δ

[
µ(a∗(0))− σ2(a∗(0))

2a∗(0)

]
.(5.14)

Suppose a∗(x) = A for x ∈ [x1,b1], then from (4.9) we deduce

g(x) = c1ed+x + c2ed−x, x ∈ [x1,b1],(5.15)

where c1, c2 can be obtained as follows by the continuity of g′(x), g′′(x) at x = b1

c1 =
−β1d−

d+(d+−d−)
e−d+b1 > 0, c2 =

β1d+

d−(d+−d−)
e−d−b1 < 0.(5.16)

Using (5.9), (5.15) and the continuity of g′(x), g′′(x) at x = x1, we get

c1d+ed+x1 + c2d−ed−x1

c1d2
+ed+x1 + c2d2

−ed−x1
=

g′(x1)
g′′(x1)

=−a∗(x1)
θ

=−A
θ

,

together with (5.16), which implies

e(d+−d−)(x1−b1) =
d+(θ +d−A)
d−(θ +d+A)

∈ (0,1),

Then it follows that

b1 = x1 +
1

d+−d−
ln

d−(θ2 +d+A)
d+(θ2 +d−A)

= x1 +m∗,(5.17)

which confirms the supposition x1 ≤ b1.
To summarize, we can construct g(x) as follows:

g(x) =


c0 +β2

∫ x
0 e−θ

∫ z
0

1
a∗(y) dydz if 0≤ x≤ x1,

c1ed+x + c2ed−x if x1 ≤ x≤ b1,

β1(x−b1)+ c3 if x≥ b1,

(5.18)

where

c3 =
θ µ∞β1

δ
(5.19)

is obtained from (4.9) and the continuity of g′(x) and g′′(x) at b1.
From the statements above, all the parameters will be determined if a∗(0) is worked out,

which satisfies the following by the continuity of g′(x) at x1 = H(A)−H(a∗(0):

β2e
−
∫H(A)−H(a∗(0))

0
θ

H−1(y+H(a∗(0)))
dy

=
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ .(5.20)

From Lemma 4.2, we deduce that if and only if the model parameters satisfy (4.19), the
equation (5.20) has a unique solution a∗(0)∈ [0,A]. So the function g(x) will be constructed
under two different cases depending on the model parameters:
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(i) In the case of

β2 ≥
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,

we have constructed the function g(x) in the form of (5.18) with all the unknown parameters
determined in the statements above.

(ii) In the case of

β2 <
−β1d−
d+−d−

ed+m∗ +
β1d+

d+−d−
ed−m∗ ,

from Lemma 4.2 we can see that there exists no solution a∗(0) ∈ [0,A] to the equation
(5.20). It is obvious that when β2 decreases to −β1d−

d+−d−
ed+m∗ + β1d+

d+−d−
ed−m∗ , the solution

a∗(0) increases to A, so we can suppose a∗(x) ≡ A for all x ≥ 0 in this case. Then the
equations (4.9)-(4.11) become

1
2 σ2

∞g′′(x)+θ µ∞g′(x)−δg(x) = 0, x ∈ [0,b1],
g(x) = β1(x−b1)+g(b1), x≥ b1,
g′(0) = β2,

which is actually the case in Løkka and Zervos [13] (involving no reinsurance) and the
function g(x) has the following form:

g(x) =

 F1ed+x +F2ed−x if 0≤ x≤ b2,

β1(x−b2)+Vc(b2) if x≥ b2,
(5.21)

where

F1 =
−β1d−

d+(d+−d−)
e−d+b2 > 0, F2 =

β1d+

d−(d+−d−)
e−d−b2 < 0(5.22)

and b2 is the unique solution to the following equation on x ∈ [0,∞)

β1(d+e−d−x−d−e−d+x) = β2(d+−d−).(5.23)

References
[1] S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance Math.

Econom. 20 (1997), no. 1, 1–15.
[2] S. Asmussen, Ruin Probabilities, Advanced Series on Statistical Science & Applied Probability, 2, World

Sci. Publishing, River Edge, NJ, 2000.
[3] S. Asmussen, B. Højgaard and M. I. Taksar, Optimal risk control and dividend distribution policies. Example

of excess-of loss reinsurance for an insurance corporation, Finance Stoch. 4 (2000), no. 3, 299–324.
[4] F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy
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