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Abstract. Let G = (V1,V2;E) be a bipartite graph with | V1 |=| V2 |= 4k, where k is a
positive integer. In this paper, it is proved that if the minimum degree of G is at least 3k+1,
then G contains k vertex-disjoint cycles of order eight such that each of them has at least
two chords.
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1. Introduction

Let G be a simple graph and k ≥ 1 be an integer. The minimum degree of G is denoted
by δ (G). Corrádi and Hajanal [2] proved that if G is of order at least 3k and the minimum
degree of it is at least 2k, then G contains k vertex-disjoint cycles. When the order of G
is exactly 3k, then G contains k vertex-disjoint triangles. In [5], Wang considered vertex-
disjoint cycles in a bipartite graph and gave the following conjecture.

Conjecture 1.1. Let G = (V1,V2;E) be a bipartite graph with |V1 |=|V2 |= n = sk, where n,
k and s are integers with s≥ 2 and k≥ 1. If the minimum degree of G is at least (s−1)k+1,
then G contains k vertex-disjoint subgraphs isomorphic to Ks,s.

Wang verified this conjecture for k ≤ 4 in [4, 5]. For s = 2, Wang [3] proved that if
G = (V1,V2;E) is a bipartite graph with | V1 |=| V2 |= 2k and the minimum degree of G is
at least k +1, then G contains k−1 vertex-disjoint quadrilaterals and a path of order 4 such
that the path is vertex disjoint of all the k− 1 quadrilaterals. For s = 3, Wang [5] proved
that if G = (V1,V2;E) is a bipartite graph with |V1 |=|V2 |= 3k and the minimum degree of
G is at least 2k + 1, then G contains k vertex-disjoint cycles of order six such that each of
them has at least two chords. When the order of G is large enough, Zhao [6] proved a result
stronger than Conjecture 1.1.
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Theorem 1.1. For each s ≥ 2, there exists k0 such that the following holds for all k ≥ k0.
Let G = (V1,V2;E) be a bipartite graph with | V1 |=| V2 |= n = sk such that the minimum
degree

δ (G)≥

{
n
2 + s−1, if k is even,
n+3s

2 −2, if k is odd.

Then G contains k vertex-disjoint subgraphs isomorphic to Ks,s.

In this paper, we consider the case s = 4 and show the following result.

Theorem 1.2. Let G = (V1,V2;E) be a bipartite graph with | V1 |=| V2 |= 4k, where k is
a positive integer. If the minimum degree of G is at least 3k + 1, then G contains k vertex-
disjoint cycles of order eight such that each of them has at least two chords.

We will use the following terminology and notation, where any undefined notation fol-
lows that of Bondy and Murty [1]. Let G be a simple graph. The order of G is |V (G)| and its
size is e(G) = |E|. A set of graphs is said to be independent if no two of them have any com-
mon vertex. If A1,A2, ...,An are subsets of V (G), we use 〈A1,A2, ...,An〉 to denote the sub-
graph of G induced by A1

⋃
A2

⋃
...

⋃
An. For x∈V (G), let NG(x) = {y∈V (G) | xy∈E(G)}.

If H is a subgraph of G, then NH(x) = NG(x)
⋂

V (H), d(x,H) =|NH(x) |. Let T be a simple
graph and k be a positive integer, then G ⊇kT means that G contains k independent sub-
graphs isomorphic to T . Let X and Y be two independent subgraphs of G or two disjoint
subsets of V (G). We define G[X ] to be the subgraph of G induced by X , and e(X ,Y ) to be
the number of edges between X and Y . A k-cycle is a cycle of order k and a m-path is a path
of order m, denoted by Ck and Pm, respectively. Particularly, a quadrilateral is a cycle of
order 4, and a triangle is a cycle of order 3. For a k-cycle C = x1x2...xkx1, xixi+1 is an edge
in C. For a cycle C of G, a chord of C is an edge of G−E(C) which joins two vertices of C.

The structure of the paper is as follows. First we will show some useful lemmas in
Section 2, then prove the main result in Section 3.

2. Lemmas

In this section, we will prove some useful lemmas. Let G = (V1,V2;E) be a bipartite graph.

Lemma 2.1. Let P1 = a1b1a2, P2 = y1x2y2x3y3, P1 and P2 are independent, where {a1,x2}⊆
V1. If e(a1a2,y1y3)≥ 3, then G[P1

⋃
P2] contains an 8-cycle with at least a chord.

Proof. These are easily verified.

Lemma 2.2. Let P = a1b1a2b2a3b3a4b4 be an 8-path, C = x1y1x2y2x3y3x4y4x1 be an 8-
cycle, P and C are independent, where {a1,x1} ⊆V1. If e(P,C)≥ 25, d(a1,C) > 0, d(b4,C)
> 0, then G[P

⋃
C] contains two independent 8-cycles.

Proof. Suppose on the contrary that G[P
⋃

C] 6⊇ 2C8. Since e(P,C) ≥ 25, there exists a
vertex x ∈ V (C), such that d(x,P) = 4. W.l.o.g., say d(x1,P) = 4. Since G[P− a1 + x1] ⊇
C8, G[C− x1 + a1] 6⊇ C8. Therefore, d(a1,C) ≤ 3 and {a1y1,a1y4} 6⊆ E. We distinguish
three cases: d(a1,C) = 1, d(a1,C) = 2 or d(a1,C) = 3.

Case 1. d(a1,C) = 1. By symmetry, we distinguish two cases: a1y1 ∈ E or a1y2 ∈ E.

Case 1.1. a1y1 ∈ E. Since d(a1,C) = 1, we have a1y2 6∈ E, a1y3 6∈ E and a1y4 6∈ E. Then
{b2x3,a3y3} 6⊆E, for otherwise G[P

⋃
C] contains two independent 8-cycles a1y1x2y2x3b2a2
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b1a1 and a3b3a4b4x1 y4x4y3a3. If {b4x2,a4y4} ⊆ E, then G[P
⋃

C] contains two indepen-
dent 8-cycles a4b4x2y2x3 y3x4y4a4 and a1b1a2b2a3b3x1y1a1, a contradiction. Therefore,
{b4x2,a4y4} 6⊆ E. With the same proof, we can get {b3x2,a4y2} 6⊆ E, {b1x4,a2y4} 6⊆ E.

Suppose b4x4 ∈E. Then 〈b2a3b3a4b4,x4y4x1〉⊇C8 and therefore 〈a1b1a2,y1x2y2x3y3〉 6⊇
C8. This implies a2y3 6∈ E. Therefore, we get e(x2y2x4y4,P)≤ 11 and e(x3y3,P)≤ 5. Thus,
e(P,C)≤ 24, a contradiction.

Hence b4x4 6∈ E. Thus e(x2y2x4y4,P)≤ 10 and e(x3y3,P)≤ 6. This implies e(P,C)≤ 24,
a contradiction.

Case 1.2. a1y2 ∈ E. Since d(a1,C) = 1, it follows that a1y1 6∈ E, a1y3 6∈ E, a1y4 6∈ E. Since
〈a1b1a2b2,x1y1x2 y2〉 ⊇C8 and G[P

⋃
C] 6⊇ 2C8, we have {a3y4,x3b4} 6⊆ E. Similarly, we

can get {a2y1,b4x2} 6⊆ E.
If a3y1 ∈ E, then d(x3,b3b4) = 0 as 〈a1b1a2b2a3,y1x2y2〉 ⊇C8. If a2y4 ∈ E, then d(x2,

b2b4) = 0 as 〈a1b1a2,y2x3y3x4y4〉 ⊇C8. Therefore, if {a3y1,a2y4} ⊆ E, then d(x3, b3b4) =
0 and d(x2,b2b4)= 0. This implies e(P,C)≤ 25. Since e(P,C)≥ 25, d(x2,P)= 2, d(y4,P)=
3 and d(x4,P) = 4. In particular, x2b3 ∈ E, a3y4 ∈ E, a4y4 ∈ E and b2x4 ∈ E. Therefore,
G[P

⋃
C] contains two independent 8-cycles y1x2b3a3y4a4b4x1y1 and a1b1a2b2x4 y3x3y2a1,

a contradiction. So {a3y1,a2y4} 6⊆ E and d(y1,P)+d(y4,P)≤ 5.
Suppose b4x4 ∈ E. Then {b3x2,a3y3} 6⊆ E, for otherwise 〈a1b1a2b2a3,y2x3y3〉 ⊇ C8

and 〈b3a4b4,x2y1x1y4x4〉 ⊇ C8. Since e(P,C) ≥ 25, we have e(y1x2x3y3y4,P) = 13. This
implies either a3y1 ∈ E or a2y4 ∈ E. If a3y1 ∈ E, then d(x3,b3b4) = 0; if a2y4 ∈ E, then
d(x2,b2b4) = 0. In each case, e(P,C)≤ 24, a contradiction.

Therefore, b4x4 6∈ E. Similarly, if a3y1 ∈ E, then d(x3,b3b4) = 0; if a2y4 ∈ E, then
d(x2,b2b4) = 0. In each case, e(P,C)≤ 24, a contradiction. Therefore, a3y1 6∈ E and a2y4 6∈
E. Thus e(P,C)≤ 24, a contradiction.

Case 2. d(a1,C) = 2. By symmetry, we divide the proof into three cases: a1y1 ∈ E, a1y2 ∈
E; a1y2 ∈ E, a1y3 ∈ E or a1y1 ∈ E, a1y3 ∈ E.

Case 2.1. a1y1 ∈ E, a1y2 ∈ E. Since d(a1,C) = 2, it follows that a1y3 6∈ E, a1y4 6∈ E. Since
a1y1x1y4x4y3x3y2a1 is an 8-cycle in G[P

⋃
C], we have {x2b1,x2b4} 6⊆ E. Similarly, we get

{b2x3,a3y3} 6⊆ E and {a3y4,x3b4} 6⊆ E.
If a3y1 ∈ E, we have d(x3,b3b4) = 0. Since 〈a1b1a2b2a3,y1x2y2〉 ⊇ C8. If a2y4 ∈ E,

we have d(x2,b2b4) = 0. Since 〈a1b1a2,y2x3y3x4y4〉 ⊇ C8. Therefore, if {a3y1,a2y4} ⊆
E, we have d(x2,P) = 2, d(x4,P) = 4 and d(y4,P) = 3 as e(P,C) ≥ 25. In particular,
a3y4 ∈ E, b3x2 ∈ E and b4x4 ∈ E. Then G[P

⋃
C] contains two independent 8-cycles

a1b1a2b2a3y4x1y1a1 and b4a4b3x2y2x3y3x4b4, a contradiction. Therefore, {a3y1,a2y4} 6⊆ E.
Suppose b4x4 ∈ E. Since 〈b2a3b3a4b4,x1y4x4〉 ⊇C8, we have a2y3 6∈ E. As e(P,C)≥ 25,

either a3y1 ∈E or a2y4 ∈E. If a3y1 ∈E, then d(x3,b3b4) = 0; if a2y4 ∈E, then d(x2,b2b4) =
0. In each case, e(P,C)≤ 24, a contradiction.

Now we may assume b4x4 6∈ E. Since e(P,C) ≥ 25, it follows that either a3y1 ∈ E or
a2y4 ∈ E. Similarly, in each case, we can get e(P,C)≤ 24, a contradiction.

Case 2.2. a1y2 ∈ E, a1y3 ∈ E. Since d(a1,C) = 2, we have a1y1 6∈ E, a1y4 6∈ E. If
{a2y1,b4x2} ⊆ E, then 〈a2b2a3b3a4b4, y1x2〉 ⊇ C8 and 〈a1b1,x1y4x4y3x3y2〉 ⊇ C8, a con-
tradiction. Therefore, {a2y1,b4x2} 6⊆ E. Similarly, {a2y4,b4x4} 6⊆ E and {x3b1,x3b4} 6⊆ E.

If a3y1 ∈ E, we have d(x3,b3b4) = 0. Since 〈a1b1a2b2a3,y1x2y2〉 ⊇ C8. If a2y4 ∈ E,
we have d(x2,b2b4) = 0. Since 〈a1b1a2,y2x3y3x4y4〉 ⊇C8. Therefore, if {a3y1,a2y4} ⊆ E,
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it follows that d(x2,P) = 2 and d(x4,P) + d(y4,P) = 6. Since e(P,C) ≥ 25. In partic-
ular, a3y4 ∈ E, b3x2 ∈ E, x4b2 ∈ E and a4y4 ∈ E. Then G[P

⋃
C] contains two inde-

pendent 8-cycles a1b1a2b2x4y3x3y2a1 and y1x2b3a3y4a4b4x1y1, a contradiction. Therefore,
{a3y1,a2y4} 6⊆ E.

Similarly, if a3y4 ∈ E, we have d(x3,b3b4) = 0. Since 〈a1b1a2b2a3,y3x4y4〉 ⊇ C8. If
a2y1 ∈ E, we have d(x4,b2b4) = 0. Since 〈a1b1a2,y1x2y2x3y3〉 ⊇C8. Therefore, if {a3y4,
a2y1} ⊆ E, then d(x3,b3b4) = 0 and d(x4,b2b4) = 0. Note that {a3y1,a2y4} 6⊆ E and
{a2y1,b4x2} 6⊆ E, we have e(P,C)≤ 24, a contradiction. Thus {a3y4,a2y1} 6⊆ E.

If a2y1 ∈ E, then d(x4,b2b4) = 0. Note that {a2y1,b4x2} 6⊆ E and {a3y4,a2y1} 6⊆ E, then
b4x2 6∈ E and a3y4 6∈ E. Therefore, e(P,C)≤ 24, a contradiction. Thus, a2y1 6∈ E. With the
same proof, we can get a2y4 6∈ E.

Suppose a3y1 6∈ E and a3y4 6∈ E. Since e(P,C) ≥ 25, we have d(x2,P) = d(y2,P) =
d(y3,P) = d(x4,P) = 4. By Lemma 2.1, 〈x2y1x1y4x4,b3a4b4〉 ⊇C8 and 〈y2x3y3,a1b1a2b2a3
〉 ⊇C8, a contradiction.

Now we have either a3y1 ∈ E or a3y4 ∈ E. By symmetry, say a3y1 ∈ E. Then d(x3,b3b4)
= 0 as we proved before. If {b4x4,b2x2}⊆E, then 〈a3b3a4b4,x4y4x1y1〉⊇C8 and 〈a1b1a2b2,
x2y2x3y3〉⊇C8, a contradiction. Therefore, {b4x4,b2x2} 6⊆E. Since e(P,C)≥ 25, d(x2,P)+
d(x4,P) = 7 and d(y2,P) = d(y3,P) = 4. This implies e(x2x4,b3b4)≥ 3 and e(y2y3,a1a3) =
4. Then 〈y2x3y3,a1b1a2b2a3〉 ⊇C8 and 〈b3a4b4,x2y1x1y4x4〉 ⊇C8 by Lemma 2.1, a contra-
diction.

Case 2.3. a1y1 ∈ E, a1y3 ∈ E. Since d(a1,C) = 2, we have a1y2 6∈ E and a1y4 6∈ E. If
{a3y1,b4x3} ⊆ E, then G[P

⋃
C] contains two independent 8-cycles a3b3a4b4x3y2x2y1a3

and a1b1a2b2x1y4x4y3a1, a contradiction. This implies that {a3y1,b4x3} 6⊆ E. Similarly,
{b2x3,a3y3} 6⊆ E, {a4y4,b4x2} 6⊆ E.

If a3y4 ∈ E, we have d(x3,b3b4) = 0. Since 〈a1b1a2b2a3,y3x4y4〉 ⊇C8. If d(a2,y1y3) >
0, we have d(x4,b2b4) = 0. Since 〈a1b1a2,y1x2y2x3y3〉 ⊇ C8. Therefore, if a3y4 ∈ E and
d(a2,y1y3) > 0, then d(x3,b3b4) = 0 and d(x4,b2b4) = 0. Thus, e(P,C) ≤ 24, a contradic-
tion. This implies either a3y4 6∈ E or d(a2,y1y3) = 0.

Suppose d(a2,y1y3) = 0. Since e(P,C) ≥ 25, it follows that d(x2,P)+ d(y4,P) = 6 and
d(y2,P) = 3. In particular, x2b3 ∈ E and y2a4 ∈ E. Therefore, 〈a1b1a2b2a3b3,y1x2〉 ⊇C8

and 〈a4b4,x1y4x4y3x3y2〉 ⊇C8, a contradiction.
Now we may assume a3y4 6∈E and d(a2,y1y3) > 0. As we proved before, d(x4,b2b4) = 0.

Therefore, e(P,C)≤ 24, a contradiction.

Case 3. d(a1,C) = 3. Since {a1y1,a1y4} 6⊆ E, w.l.o.g., say {a1y1,a1y2,a1y3} ⊆ E, a1y4 6∈
E. Then {x2b1,x2b4} 6⊆ E, for otherwise G[P

⋃
C] contains two independent 8-cycles

a1y1x1y4x4y3x3y2a1 and x2b1a2b2a3b3a4b4x2. If {x2b3,y2a4} ⊆ E, then G[P
⋃

C] contains
two independent 8-cycles a1b1a2b2a3b3x2y1a1 and a4b4x1y4x4y3x3y2a4, a contradiction.
Thus, {x2b3,y2a4} 6⊆ E. With the same proof, we can get {x3b1,x3b4} 6⊆ E, {x4b1,y4a2} 6⊆
E. If d(a2,y1y3) > 0, then d(x4,b2b4) = 0, for otherwise 〈a1b1a2,y1x2y2x3y3〉 ⊇ C8 and
〈b2a3b3a4b4,x1y4x4〉 ⊇ C8. Therefore, either d(a2,y1y3) = 0 or d(x4,b2b4) = 0. Since
e(P,C)≥ 25, d(y1,P)+d(y3,P)+d(x4,P)+d(y4,P) = 12 and d(x3,P) = 3. In particular,
a3y3 ∈ E and b2x3 ∈ E. Then 〈a3b3a4b4,x1y4x4y3〉 ⊇C8 and 〈a1b1a2b2,y1x2y2x3〉 ⊇C8, a
contradiction. This completes the proof of Lemma 2.2.
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Lemma 2.3. Let P = a1b1a2b2a3b3a4b4a5b5 be a 10-path, C = x1y1x2y2x3y3x4y4x1 be an
8-cycle, P and C are independent, where {a1,x1} ⊆ V1. If e(P,C) ≥ 31, then G[P

⋃
C−

{a1,b1}]⊇ 2C8, or G[P
⋃

C−{a5,b5}]⊇ 2C8, or G[P
⋃

C−{a1,b5}]⊇ 2C8.

Proof. Suppose on the contrary that the lemma fails. Let P1 = P−a1−b1, P2 = P−a5−
b5, P3 = P−a1−b5.

Suppose that e(P3,C) ≥ 25. Since G[P3
⋃

C] 6⊇ 2C8, we have either d(b1,C) = 0 or
d(a5,C) = 0 by Lemma 2.2. W.l.o.g., say d(b1,C) = 0. This implies e(P3,C) ≤ 28 and
therefore e(a1b5,C) ≥ 3. Since e(P3,C) ≥ 25, we have d(x,C) ≥ 1 for all x ∈ V (P3− b1).
Thus, e(P1,C) ≥ 31− d(a1,C) ≥ 27. Note that G[P1

⋃
C] 6⊇ 2C8 and d(a2,C) ≥ 1, we

get d(b5,C) = 0 by Lemma 2.2. This implies d(a1,C) ≥ 3 and e(P2,C) ≥ 27. Note that
d(b4,C) > 0, then G[P2

⋃
C] ⊇ 2C8 by Lemma 2.2, a contradiction. Hence e(P3,C) ≤ 24

and e(a1b5,C)≥ 7. The following proof is divided into two cases.

Case 1. Either e(P1,C) ≥ 25 or e(P2,C) ≥ 25. By symmetry, say e(P1,C) ≥ 25. Since
e(a1b5,C) ≥ 7, we have d(b5,C) ≥ 3 and d(a1,C) ≥ 3. Then d(a2,C) = 0, for otherwise
G[P1

⋃
C] ⊇ 2C8 by Lemma 2.2. Since e(P1,C) ≥ 25, it follows that d(u,C) > 0 for every

u ∈ V (P1− a2). As d(a1,C) > 0, d(b4,C) > 0 and G[P2
⋃

C] 6⊇ 2C8, we get e(P2,C) ≤ 24
by Lemma 2.2.

Since d(a1,C) ≥ 3 and d(b3,C) ≥ 1, w.l.o.g., we may say {a1y1,a1y2,b3x1} ⊆ E. If
{a4y4,b4x2} ⊆ E, then G[P2

⋃
C] contains two independent 8-cycles a1b1a2b2a3b3x1y1a1

and a4b4x2y2x3y3x4y4a4, a contradiction. Therefore, we have {a4y4,b4x2} 6⊆ E. Similarly,
{b4x3,a3y2} 6⊆ E, for otherwise G[P2

⋃
C] contains two independent 8-cycles a1b1a2b2a3y2

x2y1a1 and b3a4b4x3y3x4y4x1b3.
Suppose b3x2 ∈E. Then {a4y2,b4x1} 6⊆E, for otherwise G[P2

⋃
C] contains two indepen-

dent 8-cycles a1b1a2b2a3b3x2y1a1 and a4y2x3y3x4y4x1b4a4. Similarly, {a4y1,b4x3} 6⊆ E.
Since e(P1,C)≥ 25, we have d(a3,C) = d(b2,C) = d(b3,C) = 4 and d(a4,C)+d(b4,C) = 5.
In particular, {a3y3,a3y4,a4y3,b2x3,b3x4,b4x4} ⊆ E. Thus G[P2

⋃
C] contains two indepen-

dent 8-cycles a1y1x2y2x3b2a2b1a1 and b4x4b3x1y4a3y3a4b4, a contradiction.
So b3x2 6∈ E. Since e(P1,C)≥ 25, d(b2,C) = 4, d(b3,C) = 3 and d(a4,C)+d(b4,C)+

d(a3,C) = 10. In particular, b4x1 ∈ E, a3y3 ∈ E, x3b2 ∈ E. Then G[P2
⋃

C] contains two
independent 8-cycles a1b1a2b2x3y2x2y1a1 and b4x1y4x4y3a3b3a4b4, a contradiction.

Case 2. e(P1,C)≤ 24 and e(P2,C)≤ 24. Since e(P,C)≥ 31, we have e(a1b1,C)≥ 7, e(a1b5,
C)≥ 7 and e(a5b5,C)≥ 7. W.l.o.g., say d(a1,C) = 4, d(b5,C)≥ 3. If xi ∈N(b1,C)

⋂
N(b4,

C) for some i ∈ {1,2,3,4}, then 〈xi,b1a2b2a3b3a4b4〉 ⊇ C8 and 〈a1,V (C)− xi〉 ⊇ C8, a
contradiction. Therefore, we have N(b1,C)

⋂
N(b4,C) = /0 and d(b1,C)+d(b4,C)≤ 4.

Suppose d(b5,C) = 4. Just as the same proof before, if N(a2,C)
⋂

N(a5,C) 6= /0, then
G[P1

⋃
C] contains two independent 8-cycles, a contradiction. Therefore, we have N(a2,C)⋂

N(a5,C) = /0 and d(a2,C)+ d(a5,C) ≤ 4. Since e(P,C) ≥ 31, it follows that d(b2,C)+
d(a3,C)+ d(b3,C)+ d(a4,C) ≥ 15. This implies either e(b2a3,C) = 8 or e(b3a4,C) = 8,
w.l.o.g., say e(b2a3,C) = 8. Therefore, d(b2,C) = d(a3,C) = 4, e(b3a4,C) ≥ 7. Since
d(b1,C) ≥ 3 and d(a5,C) ≥ 3, we have e(b1b2,x1x3) ≥ 3 and e(a3a5,y3y4) ≥ 3. There-
fore, 〈b1a2b2,x1y1x2y2x3〉 ⊇C8 and 〈y3x4y4,a3b3a4b4a5〉 ⊇C8 by Lemma 2.1. This implies
G[P3

⋃
C] contains two independent 8-cycles, a contradiction.

Now we have d(b5,C) = 3. Since d(a5,C)+ d(b5,C) ≥ 7, we have d(a5,C) = 4. Since
d(b1,C) ≥ 3, w.l.o.g., say N(b1,C) ⊇ {x1,x2,x3}. If d(b3,x1x2) > 0, then 〈b1a2b2a3b3,
x1y1x2〉 ⊇ C8 and therefore 〈y2x3y3x4y4,a4b4a5〉 6⊇ C8. This implies that d(a4, y2y4) =
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0. Similarly, if d(b3,x3x4) > 0, then d(a4,y1y3) = 0. Therefore, we have d(b3,C) +
d(a4,C) ≤ 4. Since e(P,C) ≥ 31, it follows that d(a3,C) = d(b2,C) = d(a5,C) = 4 and
d(b1,C) + d(b4,C) = 4. Therefore, e(b1b2,x1x3) = 4 and e(a3a5,y3y4) = 4. By Lemma
2.1, 〈b1a2b2,x1y1x2y2x3〉 ⊇C8 and 〈y3x4y4,a3b3a4b4a5〉 ⊇C8, a contradiction.

Lemma 2.4. Let C1 = a1b1a2b2a3b3a4b4a1, C2 = x1y1x2y2x3y3x4y4x1 be two independent
8-cycles, where {a1,x1} ⊆V1. If e(C1,C2)≥ 25, then G[C1

⋃
C2] contains two independent

8-cycles C′, C′′ such that each of them has a chord.

Proof. Suppose on the contrary that the lemma fails. Since e(C1,C2)≥ 25, we have d(u,C2)
= 4 and d(v,C1) = 4 for some u ∈ V (C1), v ∈ V (C2). If {u,v} ⊆ Vi for some i ∈ {1,2},
then C1− u + v, C2− v + u contain two independent 8-cycles with each having a chord, a
contradiction. Therefore, we may assume

d(a1,C2) = 4, d(y1,C1) = 4.

d(bi,C2)≤ 3, d(xi,C1)≤ 3 for every i ∈ {1,2,3,4}
Suppose d(a3,C2) ≥ 3. Then e(a1a3,C2) ≥ 7. Therefore, e(a1a3,y1y2) ≥ 3 and e(a1a3,

y1y4)≥ 3. By Lemma 2.1, both 〈a1b1a2b2a3,y1x2y2〉 and 〈a1b1a2b2a3,y1x1y4〉 contain an 8-
cycle with each having a chord. Therefore, neither 〈b3a4b4,x3y3x4y4x1〉 nor 〈b3a4b4,x2y2x3
y3x4〉 contain an 8-cycle with each having a chord. This implies e(b3b4,x1x3) ≤ 2 and
e(b3b4,x2x4) ≤ 2 by Lemma 2.1. In particular, e(b3b4,C2) ≤ 4. Similarly, we have both
〈a1b4a4b3a3,y1x2y2〉 and 〈a1b4a4b3a3,y1x1y4〉 contain an 8-cycle with each having a chord.
This implies e(b1b2,C2)≤ 4. Then ∑

4
i=1 d(bi,C2)≤ 8 and therefore e(C1,C2)≤ 24, a con-

tradiction.
Now we have d(a3,C2)≤ 2. With the same proof, if e(a2a4,C2)≥ 7, then e(C1,C2)≤ 24,

a contradiction. Thus, e(a2a4,C2) ≤ 6. This implies that ∑
4
i=1 d(ai,C2) ≤ 12. Note that

d(bi,C2)≤ 3 for every i ∈ {1,2,3,4}, then e(C1,C2)≤ 24, a contradiction. This completes
the proof of Lemma 2.4.

Lemma 2.5. Let C = a1b1a2b2a3b3a1 be a 6-cycle, P = x1y1 be a 2-path, C and P are
independent, where {a1,x1} ⊆V1. If d(x1,C)≥ 2, d(y1,C) > 0, then G[C

⋃
P] contains an

8-cycle with at least two chords.

Proof. If d(x1,C) = 3, obviously G[C
⋃

P] contains an 8-cycle with at least two chords.
Now we may assume d(x1,C) = 2, w.l.o.g., say N(x1,C) = {b1,b2}. Since d(y1,C) > 0,
we have either a1y1 ∈ E, or a2y1 ∈ E, or a3y1 ∈ E. If a1y1 ∈ E, then G[C

⋃
P] contains

an 8-cycle a1b3a3b2a2b1x1y1a1 with two chords a1b1 and b2x1; if a2y1 ∈ E, then G[C
⋃

P]
contains an 8-cycle x1b1a1b3a3b2a2y1x1 with two chords a2b1 and x1b2; if a3y1 ∈ E, then
G[C

⋃
P] contains an 8-cycle y1a3b3a1b1a2b2x1y1 with two chords b1x1 and a3b2. In each

case, G[C
⋃

P] contains an 8-cycle with at least two chords.

Lemma 2.6. Let P1 = a1b1a2b2a3 be a 5-path, P2 = y1x2y2 be a 3-path, P1 and P2 are
independent, where {a1,x2} ⊆V1. Then the following two statements hold.

(1) If e(a1a3,y1y2) = 4, then G[P1
⋃

P2] contains an 8-cycle with two chords.
(2) If e(a1a3,y1y2) ≥ 3 and a1b2 ∈E, then G[P1

⋃
P2] contains an 8-cycle with two

chords.

Proof. Easy to check.
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Lemma 2.7. Let C1 and C2 be two independent 8-cycles in G such that each of them has a
chord. If e(C1,C2)≥ 25, then G[C1

⋃
C2] contains two independent 8-cycles such that each

of them has at least two chords.

Proof. For simplicity, we will use K to denote an 8-cycle with two chords in the following.
Suppose on the contrary that the lemma fails. Let C1 = a1b1a2b2a3b3a4b4a1 with chord a1b2
and C2 = x1y1x2y2x3y3x4y4x1 with chord x1y2, {a1,x1} ⊆V1, w.l.o.g. As e(C1,C2)≥ 25, we
can assume d(ai,C2) = 4 for some i. If d(x j,C1) = 4 for some j, then C1−ai +x j, C2−x j +
ai contain two independent 8-cycles with each having at least two chords, a contradiction.
Therefore, d(x j,C1)≤ 3 for every j ∈ {1,2,3,4}. Similarly, if d(bt ,C2) = 4 for some t, then
d(y j,C1) ≤ 3 for every j ∈ {1,2,3,4}. This implies that e(C1,C2) ≤ 24, a contradiction.
Thus, we get d(bt ,C2)≤ 3 for every t ∈ {1,2,3,4}.

As G[C1
⋃

C2] doesn’t contain two independent 8-cycles such that each of them has at
least two chords, then either 〈a2b1,C2− x2− y1〉 6⊇ K or 〈x2y1,C1−a2−b1〉 6⊇ K, w.l.o.g.,
say 〈x2y1,C1−a2−b1〉 6⊇ K. The following proof is divided into three cases.

Case 1. d(x2,C1−a2−b1)≤ 2 and d(y1,C1−a2−b1)≤ 2. Since 〈x2y1,C1−a2−b1〉 6⊇ K,
we have e(x2y1,C1− a2− b1) ≤ 2 by Lemma 2.5. This implies d(x2,C1)+ d(y1,C1) ≤ 4.
Since e(C1,C2) ≥ 25, d(y2,C1) = d(y4,C1) = 4 and d(x3,C1) = d(x4,C1) = 3. If e(x3x4,
b2b4) ≥ 3, then 〈b4a1b1a2b2,x3y3x4〉 ⊇ K and 〈a3b3a4, y4x1y1x2y2〉 ⊇ K by Lemma 2.6, a
contradiction. Thus, e(x3x4,b2b4) ≤ 2. Note that d(x3,C1) = d(x4,C1) = 3, then e(x3x4,
b1b3) = 4. By Lemma 2.6, 〈x3y3x4,b1a2b2a3b3〉 ⊇ K and 〈a1b4a4,y4x1y1x2y2〉 ⊇ K, a con-
tradiction.

Case 2. d(x2,C1−a2−b1) = 3. Since 〈x2y1,C1−a2−b1〉 6⊇ K,d(y1,C1−a2−b1) = 0 by
Lemma 2.5. This implies that d(y1,C1)≤ 1. Since e(C1,C2)≥ 25, it follows that d(y2,C1) =
d(y4,C1) = 4 and d(x3,C1) = d(x4,C1) = 3. The rest of the proof is just same as that in Case
1.

Case 3. d(y1,C1 − a2 − b1) = 3. Obviously, a1y1 ∈ E, a3y1 ∈ E and a4y1 ∈ E. Since
〈x2y1,C1− a2− b1〉 6⊇ K, we have d(x2,C1− a2− b1) = 0 by Lemma 2.5. This implies
x2b2 6∈ E, x2b3 6∈ E and x2b4 6∈ E.

Suppose x2b1 6∈ E. Then d(x2,C1) = 0. Since e(C1,C2)≥ 25, d(y2,C1) = d(y4,C1) = 4
and d(x3,C1) = d(x4,C1) = 3. The rest of the proof is just same as that in Case 1.

Now we get x2b1 ∈E and d(x2,C1) = 1. Since e(C1,C2)≥ 25, we have e(y1y2y3y4,C1)≥
15. Since x2b1a1b4a4b3a3y1x2 is an 8-cycle in G with two chords a1y1 and a4y1,〈a2b2,x1y2
x3y3x4y4〉 6⊇ K. Note that e(y1y2y3y4,C1) ≥ 15, then d(a2,y2y3y4) ≥ 2. By Lemma 2.5,
d(b2,x1x3x4) = 0. This implies x1b2 6∈ E, x3b2 6∈ E and x4b2 6∈ E. Since e(y1y2y3y4,C1)≥
15, we have e(y3y4,a1a3) ≥ 3. By Lemma 2.6, 〈a1b1a2b2a3,y3x4y4〉 ⊇ K and therefore
〈b3a4b4,x1y1x2y2x3〉 6⊇ K. This implies e(b3b4,x1x3)≤ 2. Note that x1b2 6∈ E and x3b2 6∈ E,
then e(x1x3,C1) ≤ 4. Since d(x2,C1) = 1 and d(x4,C1) ≤ 3, we have e(C1,C2) ≤ 24, a
contradiction.

3. Proof of Theorem 1.2

In this section, we will prove the Theorem 1.2. Let G = (V1,V2;E) be a bipartite graph with
|V1 |=|V2 |= 4k and the minimum degree δ (G)≥ 3k +1, where k is a positive integer.

We first claim that G ⊇ kC8. Suppose on the contrary that this is not true. We can
assume that G is a maximal counterexample, i.e., G + xy ⊇ kC8 for every edge xy 6∈ E(G).
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Then G contains k−1 independent 8-cycles C1,C2, · · · ,Ck−1 and an 8-path P such that P is
independent of H =

⋃k−1
i=1 Ci. Denote P = a1b1a2b2a3b3a4b4 with a1 ∈V1. As G 6⊇ kC8, we

have G[V (P)] 6⊇C8. Then e(G[P])≤ 16−3 = 13 and e(a1b4,P)≤ 4. Hence, e(a1b4,H)≥
6(k− 1)+ 4. Then there exists an 8-cycle Ci ⊆ H such that d(a1b4,Ci) ≥ 7. W.l.o.g., say
d(a1b4,C1) ≥ 7, C1 = x1y1x2y2x3y3x4y4x1 with x1 ∈ V1. We may assume d(a1,C1) = 4
and d(b4,C1) ≥ 3. In particular, w.l.o.g., let {x1,x2,x3} ⊆ N(b4,C1). Denote P′ = y1Px1.
Since G[P

⋃
C1] 6⊇ 2C8, we have e(P,C1)≤ 24 by Lemma 2.2. Thus, ∑x∈V (P) d(x,P

⋃
C1)≤

50. Since e(x1y1,P
⋃

C1) ≤ 16, it follows that ∑x∈V (P′) d(x,P
⋃

C1) ≤ 66. Then we have
e(P′,H−C1) ≥ 10(3k + 1)− 66 = 30(k− 2)+ 4. This means that there exists an 8-cycle
C j ∈ H −C1 such that e(P′,C j) ≥ 31. W.l.o.g., say j = 2. Since G[P

⋃
C2] 6⊇ 2C8, we

have either G[P′
⋃

C2− x1−b4]⊇ 2C8 or G[P′
⋃

C2−a1− y1]⊇ 2C8 by Lemma 2.3. In the
former case, x1b4x2y2x3y3x4y4x1 is an 8-cycle in G. In the latter case, a1y1x2y2x3y3x4y4a1
is an 8-cycle in G. Therefore, G[P

⋃
C1

⋃
C2]⊇ 3C8, a contradiction. This proves our claim.

Now we choose k independent 8-cycles in G with as many having a chord as possible.
Let C1,C2, · · · ,Ck be such a choice. We claim that Ci has a chord for every i ∈ {1,2, · · · ,k}.
If not, assume Ci has no chord for some i, say i = 1. This implies e(C1) = 8. Thus,
∑x∈V (C1) d(x,

⋃k
i=2 Ci)≥ 8(3k+1)−16 = 24(k−1)+16. Therefore, there exists an 8-cycle

C j( j 6= 1), such that e(C1,C j) ≥ 25. By Lemma 2.4, G[C1
⋃

C j] contains two independent
8-cycles with each having a chord. This contradicts to our choice of C1,C2, · · · ,Ck.

Finally, we choose k independent 8-cycles in G such that each 8-cycle has a chord.
Subject to this, we choose k independent 8-cycles in G with as many having at least two
chords as possible. Let C1,C2, · · · ,Ck be such a choice. If Ci does not have two chords for
some i ∈ {1,2, · · · ,k}, say i = 1. This implies e(C1) = 9. Thus, ∑x∈V (C1) d(x,

⋃k
i=2 Ci) ≥

8(3k + 1)− 18 = 24(k− 1) + 14. Therefore, there exists an 8-cycle C j( j 6= 1), such that
e(C1,C j) ≥ 25. By Lemma 2.7, G[C1

⋃
C j] contains two independent 8-cycles with each

having at least two chords. This contradicts to our choice of C1,C2, · · · ,Ck. This completes
the whole proof.
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