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On a Conjecture Concerning Some Nonlinear Difference Equations
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Abstract. In this paper, we mainly study non-existence of infinite order entire solutions of
the nonlinear difference equation of the form

f@)"+4q(z)f(z+1) = csinbz,

where n(> 2) is an integer, ¢(z) is a non-constant polynomial, which concerns a conjecture
raised by Yang and Laine.
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1. Introduction

A function f(z) is called meromorphic if it is analytic in the complex plane C except isolated
poles. In what follows, we assume that the reader is familiar with the standard notations
and results of Nevanlinna’s value distribution theory as the proximity function m(r, f), the
integrated counting function N(r, f), the characteristic function 7'(r, f), see e.g. [12, 14, 16,
23]. Partial latest results concerning meromorphic functions are obtained in [2,7,8, 15, 18—
20]. We also use notations o(f), i(f), A(f) for the order, the lower order, the exponent of
convergence of zeros of meromorphic function f, respectively.

Recently, meromorphic solutions to difference equations in the complex plane have been
investigated in several papers, see e.g. [1,4-6,9-11,13,17,21]. The background for these
studies is in the difference variant of the Nevanlinna theory, initiated by Halburd and Ko-
rhonen in [9]. Here they proved a difference analogue to the logarithmic derivative lemma,
see [9, Theorem 2.1 and Corollary 2.2]. Independently, Chiang and Feng obtained similar
results in [6], including, in addition, pointwise estimates for f(z+1)/f(z), see [6, Corol-
lary 2.5 and Theorem 8.2]. Later on, Halburd, Korhonen and Tohge proposed a difference
analogue to the logarithmic derivative lemma for meromorphic functions of hyper-order less
than one:
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Theorem 1.1. [11, Theorem 5.1] Let f(z) be a non-constant meromorphic function and
c € C. If f is of finite order, then

n(H5?) =0 ()

for all r outside of a set satisfying

dt/t
limeup ELA A
r—so0 logr
i.e., outside of a set E of zero logarithmic density. If 0»(f) = 02 < 1 and € > 0, then

() o)

Sor all r outside of a set of finite logarithmic measure, where 0, (f) denotes the hyper-order
of f(2), defined as

)

loglogT
0, (f) =limsup 0808 \h]) (r,f)_
oo logr
In what follows, we also make use of the notion of lower hyper-order, defined as
.. loglogT(r, f)
=1 f——=—-7
Ha2(f) = liminf —— = or

For a more complete presentation of the difference Nevanlinna theory, including a dif-
ference variant of the second main theorem, see [10].

As to the applications of difference Nevanlinna theory to difference equations in the
complex plane, we recall [21], and in particular the following two theorems therein:

Theorem 1.2. A nonlinear difference equation
(L.1) f(2)* +q(2)f(z+1) = csinbz,

where q(z) is a non-constant polynomial and b, ¢ € C are nonzero constants, does not
admit entire solutions of finite order. If q(z) = q is a constant, then Equation (1.1) possesses
three distinct entire solutions of finite order, provided b = 3nm and ¢° = (—1)m+! 24—702 fora
nonzero integer n.

Theorem 1.3. Let n > 4 be an integer, Q(z, f) be a linear differential difference polynomial
of f, not vanishing identically, and h be a meromorphic function of finite order. Then the
differential difference equation

(1.2) F@)"+0(z,f) =h(z)
possesses at most one admissible transcendental entire solution of finite order such that all

coefficients of Q(z, f) are small functions of f. If such a solution f exists, then f is of the
same order as h.

In [21], Yang and Laine also posed the following conjecture:

Conjecture 1.1. There exists no entire function of infinite order that satisfies the difference
equation of the type

(1.3) f"(2) +q(2) f(z+1) = csinbz,
where q(z) is a non-constant polynomial, b, ¢ are nonzero constants and n > 2 is an integer.

In this paper, we mainly study this conjecture and partially answer the question.
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2. Main results
In this paper, we obtain the following theorems.

Theorem 2.1. Consider the nonlinear difference equation of the form
(2.1) M2 +q() f(z+1) =csinbz,

where q(z) is a non-constant polynomial, b, ¢ are nonzero constants and n > 2 is an integer.
Suppose that an entire function f(z) satisfies any one of the following three conditions:

() A(f) <o(f) =0
(i) A2(f) <02(f) 3
(iii) pa(f) < 1.
Then f(z) cannot be a solution of Equation (2.1).
Theorem 2.2. Let a polynomial q(z) not vanishing identically, b, ¢ be nonzero constants

and n > 2 be an integer. If the nonlinear difference Equation (2.1) has an entire solution f
of hyper-order 6>(f) < 1, then o(f) = 1.

Our methods of proofs are different from the methods applied in [21].

3. Proofs of the theorems
We need the following lemmas to prove our main results.

Lemma 3.1. [22] Let fj(z)(j =1, ...,n)(n > 2) be meromorphic functions, gj(z)(j=1,...,n)
be entire functions, and satisfy
@) Z;!Zlfi(z)egj(Z) =0;
(ii) when 1< j <k <n, gj(z)— g(2) is not a constant;
(iii) when 1 < j<n, 1 <h<k<n, T(r,fj) = o(T(r,e$h78)),(r — oo, r € E), where
E C (1,0) is of finite linear measure or finite logarithmic measure.
Thenfi(z) =0(j=1,...,n).
Lemma 3.2. [3,14] Let f be a transcendental entire function of infinite order and o, (f) =
a < oo, Then f can be represented as
f(2) =U(2)e"?,
where U and V are entire functions such that
A(f) =AU) =0(U),A2(f) = 2(U) = 02(U),

Gz(f) = max {GQ(U), Gz(ev)} s
where the notation Ay (f) denotes the hyper exponent of convergence of zeros of entire func-
tion f by

loglogN (r, %)
A2(f) = limsup S pe—
F—00 Ogr

Proof of the Theorem 2.1. (i) Let f be an entire solution to Equation (2.1), and satisfy
A(f) < 6(f) = . Thus, by Lemma 3.2, f(z) can be rewritten as f(z) = Q(z)e%®), where
Q(z) is an entire function, g(z) is a transcendental entire function, such that 6(Q) = A1(Q) =
A(f) < oo. Substituting f(z) = Q(z)e% into (2.1), we obtain that

3.D 0(2)"e"% 4+ ¢(2)0(z+ 1)et“) = ¢sinbz.
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Set H(z) = g(z+ 1) —ng(z). Then
(3.2) 0(2)" +4q(x)Q(z+ 1)e") = ce 6 sinbz.
If H(z) is a polynomial, then
0(0(2)" +4(x)Q(z + 1)) <o,
and
o (ce "8 sinbz) = oo.
This is a contradiction.

If H(z) is a transcendental entire function, then (3.1) can be rewritten as
(3.3) 0(2)"e"% 4+ q(2)0(z+ 1)et“) — ¢ sinbz = 0,
where h(z) = 0. Since Gy(z) = e8EH) 8@ Gy (z) = e8GH)1E) | Gy(z) = "8~ are
infinite order entire functions of regular growth, we see that for j =1,2,3,

T(r,0()") = o{T(r,G))},
(3.4) T(r,—csinbz) = o{T(r,Gj)},
T(rq(x)Q(z+1)) = ofT(r,G))}.
Thus, by Lemma 3.1 and (3.3), we have
(3.5) 0(2)" =0, q(z)Q(z+1) =0, —csinbz =0,

which is a contradiction.

(ii) Suppose that f is an entire solution to Equation (2.1), and satisfies A2(f) < o2(f).
By Lemma 3.2, we may rewrite f(z) as f(z) = Q(z)e#?), where Q(z) is an entire function,
g(z) is a transcendental entire function such that

A2(Q) = 02(Q) = A2(f) < o2(ef) = 0 (g).
Substituting f(z) = Q(z)ef? into (2.1), we get (3.1) and (3.2), where H(z) = g(z+1) —
ng(z).

If 6(H) < o(g), then

3(0(2)" +4(2)Q(z + 1)e"?) < max{c2(Q),6(H)} < 6(g) = o2(ce " sinbz).
This contradicts (3.2).

If 6(H) = o(g), then we can get (3.3). Set Gy(z) = 8D =180) | Gy (z) = 8112
Gs(z) = ¢"8(0~1() Using the same method as in the proof of (i), we see that (3.4) and (3.5)
hold. This is a contradiction.

(iii) Assume that f is an entire solution to Equation (2.1) and (f) < 1. By Equation
(2.1), we conclude that

1f ()" < lq(@)||f (z+1)| +[esinbz].
Set degq = k. Then |g(z)| < **1. Since |esinbz| = |c(e?* — e~ %%) /(2i)| < |c/2| - 2¢P1", we
have
(3.6) £ @) < AM( f(z4 1) + felel
Without loss of generality, we may assume that |c| = |b| = 1, and we assume k+ 1 = P.

By (3.6), we have
M(r, )" < rPM(r+ 1L,f)+e".
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Moreover
nlogM(r, ) <logM(r+1,f)+ Plogr+r,
that is
logM(r+1,f) > nlogM(r, f) — (Plogr+r) > nlogM(r, f) — 2r.
Similarly we have
logM(r+2,f) >nlogM(r+1,f)—2(r+1) > n(nlogM(r, f) —2r) = 2(r+ 1)
= n?logM(r, f) — [2nr +2(r +1)].
By an inductive argument, we get

logM(r+s, f) > n'logM(r, f) —Z[n“'flr—&—n“'*z(r—&— +---

(3.7)
+n(r+s=2)+(r+s—1)].
Set
Hy(r) =2[""r+n 2 (r+ 1)+ +n(r+s=2)+ (r+s—1)].
Thus
Hy(r) =2[""r+n 2 (r+ 1) 4+ +n(r+5=2)+ (r+s—1)]
el [ e R
n ns—1
Set
i o r+s—1
I=Ya=Y —=—
s=1 s=1
Since .
r—s
T r+s 71<1
L R L e L L s LR D

ns—1
we see that the series / is convergent.
Suppose that the series I converges to the number J. So that, we obtain

) ' ' 2
logM (r+s,f) > n’logM(r, f) —2n* "' J = n* [logM(r,f) — nJ} )
Thus, we have

2
loglogM(r+s, f) > slogn+log {logM(r,f) — J}
n

3.8) =slogn |1+

log(logM(r, f) — 2J)
slogn '

From (3.8), we have

_2
logs +1loglogn +log [1 + W]

logloglogM(r+s, f) <
log(r+s) - log(r+s)
When s — oo, we have

(3.9)

1 1
liminf ——2%  _ Jiminf ——2° __ —
s—eo log(r+s)  s—e logs(1+1%)
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When r takes all values on [rg, 79+ 1] and s takes all values on {1,2, ...}, we see that r+ s gets
all values on [rg,0). Hence by (3.9), we get t>(f) > 1. This contradicts our assumption. 1

Proof of Theorem 2.2. Suppose that f is an entire solution to Equation (2.1), and satisfies
hyper-order 6,(f) = 0» < 1. By Theorem 1.1, we may choose € such that € < 1 — 03, so

T(r,f)/r'=%7¢ <T(r.f), hence we have m (r,(f(z+n))/(f(z))) = o(T(r.f)). By (2.1),

we have

aoy_ o fztl)
(3.10) f(z) = Q(Z)if(z)

From (3.10) and Theorem 1.1, we conclude that

nT (r, f(2)) = nm(r, f(2)) = m(r, f"(z))
3.11) <m(r,—q(z))+m (r, JC(;{;”) +m(r, f(2)) +m(r,csinbz)

< o(T (1)) + T, £(2)) + m(r.csinbz).

f(z) +csinbz.

Hence
(3.12) (n—1T(r,f) <o(T(r,f)) +m(r,csinbz).

From (3.12), we immediately conclude that f has to be of finite order, and 6 (f) < 1.
Now we show that 6(f) = 1. Suppose to the contrary that 6(f) < 1. Then o(f"(z) +
q(2)f(z+1)) < 1 and 6(csinbz) = 1. This is a contradiction by Equation (2.1). 1
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