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Abstract. Let X be a C-distinguished topological space, and let ω be a weight function
on X . Denote by Cb(X ,ω) the space of all real-valued functions f with f /ω ∈Cb(X), and
by C̃b(X ,ω) the space of all real-valued continuous functions f such that f /ω is bounded.
We introduce certain locally convex topologies on Cb(X ,ω) and C̃b(X ,ω), and as our main
results we determine their duals.
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1. Introduction

Let X be a C-distinguished topological space; that is, a Hausdorff topological space X such
that the space of real-valued bounded continuous functions on X , Cb(X), separates points
of X . By a weight function on X we mean a Borel measurable function ω : X → (0,∞)
such that ω−1 is bounded on the compact subsets of X . Let Cb(X ,ω) be the space of all
real-valued functions f with f /ω ∈Cb(X), and let C̃b(X ,ω) be the space of all real-valued
continuous functions f such that f /ω is bounded. It is easy to see that, with the usual
pointwise operations and the norm ‖.‖ω defined by ‖ f‖ω := ‖ f /ω‖ the spaces Cb(X ,ω)
and C̃b(X ,ω) are Banach spaces. In the special case ω = 1 the space Cb(X ,ω) is the usual
space Cb(X).

In his seminal work, Buck [5] defined the strict topology β on Cb(X) for a locally com-
pact space X . Later, Giles [6] extended the result of Buck to the completely regular spaces.
The strict topology β is the locally convex topology defined by the seminorms Pϕ , where

Pϕ(g) = sup{ϕ(x) |g(x)| : x ∈ X } (g ∈Cb(X)),

and ϕ varies through the set of all positive bounded Borel measurable functions vanishing at
infinity. An interesting and important property of the strict topology is that the dual space of
(Cb(X),β ) can be identified with the space of all finite regular Borel measures on X ; see [6]
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and [7] for more details. Many authors have studied the so-called strict topologies; see for
example [1, 3, 8–10, 14–16].

Our aim in this paper is to introduce and study locally convex topologies β (X ,ω) and
β̃ (X ,ω) on Cb(X ,ω) and C̃b(X ,ω), respectively. We will show that the dual of these spaces
can be identified in a natural way with a Banach space of weighted Radon measures on X .

2. Space of weighted Radon measures

Let us recall some basic concepts and results from measure theory as given in [4]. The σ -
algebra generated by the open subsets of X is called the σ -algebra of Borel sets and denoted
B = B(X). A (positive) Radon measure is a Borel measure µ : B(X)−→ [0,∞] such that
µ(C) is finite for C ∈K (X), and µ is inner-regular; that is,

µ(B) = sup{µ(C) : C ⊆ B, C ∈K (X)} (B ∈B(X)),

where K = K (X) denotes the family of all compact subsets of X . The set of all positive
Radon measures on X is denoted by M+(X). By M+

b (X) we denote the set of all positive
bounded Radon measures on X .

We need the following simple lemma.

Lemma 2.1. Let ϕ : X → [0,∞] be a Borel measurable function on the Hausdorff space X
such that is bounded on the compact subsets of X. If µ ∈M+(X) then µϕ ∈M+(X), where

µϕ(B) =
∫

B
ϕ dµ (B ∈B).

Proof. It is clear that µϕ is a positive measure which is bounded on compact subsets. For
each compact subset K of X , let µK = µχK . It is clear that µK is a Radon measure. Directing
the family K by inclusion, we get µK ↗ µ . Hence, by [4, Exercise 1.29],

sup
{∫

K
ϕ dµ : K ⊆ B,K ∈K

}
= sup

{∫
K

ϕ dµK : K ⊆ B,K ∈K

}
=
∫

X
ϕ d(µχB) =

∫
B

ϕ dµ,

for each Borel subset B. This proves the lemma.
The following lemma is an easy application of Lemma 2.1.

Lemma 2.2. Let X be a Hausdorff space, ϕ : X → (0,∞) be a Borel measurable function,
and µ be a positive Borel measure. Then

(i) (µϕ)ϕ−1 = (µϕ−1)ϕ = µ .
(ii) If ϕ−1 is bounded on the compact subsets and µϕ ∈M+(X), then µ ∈M+(X).

Let X be a Hausdorff space, and let ω : X −→ (0,∞) be a weight function on X . Let
M+

b (X ,ω) be the set of all positive Radon measures µ on X such that µω ∈M+
b (X). Define

the equivalence relation ‘∼’ on M+
b (X ,ω)×M+

b (X ,ω) by

(µ,ν)∼ (µ
′,ν ′) if and only if µ +ν

′ = µ
′+ν .

Let [µ,ν ] be the equivalence class of (µ,ν) ∈M+
b (X ,ω)×M+

b (X ,ω). Now we define

Mb(X ,ω) =
{
[µ,ν ] : µ,ν ∈M+

b (X ,ω)
}

.
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Then Mb(X ,ω) with the operations defined by

[µ,ν ]+ [µ ′,ν ′] = [µ + µ
′,ν +ν

′]

and

λ [µ,ν ] =

{
[λ µ,λν ] if λ ≥ 0,

[λν ,λ µ] otherwise,

for [µ,ν ], [µ ′,ν ′] ∈M(X) and λ ∈ R, the norm ‖.‖ω defined by

‖[µ,ν ]‖ω = ‖µω−νω‖,
for [µ,ν ] ∈Mb(X ,ω), is a real normed space. Recall that ‖.‖ denotes the usual norm of a
bounded Radon measure.

The following proposition states the elementary properties of M+
b (X ,ω).

Proposition 2.1. Let X be a Hausdorff space, and let ω : X −→ (0,∞) be a weight function
on X. Then

(i) For each η ∈Mb(X ,ω) there exist unique measures η+,η− ∈M+
b (X ,ω) such that

η = [η+,η−] and η+ ⊥ η−.
(ii) (Mb(X ,ω),‖.‖ω) is a Banach space.

Proof. To prove (i), let η = [µ,ν ] for some µ,ν ∈ M+
b (X ,ω). Then θ := µω − νω ∈

Mb(X). By the Hahn decomposition theorem, there exist unique measures θ+,θ− ∈M+
b (X)

such that θ = θ+− θ− and θ+ ⊥ θ−. Now set η+ = θ+ω−1 and η− = θ−ω−1. Thus
µ +η− = ν +η+, and so η = [η+,η−].

(ii) That (Mb(X ,ω),‖.‖ω) is a normed space is straightforward. Now, we prove that
(Mb(X ,ω),‖.‖ω) is complete. To prove this, let (ηn)n be a Cauchy sequence in Mb(X ,ω)
and note that ‖ηn‖ω = ‖(µnω−νnω)+‖+‖(µnω−νnω)−‖. Then, it is clear that (µnω−
νnω)n is a Cauchy sequence in Mb(X), and so converges to, say θ , in Mb(X). Put η1 =
θ+ω−1, η2 = θ−ω−1 and η = [η1,η2]. Then ηn→ η ; this follows from the fact that

‖ηn−η‖ω = ‖(η+
n ω−η2ω)− (µnω−η1ω)−‖ ≤ ‖η+

n ω−θ
+‖+‖η−n ω−θ

−‖.
For η ∈Mb(X ,ω), by the standard representation of η we mean the expression [η+,η−]

stated in Proposition 2.1.

3. The dual space of Cb(X ,ω) with β (X ,ω) topology

We call a function ϕ : X −→ [0,∞) an ω-hood, if ωϕ is a bounded Borel measurable func-
tion such that for each ε > 0 there exists a compact subset K ⊆ X such that ϕ(x) < εω−1(x)
for all x ∈ X \K. The set of all ω-hoods on X is denoted by Hd(X ,ω). Then, ω-strict
topology β (X ,ω) on Cb(X ,ω) is the locally convex topology generated by the seminorms
{Pϕ : ϕ ∈ Hd(X ,ω)}, where

Pϕ(g) = sup{ϕ(x)|g(x)| : x ∈ X}
for g∈Cb(X ,ω). In the case ω = 1, β (X ,ω) coincides with the strict topology on Cb(X) de-
fined in [5] and [6]. Note that β (X ,ω) topology is weaker than ‖.‖ω topology on Cb(X ,ω).
So, (Cb(X ,ω),β (X ,ω))∗ by the norm

‖F‖= sup{|F(g)| : g ∈Cb(X ,ω), ||g||ω ≤ 1},
is a normed space. The following result is a generalization of [7, Theorem 4.6] to the more
general setting of the weighted space of functions.
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Proposition 3.1. Let X be a C-distinguished space, and let ω : X −→ (0,∞) be a weight
function on X. Then the map η 7→ Iη+ − Iη− from Mb(X ,ω) onto (Cb(X ,ω),β (X ,ω))∗ is
an isometric isomorphism, where η = [η+,η−] is the standard representation of η and

Iµ( f ) =
∫

X
f dµ

for f ∈Cb(X ,ω) and µ ∈M+
b (X ,ω).

Proof. Define Tω : (Cb(X),β )∗→ (Cb(X ,ω),β (X ,ω))∗ by Tω(g) = gω , where (gω)(ϕ) =
g(ωϕ) for all ϕ ∈Cb(X). It is easy to see that Tω is a well-defined linear isometric isomor-
phism. Also, the map η 7→ η+ω−η−ω is a linear isometric isomorphism from Mb(X ,ω)
onto Mb(X), where η = [η+,η−] ∈Mb(X ,ω). Now we only need to recall from [7, Theo-
rem 4.6] that (Cb(X),β (X ,1))∗ is isometrically isomorphism to Mb(X).

The following example shows that the elements of (Cb(X ,ω),β (X ,ω))∗ cannot, in gen-
eral, be represented by a signed measure on X .

Example 3.1. Let m be the Lebesgue measure on R, and let µ = mχ[0,∞), ν = mχ(−∞,0) and
η = [µ,ν ]. Also, let ω : R→ (0,∞) be defined by

ω(x) =

{
1 if x ∈ [−1,1]
1/x2 otherwise.

Define I( f ) =
∫
R f dµ−

∫
R f dν for all f ∈Cb(R,ω). Then η ∈Mb(R,ω) and I ∈ (Cb(R,ω),

β (R,ω))∗, but there is no signed measure ζ on R such that I( f ) =
∫
R f dζ for all f ∈

Cb(R,ω).

4. The dual space of C̃b(X ,ω) with β̃ (X ,ω) topology

In this section we define locally convex topology β̃ (X ,ω) on the space C̃b(X ,ω) and deter-
mine its dual space. Let X be a Hausdorff space and ω be a weight function on X . Recall that
C̃b(X ,ω) is the set of all real-valued continuous functions f on X such that f /ω is bounded
and ‖ f‖ω = ‖ f /ω‖ for f ∈ C̃b(X ,ω). The set of all positive functions in C̃b(X ,ω) is de-
noted by C̃+

b (X ,ω). We use the usual notation f ∧g = min{ f ,g} for real-valued functions
f and g. We start with the following lemma which will be needed in the sequel.

Lemma 4.1. Let either X be completely regular and ω be lower semi-continuous, or X be
locally compact and ω−1 be bounded on each compact subset of X. Then the following
hold:

(i) If x 6= y, then there is a function f ∈ C̃+
b (X ,ω) such that f (x) = 0 and f (y) = 1.

(ii) For each compact subset K, there is a g ∈ C̃+
b (X ,ω) such that g≥ χK .

Proof. (i) Suppose first that ω is lower semi-continuous, so it is clear that ω = sup{ f ∈
C+

b (X) : f ≤ ω}. Thus, there is an f0 ∈ C+
b (X) such that f0(y) > 0 and f0/ω ≤ 1. Also

there is k ∈ C+
b (X) such that k(x) = 0 and k(y) = 1. Put f = k∧ 1/( f0(y)) f0, whence f

satisfies (i).
Next assume that X is locally compact and ω−1 is locally bounded, then Cc(X)⊆ C̃+

b (X ,
ω), where Cc(X) denotes the space of all real-valued continuous functions with compact
support. In this case there is an f0 ∈Cc(X) such that f0(y) = 0 and f0/ω ≤ 1. This completes
the proof of (i).
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(ii) Let y∈K, then there is fy ∈ C̃+
b (X ,ω) such that fy(y)> ω(y)/2. If gy := 2/( fy(y)) fy ∈

C̃+
b (X ,ω) and Uy := {x ∈ X : gy(x) > 1}, then K ⊆

⋃n
i=1 Uyi , say, for some yi ∈ X . Put

g := ∑
n
i=1 gyi , so clearly g satisfies (ii).

The locally convex topology on C̃b(X ,ω) generated by the seminorms Pϕ , where

Pϕ(g) = {ϕ(x)|g(x)| : x ∈ X }

and ϕ ∈ Hd(X ,ω), is denoted by β̃ (X ,ω). The following result shows that any positive
β̃ (X ,ω)-continuous functional on C̃b(X ,ω) can be represented by a locally bounded Radon
measure.

Proposition 4.1. Let either X be completely regular and ω be lower semi-continuous, or
X be locally compact and ω−1 be bounded on each compact subset of X. Furthermore,
suppose that I ∈ (C̃b(X ,ω), β̃ (X ,ω))∗ be a positive functional. Then there exists a unique
measure µ ∈ M+(X) such that I(g) =

∫
X gdµ for g ∈ C̃+

b (X ,ω). Moreover, µ is locally
bounded and

µ(K) = inf
{

I(g) : g ∈ C̃b(X ,ω), g≥ χK

}
for all compact subsets K.

Proof. Let I be a positive functional in (C̃b(X ,ω), β̃ (X ,ω))∗. Then, by [11, Theorem 3],
we only required to show that the following conditions satisfy:

(i) I(g) = sup{I(g∧n) : n ∈ N} for all g ∈ C̃b(X ,ω).
(ii) If (Kα)α is a decreasing net of compact subsets such that ∩α Kα = /0, then

inf{I(h) : h ∈ C̃b(X ,ω), h≥ χKα
forsomeα}= 0.

(iii) The family K (X) exhausts I.

To prove (i), first note that if (hα)α is a decreasing net in C̃+
b (X ,ω) such that converges

pointwise to zero with ‖hα‖ < M, for some positive number M, then I(hα)→ 0. This
is because that given ε > 0 and ϕ ∈ Hd(X ,ω), we can choose compact subset K so that
|(ϕω)(x)|< ε/M for all x ∈ X \K. By the Dini theorem hα → 0 uniformly on compact set
K. Thus there is α0 such that

‖hα‖ ≤
ε

‖ϕω‖‖ω−1‖K

for α ≥ α0, and hence ‖ϕhα‖ ≤ ε for α ≥ α0. It follows that hα → 0 in the β̃ (X ,ω)
topology. Using the fact that I is β̃ (X ,ω)-continuous, we conclude that I(hα)→ 0. Now,
for any g ∈ C̃+

b (X ,ω), note that the decreasing sequence (g− g∧ n)n converges pointwise
to zero and ‖g−g∧n‖ω ≤ ‖g‖ω . Thus I(g−g∧n)→ 0, and we find that

I(g) = sup
n∈N

I(g∧n).

For proving (ii) it is only need to observe that for any decreasing net (Kα)α of compact
subsets with ∩α Kα = /0, there is α0 such that Kα0 = /0.

Finally, we show that (iii) holds. Let I ∈ (C̃b(X ,ω), β̃ (X ,ω))∗. The continuity of I
implies that there is ϕ ∈ Hd(X ,ω) such that |I(g)| ≤Pϕ(g) for all g ∈ C̃b(X ,ω). Given
ε > 0 and f ∈ C̃+

b (X ,ω). Then there is K ∈K such that

(ϕω)(x) < ε/(|| f ||ω +1)
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for x ∈ X \K. Suppose that g ∈ C̃+
b (X ,ω) with g ≤ f and g = 0 on compact set K. We

obtain

|I(g)| ≤ sup{ϕ(x)|g(x)| : x ∈ X \K}= sup
{
(ϕω)(x)|(gω

−1)(x)| : x ∈ X \K
}

≤ ε/(|| f ||ω +1)sup
{
| g
ω

(x)| : x ∈ X \K
}
≤ ε.

This shows that K exhausts I. Now the assertions of the proposition easily follow.

Proposition 4.2. Let X be a C-distinguished space, and let ω be a weight function on X.
Then a subset of C̃b(X ,ω) is ‖.‖ω -bounded if and only if it is β̃ (X ,ω)-bounded.

Proof. Let B be a β̃ (X ,ω)-bounded set in C̃b(X ,ω), and suppose that B is not ‖.‖ω -bounded.
Then there is a sequence (gn)⊆ B such that ‖gn‖ω > n for all n≥ 1. For each n≥ 1, choose
xn in X such that g(xn)≥ nω(xn). Let

ϕ =
∞

∑
n=1

√
n

gn(xn)
χxn

and note that ϕ ∈ Hd(X ,ω). Since B is β̃ (X ,ω)-bounded, there is a constant s > 0 such
that B⊆ s {g : Pϕ(g) < 1}. We therefore have

√
n≤ ‖ϕ gn‖<

1
s

which is a contradiction. The converse is clear.
Let us recall that the strong topology on (C̃b(X ,ω), β̃ (X ,ω))∗ is the topology of uni-

form convergence on the bounded subsets of C̃b(X ,ω) with respect to the weak topol-
ogy σ(C̃b(X ,ω),(C̃b(X ,ω), β̃ (X ,ω))∗). By the norm topology on (C̃b(X ,ω), β̃ (X ,ω))∗

we mean the topology given on (C̃b(X ,ω), β̃ (X ,ω))∗ by the norm

‖F‖= sup{|F(g)| : g ∈Cb(X ,ω), ||g||ω ≤ 1} .

As an immediate consequence of Proposition 4.2 we obtain the following result.

Corollary 4.1. Let X be a C-distinguished space, and let ω be a weight function on X. Then
the strong topology and the norm topology are equivalent on (C̃b(X ,ω), β̃ (X ,ω))∗.

We need the following lemma to prove our main result.

Lemma 4.2. Let X be a completely regular space, and let ω : X → (0,∞) be a lower semi-
continuous function on X. For any η = [η+,η−] ∈ Mb(X ,ω) the functional Φ defined as
Φ(η)(g) =

∫
X gdη+−

∫
X gdη−, is β̃ (X ,ω)-continuous on C̃b(X ,ω) and ‖Φ‖= ‖η‖ω

Proof. Let us first show that the linear map Φ : Mb(X ,ω)→ (C̃b(X ,ω), β̃ (X ,ω))∗ is well-
defined. For this end, suppose that µ ∈ M+(X ,ω) be arbitrary. Then µω ∈ M+

b (X), so
that there is an increasing sequence (Kn)n of compact subsets such that µω(X) = µω(K0),
where K0 =

⋃
∞
n=1 Kn and µω(Kn+1 \Kn) < 2−n for each natural number n. Put φ0 :=

∑
∞
n=1 2−nχKn+1\Kn . Then∫

X
ϕ
−1
0 d(µω) =

∞

∑
n=1

2−n(µω)(Kn+1 \Kn) <
∞

∑
n=1

2−n = 1.
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Setting φ := φ0ω−1, then ϕ ∈ Hd(X ,ω) and , for each g ∈ C̃b(X ,ω), we obtain∫
X

gdµ =
∫

K0

g
ω

d(µω) =
∫

K0

(gϕ)ϕ−1
0 d(µω)≤Pϕ(g)

∫
X

ϕ
−1
0 d(µω)≤Pϕ(g).

From the above, we deduce that Iµ is in (C̃b(X ,ω), β̃ (X ,ω))∗, which means Φ is well-
defined.

It remains to show that Φ is isometry. Let us first assume that µ be a positive measure in
Mb(X ,ω). On the one hand, we have

‖µ‖ω =
∫

X
ω dµ = sup

{∫
X

f dµ : f ≤ ω, f ∈C+
b (X)

}
≤ sup

{
|
∫

X
gdµ| : ‖g‖ω ≤ 1,g ∈ C̃b(X ,ω)

}
= ‖Iµ‖.

On the other hand, for all g ∈ C̃b(X ,ω),

|Iµ(g)|=
∣∣∣∣∫X

gdµ

∣∣∣∣≤ ‖g‖ω‖µ‖ω ,

and therefore, ‖Iµ‖≤ ‖µ‖ω . Thus we find ‖Iµ‖= ‖µ‖ω . Now suppose that η = [η+,η−]∈
Mb(X ,ω) and noting that Iη+ ∧ Iη− = 0. Thus

‖Iη+ − Iη−‖= ‖Iη+‖+‖Iη−‖= ‖η+‖ω +‖η−‖ω = ‖η‖ω ,

which completes the proof.

In the sequel we need the following lemma. For a convenient account of locally convex
vector lattices, see [1].

Lemma 4.3. Let V be a locally convex topological vector lattice of the real-valued functions
on X. Then for any I ∈ V ∗ there exist unique positive functionals I+, I− ∈ V ∗ such that
I = I+− I− and I+∧ I− = 0.

Proof. By hypothesis there is a family of seminorms {Pα : α ∈ Λ} that generates the
topology on V such that if | f | ≤ |g|, for f ,g ∈ V , then Pα( f ) ≤Pα(g) for all α ∈ Λ;
see [2, Theorem 6.1]. Also, by [15, Section 3.1], there exist αi, 1≤ i≤ n, and λ ∈R+ such
that

|I(g)| ≤ λ sup{Pαi(g) : 1≤ i≤ n}
for g ∈V . Thus for each positive function f ∈V the set {|I(g)| : g ∈V, |g| ≤ f} is bounded
in R. Now, by applying [13, Corollary 2.4.2], the result is immediate.

We are now ready to prove the main theorem of this section.

Theorem 4.1. Let X be a completely regular space, and let ω : X→ (0,∞) be a lower semi-
continuous function on X. Then the map Φ : Mb(X ,ω)→ (C̃b(X ,ω), β̃ (X ,ω))∗, defined as
Φ(η) = Iη+ − Iη− , is an isometric isomorphism, where

Iµ(g) =
∫

X
gdµ

for g ∈ C̃b(X ,ω) and µ ∈M+(X).
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Proof. In view of Lemma 4.2, we only required to show that Φ is bijective. To verify-
ing that Φ is surjective, suppose that I ∈ (C̃b(X ,ω), β̃ (X ,ω))∗ be an arbitrary element.
By Lemma 4.3, we can write I = I+ − I−, where I+ and I− are positive functionals in
(C̃b(X ,ω), β̃ (X ,ω))∗ such that I+∧ I− = 0. Also Theorem 4.1 implies that for some mea-
sures µ1,µ2 ∈M+(X),

Iµ1(g) =
∫

X
gdµ1, Iµ2(g) =

∫
X

gdµ2

for g ∈ C̃b(X ,ω). Recalling that I+ and I− are β̃ (X ,ω)-continuous, we can find ϕ1,ϕ2 ∈
Hd(X ,ω) such that

|Iµ1(g)| ≤Pϕ1(g), |Iµ2(g)| ≤Pϕ2(g)

for g ∈ C̃b(X ,ω). Using the lower semi-continuity of ω , it can be verified that ω = sup{ f :
f ∈C+

b (X), f ≤ ω}, and thus we obtain, for i = 1,2,

‖µi‖ω = sup
{
〈µi, f 〉 : f ≤ ω, f ∈C+

b (X)
}
≤ sup

{
Pϕi( f ) : f ≤ ω, f ∈C+

b (X)
}

≤ ‖ϕiω‖< ∞,

where we write 〈µ, f 〉 for
∫

X f dµ . Thus µi ∈M+
b (X ,ω) for i = 1,2. Now set η := ((µ1ω−

µ2ω)+ω−1,(µ1ω − µ2ω)−ω−1) ∈ Mb(X ,ω) and note that η+ = (µ1ω − µ2ω)+ω−1 and
η− = (µ1ω−µ2ω)−ω−1. Hence

I(g) = I+(g)− I−(g) = 〈µ1,g〉−〈µ2,g〉

= 〈(µ1ω−µ2ω)+ω
−1,g〉−〈(µ1ω−µ2ω)−ω

−1,g〉
= Iη+(g)− Iη−(g)

for g ∈ C̃b(X ,ω), which means that Φ is surjective.
Next we are going to prove that Φ is injective. Suppose, towards a contradiction, that

[µ,ν ], [µ ′,ν ′] ∈Mb(X ,ω) be such that

Iµ − Iν = Iµ ′ − Iν ′ .

Then
〈µ +ν

′,g〉= 〈µ ′+ν ,g〉

for all g ∈ C̃b(X ,ω). Now let U be an open subset in X . Since the function ωχU is lower
semi-continuous, so ωχU = sup{ f : f ∈C+

b (X), f ≤ωχU}. This together with [4, Theorem
1.5] imply that 〈

µ +ν
′,ωχU

〉
= sup

{
〈µ +ν

′, f 〉 : f ∈C+
b (X), f ≤ ωχU

}
= sup

{
〈µ ′+ν , f 〉 : f ∈C+

b (X), f ≤ ωχU
}

=
〈
µ
′+ν ,ωχU

〉
.

Thus (µω + ν ′ω)(U) = (µ ′ω + νω)(U), and thanks to the inner regularity, we find that
µω +ν ′ω = µ ′ω +νω . Invoking Lemma 2.2, we conclude that

µ +ν
′ = ((µ +ν

′)ω)ω−1 = ((µ
′+ν)ω)ω−1 = µ

′+ν .

That is [µ,ν ] = [µ ′,ν ′]. This completes the proof.
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Let us remark that Theorem 4.1 states that the Banach space Mb(X ,ω) can be viewed as
the dual of certain subspaces of continuous functions when X is completely regular and ω

is lower semi-continuous on X .
We conclude this work with the following example which shows that the conclusion of

Theorem 4.1 does not hold in general.

Example 4.1. For each n∈N, let Xn := [2n+1/2,2n+3/2]. Put X =
⋃

∞
n=1 Xn, and let λ be

the Lebesgue measure on R and µn = (1/n)λ on Xn. Also let An = Q∩Xn, where Q is the
set of all rational numbers, and, for n ∈ N, ωn(x) = 1/n if x ∈ An and ωn(x) = 1 otherwise.
Furthermore, define ω(x) = ωn(x) for x ∈ Xn, and ν = ∑

∞
n=1 µn. Define G to be open in X

if and only if G∩Xn is open in Xn for each n ∈ N. Then X is a locally compact Hausdorff
space such that ω and ω−1 are locally bounded Borel measurable functions on X . Define
I(g) =

∫
X gdν , it is easily verified that I(g)≤ ||g||ω(∑∞

n=1 1/n2) < ∞ for g ∈ C̃b(X ,ω) and
also I ∈ (C̃b(X ,ω), β̃ (X ,ω))∗. But, note that

∫
X ωdν = ∑

∞
n=1 1/n = ∞, which shows that

ν /∈Mb(X ,ω).
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