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Abstract. The paper deals with the global existence and nonexistence for degenerate and
singular parabolic system with nonlinear boundary condition. By using the comparison
principle and constructing the self-similar super-solution and sub-solution, we obtain the
critical global existence curve. The critical curve of Fujita type is conjectured with the aid
of some new results. An interesting feature of our results is that the critical global existence
curve and the critical Fujita curve are determined by a matrix and by the solution of a linear
algebraic system, respectively.
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1. Introduction and main results

In this paper, we investigate the following parabolic equations

(1.1) uit = (|uix|pi(umi
i )x)x, (i = 1,2, ...,k), x > 0, 0 < t < T,

subject to nonlinear boundary conditions

(1.2) −|uix|pi(umi
i )x(0, t) = uqi

i+1(0, t), (i = 1,2, ...,k), uk+1 := u1, 0 < t < T,

with initial data

(1.3) ui(x,0) = ui0(x), (i = 1,2, ...,k), x > 0,

where parameters 0 < mi < 1, −1 < pi < 1−mi,qi > 0,k ≥ 2,(i = 1,2, ...,k) and ui0(i =
1,2, ...,k) are nonnegative continuous functions with compact support in R+. Let the initial
data be appropriately smooth functions and satisfy the compatibility condition.

Nonlinear parabolic equations (1.1) come from the theory of turbulent diffusion (see [3,7]
and references therein) and appear in population dynamics, chemical reactions, heat trans-
fer, and so on. The equations (1.1) include both the porous medium operator (with pi = 0)
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and the gradient-diffusivity the p−Laplacian operator (mi = 1, this case is not under con-
sideration due to the imposed restriction mi < 1), which have been the subject of intensive
study (see [3, 4, 7, 8, 10, 12, 14, 20, 26, 28] and references therein).

The problems on blow-up and global existence conditions, blow-up rates to nonlinear
parabolic equations have been intensively studied (see [2–4, 8, 10, 17, 18, 20, 23–27, 29, 30]
and references therein). In particular, many paper have been devoted to study critical ex-
ponents of (1.1)–(1.3) in the slow diffusion case (see [8, 18, 25, 28, 30]). Recently, many
authors transfer their attention to the fast diffusion case(see [4, 14, 24, 27]), and many im-
portant results about critical exponents have been obtained. The concept of critical Fujita
exponents was proposed by Fujita in the 1960s during discussion of the heat conduction
equation with a nonlinear source (see [6]).

In [7], Galaktionov and Levine studied the following single equation

ut = ∇(|∇u|σ ∇um)+up, x ∈ RN , t > 0,

u(x,0) = u0(x), x ∈ RN ,

where σ > 0, m > 1, p > 1 and u0(x) is a bounded positive continuous function. They
shown that the critical exponent is pc = m+σ +(σ +2)/N.

Recently, Mi, Mu and Chen [14] studied the following problem
ut = (|ux|p(um)x)x, x > 0,0 < t < T,

−|ux|p(um)x(0, t) = uq(0, t), 0 < t < T,

u(x,0) = u0(x), x > 0,

(1.4)

where 0 < m < 1,−1 < p < 1−m,q > 0. They obtained the critical global existence expo-
nent q0 = (2p+m+1)/(p+2) and the critical Fujita exponent qc = 2p+m+1.

There are some works on the blow-up properties for a general semilinear diffusion system
coupled through nonlinear boundary conditions

uit = ∆ui, (i = 1,2, ...,k), (x, t) ∈Ω× (0,+∞),

∂u
∂n

= upi
i+1, (i = 1,2, ...,k), uk+1 := u1,(x, t) ∈ ∂Ω× (0,+∞),

ui(x,0) = ui0(x), x ∈Ω,

where Ω ∈ RN is a bounded domain or Ω = RN
+ (see [15, 16, 22]), or through nonlinear

reaction terms

uit = ∆ui +upi
i+1, (i = 1,2, ...,k), uk+1 := u1, (x, t) ∈Ω× (0,+∞),

where Ω ∈ RN or Ω = RN (see [5, 21] and references therein).
Motivated by the references cited above, in this paper, we focus on system (1.1)–(1.3)

with parameters 0 < mi < 1,−1 < pi < 1−mi,qi > 0(i = 1,2, ...,k) and ui0(i = 1,2, ...,k) are
continuous, nonnegative functions with compact support in R+. We will construct various
kinds of self-similar supersolution and subsolutions to obtain the critical global existence
curve of system (1.1)–(1.3). The critical curve of Fujita type is conjectured with the aid of
some new results. A interesting feature of our results is that the critical global existence
curve and the critical Fujita curve are determined by a matrix and by the solution of a linear
algebraic system, respectively.

We remark the main difference between pi ≥ 0,mi > 1 and our current settings −1 <
pi < 1−mi,0 < mi < 1, we take pi = 0 for example. For the former, Equation (1.1) having
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mi > 1 are the well-known porous medium equations, while for the latter, Equation (1.1)
having 0 < mi < 1 are the so-called fast diffusion equations. The porous medium equations
have finite speed of propagation property, that is, solutions with compactly supported initial
data stay compactly supported, which makes comparison with global supersolutions easier
when one is restricted to compactly supported initial data. However, the solutions of the
fast diffusion equations shall become instantaneously positive everywhere for any nontrivial
nonnegative initial data, and hence we have to take care of the decay of the solutions.

To state our results, we need to introduce some useful symbols. Set

A =



1 − p1+2
2p1+m1+1 q1 0 . . . 0 0

0 1 − p2+2
2p2+m2+1 q2 . . . 0 0

...
...

...
...

...
0 0 0 . . . 1 − pk−1+2

2pk−1+mk−1+1 qk−1

− pk+2
2pk+mk+1 qk 0 0 . . . 0 1


,

and by a series of standard computations, we have detA = 1−∏
k
i=1((pi + 2)/(2pi + mi +

1)qi). We shall see that detA is the critical global existence curve. Next, let (α1,α2, ...,αk−1,
αk)T be the solution of the following linear algebraic system

A(α1,α2, ...,αk−1,αk)T = (−1,−1, ...,−1,−1)T .

Thus a direct computation also shows that αi > 0(i = 1,2, ...,k) if and only if detA < 0. We
further define li = (αi(1− pi−mi)+1)/(pi +2) and αk+1 = α1, then have

(1.5) αi +1 = piαi + pili +miαi +2li, piαi + pili +miαi + li = qiαi+1, (i = 1,2, ...,k).

Our main results in this paper are stated as follows.

Theorem 1.1.
(1) If ∏

k
i=1((pi + 2)/(2pi + mi + 1)qi) ≤ 1 (i.e. detA ≥ 0), then every nonnegative

solution of the system (1.1)-(1.3) is global in time.
(2) If ∏

k
i=1((pi +2)/(2pi +mi +1)qi) > 1 (i.e. detA < 0), then the system (1.1)–(1.3)

has a solution that blows up.

Theorem 1.2. Assume ∏
k
i=1((pi +2)/(2pi +mi +1)qi) > 1 (i.e., detA < 0).

(1) If mini{li−αi}> 0, then there exists a global solution to the system (1.1)–(1.3).
(2) If maxi{li−αi}< 0, then every nonnegative nontrivial solution of the system (1.1)–

(1.3) blows up in finite time.

Remark 1.1. Theorem 1.1 show that the critical global existence curve of (1.1)–(1.3) is
∏

k
i=1((pi + 2)/(2pi + mi + 1)qi) = 1 (i.e. detA = 0), the restriction max{li − αi} < 0

in the Theorem 1.2 (2) is rather technical. It comes from the construction of the so-
called Zel’dovich-Kompaneetz-Barenblatt profile. We believe that the critical Fujita curve
is mini{li −αi}= 0.

Remark 1.2. Unfortunately, we cannot obtain some results concerning some missing cases
for detA < 0, (for instance, the case mini{li −αi} ≤ 0 ≤ maxi{li −αi}). We expect to
answer this question in near future.
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The rest of this paper is organized as follows. Some preliminaries will be given in Section
2. In Section 3, we consider the critical global existence curve and prove Theorem 1.1. The
proof of Theorem 1.2 is shown in Section 4.

2. Preliminaries

Let T be the maximal existence time of a solution (u1,u2, ......,uk), which may be finite or
infinite. If T < ∞, then ‖ u1 ‖∞ + ‖ u2 ‖∞ +...+ ‖ uk ‖∞ becomes unbounded in finite time
and we say that the solution blows up. If T = ∞, we say that the solution is global.

As it is well known that degenerate and singular equations need not possess classical
solutions, we give a precise definition of a weak solution to (1.1)–(1.3).

Definition 2.1. let T > 0,m = (m1,m2, ...,mk),q = (q1,q2, ...,qk),u = (u1,u2, ...,uk),u0 =
(u01,u02, ...,u0k),uq = (uq1

2 ,uq2
3 , ...,uqk−1

k ,uqk
1 ),ω = (ω1,ω1, ...,ωk) QT = (0,+∞)×(0,T ]. A

vector function u(x, t) is called an upper (lower) solution of (1.1)–(1.3) in QT with nonlinear
flux uq if:

1◦ u,∈ L∞(0,T ;W 1,∞(Ω))∩W 1,2(0,T ;L2(QT )),u(x,0)≥ (≤)u0; and,
2◦ for any positive function ω(0,T ;W 1,2(Ω))∩L2(QT ), we have

(2.1)
∫ ∫

QT

(
utω−|

∂u
∂x
|p ∂um

∂x
∂ω

∂x

)
dxdt ≥ (≤)

∫ T

0

∫
QT

ωuqdsxdt

u(x, t) is called a weak solution of (1.1)–(1.3) if it is both a weak upper and a lower solution.

Next we give a preliminary proposition.

Proposition 2.1. Assume that u0 = (u01,u02, ...,u0k) is positive C1 functions and u = (u1,u2,
...,uk) is any weak solution of (1.1)-(1.3). Also assume that u = (u1,u2, ...,uk) ≥ δ0 =
(δ0,δ0, ...,δ0) > 0 and u = (u1,u2, ...,uk) are a lower and an upper solution of (1.1)-(1.3) in
QT , respectively, with nonlinear boundary flux λuq = λ (uq1

2 ,uq2
3 , ...,uqk−1

k ,uqk
1 ) and λuq =

λ (uq1
2 ,uq2

3 , ...,uqk−1
k ,uqk

1 ), where 0 < λ < 1 < λ . Then we have u≥ u≥ u in QT .

Proof. For small σ , letting ψσ = min{1,max{z/σ ,0}},z ∈ R, and setting ω1 = ψσ (u1−
u1), according to the definition of upper and lower solutions, we have∫ ∫

QT

(
(u1−u1)tψσ (u1−u1)−

(∣∣∣∣∂u
∂x

∣∣∣∣p1 ∂um1

∂x
−
∣∣∣∣∂u
∂x

∣∣∣∣p1 ∂um1

∂x

)
∂ (ψσ (u1−u1))

∂x

)
dxdt

≤
∫ T

0

∫
QT

ψσ (u1−u1)(λuq1
2 −uq1

2 )dsxdt.(2.2)

Define

(2.3) χ(x) =

{
1, x≥ 0,

0, x < 0,

As in [1],by letting σ → 0 we get∫ ∫
Qτ

((u1−u1)t χ(u1−u1)≤
∫

τ

0

∫
Qτ

χ(u1−u1)
(
λuq1

2 −uq1
2

)
dsxdt,(2.4)

that is, ∫ ∫
Qτ

((u1−u1)+|t=τ ≤
∫

τ

0

∫
Qτ

(
λuq1

2 −uq1
2

)
+ dsxdt,(2.5)
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where W+ = max{W,0}. Similarly, we have∫ ∫
Qτ

((ui−ui)+|t=T ≤
∫

τ

0

∫
Qτ

(
λuqi

i+1−uqi
i+1

)
+ dsxdt, i = 2, ...,k, uk+1 = u1.(2.6)

Since λ < 1,u ≥ δ0 > 0 and u(x,0) ≤ u0(x), it follows from the continuity of u and u that
there exists a τ > 0 sufficiently small such that λup ≤ up for (x, t)∈Qτ It follows from (2.5)
and (2.6) that u≥ u in Qτ .

Denote τ∗ = sup{τ ∈ [0,T ] : u(x, t)≤ u(x, t) f or all (x, t) ∈ Qτ}. We claim that τ∗ = t.
Otherwise, from the continuity of u,u there exists ε > 0 such that u ≤ u in Qτ∗+ε which
contradicts the definition of τ∗, Hence u≤ u for al (x, t) ∈ QT .

Obviously, δ = mini=1,2,...,k{min(0,+∞) ui0} > 0 is a lower solution of (1.1)-(1.3) in QT .
Therefore, u≥ δ > 0 in QT . Using this fact, as in the above proof we can prove that u≥ u
in QT .

3. Critical global existence curve

In this section, we characterize when the solutions to the problem (1.1)–(1.3) are global
in time for any initial data or they may blow up for large initial values. The basic idea of
the proof is to compare from above with global in time supersolutions or from below with
blowing up subsolutions.

Proof of Theorem 1.1
(1). In order to prove that the solution (u1,u2, ...,uk) of (1.1)–(1.3) is global, we look for a
globally defined in time supersolution of the self-similar form

ui(x, t) = eχ2i−1t(M + e−Lixeχ2it )
1

mi , (i = 1,2, ...,k), x≥ 0, t ≥ 0,

where M = maxi∈{1,2,...,k} {‖ u0i ‖mi
∞ +1,(1− pi−mi)/((pi +2)mie)}, Li are to be chosen.

Obviously, we have ui(x,0) ≥ u0i(x) (i = 1,2, ...,k), for x ≥ 0. Since −ye−y ≥ −e−1 for
y > 0, after a direct computation, we obtain

uit = χ2i−1eχ2i−1t
(

M + e−Lixeχ2it
) 1

mi − χ2i

mi
Lixeχ2ite−Lixeχ2it

(
M + e−Lixeχ2it

) 1
mi
−1

eχ2i−1t

≥ χ2i−1eχ2i−1t
(

M + e−Lixeχ2it
) 1

mi − χ2i

mi
e−1
(

M + e−Lixeχ2it
) 1

mi
−1

eχ2i−1t

≥
(

χ2i−1−
χ2i

miMe

)
M

1
mi eχ2i−1t = χ2i−1

(
1− 1− pi−mi

(pi +2)miMe

)
M

1
mi eχ2i−1t ,

(|uix|pi(umi
i )x =−

Lpi+1
i

mpi
i

epi(χ2i−1+χ2i)t+(miχ2i−1+χ2i)te−(Lix+piLix)eχ2it
(

M + e−Lixeχ2it
)pi( 1

mi
−1)

,

(|uix|pi(umi
i )x)x ≤ (pi +1)

Lpi+2
i

mpi
i

epi(χ2i−1+χ2i)t+(miχ2i−1+2χ2i)tMpi( 1
mi
−1)

in R+×R+, i = 1,2, ...,k. On the other hand, on the boundary we have

−|uix|pi(um
i )x(0, t) =

Lpi+1
i

mpi
i

epi(χ2i−1+χ2i)t+(miχ2i−1+χ2i)t(M +1)pi( 1
mi
−1)

,

uqi
i+1(0, t) = eqiχ2i+1t(M +1)

qi
mi+1 ,uk+1 = u1,χ2k+1 = χ1, (i = 1,2, ...,k).
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Therefore, we can see that (u1,u2, ...,uk) is a supersolution of problem (1.1)–(1.3) provided
that

χ2i−1

(
1− 1− pi−mi

(pi +2)miMe

)
M

1
mi eχ2i−1t ≥ (pi +1)

Lpi+2
i

mpi
i

epi(χ2i−1+χ2i)t+(miχ2i−1+2χ2i)tMpi( 1
mi
−1)

,

and
Lpi+1

i

mpi
i

epi(χ2i−1+χ2i)t+(miχ2i−1+χ2i)t(M +1)pi( 1
mi
−1) ≥ eqiχ2i+1t(M +1)

qi
mi+1 ,

where χ2k+1 := χ1,mk+1 := m1. In order to verify the above inequalities, we only need
impose

χ2i−1 ≥ pi(χ2i−1 + χ2i)+miχ2i−1 +2χ2i, (i = 1,2, ...,k),(3.1)

pi(χ2i−1 + χ2i)+miχ2i−1 + χ2i ≥ qiχ2i+1, (i = 1,2, ...,k),(3.2)

and

χ2i−1

(
1− 1− pi−mi

(pi +2)miMe

)
M

1
mi ≥ (pi +1)

Lpi+2
i

mpi
i

Mpi( 1
mi
−1)

, (i = 1,2, ...,k),(3.3)

Lpi+1
i

mpi
i

(M +1)pi( 1
mi
−1) ≥ (M +1)

qi
mi+1 , (i = 1,2, ...,k).(3.4)

Now we show that such choice in (3.1)–(3.4) is valid. Firstly, by taking

Li = m
pi

pi+1
i (M +1)

qi
(pi+1)mi+1

− pi−mi pi
mi(pi+1) , (i = 1,2, ...,k),

we see that (3.4) holds. Secondly, to obtain (3.1), we take χ2i−1 = pi(χ2i−1 + χ2i) +
mχ2i−1 +2χ2i,(i = 1,2, ...,k), that is

χ2i =
1− pi−mi

pi +2
χ2i−1, (i = 1,2, ...,k).(3.5)

Meanwhile, we must ensure that such choice is suitable for (3.2). To this end, we substitute
(3.5) into (3.2) and then (3.2) becomes

χ2i+1 ≤
2pi +mi +1

qi(pi +2)
χ2i−1, (i = 1,2, ...,k).(3.6)

Therefore, if we further take χ2i+1 = (2pi + mi + 1)/(qi(pi + 2))l2i−1, (i = 1,2, ...,k− 1),
then we only need to show for the case i = k,

χ1 = χ2k+1 ≤
2pk +mk +1

qk(pk +2)
l2k−1 = χ1

k

∏
i=1

2pi +mi +1
qi(pi +2)

.

Clearly, this is true under the assumption ∏
k
i=1(2pi +mi +1)/(qi(pi +2))≥ 1 (i.e., detA≥

0). Finally, we can choose χ1, and then χ2, ...,χk, large enough such that (3.3) holds.
Therefore, we have proved that (u1,u2, ...,uk) is a global supersolution of system (1.1)–

(1.3). Hence the comparison principle gives (u1,u2, ...,uk)≥ (u1,u2, ...,uk) and we conclude
that (u1,u2, ...,uk) is global.

(2). To prove the non-existence of global solutions, we construct a blow-up self-similar
subsolution of the system (1.1)–(1.3). Construct the functions

ui(x, t) = (T − t)−αi fi(ξi), ξi = x(T − t)−li , (i = 1,2, ...,k),(3.7)
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where αi, li(i = 1,2, ...,k),αk+1 = k1, were defined as before, T is a positive constant and
fi ≥ 0(i = 1,2, ...,k), fk+1 = f1, which are to be determined.

After some computations, we have

uit = (T − t)−(αi+1)(αi fi(ξi)+ liξi fi
′(ξi)),

|uix|
pi(umi

i )x = (T − t)−piαi−pili−miαi−li | fi
′|pi( f mi

i )′(ξi),

(|uix|
pi(umi

i )x)x = (T − t)−piαi−pili−miαi−2li(| fi
′|pi( f mi

i )′(ξi))′,

and

|uix|
pi(umi

i )x(0, t) = (T − t)−piαi−pili−miαi−li | fi
′|pi( f mi

i )′(0),

uqi
i+1(0, t) = (T − t)−qiαi+1 f qi

i+1(0),uk+1 = u1, fk+1 = f1.

Notice that

αi +1 = piαi + pili +miαi +2li, piαi + pili +miαi + li = qiαi+1,

Thus, (u1,u2, ...,uk) is subsolution of (1.1)–(1.3) provided that

(| fi
′|pi( f mi

i )′(ξi))′ ≥ αi fi(ξi)+ li f ′i (ξi)ξi,(3.8)

−| fi
′|pi( f mi

i )′(0)≤ fi+1
qi(0).(3.9)

fi(ξ ) = (Ai +Biξi)
− pi+2

1−pi−mi , (i = 1,2, ...,k),(3.10)

where Ai,Bi,(i = 1,2, ...,k) are positive constants to be determined. It is easy to see that

f ′i (ξi) =−Bi
pi +2

1− pi−mi
(Ai +Biξi)

− pi+2
1−pi−mi

−1
,(3.11)

| f ′i |pi( f mi
i )′ =−miB

pi+1
i

(
pi +2

1− pi−mi

)pi+1

(Ai +Biξi)
− 2pi+mi+1

1−pi−mi ,(3.12)

(| f ′i |pi( f mi
i )′)′ = miB

pi+2
i

(
2pi +mi +1
1− pi−mi

)(
pi +2

1− pi−mi

)pi+1

(Ai +Biξi)
− pi+2

1−pi−mi .(3.13)

Substituting (3.10)–(3.13) into (3.8), then inequalities (3.8) are valid provided that

αi(Ai +Biξi)
− pi+2

1−pi−mi − liξiBi
pi +2

1− pi−mi
(Ai +Biξi)

− pi+2
1−pi−mi

−1

−miB
pi+2
i

(
2pi +mi +1
1− pi−mi

)(
pi +2

1− pi−mi

)pi+1

(Ai +Biξi)
− pi+2

1−pi−mi ≤ 0.

By taking Bi to satisfy

Bi ≥

(
αi(2pi +mi +1)
mi(1− pi−mi)

(
1− pi−mi

pi +2

)pi+1
) 1

pi+2

,

noticing that ∏
k
i=1((pi +2)/(2pi +mi +1)qi)< 1(i.e. detA < 0) imply αi > 0 (i = 1,2, ...,k).

Therefore, we have shown that (3.8) is true.
On the other hand, the boundary conditions (3.9) are satisfied if we have

miB
pi+1
i

(
pi +2

1− pi−mi

)pi+1

A
− 2pi+mi+1

1−pi−mi
i ≤ A

− qi(pi+1+2)
1−pi+1−mi+1

i+1 , (i = 1,2, ...,k),(3.14)
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where Ak+1 := A1,mk+1 := m1, pk+1 := p1. In order to prove (3.14), we only need to show
that there exist constants Ai(i = 1,2, ...,k) such that

ρiA
qi(pi+1+2)

1−pi+1−mi+1
i+1 ≤ A

2pi+mi+1
1−pi−mi

i (i = 1,2, ...,k),(3.15)

with ρi = miB
pi+1
i ((pi +2)/(1− pi−mi))

pi+1 , (i = 1,2, ...k). To this purpose, we choose

Ai+1 = ρ
− 1−pi+1−mi+1

qi(pi+1+2)
i A

(2pi+mi+1)(1−pi−mi)
qi(pi+1+2)(1−pi−mi)

i , for i = 1,2, ...,k−1,

and then ensure that for the case i = k,

A1 = Ak+1 ≤ ρ
− 1−pk+1−mk+1

qk(pk+1+2)

k A
(2pk+mk+1)(1−pk−mk)
qk(pk+1+2)(1−pk−mk)

k = ρ0A
∏

k
1

2pi+mi+1
qi(pi+2)

1 ,(3.16)

for some constant ρ0 which is independent of Ai(i = 1,2, ...,k), clearly inequality (3.16)
is true under the assumption ∏

k
i=1(2pi +mi +1)/(qi(pi +2)) < 1 and A1 small enough.

Thus the condition ∏
k
i=1(2pi +mi +1)/(qi(pi +2)) < 1 ensures that we can take Ai small

enough such that inequalities (3.14) hold. Therefore, we have proved our claim. Then we
have obtained (3.9).

Thus, (u1,u2, ...,uk) given by (3.7) and (3.10) is a subsolution of system (1.1)–(1.3) with
appropriately large initial data. By the comparison principle, which implies that the solution
(u1,u2, ...,uk) of the system (1.1)–(1.3) with large initial data blow up in a finite time. The
proof of Theorem 1.1 is complete.

4. Critical Fujita curve

We devote this section to the proof of Theorem 1.2. That is, we shall show when all solutions
of the system (1.1)–(1.3) blow up in a finite time or both global and non-global solutions
exist.

Proof of Theorem 1.2
(1). We investigate the auxiliary functions

(4.1) ui(x, t) = (τ + t)−αiFi(ξi), ξi = x(τ + t)−li , (i = 1,2, ...,k)

where τ is a positive constant, Fi(ξi)(i = 1,2, ...,k) are to be determined later. By a direct
computation, we obtain

uit = (τ + t)−(αi+1)(−αiFi(ξi)− liξiFi
′(ξi)),

|uix|pi(umi
i )x = (τ + t)−piαi−pili−miαi−li |Fi

′|pi(Fmi
i )′(ξi),

(|ux|p(umi
i )x)x = (τ + t)−piαi−pili−miαi−2li(|Fi

′|pi(Fmi
i )′(ξi))′,

and

|uix|pi(umi
i )x(0, t) = (τ + t)−piαi−pili−miαi−li |Fi

′|pi(Fmi
i )′(0),

uqi
i+1(0, t) = (τ + t)−qiαi+1Fi+1

qi(0).

It will be obtained from the above equalities and (1.9) that

uit ≥ (|ux|p(umi
i )x)x, x≥ 0, t > 0, (i = 1,2, ...,k),

−|uix|pi(umi
i )x ≥ uqi

i+1(0, t), t > 0, (i = 1,2, ...,k), uk+1 = uk.
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if the functions Fi(ξi)(i = 1,2, ...,k) satisfy

(|Fi
′|pi(Fmi

i )′(ξi))′+αiFi(ξi)+ liF ′(ξi)ξi ≤ 0, (i = 1,2, ...,k),(4.2)

−|Fi
′|pi(Fmi

i )′(0)≥ Fi+1
qi(0), t > 0, (i = 1,2, ...,k), Fk+1 = F1.(4.3)

Take

Fi(ξi) = Hi

(
(aibi)

pi+2
pi+1 +(ξi +ai)

pi+2
pi+1

)− pi+1
1−pi−mi

, (i = 1,2, ...,k)(4.4)

with bi > 0,Hi > 0,ai > 0,(i = 1,2, ...,k) to be determined. After a computation, we obtain

F ′i (ξi) =−Hi
pi +2

1− pi−mi

(
(aibi)

pi+2
pi+1 +(ξi +ai)

pi+2
pi+1

)− pi+1
1−pi−mi

−1

(ξi +a)
1

pi+1 ,

|F ′i |pi(Fmi
i )′ =−miH

pi+mi
i

(
pi +2

1− pi−mi

)pi+1(
(aibi)

pi+2
pi+1 +(ξi +ai)

pi+2
pi+1

)− pi+1
1−pi−mi

× (ξi +ai),

(|F ′i |pi(Fmi
i )′)′ =−miH

pi+mi
i

(
pi +2

1− pi−mi

)pi+1(
(aibi)

pi+2
pi+1 +(ξi +ai)

pi+2
pi+1

)− pi+1
1−pi−mi

+miH
pi+mi
i

(
pi +2

1− pi−mi

)pi+2(
(aibi)

pi+2
pi+1 +(ξi +ai)

pi+2
pi+1

)− pi+1
1−pi−mi

−1

× (ξi +ai)
pi+2
pi+1 ,

substituting above equalities into (4.2), let yi = ξi + ai(i = 1,2, ...,k), then (4.2) can be
transformed into the following inequality with respect yi

Gi(yi) =−ei1y
pi+2
pi+1
i + ei2aiy

1
pi+1
i − ei3(aibi)

pi+2
pi+1 ≤ 0,(4.5)

where

ei1 = miH
pi+mi−1
i

(
pi +2

1− pi−mi

)pi+1

−Hiαi + liHi
pi +2

1− pi−mi

−miH
pi+mi−1
i

(
pi +2

1− pi−mi

)pi+2

,

ei2 = liHi
pi +2

1− pi−mi
,

ei3 = miH
pi+mi−1
i

(
piαi +2

1− pi−mi

)pi+1

−Hiαi.

We only prove (4.5) for the case of i = 1, and the others can be get in a similar way. Since
mini{li−αi} > 0 imply l1 > α1 > 0 we can choose a suitable constant H1 > 0 such that
l1 > m1H p1+m1−1

1 ((p1 +2)/(1− p1−m1))
p1+1 > α1 > 0, for such H1, it is easy to verify

that e11 > 0,e12 > 0,e13 > 0 and G1(y1) is a concave function with respect to y1/(p1+1)
1 , then

G1(y1) attains its maximum at y1∗ = (e12a1)/((p1 +2)e11). Therefore, the inequality (4.5)
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for i = 1 is valid provided that

G1(y1∗) = a
p1+2
p1+1
1

(
p1 +1
p1 +2

(
1

e11(p1 +2)

) 1
p1+1

e
p1+2
p1+1
12 − e13b

p1+2
p1+1
1

)
≤ 0.(4.6)

So, we only need to choose b1 sufficiently large such that

b1 ≥
(

(p1 +1)e12

(p1 +2)e13

) p1+1
p1+2

(
e12

(p1 +2)e11

) 1
p1+2

.

Similarly, there exist Hi > 0,bi > 0 (i = 2,3, ...,k) such that the inequalities (4.5) hold.
Consequently, we have proved that inequalities (4.5) are true.

Finally, define

Di = miH
pi+mi
i

(
pi +2

1− pi−mi

)pi+1
(

b
pi+2
pi+1
i +1

)− pi+1
1−pi−mi

, (i = 1,2, ...,k),

Ei = Hqi
i+1

(
b

pi+1+2
pi+1+1
i+1 +1

)− qi(pi+1+1)
1−pi+1−mi+1

, Hk+1 = H1, mk+1 = m1, pk+1 = p1, bk+1 = b1.

And noting ∏
k
i=1((pi +2)/(2pi +mi +1)qi) > 1(i.e., detA < 0), we choose ai large enough

such that

Dia
− 2pi+mi+1

1−pi−mi
i ≥ Eia

− qi(pi+1+2)
1−pi+1−mi1

i+1 , (i = 1,2, ...,k),
Dk+1 = D1, Ek+1 = E1, mk+1 = m1, pk+1 = p1, ak+1 = a1

which implies that the inequalities (4.3) hold. Thus, for the case mini{li−αi}> 0, we have
constructed a class of global self-similar supersolutions defined by (4.1) and (4.4). Owing
to the comparison principle, the solution of the problem (1.1)–(1.3) is global if the initial
datum (u10,u20, ...,uk0) is small enough.

Now we turn our attention to the blow-up results for any initial data, and begin with the
space decay behavior of the solution to the system (1.1)–(1.3), which play an important role
in the proof of Theorem 1.2 (2).

Lemma 4.1. The positive solution of the problem (1.1)–(1.3) has, for each t ∈ (0,T ),

(4.7) liminf
x→+∞

x
pi+2

1−mi−pi ui(x.t)≥
(

C−(pi+1)
mi,pi

) 1
1−mi−pi , (i = 1,2, ...,k),

where T is the maximal existence time for the solution, which may be finite or infinite, and

(4.8) Cmi,pi =
1−mi− pi

pi +2

(
1

m(2pi +mi +1)

) 1
pi+1

, (i = 1,2, ...,k).

Proof. We only prove (4.7) for the case of i = 1, and the others can be get in a similar
way. Our idea is to show that any positive solution of the problem (1.1)–(1.3) is, for x large,
bigger than the following similarity solution

Uλ (t,x) = λ

p1+2
1−m1−p1 U1(t,λx),
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where

U1(t,x) = t−
1

2p1+m1+1 (1+Cm1,p1x
p1+2
p1+1 t

− p1+2
(2p1+m1+1)(p1+1) )

p1+1
1−p1−m1 ,

Let 0 < τ < T∗ < T and S = [τ,T∗]× (1,+∞), Since the positive solution u1(x, t) is contin-
uous in (0,T∗]× [0,+∞), there exists δ = δ (τ,T∗) > 0 such that

(4.9) δ = min u1(x, t), τ ≤ t ≤ T∗, 0≤ x≤ 1.

We now select γ > 0 such that

(4.10) Uλ (t− τ,x)≤ δ , τ ≤ t ≤ T∗, x≥ 1
2
.

To this aim, according to the definition of Uλ (t,x) we need

λ

p1+2
1−m1−p1 (t− τ)−

1
2p1+m1+1

(
1+Cm1,p1λ

p1+2
p1+1 x

p1+2
p1+1 (t− τ)

− p1+2
(2p1+m1+1)(p1+1)

)− p1+1
1−p1−m1

≤ δ ,

or

δ

m1+p1−1
p1+1 ≤ λ

− p1+2
p1+1 (t− τ)

1−p1−m1
(2p1+m1+1)(p1+1) +Cm1,p1x

p1+2
p1+1 (t− τ)−

1
p1+1 ,

for τ ≤ t ≤ T∗ and x≥ 1/2, which is implied by

(4.11) δ

m1+p1−1
p1+1 ≤ λ

− p1+2
p1+1 (t− τ)

1−m1−p1
(2p1+m1+1)(p1+1) +Cm1,p1

(
1
2

) p1+2
p1+1

(t− τ)−
1

p1+1 .

Since the right-hand side of (4.11) is bounded below by λ−(2p1+m1+1)/(p1+1)c, where c =
c(m1, p1)> 0, the inequality (4.13) is satisfied if we choose λ such that λ ≤ cδ (1−m1−p1)/(2p1+m1+1).
Since ∂Uλ /∂ t = ∂/∂x

(
|∂Uλ /∂x|p1 ∂Um1

λ
/∂x
)

in S and Uλ (t− τ) = 0 for t = τ,x ≥ 1, by
(4.9), (4.10) and the comparison principle we have

Uλ (t− τ,x)≤ u1(x, t), τ < t < T∗, x≥ 1.

Hence

(4.12) liminf
x→+∞

x
p1+2

1−m1−p1 u1(x, t)≥ liminf
x→+∞

x
p1+2

1−m1−p1 Uλ (t− τ,x) = [C−(p1+1)
m1,p1 (t− τ)]

1
1−p1−m1 ,

since the right-hand side of (4.12) does not depend on λ , the estimate (4.7) holds by letting
τ tend to 0 and T∗ tend to T.

Proof of Theorem 1.2
(2). Without loss of generality, we first assume that ui(i = 1,2, ...,k) are nonincreasing
in x, for if not we consider the (nonincreasing in x) solution (ω1,ω2, ...,ωk) correspond-
ing to the initial value (ω10(x),ω20(x), ...,ωk0(x)),ωi0(x) = inf {ui0(y),0 ≤ y ≤ x},(i =
1,2, ...,k) which are nonincreasing in x. If (ω1,ω2, ...,ωk) blows up in finite time, so does
(u1,u2, ...,uk). On the other hand, for every ε > 0 and t0 > 0 fixed, by Lemma 4.1, there
exists a constant M > 0 large enough that

ui(x, t0)≥

 (Cmi,pi + ε)x
pi+2
pi+1

t
1

pi+1
0

−
pi+1

1−mi−pi

, (i = 1,2, ...,k), for x≥M,

and
ui(x, t0)≥ ui(M, t0), (i = 1,2, ...,k), for 0≤ x≤M.
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Now we construct the following well-known self-similar solution (the so-called Zel’dovich-
Kompaneetz-Barenblatt profile [8, 19]) to (1.1)–(1.3) in the form

uiB(x, t) = (τ + t)−
1

mi+2pi+1 hi(ξi), ξi = x(τ + t)−
1

mi+2pi+1 , (i = 1,2, ...,k),(4.13)

hi(ξi) =

(
b

pi+2
pi+1
i +Cmi,piξ

pi+2
pi+1

i

)− pi+1
1−pi−mi

, (i = 1,2, ...,k)(4.14)

with τ > 0, bi > 0 and Cmi,pi is given in (4.8). It is not difficult to check that

(|h′i|pi(hmi
i )′)′(ξi)+

1
mi +2pi +1

ξih′i(ξi)+
1

mi +2pi +1
hi(ξi)= 0, h′i(0)= 0, (i = 1,2, ...,k).

combining with h′i(0) = 0 (i = 1,2, ...,k), implies (uiB)x(0, t) = 0, (i = 1,2, ...,k). Since
ui(x, t)(i = 1,2, ...,k) are nontrivial and nonnegative, we see that ui(0, t0) > 0 (i = 1,2, ...,k)
for some t0 > 0 (compare with a Barenblatt solution of the corresponding equations). Notic-
ing that ui(x, t0) > 0 (i = 1,2, ...,k) are continuous (see [9, 26]), we can choose τ large
enough and bi > 0 small enough that

ui(x, t0) > uiB(x, t0), (i = 1,2, ...,k) for x > 0.

A direct calculation shows that (u1B,u2B, ...,ukB) is a weak subsolution of (1.1)–(1.3) in
(0,+∞)× (t0,+∞) By the comparison principle, we obtain that

ui(x, t) > uiB(x, t), (i = 1,2, ...,k) for x > 0, t > t0.

Since that maxi{li−αi}< 0, we get T li � T αi for large T . So there exists t∗ ≥ t0 satisfying

(4.15) T li � (τ + t∗)
1

mi+2pi+1 � T αi , (i = 1,2, ...,k).

Let ui(i = 1,2, ...,k) be the functions given by (3.7) and (3.10). Then for any x > 0,

ui(x,0)≤ uiB(x, t∗)≤ ui(x, t∗), (i = 1,2, ...,k).

It follows from the comparison principle that

ui(x, t)≤ ui(x, t + t∗) (i = 1,2, ...,k), for x > 0, t > 0.

As the proof of Theorem 1.1 (2), we see that (u1,u2, ...,uk) blows up in a finite time T .
Therefore, (u1,u2, ...,uk) blows up in a finite time which is not larger than T +t∗. Observing
that (4.15) holds for general nontrivial (u10,u20, ...,uk0), we know that every nonnegative,
nontrivial solution of (1.1)–(1.3) blows up in finite time. The proof of Theorem 1.2 is
complete.
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