Vertex-Disjoint Cycles of Order Eight with Chords in a Bipartite Graph

${ }^{1}$ Qingsong Zou, ${ }^{2}$ Hongyu Chen and ${ }^{3}$ Guojun Li
${ }^{1}$ Department of Mathematics, Xidian University, Xi'an, Shanxi 710071, P. R. China
${ }^{2}$ School of Sciences, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
${ }^{3}$ School of Mathematics, Shandong University, Jinan, 250100, P. R. China
${ }^{1}$ zqswll@ gmail.com, ${ }^{2}$ hongyuchen86@126.com, ${ }^{3}$ guojun@csbl.bmb.uga.edu

Abstract

Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=4 k$, where k is a positive integer. In this paper, it is proved that if the minimum degree of G is at least $3 k+1$, then G contains k vertex-disjoint cycles of order eight such that each of them has at least two chords.

2010 Mathematics Subject Classification: 05C38, 05C70
Keywords and phrases: Bipartite graph, minimum degree, vertex-disjoint cycles.

1. Introduction

Let G be a simple graph and $k \geq 1$ be an integer. The minimum degree of G is denoted by $\boldsymbol{\delta}(G)$. Corrádi and Hajanal [2] proved that if G is of order at least $3 k$ and the minimum degree of it is at least $2 k$, then G contains k vertex-disjoint cycles. When the order of G is exactly $3 k$, then G contains k vertex-disjoint triangles. In [5], Wang considered vertexdisjoint cycles in a bipartite graph and gave the following conjecture.

Conjecture 1.1. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n=s k$, where n, k and s are integers with $s \geq 2$ and $k \geq 1$. If the minimum degree of G is at least $(s-1) k+1$, then G contains k vertex-disjoint subgraphs isomorphic to $K_{s, s}$.

Wang verified this conjecture for $k \leq 4$ in [4,5]. For $s=2$, Wang [3] proved that if $G=\left(V_{1}, V_{2} ; E\right)$ is a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=2 k$ and the minimum degree of G is at least $k+1$, then G contains $k-1$ vertex-disjoint quadrilaterals and a path of order 4 such that the path is vertex disjoint of all the $k-1$ quadrilaterals. For $s=3$, Wang [5] proved that if $G=\left(V_{1}, V_{2} ; E\right)$ is a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=3 k$ and the minimum degree of G is at least $2 k+1$, then G contains k vertex-disjoint cycles of order six such that each of them has at least two chords. When the order of G is large enough, Zhao [6] proved a result stronger than Conjecture 1.1.

[^0]Theorem 1.1. For each $s \geq 2$, there exists k_{0} such that the following holds for all $k \geq k_{0}$. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=n=$ sk such that the minimum degree

$$
\delta(G) \geq \begin{cases}\frac{n}{2}+s-1, & \text { if } k \text { is even }, \\ \frac{n+3 s}{2}-2, & \text { if } k \text { is odd }\end{cases}
$$

Then G contains k vertex-disjoint subgraphs isomorphic to $K_{s, s}$.
In this paper, we consider the case $s=4$ and show the following result.
Theorem 1.2. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=4 k$, where k is a positive integer. If the minimum degree of G is at least $3 k+1$, then G contains k vertexdisjoint cycles of order eight such that each of them has at least two chords.

We will use the following terminology and notation, where any undefined notation follows that of Bondy and Murty [1]. Let G be a simple graph. The order of G is $|V(G)|$ and its size is $e(G)=|E|$. A set of graphs is said to be independent if no two of them have any common vertex. If $A_{1}, A_{2}, \ldots, A_{n}$ are subsets of $V(G)$, we use $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ to denote the subgraph of G induced by $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. For $x \in V(G)$, let $N_{G}(x)=\{y \in V(G) \mid x y \in E(G)\}$. If H is a subgraph of G, then $N_{H}(x)=N_{G}(x) \cap V(H), d(x, H)=\left|N_{H}(x)\right|$. Let T be a simple graph and k be a positive integer, then $G \supseteq k T$ means that G contains k independent subgraphs isomorphic to T. Let X and Y be two independent subgraphs of G or two disjoint subsets of $V(G)$. We define $G[X]$ to be the subgraph of G induced by X, and $e(X, Y)$ to be the number of edges between X and Y. A k-cycle is a cycle of order k and a m-path is a path of order m, denoted by C^{k} and P^{m}, respectively. Particularly, a quadrilateral is a cycle of order 4 , and a triangle is a cycle of order 3. For a k-cycle $C=x_{1} x_{2} \ldots x_{k} x_{1}, x_{i} x_{i+1}$ is an edge in C. For a cycle C of G, a chord of C is an edge of $G-E(C)$ which joins two vertices of C.

The structure of the paper is as follows. First we will show some useful lemmas in Section 2, then prove the main result in Section 3.

2. Lemmas

In this section, we will prove some useful lemmas. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph.
Lemma 2.1. Let $P_{1}=a_{1} b_{1} a_{2}, P_{2}=y_{1} x_{2} y_{2} x_{3} y_{3}, P_{1}$ and P_{2} are independent, where $\left\{a_{1}, x_{2}\right\} \subseteq$ V_{1}. If e $\left(a_{1} a_{2}, y_{1} y_{3}\right) \geq 3$, then $G\left[P_{1} \cup P_{2}\right]$ contains an 8 -cycle with at least a chord.
Proof. These are easily verified.
Lemma 2.2. Let $P=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ be an 8 -path, $C=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ be an 8 cycle, P and C are independent, where $\left\{a_{1}, x_{1}\right\} \subseteq V_{1}$. If $e(P, C) \geq 25, d\left(a_{1}, C\right)>0, d\left(b_{4}, C\right)$ >0, then $G[P \cup C]$ contains two independent 8 -cycles.
Proof. Suppose on the contrary that $G[P \cup C] \nsupseteq 2 C^{8}$. Since $e(P, C) \geq 25$, there exists a vertex $x \in V(C)$, such that $d(x, P)=4$. W.l.o.g., say $d\left(x_{1}, P\right)=4$. Since $G\left[P-a_{1}+x_{1}\right] \supseteq$ $C^{8}, G\left[C-x_{1}+a_{1}\right] \nsupseteq C^{8}$. Therefore, $d\left(a_{1}, C\right) \leq 3$ and $\left\{a_{1} y_{1}, a_{1} y_{4}\right\} \nsubseteq E$. We distinguish three cases: $d\left(a_{1}, C\right)=1, d\left(a_{1}, C\right)=2$ or $d\left(a_{1}, C\right)=3$.
Case 1. $d\left(a_{1}, C\right)=1$. By symmetry, we distinguish two cases: $a_{1} y_{1} \in E$ or $a_{1} y_{2} \in E$.
Case 1.1. $a_{1} y_{1} \in E$. Since $d\left(a_{1}, C\right)=1$, we have $a_{1} y_{2} \notin E, a_{1} y_{3} \notin E$ and $a_{1} y_{4} \notin E$. Then $\left\{b_{2} x_{3}, a_{3} y_{3}\right\} \nsubseteq E$, for otherwise $G[P \cup C]$ contains two independent 8-cycles $a_{1} y_{1} x_{2} y_{2} x_{3} b_{2} a_{2}$
$b_{1} a_{1}$ and $a_{3} b_{3} a_{4} b_{4} x_{1} y_{4} x_{4} y_{3} a_{3}$. If $\left\{b_{4} x_{2}, a_{4} y_{4}\right\} \subseteq E$, then $G[P \cup C]$ contains two independent 8-cycles $a_{4} b_{4} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} a_{4}$ and $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} x_{1} y_{1} a_{1}$, a contradiction. Therefore, $\left\{b_{4} x_{2}, a_{4} y_{4}\right\} \nsubseteq E$. With the same proof, we can get $\left\{b_{3} x_{2}, a_{4} y_{2}\right\} \nsubseteq E,\left\{b_{1} x_{4}, a_{2} y_{4}\right\} \nsubseteq E$.

Suppose $b_{4} x_{4} \in E$. Then $\left\langle b_{2} a_{3} b_{3} a_{4} b_{4}, x_{4} y_{4} x_{1}\right\rangle \supseteq C^{8}$ and therefore $\left\langle a_{1} b_{1} a_{2}, y_{1} x_{2} y_{2} x_{3} y_{3}\right\rangle \nsupseteq$ C^{8}. This implies $a_{2} y_{3} \notin E$. Therefore, we get $e\left(x_{2} y_{2} x_{4} y_{4}, P\right) \leq 11$ and $e\left(x_{3} y_{3}, P\right) \leq 5$. Thus, $e(P, C) \leq 24$, a contradiction.

Hence $b_{4} x_{4} \notin E$. Thus $e\left(x_{2} y_{2} x_{4} y_{4}, P\right) \leq 10$ and $e\left(x_{3} y_{3}, P\right) \leq 6$. This implies $e(P, C) \leq 24$, a contradiction.

Case 1.2. $a_{1} y_{2} \in E$. Since $d\left(a_{1}, C\right)=1$, it follows that $a_{1} y_{1} \notin E, a_{1} y_{3} \notin E, a_{1} y_{4} \notin E$. Since $\left\langle a_{1} b_{1} a_{2} b_{2}, x_{1} y_{1} x_{2} y_{2}\right\rangle \supseteq C^{8}$ and $G[P \cup C] \nsupseteq 2 C^{8}$, we have $\left\{a_{3} y_{4}, x_{3} b_{4}\right\} \nsubseteq E$. Similarly, we can get $\left\{a_{2} y_{1}, b_{4} x_{2}\right\} \nsubseteq E$.

If $a_{3} y_{1} \in E$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$ as $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{1} x_{2} y_{2}\right\rangle \supseteq C^{8}$. If $a_{2} y_{4} \in E$, then $d\left(x_{2}\right.$, $\left.b_{2} b_{4}\right)=0$ as $\left\langle a_{1} b_{1} a_{2}, y_{2} x_{3} y_{3} x_{4} y_{4}\right\rangle \supseteq C^{8}$. Therefore, if $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \subseteq E$, then $d\left(x_{3}, b_{3} b_{4}\right)=$ 0 and $d\left(x_{2}, b_{2} b_{4}\right)=0$. This implies $e(P, C) \leq 25$. Since $e(P, C) \geq 25, d\left(x_{2}, P\right)=2, d\left(y_{4}, P\right)=$ 3 and $d\left(x_{4}, P\right)=4$. In particular, $x_{2} b_{3} \in E, a_{3} y_{4} \in E, a_{4} y_{4} \in E$ and $b_{2} x_{4} \in E$. Therefore, $G[P \cup C]$ contains two independent 8 -cycles $y_{1} x_{2} b_{3} a_{3} y_{4} a_{4} b_{4} x_{1} y_{1}$ and $a_{1} b_{1} a_{2} b_{2} x_{4} y_{3} x_{3} y_{2} a_{1}$, a contradiction. So $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \nsubseteq E$ and $d\left(y_{1}, P\right)+d\left(y_{4}, P\right) \leq 5$.

Suppose $b_{4} x_{4} \in E$. Then $\left\{b_{3} x_{2}, a_{3} y_{3}\right\} \nsubseteq E$, for otherwise $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{2} x_{3} y_{3}\right\rangle \supseteq C^{8}$ and $\left\langle b_{3} a_{4} b_{4}, x_{2} y_{1} x_{1} y_{4} x_{4}\right\rangle \supseteq C^{8}$. Since $e(P, C) \geq 25$, we have $e\left(y_{1} x_{2} x_{3} y_{3} y_{4}, P\right)=13$. This implies either $a_{3} y_{1} \in E$ or $a_{2} y_{4} \in E$. If $a_{3} y_{1} \in E$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$; if $a_{2} y_{4} \in E$, then $d\left(x_{2}, b_{2} b_{4}\right)=0$. In each case, $e(P, C) \leq 24$, a contradiction.

Therefore, $b_{4} x_{4} \notin E$. Similarly, if $a_{3} y_{1} \in E$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$; if $a_{2} y_{4} \in E$, then $d\left(x_{2}, b_{2} b_{4}\right)=0$. In each case, $e(P, C) \leq 24$, a contradiction. Therefore, $a_{3} y_{1} \notin E$ and $a_{2} y_{4} \notin$ E. Thus $e(P, C) \leq 24$, a contradiction.

Case 2. $d\left(a_{1}, C\right)=2$. By symmetry, we divide the proof into three cases: $a_{1} y_{1} \in E, a_{1} y_{2} \in$ $E ; a_{1} y_{2} \in E, a_{1} y_{3} \in E$ or $a_{1} y_{1} \in E, a_{1} y_{3} \in E$.

Case 2.1. $a_{1} y_{1} \in E, a_{1} y_{2} \in E$. Since $d\left(a_{1}, C\right)=2$, it follows that $a_{1} y_{3} \notin E, a_{1} y_{4} \notin E$. Since $a_{1} y_{1} x_{1} y_{4} x_{4} y_{3} x_{3} y_{2} a_{1}$ is an 8-cycle in $G[P \cup C]$, we have $\left\{x_{2} b_{1}, x_{2} b_{4}\right\} \nsubseteq E$. Similarly, we get $\left\{b_{2} x_{3}, a_{3} y_{3}\right\} \nsubseteq E$ and $\left\{a_{3} y_{4}, x_{3} b_{4}\right\} \nsubseteq E$.

If $a_{3} y_{1} \in E$, we have $d\left(x_{3}, b_{3} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{1} x_{2} y_{2}\right\rangle \supseteq C^{8}$. If $a_{2} y_{4} \in E$, we have $d\left(x_{2}, b_{2} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2}, y_{2} x_{3} y_{3} x_{4} y_{4}\right\rangle \supseteq C^{8}$. Therefore, if $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \subseteq$ E, we have $d\left(x_{2}, P\right)=2, d\left(x_{4}, P\right)=4$ and $d\left(y_{4}, P\right)=3$ as $e(P, C) \geq 25$. In particular, $a_{3} y_{4} \in E, b_{3} x_{2} \in E$ and $b_{4} x_{4} \in E$. Then $G[P \cup C]$ contains two independent 8 -cycles $a_{1} b_{1} a_{2} b_{2} a_{3} y_{4} x_{1} y_{1} a_{1}$ and $b_{4} a_{4} b_{3} x_{2} y_{2} x_{3} y_{3} x_{4} b_{4}$, a contradiction. Therefore, $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \nsubseteq E$.

Suppose $b_{4} x_{4} \in E$. Since $\left\langle b_{2} a_{3} b_{3} a_{4} b_{4}, x_{1} y_{4} x_{4}\right\rangle \supseteq C^{8}$, we have $a_{2} y_{3} \notin E$. As $e(P, C) \geq 25$, either $a_{3} y_{1} \in E$ or $a_{2} y_{4} \in E$. If $a_{3} y_{1} \in E$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$; if $a_{2} y_{4} \in E$, then $d\left(x_{2}, b_{2} b_{4}\right)=$ 0 . In each case, $e(P, C) \leq 24$, a contradiction.

Now we may assume $b_{4} x_{4} \notin E$. Since $e(P, C) \geq 25$, it follows that either $a_{3} y_{1} \in E$ or $a_{2} y_{4} \in E$. Similarly, in each case, we can get $e(P, C) \leq 24$, a contradiction.

Case 2.2. $a_{1} y_{2} \in E, a_{1} y_{3} \in E$. Since $d\left(a_{1}, C\right)=2$, we have $a_{1} y_{1} \notin E, a_{1} y_{4} \notin E$. If $\left\{a_{2} y_{1}, b_{4} x_{2}\right\} \subseteq E$, then $\left\langle a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}, y_{1} x_{2}\right\rangle \supseteq C^{8}$ and $\left\langle a_{1} b_{1}, x_{1} y_{4} x_{4} y_{3} x_{3} y_{2}\right\rangle \supseteq C^{8}$, a contradiction. Therefore, $\left\{a_{2} y_{1}, b_{4} x_{2}\right\} \nsubseteq E$. Similarly, $\left\{a_{2} y_{4}, b_{4} x_{4}\right\} \nsubseteq E$ and $\left\{x_{3} b_{1}, x_{3} b_{4}\right\} \nsubseteq E$.

If $a_{3} y_{1} \in E$, we have $d\left(x_{3}, b_{3} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{1} x_{2} y_{2}\right\rangle \supseteq C^{8}$. If $a_{2} y_{4} \in E$, we have $d\left(x_{2}, b_{2} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2}, y_{2} x_{3} y_{3} x_{4} y_{4}\right\rangle \supseteq C^{8}$. Therefore, if $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \subseteq E$,
it follows that $d\left(x_{2}, P\right)=2$ and $d\left(x_{4}, P\right)+d\left(y_{4}, P\right)=6$. Since $e(P, C) \geq 25$. In particular, $a_{3} y_{4} \in E, b_{3} x_{2} \in E, x_{4} b_{2} \in E$ and $a_{4} y_{4} \in E$. Then $G[P \cup C]$ contains two independent 8 -cycles $a_{1} b_{1} a_{2} b_{2} x_{4} y_{3} x_{3} y_{2} a_{1}$ and $y_{1} x_{2} b_{3} a_{3} y_{4} a_{4} b_{4} x_{1} y_{1}$, a contradiction. Therefore, $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \nsubseteq E$.

Similarly, if $a_{3} y_{4} \in E$, we have $d\left(x_{3}, b_{3} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{3} x_{4} y_{4}\right\rangle \supseteq C^{8}$. If $a_{2} y_{1} \in E$, we have $d\left(x_{4}, b_{2} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2}, y_{1} x_{2} y_{2} x_{3} y_{3}\right\rangle \supseteq C^{8}$. Therefore, if $\left\{a_{3} y_{4}\right.$, $\left.a_{2} y_{1}\right\} \subseteq E$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$ and $d\left(x_{4}, b_{2} b_{4}\right)=0$. Note that $\left\{a_{3} y_{1}, a_{2} y_{4}\right\} \nsubseteq E$ and $\left\{a_{2} y_{1}, b_{4} x_{2}\right\} \nsubseteq E$, we have $e(P, C) \leq 24$, a contradiction. Thus $\left\{a_{3} y_{4}, a_{2} y_{1}\right\} \nsubseteq E$.

If $a_{2} y_{1} \in E$, then $d\left(x_{4}, b_{2} b_{4}\right)=0$. Note that $\left\{a_{2} y_{1}, b_{4} x_{2}\right\} \nsubseteq E$ and $\left\{a_{3} y_{4}, a_{2} y_{1}\right\} \nsubseteq E$, then $b_{4} x_{2} \notin E$ and $a_{3} y_{4} \notin E$. Therefore, $e(P, C) \leq 24$, a contradiction. Thus, $a_{2} y_{1} \notin E$. With the same proof, we can get $a_{2} y_{4} \notin E$.

Suppose $a_{3} y_{1} \notin E$ and $a_{3} y_{4} \notin E$. Since $e(P, C) \geq 25$, we have $d\left(x_{2}, P\right)=d\left(y_{2}, P\right)=$ $d\left(y_{3}, P\right)=d\left(x_{4}, P\right)=4$. By Lemma 2.1, $\left\langle x_{2} y_{1} x_{1} y_{4} x_{4}, b_{3} a_{4} b_{4}\right\rangle \supseteq C^{8}$ and $\left\langle y_{2} x_{3} y_{3}, a_{1} b_{1} a_{2} b_{2} a_{3}\right.$ $\rangle \supseteq C^{8}$, a contradiction.

Now we have either $a_{3} y_{1} \in E$ or $a_{3} y_{4} \in E$. By symmetry, say $a_{3} y_{1} \in E$. Then $d\left(x_{3}, b_{3} b_{4}\right)$ $=0$ as we proved before. If $\left\{b_{4} x_{4}, b_{2} x_{2}\right\} \subseteq E$, then $\left\langle a_{3} b_{3} a_{4} b_{4}, x_{4} y_{4} x_{1} y_{1}\right\rangle \supseteq C^{8}$ and $\left\langle a_{1} b_{1} a_{2} b_{2}\right.$, $\left.x_{2} y_{2} x_{3} y_{3}\right\rangle \supseteq C^{8}$, a contradiction. Therefore, $\left\{b_{4} x_{4}, b_{2} x_{2}\right\} \nsubseteq E$. Since $e(P, C) \geq 25, d\left(x_{2}, P\right)+$ $d\left(x_{4}, P\right)=7$ and $d\left(y_{2}, P\right)=d\left(y_{3}, P\right)=4$. This implies $e\left(x_{2} x_{4}, b_{3} b_{4}\right) \geq 3$ and $e\left(y_{2} y_{3}, a_{1} a_{3}\right)=$ 4. Then $\left\langle y_{2} x_{3} y_{3}, a_{1} b_{1} a_{2} b_{2} a_{3}\right\rangle \supseteq C^{8}$ and $\left\langle b_{3} a_{4} b_{4}, x_{2} y_{1} x_{1} y_{4} x_{4}\right\rangle \supseteq C^{8}$ by Lemma 2.1, a contradiction.

Case 2.3. $a_{1} y_{1} \in E, a_{1} y_{3} \in E$. Since $d\left(a_{1}, C\right)=2$, we have $a_{1} y_{2} \notin E$ and $a_{1} y_{4} \notin E$. If $\left\{a_{3} y_{1}, b_{4} x_{3}\right\} \subseteq E$, then $G[P \bigcup C]$ contains two independent 8 -cycles $a_{3} b_{3} a_{4} b_{4} x_{3} y_{2} x_{2} y_{1} a_{3}$ and $a_{1} b_{1} a_{2} b_{2} x_{1} y_{4} x_{4} y_{3} a_{1}$, a contradiction. This implies that $\left\{a_{3} y_{1}, b_{4} x_{3}\right\} \nsubseteq E$. Similarly, $\left\{b_{2} x_{3}, a_{3} y_{3}\right\} \nsubseteq E,\left\{a_{4} y_{4}, b_{4} x_{2}\right\} \nsubseteq E$.

If $a_{3} y_{4} \in E$, we have $d\left(x_{3}, b_{3} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{3} x_{4} y_{4}\right\rangle \supseteq C^{8}$. If $d\left(a_{2}, y_{1} y_{3}\right)>$ 0 , we have $d\left(x_{4}, b_{2} b_{4}\right)=0$. Since $\left\langle a_{1} b_{1} a_{2}, y_{1} x_{2} y_{2} x_{3} y_{3}\right\rangle \supseteq C^{8}$. Therefore, if $a_{3} y_{4} \in E$ and $d\left(a_{2}, y_{1} y_{3}\right)>0$, then $d\left(x_{3}, b_{3} b_{4}\right)=0$ and $d\left(x_{4}, b_{2} b_{4}\right)=0$. Thus, $e(P, C) \leq 24$, a contradiction. This implies either $a_{3} y_{4} \notin E$ or $d\left(a_{2}, y_{1} y_{3}\right)=0$.

Suppose $d\left(a_{2}, y_{1} y_{3}\right)=0$. Since $e(P, C) \geq 25$, it follows that $d\left(x_{2}, P\right)+d\left(y_{4}, P\right)=6$ and $d\left(y_{2}, P\right)=3$. In particular, $x_{2} b_{3} \in E$ and $y_{2} a_{4} \in E$. Therefore, $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3} b_{3}, y_{1} x_{2}\right\rangle \supseteq C^{8}$ and $\left\langle a_{4} b_{4}, x_{1} y_{4} x_{4} y_{3} x_{3} y_{2}\right\rangle \supseteq C^{8}$, a contradiction.

Now we may assume $a_{3} y_{4} \notin E$ and $d\left(a_{2}, y_{1} y_{3}\right)>0$. As we proved before, $d\left(x_{4}, b_{2} b_{4}\right)=0$. Therefore, $e(P, C) \leq 24$, a contradiction.

Case 3. $d\left(a_{1}, C\right)=3$. Since $\left\{a_{1} y_{1}, a_{1} y_{4}\right\} \nsubseteq E$, w.l.o.g., say $\left\{a_{1} y_{1}, a_{1} y_{2}, a_{1} y_{3}\right\} \subseteq E, a_{1} y_{4} \notin$ E. Then $\left\{x_{2} b_{1}, x_{2} b_{4}\right\} \nsubseteq E$, for otherwise $G[P \cup C]$ contains two independent 8 -cycles $a_{1} y_{1} x_{1} y_{4} x_{4} y_{3} x_{3} y_{2} a_{1}$ and $x_{2} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} x_{2}$. If $\left\{x_{2} b_{3}, y_{2} a_{4}\right\} \subseteq E$, then $G[P \cup C]$ contains two independent 8-cycles $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} x_{2} y_{1} a_{1}$ and $a_{4} b_{4} x_{1} y_{4} x_{4} y_{3} x_{3} y_{2} a_{4}$, a contradiction. Thus, $\left\{x_{2} b_{3}, y_{2} a_{4}\right\} \nsubseteq E$. With the same proof, we can get $\left\{x_{3} b_{1}, x_{3} b_{4}\right\} \nsubseteq E,\left\{x_{4} b_{1}, y_{4} a_{2}\right\} \nsubseteq$ E. If $d\left(a_{2}, y_{1} y_{3}\right)>0$, then $d\left(x_{4}, b_{2} b_{4}\right)=0$, for otherwise $\left\langle a_{1} b_{1} a_{2}, y_{1} x_{2} y_{2} x_{3} y_{3}\right\rangle \supseteq C^{8}$ and $\left\langle b_{2} a_{3} b_{3} a_{4} b_{4}, x_{1} y_{4} x_{4}\right\rangle \supseteq C^{8}$. Therefore, either $d\left(a_{2}, y_{1} y_{3}\right)=0$ or $d\left(x_{4}, b_{2} b_{4}\right)=0$. Since $e(P, C) \geq 25, d\left(y_{1}, P\right)+d\left(y_{3}, P\right)+d\left(x_{4}, P\right)+d\left(y_{4}, P\right)=12$ and $d\left(x_{3}, P\right)=3$. In particular, $a_{3} y_{3} \in E$ and $b_{2} x_{3} \in E$. Then $\left\langle a_{3} b_{3} a_{4} b_{4}, x_{1} y_{4} x_{4} y_{3}\right\rangle \supseteq C^{8}$ and $\left\langle a_{1} b_{1} a_{2} b_{2}, y_{1} x_{2} y_{2} x_{3}\right\rangle \supseteq C^{8}$, a contradiction. This completes the proof of Lemma 2.2.

Lemma 2.3. Let $P=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{5} b_{5}$ be a 10-path, $C=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ be an 8 -cycle, P and C are independent, where $\left\{a_{1}, x_{1}\right\} \subseteq V_{1}$. If $e(P, C) \geq 31$, then $G[P \cup C-$ $\left.\left\{a_{1}, b_{1}\right\}\right] \supseteq 2 C^{8}$, or $G\left[P \bigcup C-\left\{a_{5}, b_{5}\right\}\right] \supseteq 2 C^{8}$, or $G\left[P \bigcup C-\left\{a_{1}, b_{5}\right\}\right] \supseteq 2 C^{8}$.

Proof. Suppose on the contrary that the lemma fails. Let $P_{1}=P-a_{1}-b_{1}, P_{2}=P-a_{5}-$ $b_{5}, P_{3}=P-a_{1}-b_{5}$.

Suppose that $e\left(P_{3}, C\right) \geq 25$. Since $G\left[P_{3} \cup C\right] \nsupseteq 2 C^{8}$, we have either $d\left(b_{1}, C\right)=0$ or $d\left(a_{5}, C\right)=0$ by Lemma 2.2. W.l.o.g., say $d\left(b_{1}, C\right)=0$. This implies $e\left(P_{3}, C\right) \leq 28$ and therefore $e\left(a_{1} b_{5}, C\right) \geq 3$. Since $e\left(P_{3}, C\right) \geq 25$, we have $d(x, C) \geq 1$ for all $x \in V\left(P_{3}-b_{1}\right)$. Thus, $e\left(P_{1}, C\right) \geq 31-d\left(a_{1}, C\right) \geq 27$. Note that $G\left[P_{1} \cup C\right] \nsupseteq 2 C^{8}$ and $d\left(a_{2}, C\right) \geq 1$, we get $d\left(b_{5}, C\right)=0$ by Lemma 2.2. This implies $d\left(a_{1}, C\right) \geq 3$ and $e\left(P_{2}, C\right) \geq 27$. Note that $d\left(b_{4}, C\right)>0$, then $G\left[P_{2} \cup C\right] \supseteq 2 C^{8}$ by Lemma 2.2, a contradiction. Hence $e\left(P_{3}, C\right) \leq 24$ and $e\left(a_{1} b_{5}, C\right) \geq 7$. The following proof is divided into two cases.
Case 1. Either $e\left(P_{1}, C\right) \geq 25$ or $e\left(P_{2}, C\right) \geq 25$. By symmetry, say $e\left(P_{1}, C\right) \geq 25$. Since $e\left(a_{1} b_{5}, C\right) \geq 7$, we have $d\left(b_{5}, C\right) \geq 3$ and $d\left(a_{1}, C\right) \geq 3$. Then $d\left(a_{2}, C\right)=0$, for otherwise $G\left[P_{1} \cup C\right] \supseteq 2 C^{8}$ by Lemma 2.2. Since $e\left(P_{1}, C\right) \geq 25$, it follows that $d(u, C)>0$ for every $u \in V\left(P_{1}-a_{2}\right)$. As $d\left(a_{1}, C\right)>0, d\left(b_{4}, C\right)>0$ and $G\left[P_{2} \cup C\right] \nsupseteq 2 C^{8}$, we get $e\left(P_{2}, C\right) \leq 24$ by Lemma 2.2.

Since $d\left(a_{1}, C\right) \geq 3$ and $d\left(b_{3}, C\right) \geq 1$, w.l.o.g., we may say $\left\{a_{1} y_{1}, a_{1} y_{2}, b_{3} x_{1}\right\} \subseteq E$. If $\left\{a_{4} y_{4}, b_{4} x_{2}\right\} \subseteq E$, then $G\left[P_{2} \cup C\right]$ contains two independent 8 -cycles $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} x_{1} y_{1} a_{1}$ and $a_{4} b_{4} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} a_{4}$, a contradiction. Therefore, we have $\left\{a_{4} y_{4}, b_{4} x_{2}\right\} \nsubseteq E$. Similarly, $\left\{b_{4} x_{3}, a_{3} y_{2}\right\} \nsubseteq E$, for otherwise $G\left[P_{2} \cup C\right]$ contains two independent 8-cycles $a_{1} b_{1} a_{2} b_{2} a_{3} y_{2}$ $x_{2} y_{1} a_{1}$ and $b_{3} a_{4} b_{4} x_{3} y_{3} x_{4} y_{4} x_{1} b_{3}$.

Suppose $b_{3} x_{2} \in E$. Then $\left\{a_{4} y_{2}, b_{4} x_{1}\right\} \nsubseteq E$, for otherwise $G\left[P_{2} \cup C\right]$ contains two independent 8 -cycles $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} x_{2} y_{1} a_{1}$ and $a_{4} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1} b_{4} a_{4}$. Similarly, $\left\{a_{4} y_{1}, b_{4} x_{3}\right\} \nsubseteq E$. Since $e\left(P_{1}, C\right) \geq 25$, we have $d\left(a_{3}, C\right)=d\left(b_{2}, C\right)=d\left(b_{3}, C\right)=4$ and $d\left(a_{4}, C\right)+d\left(b_{4}, C\right)=5$. In particular, $\left\{a_{3} y_{3}, a_{3} y_{4}, a_{4} y_{3}, b_{2} x_{3}, b_{3} x_{4}, b_{4} x_{4}\right\} \subseteq E$. Thus $G\left[P_{2} \cup C\right]$ contains two independent 8-cycles $a_{1} y_{1} x_{2} y_{2} x_{3} b_{2} a_{2} b_{1} a_{1}$ and $b_{4} x_{4} b_{3} x_{1} y_{4} a_{3} y_{3} a_{4} b_{4}$, a contradiction.

So $b_{3} x_{2} \notin E$. Since $e\left(P_{1}, C\right) \geq 25, d\left(b_{2}, C\right)=4, d\left(b_{3}, C\right)=3$ and $d\left(a_{4}, C\right)+d\left(b_{4}, C\right)+$ $d\left(a_{3}, C\right)=10$. In particular, $b_{4} x_{1} \in E, a_{3} y_{3} \in E, x_{3} b_{2} \in E$. Then $G\left[P_{2} \cup C\right]$ contains two independent 8-cycles $a_{1} b_{1} a_{2} b_{2} x_{3} y_{2} x_{2} y_{1} a_{1}$ and $b_{4} x_{1} y_{4} x_{4} y_{3} a_{3} b_{3} a_{4} b_{4}$, a contradiction.
Case 2. $e\left(P_{1}, C\right) \leq 24$ and $e\left(P_{2}, C\right) \leq 24$. Since $e(P, C) \geq 31$, we have $e\left(a_{1} b_{1}, C\right) \geq 7, e\left(a_{1} b_{5}\right.$, $C) \geq 7$ and $e\left(a_{5} b_{5}, C\right) \geq 7$. W.l.o.g., say $d\left(a_{1}, C\right)=4, d\left(b_{5}, C\right) \geq 3$. If $x_{i} \in N\left(b_{1}, C\right) \cap N\left(b_{4}\right.$, $C)$ for some $i \in\{1,2,3,4\}$, then $\left\langle x_{i}, b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}\right\rangle \supseteq C^{8}$ and $\left\langle a_{1}, V(C)-x_{i}\right\rangle \supseteq C^{8}$, a contradiction. Therefore, we have $N\left(b_{1}, C\right) \cap N\left(b_{4}, C\right)=\emptyset$ and $d\left(b_{1}, C\right)+d\left(b_{4}, C\right) \leq 4$.

Suppose $d\left(b_{5}, C\right)=4$. Just as the same proof before, if $N\left(a_{2}, C\right) \cap N\left(a_{5}, C\right) \neq \emptyset$, then $G\left[P_{1} \cup C\right]$ contains two independent 8 -cycles, a contradiction. Therefore, we have $N\left(a_{2}, C\right)$ $\bigcap N\left(a_{5}, C\right)=\emptyset$ and $d\left(a_{2}, C\right)+d\left(a_{5}, C\right) \leq 4$. Since $e(P, C) \geq 31$, it follows that $d\left(b_{2}, C\right)+$ $d\left(a_{3}, C\right)+d\left(b_{3}, C\right)+d\left(a_{4}, C\right) \geq 15$. This implies either $e\left(b_{2} a_{3}, C\right)=8$ or $e\left(b_{3} a_{4}, C\right)=8$, w.l.o.g., say $e\left(b_{2} a_{3}, C\right)=8$. Therefore, $d\left(b_{2}, C\right)=d\left(a_{3}, C\right)=4, e\left(b_{3} a_{4}, C\right) \geq 7$. Since $d\left(b_{1}, C\right) \geq 3$ and $d\left(a_{5}, C\right) \geq 3$, we have $e\left(b_{1} b_{2}, x_{1} x_{3}\right) \geq 3$ and $e\left(a_{3} a_{5}, y_{3} y_{4}\right) \geq 3$. Therefore, $\left\langle b_{1} a_{2} b_{2}, x_{1} y_{1} x_{2} y_{2} x_{3}\right\rangle \supseteq C^{8}$ and $\left\langle y_{3} x_{4} y_{4}, a_{3} b_{3} a_{4} b_{4} a_{5}\right\rangle \supseteq C^{8}$ by Lemma 2.1. This implies $G\left[P_{3} \cup C\right]$ contains two independent 8 -cycles, a contradiction.

Now we have $d\left(b_{5}, C\right)=3$. Since $d\left(a_{5}, C\right)+d\left(b_{5}, C\right) \geq 7$, we have $d\left(a_{5}, C\right)=4$. Since $d\left(b_{1}, C\right) \geq 3$, w.l.o.g., say $N\left(b_{1}, C\right) \supseteq\left\{x_{1}, x_{2}, x_{3}\right\}$. If $d\left(b_{3}, x_{1} x_{2}\right)>0$, then $\left\langle b_{1} a_{2} b_{2} a_{3} b_{3}\right.$, $\left.x_{1} y_{1} x_{2}\right\rangle \supseteq C^{8}$ and therefore $\left\langle y_{2} x_{3} y_{3} x_{4} y_{4}, a_{4} b_{4} a_{5}\right\rangle \nsupseteq C^{8}$. This implies that $d\left(a_{4}, y_{2} y_{4}\right)=$

0 . Similarly, if $d\left(b_{3}, x_{3} x_{4}\right)>0$, then $d\left(a_{4}, y_{1} y_{3}\right)=0$. Therefore, we have $d\left(b_{3}, C\right)+$ $d\left(a_{4}, C\right) \leq 4$. Since $e(P, C) \geq 31$, it follows that $d\left(a_{3}, C\right)=d\left(b_{2}, C\right)=d\left(a_{5}, C\right)=4$ and $d\left(b_{1}, C\right)+d\left(b_{4}, C\right)=4$. Therefore, $e\left(b_{1} b_{2}, x_{1} x_{3}\right)=4$ and $e\left(a_{3} a_{5}, y_{3} y_{4}\right)=4$. By Lemma 2.1, $\left\langle b_{1} a_{2} b_{2}, x_{1} y_{1} x_{2} y_{2} x_{3}\right\rangle \supseteq C^{8}$ and $\left\langle y_{3} x_{4} y_{4}, a_{3} b_{3} a_{4} b_{4} a_{5}\right\rangle \supseteq C^{8}$, a contradiction.

Lemma 2.4. Let $C_{1}=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}, C_{2}=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ be two independent 8 -cycles, where $\left\{a_{1}, x_{1}\right\} \subseteq V_{1}$. If $e\left(C_{1}, C_{2}\right) \geq 25$, then $G\left[C_{1} \cup C_{2}\right]$ contains two independent 8 -cycles $C^{\prime}, C^{\prime \prime}$ such that each of them has a chord.

Proof. Suppose on the contrary that the lemma fails. Since $e\left(C_{1}, C_{2}\right) \geq 25$, we have $d\left(u, C_{2}\right)$ $=4$ and $d\left(v, C_{1}\right)=4$ for some $u \in V\left(C_{1}\right), v \in V\left(C_{2}\right)$. If $\{u, v\} \subseteq V_{i}$ for some $i \in\{1,2\}$, then $C_{1}-u+v, C_{2}-v+u$ contain two independent 8 -cycles with each having a chord, a contradiction. Therefore, we may assume

$$
d\left(a_{1}, C_{2}\right)=4, \quad d\left(y_{1}, C_{1}\right)=4
$$

$$
d\left(b_{i}, C_{2}\right) \leq 3, \quad d\left(x_{i}, C_{1}\right) \leq 3 \quad \text { for every } i \in\{1,2,3,4\}
$$

Suppose $d\left(a_{3}, C_{2}\right) \geq 3$. Then $e\left(a_{1} a_{3}, C_{2}\right) \geq 7$. Therefore, $e\left(a_{1} a_{3}, y_{1} y_{2}\right) \geq 3$ and $e\left(a_{1} a_{3}\right.$, $\left.y_{1} y_{4}\right) \geq 3$. By Lemma 2.1, both $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{1} x_{2} y_{2}\right\rangle$ and $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{1} x_{1} y_{4}\right\rangle$ contain an 8cycle with each having a chord. Therefore, neither $\left\langle b_{3} a_{4} b_{4}, x_{3} y_{3} x_{4} y_{4} x_{1}\right\rangle$ nor $\left\langle b_{3} a_{4} b_{4}, x_{2} y_{2} x_{3}\right.$ $\left.y_{3} x_{4}\right\rangle$ contain an 8 -cycle with each having a chord. This implies $e\left(b_{3} b_{4}, x_{1} x_{3}\right) \leq 2$ and $e\left(b_{3} b_{4}, x_{2} x_{4}\right) \leq 2$ by Lemma 2.1. In particular, $e\left(b_{3} b_{4}, C_{2}\right) \leq 4$. Similarly, we have both $\left\langle a_{1} b_{4} a_{4} b_{3} a_{3}, y_{1} x_{2} y_{2}\right\rangle$ and $\left\langle a_{1} b_{4} a_{4} b_{3} a_{3}, y_{1} x_{1} y_{4}\right\rangle$ contain an 8-cycle with each having a chord. This implies $e\left(b_{1} b_{2}, C_{2}\right) \leq 4$. Then $\sum_{i=1}^{4} d\left(b_{i}, C_{2}\right) \leq 8$ and therefore $e\left(C_{1}, C_{2}\right) \leq 24$, a contradiction.

Now we have $d\left(a_{3}, C_{2}\right) \leq 2$. With the same proof, if $e\left(a_{2} a_{4}, C_{2}\right) \geq 7$, then $e\left(C_{1}, C_{2}\right) \leq 24$, a contradiction. Thus, $e\left(a_{2} a_{4}, C_{2}\right) \leq 6$. This implies that $\sum_{i=1}^{4} d\left(a_{i}, C_{2}\right) \leq 12$. Note that $d\left(b_{i}, C_{2}\right) \leq 3$ for every $i \in\{1,2,3,4\}$, then $e\left(C_{1}, C_{2}\right) \leq 24$, a contradiction. This completes the proof of Lemma 2.4.

Lemma 2.5. Let $C=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{1}$ be a 6 -cycle, $P=x_{1} y_{1}$ be a 2 -path, C and P are independent, where $\left\{a_{1}, x_{1}\right\} \subseteq V_{1}$. If $d\left(x_{1}, C\right) \geq 2, d\left(y_{1}, C\right)>0$, then $G[C \cup P]$ contains an 8 -cycle with at least two chords.

Proof. If $d\left(x_{1}, C\right)=3$, obviously $G[C \bigcup P]$ contains an 8 -cycle with at least two chords. Now we may assume $d\left(x_{1}, C\right)=2$, w.l.o.g., say $N\left(x_{1}, C\right)=\left\{b_{1}, b_{2}\right\}$. Since $d\left(y_{1}, C\right)>0$, we have either $a_{1} y_{1} \in E$, or $a_{2} y_{1} \in E$, or $a_{3} y_{1} \in E$. If $a_{1} y_{1} \in E$, then $G[C \cup P]$ contains an 8 -cycle $a_{1} b_{3} a_{3} b_{2} a_{2} b_{1} x_{1} y_{1} a_{1}$ with two chords $a_{1} b_{1}$ and $b_{2} x_{1}$; if $a_{2} y_{1} \in E$, then $G[C \cup P]$ contains an 8-cycle $x_{1} b_{1} a_{1} b_{3} a_{3} b_{2} a_{2} y_{1} x_{1}$ with two chords $a_{2} b_{1}$ and $x_{1} b_{2}$; if $a_{3} y_{1} \in E$, then $G[C \cup P]$ contains an 8 -cycle $y_{1} a_{3} b_{3} a_{1} b_{1} a_{2} b_{2} x_{1} y_{1}$ with two chords $b_{1} x_{1}$ and $a_{3} b_{2}$. In each case, $G[C \bigcup P]$ contains an 8 -cycle with at least two chords.
Lemma 2.6. Let $P_{1}=a_{1} b_{1} a_{2} b_{2} a_{3}$ be a 5-path, $P_{2}=y_{1} x_{2} y_{2}$ be a 3-path, P_{1} and P_{2} are independent, where $\left\{a_{1}, x_{2}\right\} \subseteq V_{1}$. Then the following two statements hold.
(1) If e $\left(a_{1} a_{3}, y_{1} y_{2}\right)=4$, then $G\left[P_{1} \cup P_{2}\right]$ contains an 8 -cycle with two chords.
(2) If $e\left(a_{1} a_{3}, y_{1} y_{2}\right) \geq 3$ and $a_{1} b_{2} \in E$, then $G\left[P_{1} \cup P_{2}\right]$ contains an 8 -cycle with two chords.

Proof. Easy to check.

Lemma 2.7. Let C_{1} and C_{2} be two independent 8 -cycles in G such that each of them has a chord. If $e\left(C_{1}, C_{2}\right) \geq 25$, then $G\left[C_{1} \cup C_{2}\right]$ contains two independent 8 -cycles such that each of them has at least two chords.

Proof. For simplicity, we will use K to denote an 8 -cycle with two chords in the following. Suppose on the contrary that the lemma fails. Let $C_{1}=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4} a_{1}$ with chord $a_{1} b_{2}$ and $C_{2}=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ with chord $x_{1} y_{2},\left\{a_{1}, x_{1}\right\} \subseteq V_{1}$, w.l.o.g. As $e\left(C_{1}, C_{2}\right) \geq 25$, we can assume $d\left(a_{i}, C_{2}\right)=4$ for some i. If $d\left(x_{j}, C_{1}\right)=4$ for some j, then $C_{1}-a_{i}+x_{j}, C_{2}-x_{j}+$ a_{i} contain two independent 8 -cycles with each having at least two chords, a contradiction. Therefore, $d\left(x_{j}, C_{1}\right) \leq 3$ for every $j \in\{1,2,3,4\}$. Similarly, if $d\left(b_{t}, C_{2}\right)=4$ for some t, then $d\left(y_{j}, C_{1}\right) \leq 3$ for every $j \in\{1,2,3,4\}$. This implies that $e\left(C_{1}, C_{2}\right) \leq 24$, a contradiction. Thus, we get $d\left(b_{t}, C_{2}\right) \leq 3$ for every $t \in\{1,2,3,4\}$.

As $G\left[C_{1} \cup C_{2}\right]$ doesn't contain two independent 8 -cycles such that each of them has at least two chords, then either $\left\langle a_{2} b_{1}, C_{2}-x_{2}-y_{1}\right\rangle \nsupseteq K$ or $\left\langle x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right\rangle \nsupseteq K$, w.l.o.g., say $\left\langle x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right\rangle \nsupseteq K$. The following proof is divided into three cases.
Case 1. $d\left(x_{2}, C_{1}-a_{2}-b_{1}\right) \leq 2$ and $d\left(y_{1}, C_{1}-a_{2}-b_{1}\right) \leq 2$. Since $\left\langle x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right\rangle \nsupseteq K$, we have $e\left(x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right) \leq 2$ by Lemma 2.5. This implies $d\left(x_{2}, C_{1}\right)+d\left(y_{1}, C_{1}\right) \leq 4$. Since $e\left(C_{1}, C_{2}\right) \geq 25, d\left(y_{2}, C_{1}\right)=d\left(y_{4}, C_{1}\right)=4$ and $d\left(x_{3}, C_{1}\right)=d\left(x_{4}, C_{1}\right)=3$. If $e\left(x_{3} x_{4}\right.$, $\left.b_{2} b_{4}\right) \geq 3$, then $\left\langle b_{4} a_{1} b_{1} a_{2} b_{2}, x_{3} y_{3} x_{4}\right\rangle \supseteq K$ and $\left\langle a_{3} b_{3} a_{4}, y_{4} x_{1} y_{1} x_{2} y_{2}\right\rangle \supseteq K$ by Lemma 2.6, a contradiction. Thus, $e\left(x_{3} x_{4}, b_{2} b_{4}\right) \leq 2$. Note that $d\left(x_{3}, C_{1}\right)=d\left(x_{4}, C_{1}\right)=3$, then $e\left(x_{3} x_{4}\right.$, $\left.b_{1} b_{3}\right)=4$. By Lemma 2.6, $\left\langle x_{3} y_{3} x_{4}, b_{1} a_{2} b_{2} a_{3} b_{3}\right\rangle \supseteq K$ and $\left\langle a_{1} b_{4} a_{4}, y_{4} x_{1} y_{1} x_{2} y_{2}\right\rangle \supseteq K$, a contradiction.
Case 2. $d\left(x_{2}, C_{1}-a_{2}-b_{1}\right)=3$. Since $\left\langle x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right\rangle \nsupseteq K, d\left(y_{1}, C_{1}-a_{2}-b_{1}\right)=0$ by Lemma 2.5. This implies that $d\left(y_{1}, C_{1}\right) \leq 1$. Since $e\left(C_{1}, C_{2}\right) \geq 25$, it follows that $d\left(y_{2}, C_{1}\right)=$ $d\left(y_{4}, C_{1}\right)=4$ and $d\left(x_{3}, C_{1}\right)=d\left(x_{4}, C_{1}\right)=3$. The rest of the proof is just same as that in Case 1.

Case 3. $d\left(y_{1}, C_{1}-a_{2}-b_{1}\right)=3$. Obviously, $a_{1} y_{1} \in E, a_{3} y_{1} \in E$ and $a_{4} y_{1} \in E$. Since $\left\langle x_{2} y_{1}, C_{1}-a_{2}-b_{1}\right\rangle \nsupseteq K$, we have $d\left(x_{2}, C_{1}-a_{2}-b_{1}\right)=0$ by Lemma 2.5. This implies $x_{2} b_{2} \notin E, x_{2} b_{3} \notin E$ and $x_{2} b_{4} \notin E$.

Suppose $x_{2} b_{1} \notin E$. Then $d\left(x_{2}, C_{1}\right)=0$. Since $e\left(C_{1}, C_{2}\right) \geq 25, d\left(y_{2}, C_{1}\right)=d\left(y_{4}, C_{1}\right)=4$ and $d\left(x_{3}, C_{1}\right)=d\left(x_{4}, C_{1}\right)=3$. The rest of the proof is just same as that in Case 1.

Now we get $x_{2} b_{1} \in E$ and $d\left(x_{2}, C_{1}\right)=1$. Since $e\left(C_{1}, C_{2}\right) \geq 25$, we have $e\left(y_{1} y_{2} y_{3} y_{4}, C_{1}\right) \geq$ 15. Since $x_{2} b_{1} a_{1} b_{4} a_{4} b_{3} a_{3} y_{1} x_{2}$ is an 8 -cycle in G with two chords $a_{1} y_{1}$ and $a_{4} y_{1},\left\langle a_{2} b_{2}, x_{1} y_{2}\right.$ $\left.x_{3} y_{3} x_{4} y_{4}\right\rangle \nsupseteq K$. Note that $e\left(y_{1} y_{2} y_{3} y_{4}, C_{1}\right) \geq 15$, then $d\left(a_{2}, y_{2} y_{3} y_{4}\right) \geq 2$. By Lemma 2.5, $d\left(b_{2}, x_{1} x_{3} x_{4}\right)=0$. This implies $x_{1} b_{2} \notin E, x_{3} b_{2} \notin E$ and $x_{4} b_{2} \notin E$. Since $e\left(y_{1} y_{2} y_{3} y_{4}, C_{1}\right) \geq$ 15, we have $e\left(y_{3} y_{4}, a_{1} a_{3}\right) \geq 3$. By Lemma 2.6, $\left\langle a_{1} b_{1} a_{2} b_{2} a_{3}, y_{3} x_{4} y_{4}\right\rangle \supseteq K$ and therefore $\left\langle b_{3} a_{4} b_{4}, x_{1} y_{1} x_{2} y_{2} x_{3}\right\rangle \nsupseteq K$. This implies $e\left(b_{3} b_{4}, x_{1} x_{3}\right) \leq 2$. Note that $x_{1} b_{2} \notin E$ and $x_{3} b_{2} \notin E$, then $e\left(x_{1} x_{3}, C_{1}\right) \leq 4$. Since $d\left(x_{2}, C_{1}\right)=1$ and $d\left(x_{4}, C_{1}\right) \leq 3$, we have $e\left(C_{1}, C_{2}\right) \leq 24$, a contradiction.

3. Proof of Theorem 1.2

In this section, we will prove the Theorem 1.2. Let $G=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=\left|V_{2}\right|=4 k$ and the minimum degree $\delta(G) \geq 3 k+1$, where k is a positive integer.

We first claim that $G \supseteq k C^{8}$. Suppose on the contrary that this is not true. We can assume that G is a maximal counterexample, i.e., $G+x y \supseteq k C^{8}$ for every edge $x y \notin E(G)$.

Then G contains $k-1$ independent 8 -cycles $C_{1}, C_{2}, \cdots, C_{k-1}$ and an 8 -path P such that P is independent of $H=\bigcup_{i=1}^{k-1} C_{i}$. Denote $P=a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} a_{4} b_{4}$ with $a_{1} \in V_{1}$. As $G \nsupseteq k C^{8}$, we have $G[V(P)] \nsupseteq C^{8}$. Then $e(G[P]) \leq 16-3=13$ and $e\left(a_{1} b_{4}, P\right) \leq 4$. Hence, $e\left(a_{1} b_{4}, H\right) \geq$ $6(k-1)+4$. Then there exists an 8 -cycle $C_{i} \subseteq H$ such that $d\left(a_{1} b_{4}, C_{i}\right) \geq 7$. W.1.o.g., say $d\left(a_{1} b_{4}, C_{1}\right) \geq 7, C_{1}=x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ with $x_{1} \in V_{1}$. We may assume $d\left(a_{1}, C_{1}\right)=4$ and $d\left(b_{4}, C_{1}\right) \geq 3$. In particular, w.l.o.g., let $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq N\left(b_{4}, C_{1}\right)$. Denote $P^{\prime}=y_{1} P x_{1}$. Since $G\left[P \cup C_{1}\right] \nsupseteq 2 C^{8}$, we have $e\left(P, C_{1}\right) \leq 24$ by Lemma 2.2. Thus, $\sum_{x \in V(P)} d\left(x, P \cup C_{1}\right) \leq$ 50. Since $e\left(x_{1} y_{1}, P \cup C_{1}\right) \leq 16$, it follows that $\sum_{x \in V\left(P^{\prime}\right)} d\left(x, P \cup C_{1}\right) \leq 66$. Then we have $e\left(P^{\prime}, H-C_{1}\right) \geq 10(3 k+1)-66=30(k-2)+4$. This means that there exists an 8 -cycle $C_{j} \in H-C_{1}$ such that $e\left(P^{\prime}, C_{j}\right) \geq 31$. W.l.o.g., say $j=2$. Since $G\left[P \bigcup C_{2}\right] \nsupseteq 2 C^{8}$, we have either $G\left[P^{\prime} \cup C_{2}-x_{1}-b_{4}\right] \supseteq 2 C^{8}$ or $G\left[P^{\prime} \cup C_{2}-a_{1}-y_{1}\right] \supseteq 2 C^{8}$ by Lemma 2.3. In the former case, $x_{1} b_{4} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{1}$ is an 8 -cycle in G. In the latter case, $a_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} a_{1}$ is an 8-cycle in G. Therefore, $G\left[P \cup C_{1} \cup C_{2}\right] \supseteq 3 C^{8}$, a contradiction. This proves our claim.

Now we choose k independent 8 -cycles in G with as many having a chord as possible. Let $C_{1}, C_{2}, \cdots, C_{k}$ be such a choice. We claim that C_{i} has a chord for every $i \in\{1,2, \cdots, k\}$. If not, assume C_{i} has no chord for some i, say $i=1$. This implies $e\left(C_{1}\right)=8$. Thus, $\sum_{x \in V\left(C_{1}\right)} d\left(x, \bigcup_{i=2}^{k} C_{i}\right) \geq 8(3 k+1)-16=24(k-1)+16$. Therefore, there exists an 8 -cycle $C_{j}(j \neq 1)$, such that $e\left(C_{1}, C_{j}\right) \geq 25$. By Lemma 2.4, $G\left[C_{1} \cup C_{j}\right]$ contains two independent 8 -cycles with each having a chord. This contradicts to our choice of $C_{1}, C_{2}, \cdots, C_{k}$.

Finally, we choose k independent 8 -cycles in G such that each 8 -cycle has a chord. Subject to this, we choose k independent 8 -cycles in G with as many having at least two chords as possible. Let $C_{1}, C_{2}, \cdots, C_{k}$ be such a choice. If C_{i} does not have two chords for some $i \in\{1,2, \cdots, k\}$, say $i=1$. This implies $e\left(C_{1}\right)=9$. Thus, $\sum_{x \in V\left(C_{1}\right)} d\left(x, \bigcup_{i=2}^{k} C_{i}\right) \geq$ $8(3 k+1)-18=24(k-1)+14$. Therefore, there exists an 8 -cycle $C_{j}(j \neq 1)$, such that $e\left(C_{1}, C_{j}\right) \geq 25$. By Lemma 2.7, $G\left[C_{1} \cup C_{j}\right]$ contains two independent 8 -cycles with each having at least two chords. This contradicts to our choice of $C_{1}, C_{2}, \cdots, C_{k}$. This completes the whole proof.
Acknowledgement. We are grateful to the referees for valuable suggestions and hints that helped to improve this paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.
[3] H. Wang, On the maximum number of independent cycles in a bipartite graph, J. Combin. Theory Ser. B 67 (1996), no. 1, 152-164.
[4] H. Wang, On vertex-disjoint complete bipartite subgraphs in a bipartite graph, Graphs Combin. 15 (1999), no. 3, 353-364.
[5] H. Wang, Vertex-disjoint hexagons with chords in a bipartite graph, Discrete Math. 187 (1998), no. 1-3, 221-231.
[6] Y. Zhao, Bipartite graph tiling, SIAM J. Discrete Math. 23 (2009), no. 2, 888-900.

[^0]: Communicated by Xueliang Li.
 Received: July 28, 2010; Revised: March 12, 2011.

