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Under Hölder Continuous Condition in Banach Space

1QINGBIAO WU AND 2HONGMIN REN
1Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, P. R.China

2Department of Information and Electronics, Hangzhou Radio and TV University,
Hangzhou 310012, Zhejiang, P. R.China

1qbwu@zju.edu.cn, 2rhm@mail.hzrtvu.edu.cn

Abstract. A modified Newton’s method which computes derivatives every other step is
used to solve a nonlinear operator equation. An estimate of the radius of its convergence
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1. Introduction

In this study we are concerned with estimating the radius of the convergence ball of a mod-
ified Newton’s method which computes derivatives every other step in Banach space and is
used to solve the nonlinear operator equation

(1.1) F(x) = 0,

where F is defined on an open convex subset D of a Banach space X with values in a Banach
space Y .

There are kinds of method to find a solution of (1.1). Iterative methods are often used to
solve this problem. If we use the famous Newton’s method (see [16]), we can do as

(1.2) xn+1 = xn−F ′(xn)−1F(xn), (n≥ 0) (x0 ∈ D).

To improve the convergence order, many modified methods have been presented (see
[6, 7, 11, 12, 15, 16, 23, 26]). Among these, a modified Newton’s method which compute
derivatives every other step is one of the most popular methods and is defined as follows

(1.3) yn = xn−F ′(xn)−1F(xn), xn+1 = yn−F ′(xn)−1F(yn), (n≥ 0) (x0 ∈ D).
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Two benefits of this method bring us: it computes less derivatives and less inverses of
derivatives. Therefore, the method is valuable especially as the computing cost of deriva-
tives or inverses of derivatives is big.

The convergence of (1.3) to a solution of (1.1) has been studied by other authors [3–5,16,
21]. Reference [21] discussed the point estimates on the modified Newton’s method. Ref-
erences [3–5] established some semilocal convergence theorems using recurrence relations
for method (1.3), and gave an abundant of application for solving boundary value problems.
Now we consider the problem from the different way. We suppose that the nonlinear oper-
ator equation (1.1) has a solution x?. An interesting problem is to estimate the radius of the
convergence ball of this modified Newton’s method. An open ball B(x?,r)⊂ X with center
x? and radius r is called a convergence ball of an iterative method, if the sequence generated
by this iterative method starting from any initial values in it converges. The convergence
ball of an iterative method is very important, because it shows the extent of difficulty to
choose initial points for the iterative methods.

References [20] and [22] gave an exact estimate of radius of the convergence ball r =
2/(3K) respectively for Newton’s method (1.2) under the following Lipschitz continuous
condition

(1.4) ‖F ′(x?)−1(F ′(x)−F ′(y))‖ ≤ K‖x− y‖, ∀ x,y ∈ D, f or some K > 0.

Reference [14] generalized this result for Newton’s method to a type of Hölder continuous
condition. Reference [2] obtained the estimate of radius of Newton’s method using Lip-
schitz type assumptions on the second Fréchet derivative. References [13, 17, 18, 24, 25]
gave the estimates of radius for the Secant method, a modified secant method, a deformed
Newton’s method and Müller’s Method.

In this study, under the following Hölder continuous condition

(1.5) ‖F ′(x?)−1(F ′(x)−F ′(y))‖ ≤ K‖x− y‖p, ∀ x,y ∈ D, f or some K > 0,

where 0 < p≤ 1, the radius of the convergence ball of the modified Newton’s method (1.3) is
proved to be p

√
sp/K at least, where sp is the minimum positive root of a cubic equation. The

error analysis is also given which shows the convergence order of the modified Newton’s
method (1.3) is at least 1+2p.

Throughout the paper we denote B(x,r) = {y∈X ;‖y−x‖< r} and B(x,r) = {y∈X ;‖y−
x‖ ≤ r}.

2. Convergence ball and error analysis

In this section, we give the radius of convergence and error analysis of the modified New-
ton’s method.

Theorem 2.1. Suppose F has Fréchet derivatives on an open convex subset D of a Banach
space X with values in a Banach space Y , x? ∈ D, F(x?) = 0, F ′(x?)−1 exists, the Hölder
continuous condition (1.5) holds, 0 < p ≤ 1, and B(x?,

p
√

(1+ p)/K) ⊆ D. Suppose sp is
the minimum positive root of the following cubic equation:

(2.1) hp(s) = 2(1+ p)2(1− s)3 +(p+2)s3−2(1+ p)s2 = 0.

Denote rp = p
√

sp/K, then the sequence {xn} generated by the modified Newton’s method
(1.3) starting from any initial point x0 in B(x?,rp) converges to the unique solution x? in
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B(x?,
p
√

(1+ p)/K) that is bigger than B(x?,rp). Moreover, the following error estimate is
satisfied

(2.2) ‖xn− x?‖ ≤ rp

(
‖x0− x?‖

rp

)(1+2p)n

, (n≥ 0).

We need following lemmas in order to prove the above theorem.

Lemma 2.1. Let 0 < p ≤ 1, then equation (2.1) always has at least one positive root, and
the minimum positive root sp of the equation satisfies: 0 < sp < 1.

Proof. As 0 < p≤ 1, we have

hp(0) = 2(1+ p)2 > 0,(2.3)

hp(1) = p+2−2(1+ p) =−p < 0.(2.4)

Hence, hp(s) has at least a zero in (0,1). By the definition of sp, we have 0 < sp < 1, which
completes the proof.

Lemma 2.2. Let us suppose x? ∈D, F ′(x?)−1 exists, the Hölder continuous condition (1.5)

holds, 0 < p≤ 1, and B(x?,
p
√

1
K )⊆ D. Then for any x ∈ B(x?,

p
√

1/K), F ′(x) is invertible,
and the following estimate holds

(2.5) ‖(F ′(x?)−1F ′(x))−1‖ ≤ 1
1−K‖x− x?‖p .

Proof. We consider to estimate ‖I−F ′(x?)−1F ′(x)‖. From (1.5) we have

(2.6) ‖I−F ′(x?)−1F ′(x)‖= ‖F ′(x?)−1(F ′(x)−F ′(x?))‖ ≤ K‖x− x?‖p.

Hence, by the Banach lemma, this lemma holds.

Lemma 2.3. For the modified Newton’s method (1.3), if xn is well defined, and n is a non-
negative integer, F ′(xn)−1 exists, x? ∈ D, F(x?) = 0 and F ′(x?)−1 exists. Then, we have the
following formula:

xn+1− x? =
(
F ′(x?)−1F ′(xn)

)−1
F ′(x?)−1

(
F ′(xn)−

∫ 1

0
F ′(tyn +(1− t)x?)dt

)
(
F ′(x?)−1F ′(xn)

)−1
F ′(x?)−1

(
F ′(xn)−

∫ 1

0
F ′(txn +(1− t)x?)dt

)
(xn− x?).(2.7)

Proof. By (1.3) and the fundamental theorem of calculus, we get

xn+1− x? = yn− x?−F ′(xn)−1(F(yn)−F(x?))

= F ′(xn)−1
(

F ′(xn)−
∫ 1

0
F ′(tyn +(1− t)x?)dt

)
(yn− x?)

= F ′(xn)−1
(

F ′(xn)−
∫ 1

0
F ′(tyn +(1− t)x?)dt

)(
xn− x?−F ′(xn)−1F(xn)

)
= F ′(xn)−1

(
F ′(xn)−

∫ 1

0
F ′(tyn +(1− t)x?)dt

)
F ′(xn)−1(F ′(xn)

−
∫ 1

0
F ′(txn +(1− t)x?)dt)(xn− x?).(2.8)

By (2.8), it is obvious that (2.7) holds.
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Lemma 2.4. For the modified Newton’s method (1.3), if xn is well defined, and n is a non-
negative integer, 0 < p≤ 1, x? ∈D, xn ∈ B(x?,

p
√

1/K)⊆D, F(x?) = 0, F ′(x?)−1 exists and
the Hölder continuous condition (1.5) holds, then the following estimate holds:

(2.9)
∥∥∥∥F ′(x?)−1(F ′(xn)−

∫ 1

0
F ′(txn +(1− t)x?)dt)

∥∥∥∥≤ K‖xn− x?‖p

1+ p
,∥∥∥∥F ′(x?)−1(F ′(xn)−

∫ 1

0
F ′(tyn +(1− t)x?)dt)

∥∥∥∥
≤ K‖xn− x?‖p

(
1+

pK‖xn− x?‖p

2(1+ p)(1−K‖xn− x?‖p)

)
.

(2.10)

Proof. By the Hölder continuous condition (1.5), we have∥∥∥∥F ′(x?)−1(F ′(xn)−
∫ 1

0
F ′(txn +(1− t)x?)dt)

∥∥∥∥
=
∥∥∥∥∫ 1

0
F ′(x?)−1(F ′(xn)−F ′(txn +(1− t)x?))dt

∥∥∥∥
≤ K

∫ 1

0
‖xn− txn− (1− t)x?‖pdt = K‖xn− x?‖p

∫ 1

0
(1− t)pdt =

K‖xn− x?‖p

1+ p
.

(2.11)

So, (2.9) holds. Analogously, we have∥∥∥∥F ′(x?)−1
(

F ′(xn)−
∫ 1

0
F ′(tyn +(1− t)x?)dt

)∥∥∥∥
=
∥∥∥∥∫ 1

0
F ′(x?)−1(F ′(xn)−F ′(tyn +(1− t)x?))dt

∥∥∥∥
≤ K

∫ 1

0
‖xn− tyn− (1− t)x?‖pdt.

(2.12)

Based on the definition of the modified Newton’s method, we get

xn− tyn− (1− t)x? = xn− x?− t(yn− x?)

= xn− x?− t(xn− x?−F ′(xn)−1F(xn))

= xn− x?− tF ′(xn)−1
(

F ′(xn)(xn− x?)−
∫ 1

0
F ′(txn +(1− t)x?)dt(xn− x?)

)
= xn− x?− tF ′(xn)−1

(
F ′(xn)−

∫ 1

0
F ′(txn +(1− t)x?)dt

)
(xn− x?).

(2.13)

Since xn ∈ B(x?,
p
√

1/K), from Lemma 2.2, F ′(xn)−1 exists and

(2.14) ‖(F ′(x?)−1F ′(xn))−1‖ ≤ 1
1−K‖xn− x?‖p .

By (2.13), (2.14) and (2.9), we get

‖xn− tyn− (1− t)x?‖ ≤ ‖xn− x?‖+ t
‖xn− x?‖

1−K‖xn− x?‖p
K‖xn− x?‖p

1+ p

= ‖xn− x?‖
(

1+ t
K‖xn− x?‖p

(1+ p)(1−K‖xn− x?‖p)

)
.

(2.15)
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Now by (2.12) and (2.15), we have∥∥∥∥F ′(x?)−1
(

F ′(xn)−
∫ 1

0
F ′(tyn +(1− t)x?)dt

)∥∥∥∥
≤ K‖xn− x?‖p

∫ 1

0

(
1+ t

K‖xn− x?‖p

(1+ p)(1−K‖xn− x?‖p)

)p

dt

= (1−K‖xn− x?‖p)

((
1+

K‖xn− x?‖p

(1+ p)(1−K‖xn− x?‖p)

)p+1

−1

)
.

(2.16)

Define a function g(v) = vp+1,v ∈ [a,b], where a = 1,b = 1+(K‖xn− x?‖p)/((1+ p)(1−
K‖xn− x?‖p)). Then,

(2.17) g′(v) = (p+1)vp, g′′(v) = (p+1)pvp−1.

By Taylor formula, ∃ ξ ∈ [a,b], such that the following formula holds

g(b)−g(a) = g′(a)(b−a)+
g′′(ξ )

2
(b−a)2

= (p+1)
K‖xn− x?‖p

(1+ p)(1−K‖xn− x?‖p)
+

p(1+ p)
2ξ 1−p

K2‖xn− x?‖2p

(1+ p)2(1−K‖xn− x?‖p)2

=
K‖xn− x?‖p

1−K‖xn− x?‖p +
p

2ξ 1−p
K2‖xn− x?‖2p

(1+ p)(1−K‖xn− x?‖p)2 .(2.18)

Since ξ ∈ [a,b], and a = 1,0 < p≤ 1, it is obvious 1/(ξ 1−p)≤ 1. Then by (2.18), we have

(2.19) g(b)−g(a)≤ K‖xn− x?‖p

1−K‖xn− x?‖p +
p

2(1+ p)
K2‖xn− x?‖2p

(1−K‖xn− x?‖p)2 .

By (2.16) and (2.19), we obtain∥∥∥∥F ′(x?)−1(F ′(xn)−
∫ 1

0
F ′(tyn +(1− t)x?)dt)

∥∥∥∥
≤ K‖xn− x?‖p

(
1+

pK‖xn− x?‖p

2(1+ p)(1−K‖xn− x?‖p)

)
.

(2.20)

Hence, (2.10) holds. The proof is completed.

Proof of Theorem 2.1.
We will prove this theorem by induction. Firstly, by Lemma 2.1, 0 < sp < 1. Hence,
rp = p

√
sp/K < p

√
1/K. By x0 ∈ B(x?,rp), we have x0 ∈ B(x?,

p
√

1/K). By Lemma 2.2,
F ′(x0)−1 exists. So, x1 is well defined, and

(2.21) ‖(F ′(x?)−1F ′(x0))−1‖ ≤ 1
1−K‖x0− x?‖p .

By Lemma 2.3, we have

x1− x? = (F ′(x?)−1F ′(x0))−1F ′(x?)−1(F ′(x0)−
∫ 1

0
F ′(ty0 +(1− t)x?)dt)

(F ′(x?)−1F ′(x0))−1F ′(x?)−1(F ′(x0)−
∫ 1

0
F ′(ty0 +(1− t)x?)dt)(x0− x?).(2.22)
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Now by Lemma 2.4 and (2.21), we obtain

‖x1− x?‖ ≤
‖x0− x?‖

(1−K‖x0− x?‖p)2 K‖x0− x?‖p
(

1+
p

2(1+ p)
K‖x0− x?‖p

(1−K‖x0− x?‖p)

)
K‖x0− x?‖p

1+ p

=
K2‖x0− x?‖1+2p

(1−K‖x0− x?‖p)2(1+ p)

(
1+

p
2(1+ p)

K‖x0− x?‖p

1−K‖x0− x?‖p

)
.

(2.23)

Since x0 ∈ B(x?,rp), by (2.23), we know

‖x1− x?‖<
(Krp

p)2

(1−Krp
p)2(1+ p)

(
1+

p
2(1+ p)

Krp
p

1−Krp
p

)
rp

=
(Krp

p)2

2(1−Krp
p)3(1+ p)2 (pKrp

p +2(1+ p)(1−Krp
p))rp

=
1

2(1−Krp
p)3(1+ p)2

(
2(1+ p)(Krp

p)
2− (p+2)(Krp

p)
3)rp.

(2.24)

Since rp = p
√

sp/K, that is sp = Krp
p, and sp is the minimum positive root of the cubic

equation (2.1), i.e.,

(2.25)
2(1+ p)(Krp

p)2− (p+2)(Krp
p)3

2(1−Krp
p)3(1+ p)2 = 1.

Hence, by (2.24) and (2.25), we obtain

(2.26) ‖x1− x?‖< rp.

This means x1 ∈ B(x?,rp). Generally, we suppose xl (l ≤ n) has been generated by the
modified Newton’s method, and xl ∈ B(x?,rp) (l ≤ n), where n is a natural number. Then
proceeding similar to the existence of F ′(x0)−1, we can see F ′(xn)−1 also exists, and the
following estimate formula holds

(2.27) ‖(F ′(x?)−1F ′(xn))−1‖ ≤ 1
1−K‖xn− x?‖p .

Analogously, such as the estimate of ‖x1− x?‖, we get

(2.28) ‖xn+1− x?‖ ≤
K2‖xn− x?‖1+2p

(1−K‖xn− x?‖p)2(1+ p)

(
1+

p
2(1+ p)

K‖xn− x?‖p

1−K‖xn− x?‖p

)
.

Since xn ∈ B(x?,rp), proceeding similarly such as (2.24) and (2.25), we obtain

(2.29) ‖xn+1− x?‖<
2(1+ p)((Krp)2− (p+2)(Krp

p)3)
2(1−Krp

p)3(1+ p)2 rp = rp.

This means xn+1 ∈ B(x?,rp). By induction, {xn} is well defined, and xn ∈ B(x?,rp)(n≥ 0).
Moreover, (2.28) holds for n≥ 0. Hence, we have

(2.30) ‖xn+1− x?‖ ≤
(Krp

p)2
(

1+ p
2(1+p)

Krp
p

1−Krp
p

)
(1−Krp

p)2(1+ p)
· ‖xn− x?‖1+2p

(rp
p)2 , (n≥ 0).

By the process to deduce (2.24), we can see

(2.31)
(Krp

p)2

(1−Krp
p)2(1+ p)

(
1+

p
2(1+ p)

Krp
p

1−Krp
p

)
= 1.
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Hence, by (2.30), we obtain

(2.32) ‖xn+1− x?‖ ≤
‖xn− x?‖1+2p

r2p
p

, (n≥ 0).

Then, we have

(2.33)
‖xn+1− x?‖

rp
≤
(
‖xn− x?‖

rp

)1+2p

, (n≥ 0).

Moreover, we easily get

(2.34)
‖xn− x?‖

rp
≤
(
‖x0− x?‖

rp

)(1+2p)n

, (n≥ 0).

So we have

(2.35) ‖xn− x?‖ ≤ rp

(
‖x0− x?‖

rp

)(1+2p)n

, (n≥ 0).

This estimate formula indicates that (2.2) holds.
Now we prove x? is a unique solution in B(x?,

p
√

(1+ p)/K). Suppose there exists an-
other solution y? ∈ B(x?,

p
√

(1+ p)/K),and F(y?) = 0. Denote an operator A =
∫ 1

0 F ′(ty? +
(1− t)x?)dt, then F(y?)−F(x?) = A(y?− x?) = 0. Hence, if we prove A is invertible, then
y? = x?. By the Hölder continuous condition (1.5), we have

‖I−F ′(x?)−1A‖= ‖F ′(x?)−1
∫ 1

0
(F ′(x?)−F ′(ty? +(1− t)x?))dt‖

≤ K
∫ 1

0
t p‖x?− y?‖pdt =

K‖x?− y?‖p

p+1
< 1.

(2.36)

By the Banach lemma, A is invertible. Since 0 < sp < 1, B(x?,
p
√

(1+ p)/K) is bigger than
B(x?,rp). The proof of Theorem 2.1 is completed.

Taking p = 1 in the above theorem, noting also that s1 = (5−
√

5)/5 is the minimum
positive root of the following cubic equation

(2.37) 5s3−20s2 +24s−8 = 0,

we can get the following corollary at once:

Corollary 2.1. Suppose x? ∈ D,F(x?) = 0,F ′(x?)−1 exists, the Lipschitz continuous con-
dition (1.4) holds. Denote r1 = (5−

√
5)/5K, then the sequence {xn} generated by the

modified Newton’s method (1.3) starting from any initial point x0 ∈ B(x?,r1) converges to
the unique solution x? ∈ B(x?,2/K) that is bigger than B(x?,r1). Moreover, the following
error estimate is satisfied

(2.38) ‖xn− x?‖ ≤ r1

(
‖x0− x?‖

r1

)3n

, n≥ 0.

Remark 2.1. By Theorem 2.1, under the hypotheses in Theorem 2.1, the convergence order
of the modified Newton’s method reaches to at least 1 +2p. When p = 1, the convergence
order of the method reaches to at least 3. This is accordant with the convergence order
obtained by other authors (see [16]).
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Table 1. Values of sp

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
sp 0.50622 0.51230 0.51817 0.52380 0.52919 0.53434 0.53926 0.54397 0.54847 0.55279

Remark 2.2. It needs further study to decide whether the estimate radius rp of the conver-
gence ball of the modified Newton’s method established in Theorem 2.1 is optimal.

Remark 2.3. In Table 1, we list values of sp for p = 0.1,0.2, ...,1.0. From the table, we see
that sp increases as p increases, i.e., rp increases as p increases.

3. Numerical examples

In this section, we apply the convergence ball result and show some numerical examples.

Example 3.1. Let us consider

(3.1) F(x) = ex−1, x ∈ D = [−1,1].

Then, F ′(x) = ex, F(x) has a zero x? = 0 in D, and F ′(x?) = 1. We easily obtain

(3.2) |F ′(x?)−1(F ′(x)−F ′(y))|= |ex− ey| ≤ e|x− y|, ∀ x,y ∈ D.

Hence, the Lipschitz condition (1.4) holds with K = e and p = 1. On the other hand,
B(x?,

p
√

(1+ p)/K) = (−2/e,2/e) ⊆ D = [−1,1]. From Table 1, we obtain sp = 0.55279.
By Theorem 2.1, the radius of the convergence ball of the modified Newton’s method is at
least rp = p

√
sp/K ≈ 0.20336.

Example 3.2. Let us consider

(3.3) F(x) =
2
3

x
3
2 − x, x ∈ D = [1,3].

Then, F ′(x) = x
1
2 −1, F(x) has a zero x? = 9/4 in D, and F ′(x?) = 1/2. We easily obtain

(3.4) |F ′(x?)−1(F ′(x)−F ′(y))|= 2|x
1
2 − y

1
2 | ≤ 2|x− y|

1
2 , ∀ x,y ∈ D.

Hence, the Hölder continuous condition (1.5) holds with K = 2 and p = 1
2 . On the other

hand, B(x?,
p
√

(1+ p)/K) = (27/16,45/16) ⊆ D = [1,3]. By Table 1, we obtain sp =
0.52919. By Theorem 2.1, the radius of the convergence ball of the modified Newton’s
method is at least rp = p

√
sp/K ≈ 0.07001.

Example 3.3. Let us consider to solve the following nonlinear system:

(3.5)

{
2x1− 1

9 x1
1+p− x2 = 0,

−x1 +2x2− 1
9 x2

1+p = 0,

where 0 < p ≤ 1. This nonlinear system comes from the following nonlinear boundary
value problem of second-order:

(3.6)

{
x′′+ x1+p = 0, 0 < p≤ 1,
x(0) = x(1) = 0,

which has been used as the example by many authors [1, 8–10, 13].
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Now we define an operator F : R2→ R2 such that F = (F1,F2). For x = (x1,x2) ∈ D =
R2, we take F1(x1,x2) = 2x1− 1/9x1

1+p− x2, F2(x1,x2) = −x1 + 2x2− 1/9x2
1+p. Then,

noticing 0 < p≤ 1, it is easy to see F is Fréchet differentiable in R2, and we have

(3.7) F ′(x) =
(

2− 1
9 (1+ p)xp

1 −1
−1 2− 1

9 (1+ p)xp
2

)
.

Let x = (x1,x2) ∈ R2 and ‖x‖ = ‖x‖∞ = max1≤i≤2 |xi|. The corresponding norm on A ∈
R2×R2 is

(3.8) ‖A‖= max
1≤i≤2

2

∑
j=1
|ai j|.

It can be verified easily that x? = (91/p,91/p) is a solution of (3.5). From (3.7), we get

(3.9) F ′(x?) =
(

1− p −1
−1 1− p

)
.

As 0 < p≤ 1, it is easy to see F ′(x?) is invertible. Similarly to [8], we can deduce that the
Hölder continuous condition (1.5) is true for K = (1+ p)/(9p(2− p)). Setting p = 0.3, we
obtain sp = 0.51817 from Table 1. Hence, all conditions in Theorem 2.1 are satisfied. By
Theorem 2.1, the radius of the convergence ball of the modified Newton’s method is at least
rp = p

√
sp/K ≈ 7.48983.

Example 3.4. Let us consider the two point boundary value problem:

(3.10)

{
x′′+ x1+p + x2 = 0, 0 < p≤ 1,
x(0) = x(1) = 0.

We shall solve this problem by using finite differences. Let h = 1/n, where n is natural
integer, and set ti = ih, i = 1,2, . . . ,n− 1. It follows from the boundary conditions that
x0 = xn = 0. We approximate the second derivative x′′(t) by the usual estimate [16]:

x′′(t)≈ [x(t +h)−2x(t)+ x(t−h)]/h2,

x′′(ti) = (xi+1−2xi + xi−1)/h2, i = 1,2, . . . ,n−1.
(3.11)

A substitution into (3.10) of (3.11) leads to the following system of equations:

(3.12)


2x1−h2x1+p

1 −h2x2
1− x2 = 0,

−xi−1 +2xi−h2x1+p
i −h2x2

i − xi+1 = 0, i = 2,3, . . . ,n−2,

−xn−2 +2xn−1−h2x1+p
n−1 −h2x2

n−1 = 0.

Let us define operator F : Rn−1→ Rn−1 by

(3.13) F(x) = A(x)−h2 f (x),

where,

(3.14) A =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2

 ,
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and

(3.15) f (x) = [x1+p
1 + x2

1,x
1+p
2 + x2

2, . . . ,x
1+p
n−1 + x2

n−1]
t .

Using (3.13), we obtain

(3.16) F ′(x) = A−h2(1+ p)


xp

1 0 . . . 0
0 xp

2 . . . 0
...

...
. . .

...
0 0 . . . xp

n−1

−2h2


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn−1

 .

We introduce norms as follows: for x ∈ Rn−1, let ‖x‖= max1≤i≤n−1 |xi|. The corresponding
norm on M ∈ Rn−1×Rn−1 is

(3.17) ‖M‖= max
1≤i≤n−1

n−1

∑
j=1
|mi j|.

Let x,y ∈ Rn−1 with |xi| > 0, |yi| > 0, i = 1,2, . . . ,n− 1. Then using the above norms, we
obtain in turn:

‖F ′(x)−F ′(y)‖= ‖diag{(1+ p)(yp
i − xp

i )+2(yi− xi)}h2‖

= max
1≤i≤n−1

|(1+ p)(yp
i − xp

i )+2(yi− xi)|h2

≤ [(1+ p) max
1≤i≤n−1

|yp
i − xp

i |+2 max
1≤i≤n−1

|yi− xi|]h2

≤ [(1+ p)( max
1≤i≤n−1

|yi− xi|)p +2‖y− x‖]h2

= [(1+ p)+2‖y− x‖1−p]‖y− x‖ph2.

(3.18)

In view of (1.4) and (3.18), we obtain for any x,y∈D = B(x?,α), α > 0, and b≥‖F ′(x?)−1‖:

bh2(1+ p+2‖y− x‖1−p)≤ bh2(1+ p+2(‖y− x?‖+‖x?− x‖)1−p)

≤ bh2(1+ p+2(2α)1−p) = K.
(3.19)

We shall use the modified Newton’s method (1.3) to approximate the solution of equation
F(x) = 0, where operator F is given in (3.13). If n = 10, and p = 1/2, then using (3.12) we
obtain nine equations. Using Newton’s method (1.2), Reference [19] obtained the solution
x? of system (3.12):

(3.20) x? =



2.394640795
4.694882371
6.672977547
8.033409359
8.520791424
8.033409359
6.672977547
4.694882371
2.394640795


.

Using the definition of the constant b, we can set b = ‖F ′(x?)−1‖= 15.753443793. In view
of the definition of Hölder constant K, we have for α = 0.8:

(3.21) K = 0.634835764.
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From Table 1, we obtain sp = 0.52919. Hence, all conditions in Theorem 2.1 are satisfied.
By Theorem 2.1, the radius of the convergence ball of the modified Newton’s method is at
least rp = p

√
sp/K ≈ 0.69487.
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