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Abstract. For a positive integer k, a total {k}-dominating function of a graph G without
isolated vertices is a function f from the vertex set V (G) to the set {0,1,2, . . . ,k} such that
for any vertex v ∈V (G), the condition ∑u∈N(v) f (u)≥ k is fulfilled, where N(v) is the open
neighborhood of v. The weight of a total {k}-dominating function f is the value ω( f ) =

∑v∈V f (v). The total {k}-domination number, denoted by γ
{k}
t (G), is the minimum weight

of a total {k}-dominating function on G. A set { f1, f2, . . . , fd} of total {k}-dominating
functions on G with the property that ∑

d
i=1 fi(v) ≤ k for each v ∈ V (G), is called a total

{k}-dominating family (of functions) on G. The maximum number of functions in a total
{k}-dominating family on G is the total {k}-domatic number of G, denoted by d{k}t (G).
Note that d{1}t (G) is the classic total domatic number dt(G). In this paper, we present
bounds for the total {k}-domination number and total {k}-domatic number. In addition, we
determine the total {k}-domatic number of cylinders and we give a Nordhaus-Gaddum type
result.
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1. Introduction

In this paper, G is a simple graph with no isolated vertices and with vertex set V =V (G) and
edge set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈V , the
open neighborhood N(v) is the set {u ∈V (G) | uv ∈ E(G)} and the closed neighborhood of
v is the set N[v] = N(v)∪{v}. The degree of a vertex v ∈V is d(v) = |N(v)|. The minimum
and maximum degree of a graph G are denoted by δ = δ (G) and ∆ = ∆(G), respectively. The
open neighborhood of a set S⊆V is the set N(S) = ∪v∈SN(v), and the closed neighborhood
of S is the set N[S] = N(S)∪ S. If S ⊆ V (G), then G[S] is the subgraph of G induced by
S. The complement of a graph G is denoted by G. Consult [3, 6] for the notation and
terminology which are not defined here.
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A subset S of vertices of G is a total dominating set if N(S) = V . The total domination
number γt(G) is the minimum cardinality of a total dominating set of G. A total domatic
partition is a partition of V into total dominating sets, and the total domatic number dt(G)
is the largest number of sets in a total domatic partition. The total domatic number was
introduced by Cockayne et al. in [2].

For a positive integer k, a total {k}-dominating function (T{k}DF) of a graph G without
isolated vertices is a function f from the vertex set V (G) to the set {0,1,2, . . . ,k} such
that for any vertex v ∈ V (G), the condition ∑u∈N(v) f (u) ≥ k is fulfilled. The weight of a
T{k}DF f is the value ω( f ) = ∑v∈V f (v). The total {k}-domination number of a graph G,
denoted by γ

{k}
t (G), is the minimum weight of a T{k}DF of G. A γ

{k}
t (G)-function is a

total {k}-dominating function of G with weight γ
{k}
t (G). Note that γ

{1}
t (G) is the classical

total domination number γt(G). The total {k}-domination number was introduced by Li and
Hou [4].

A set { f1, f2, . . . , fd} of distinct total {k}-dominating functions of G with the property
that ∑

d
i=1 fi(v)≤ k for each v ∈V (G), is called a total {k}-dominating family (of functions)

on G. The maximum number of functions in a total {k}-dominating family (T{k}D family)
on G is the total {k}-domatic number of G, denoted by d{k}t (G). The total {k}-domatic
number is well-defined and

(1.1) d{k}t (G)≥ 1

for all graphs G without isolated vertices, since the set consisting of the function f : V (G)→
{0,1,2, . . . ,k} defined by f (v) = k for each v∈V (G), forms a T{k}D family on G. The total
{k}-domatic number was introduced by Sheikholeslami and Volkmann [5] and has also been
studied in [1].

In this paper, we continue the study of the total {k}-domination number and total {k}-
domatic number in graphs. We first study bounds for the total {k}-domination number
and total {k}-domatic number. Then we determine the total {k}-domatic number of some
cylinders and we present a Nordhaus-Gaddum type result.

The following known results are useful for our investigations.

Theorem 1.1 (Chen, Hou, Li [1]). Let G be a graph without isolated vertices and δ = δ (G).
If δ |k, then d{k}t (G)≥ δ −1, and if δ 6 | k, then d{k}t (G)≥

⌊
k/
⌈ k

δ

⌉⌋
.

Theorem 1.2 (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated
vertices, then

γ
{k}
t (G) ·d{k}t (G)≤ kn.

Moreover, if γ
{k}
t (G) ·d{k}t (G) = kn, then for each T{k}D family { f1, f2, . . . , fd} on G with

d = d{k}t (G), each function fi is a γ
{k}
t (G)-function and ∑

d
i=1 fi(v) = k for all v ∈V .

Theorem 1.3 (Sheikholeslami, Volkmann [5]). For every graph G without isolated vertices,

d{k}t (G)≤ δ (G).

Moreover, if d{k}t (G) = δ (G), then for each function of any T{k}D family { f1, f2, · · · , fd}
and for all vertices v of degree δ (G), ∑u∈N(v) fi(u) = k and ∑

d
i=1 fi(u) = k for every u∈N(v).
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Theorem 1.4 (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated
vertices and k a positive integer, then

γ
{k}
t (G)+d{k}t (G)≤ nk +1.

Theorem 1.5 (Sheikholeslami, Volkmann [5]). Let G be a graph of order n without isolated
vertices and k a positive integer. If d{k}t (G)≥ 2, then

γ
{k}
t (G)+d{k}t (G)≤ kn

2
+2.

If each component of a graph G has at least three vertices, then we can improve Theo-
rem 1.4 a little bit.

Proposition 1.1. Let k≥ 2 be an integer, and let G be a graph of order n. If each component
of G has at least three vertices, then

γ
{k}
t (G)+d{k}t (G)≤ 2kn

3
+1≤ kn−1.

Proof. In view of [2], the inequality γt(G)≤ 2n/3 is valid. This implies that

γ
{k}
t (G)≤ kγt(G)≤ 2kn

3
.

If d{k}t (G) = 1, then it follows that

γ
{k}
t (G)+d{k}t (G)≤ 2kn

3
+1≤ kn−1.

If d{k}t (G)≥ 2, then we deduce from Theorem 1.5 that

γ
{k}
t (G)+d{k}t (G)≤ kn

2
+2≤ 2kn

3
+1≤ kn−1.

Observation 1.1. If G = Pr×Pt is a grid of order n = rt such that 2≤ r≤ t, then d{k}t (G) =
2.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 2. Now let V (G) = {xi, j|1 ≤ i ≤ r and 1 ≤
j ≤ t} be the vertex set of G. Define f ,g : V (G)→ {0,1,2, . . . ,k} by f (xi, j) = k if i is odd
and f (xi, j) = 0 if i is even and g(xi, j) = k if i is even and g(xi, j) = 0 if i is odd. Now { f ,g}
is a T{k}D family on G. Therefore d{k}t (G)≥ 2 and thus d{k}t (G) = 2.

2. Total {k}-domination and domatic numbers of p-partite graphs

Theorem 2.1. Let G be a p-partite graph without isolated vertices and p ≥ 2. If k ≥ 1 is
an integer, then

(2.1) γ
{k}
t (G)≥

⌈
pk

p−1

⌉
.

Proof. Let f be a γ
{k}
t (G)-function, and let V1,V2, . . . ,Vp be the partite sets of G. If wi ∈Vi

for 1≤ i≤ p, then the definition implies that ∑x∈N(wi) f (x)≥ k for 1≤ i≤ p. It follows that

(p−1)ω( f ) = (p−1) ∑
x∈V (G)

f (x) =
p

∑
i=1

∑
x∈(V (G)−Vi)

f (x)≥
p

∑
i=1

∑
x∈N(wi)

f (x)≥ pk

and thus γ
{k}
t (G)≥ dpk/(p−1)e.
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Since each graph without isolated vertices is p-partite for some p≥ 2, the next corollary
follows immediately from Theorem 2.1.

Corollary 2.1 (Sheikholeslami, Volkmann [5]). For each positive integer k and any graph
G without isolated vertices, γ

{k}
t (G)≥ k +1.

The next examples will demonstrate that inequality (2.1) is sharp.
Let k ≥ 1 be an integer, and let H be a complete p-partite (p≥ 2) graph with the partite

sets V1,V2, . . . ,Vp such that vi ∈Vi for i = 1,2, . . . , p.
Assume first that k = s(p−1) with an integer s ≥ 1. Define f : V (H)→ {0,1,2, . . . ,k}

by f (vi) = s for i = 1,2, . . . , p and f (x) = 0 for x ∈ V (H)−{v1,v2, . . . ,vp}. We observe
that ∑v∈N(u) f (x) ≥ (p− 1)s = k for each vertex u ∈ V (H), and therefore f is a T{k}DF.

It follows that γ
{k}
t (H) ≤ ps = dpk/(p−1)e and thus Theorem 2.1 implies that γ

{k}
t (H) =

dpk/(p−1)e.
Assume second that k = s(p− 1) + r with integers s ≥ 0 and 1 ≤ r ≤ p− 2. Define

f : V (H)→{0,1,2, . . . ,k} by f (v1) = f (v2) = . . . = f (vr+1) = s+1, f (vr+2) = f (vr+3) =
. . . = f (vp) = s and f (x) = 0 for x ∈ V (H)−{v1,v2, . . . ,vp}. We see that ∑v∈N(u) f (x) ≥
(p−1)s+ r = k for each vertex u ∈V (H), and therefore f is a T{k}DF. It follows that

γ
{k}
t (H)≤ ps+ r +1 = ps+ r +

⌈
r

p−1

⌉
= ps+

⌈
(p−1)r + r

p−1

⌉
= ps+

⌈
pr

p−1

⌉
=
⌈

ps(p−1)+ pr
p−1

⌉
=
⌈

pk
p−1

⌉
and thus Theorem 2.1 implies that γ

{k}
t (H) = dpk/(p−1)e.

Proposition 2.1. Let G be a bipartite graph without isolated vertices. If k≥ 1 is an integer
and X and Y are the partite sets of G, then γ

{k}
t (G) ≥ 2k with equality if and only if there

exist two vertices u ∈ X and v ∈ Y such that N(u) = Y and N(v) = X.

Proof. It follows from Theorem 2.1 that γ
{k}
t (G) ≥ 2k. If there exist two vertices u ∈ X

and v ∈ Y such that N(u) = Y and N(v) = X , then define f : V (G)→ {0,1,2, . . . ,k} by
f (u) = f (v) = k and f (x) = 0 for x ∈V (G)−{u,v}. Obviously, f is a total {k}-dominating
function of G. This implies that γ

{k}
t (G)≤ 2k and so γ

{k}
t (G) = 2k.

Conversely, assume that γ
{k}
t (G) = 2k, and let f be a γ

{k}
t (G)-function. It follows that

∑
x∈X

f (x) = ∑
y∈Y

f (y) = k.

Now let X+ ⊆ X be such that ∑x∈X+ f (x) = k and f (x) ≥ 1 for x ∈ X+ and Y + ⊆ Y be
such that ∑y∈Y+ f (x) = k and f (x)≥ 1 for y ∈ X+. Then Y + ⊆ N(x) for each vertex x ∈ X
and X+ ⊆ N(y) for each vertex y ∈ Y . This leads to N(x) = Y for each vertex x ∈ X+ and
N(y) = X for each vertex y ∈ Y +, and the proof is complete.

Corollary 2.2. If k is a positive integer, and G is a bipartite graph of order n without
isolated vertices, then

d{k}t (G)≤ n
2
,

with equality only if n is even and γ
{k}
t (G) = 2k.
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Proof. According to Theorem 2.1, we have γ
{k}
t (G)≥ 2k. Therefore it follows from Theo-

rem 1.2 that

d{k}t (G)≤ kn

γ
{k}
t (G)

≤ kn
2k

=
n
2
,

and this is the desired inequality.
Assume that d{k}t (G) = n/2. The inequality chain above shows that γ

{k}
t (G) = 2k and

that n is even.
Let G be isomorphic to the complete bipartite graph Kp,p with the partite sets {u1,u2, . . . ,

up} and {v1,v2, . . . ,vp}. Define fi :V (G)→{0,1,2, . . . ,k} by fi(ui) = fi(vi) = k and fi(x) =
0 when x ∈V (G)−{ui,vi} for 1≤ i≤ p. Now { f1, f2, . . . , fp} is a T{k}D family on G and
thus d{k}t (G) ≥ p. By Corollary 2.2, d{k}t (G) ≤ p and thus d{k}t (G) = p. This example
shows that Corollary 2.2 is sharp.

3. Cylinder and torus

The Cartesian product G = G1×G2 of two disjoint graphs G1 and G2 has V (G) = V (G1)×
V (G2), and two vertices (u1,u2) and (v1,v2) of G are adjacent if and only if either u1 = v1
and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). The Cartesian product of a cycle Cr =
(x1x2 . . .xr) and a path Pt = y1y2 . . .yt is called a cylinder and the Cartesian product of two
cycles Cr = (x1x2 . . .xr) and Ct = (y1y2 . . .yt) is called a torus. If G is a cylinder (or torus),
then let V (G) = {xi, j|1≤ i≤ r and 1≤ j ≤ t} be the vertex set of G.

In this section we determine the total {k}-domination and domatic number of some cylin-
ders and torus. First we determine the exact value of d{k}t (Cn × P2). We start with the
following proposition.

Proposition 3.1. If G = C3r × Pt is a cylinder of order n = 3rt such that 2 ≤ t, then
d{k}t (G) = 3.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 3. Define f ,g,h : V (G)→ {0,1,2, . . . ,k} by
f (xi, j) = k if i ≡ 1 (mod 3) and f (xi, j) = 0 otherwise, g(xi, j) = k if i ≡ 2 (mod 3) and
g(xi, j) = 0 otherwise and h(xi, j) = k if i ≡ 0 (mod 3) and h(xi, j) = 0 otherwise. Now
{ f ,g,h} is a T{k}D family on G. Therefore d{k}t (G)≥ 3 and thus d{k}t (G) = 3.

Proposition 3.2. For n≥ 3,

d{k}t (Cn×P2) =
{

3 if n≡ 0 (mod 3)
2 otherwise.

Proof. If n≡ 0 (mod 3), then the result follows from Proposition 3.1.
Let now n 6≡ 0 (mod 3). Suppose that { f ,g,h} is a T{k}D family of Cn×P2. By The-

orem 1.3, ∑u∈N(v) f (u) = k for each v ∈ V (Cn×P2). Assume that f (x1,1) = a, f (x1,2) =
a′, f (x2,1) = b and f (x2,2) = b′. Since ∑u∈N(x2,1) f (u) = k and ∑u∈N(x2,2) f (u) = k, we
have f (x3,1) = k− a− b′ and f (x3,2) = k− a′ − b. Since also ∑u∈N(x3,1) f (u) = k and
∑u∈N(x3,2) f (u) = k, we have f (x4,1) = a′ and f (x4,2) = a. By repeating this process, we
distinguish four cases.
Case 1. Assume that n≡ 4 (mod 6).
Then f (xn−2,1) = b, f (xn−2,2) = b′, f (xn−1,1) = k−a−b′, f (xn−1,2) = k−a′−b, f (xn,1) = a′
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and f (xn,2) = a. By Theorem 1.3,

k = ∑
u∈N(xn,1)

f (u) = a+ k−b′,(3.1)

k = ∑
u∈N(xn,2)

f (u) = a′+ k−b,(3.2)

k = ∑
u∈N(x1,1)

f (u) = 2a′+b,(3.3)

k = ∑
u∈N(x1,2)

f (u) = 2a+b′.(3.4)

It follows from (3.1) and (3.4) that a = b′ = k
3 and from (3.2) and (3.3) that a′ = b = k/3.

This implies that f (xi, j) = k/3 for each i and j. An argument similar to that described above
shows that g(xi, j) = k/3 for each i and j which leads to the contradiction f = g.
Case 2. Assume that n≡ 5 (mod 6).
Then f (xn−2,1) = k−a−b′, f (xn−2,2) = k−a′−b, f (xn−1,1) = a′, f (xn−1,2) = a, f (xn,1) = b′

and f (xn,2) = b.
Case 3. Assume that n≡ 1 (mod 6).
Then f (xn−2,1) = b′, f (xn−2,2) = b, f (xn−1,1) = k−a′−b, f (xn−1,2) = k−a−b′, f (xn,1) = a
and f (xn,2) = a′.
Case 4. Assume that n≡ 2 (mod 6).
Then f (xn−2,1) = k−a′−b, f (xn−2,2) = k−a−b′, f (xn−1,1) = a, f (xn−1,2) = a′, f (xn,1) = b
and f (xn,2) = b′.

Using the same arguments as in Case 1, the Cases 2, 3 and 4 lead to a contradiction too.
It follows that d{k}t (Cn×P2)≤ 2. In addition, if we define f ,g : V (Cn×P2)→{0,1,2, . . . ,k}
by f (xi,1) = k and f (xi,2) = 0 and g(xi,1) = 0 and g(xi,2) = k for 1≤ i≤ n, then { f ,g} is a
T{k}D family on Cn×P2. Therefore d{k}t (Cn×P2)≥ 2 and thus d{k}t (Cn×P2) = 2 in these
four cases, and the proof is complete.

Proposition 3.3. If G = C3r+1×Pt is a cylinder of order n = (3r +1)t, t ≥ 3 and k is even,
then d{k}t (G) = 3.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 3. Define f ,g,h : V (G)→ {0,1,2, . . . ,k} as
follows: f (x1,1) = f (x1,t) = k/2 , f (x3m+2, j) = f (x3m+4, j) = k/2 if 0 ≤ m ≤ r− 1 , 1 ≤
j ≤ t and f (xi, j) = 0 otherwise; g(x2,1) = g(x2,t) = k/2 , g(x1, j) = g(x3, j) = g(x3m+2, j) =
g(x3m+3, j) = k/2 for 1 ≤ j ≤ t, 1 ≤ m ≤ r− 1 when r ≥ 2 and g(xi, j) = 0 otherwise and
h(x3m+3, j) = h(x3m+4, j) = k/2 if 0 ≤ m ≤ r− 1 , 1 ≤ j ≤ t and h(x1,3s+2) = h(x2,3s+2) =
k/2 for 0 ≤ s ≤ (t − 3)/3 if t ≡ 0 (mod 3), h(x1,2) = h(x2,2) = h(x1,3s+3) = h(x2,3s+3) =
k/2 for 0≤ s≤ (t−4)/3 if t ≡ 1 (mod 3), h(x1,2) = h(x2,2) = h(x1,3s+4) = h(x2,3s+4) = k/2
for 0 ≤ s ≤ (t− 5)/3 if t ≡ 2 (mod 3), h(xi, j) = 0 otherwise. Now it is easy to verify that
{ f ,g,h} is a T{k}D family on G. Therefore d{k}t (G)≥ 3 and thus d{k}t (G) = 3.

Proposition 3.4. If G = C3r+2×Pt is a cylinder of order n = (3r +2)t, t ≥ 3 and k is even,
then d{k}t (G) = 3.

Proof. According to Theorem 1.3, d{k}t (G)≤ 3. Consider two cases.



On the Total {k}-Domination and Total {k}-Domatic Number of Graphs 45

Case 1. Assume that t ≡ 1 (mod 2). Then t = 3 + 2m for some m ≥ 0. Define f ,g,h :
V (G)→{0,1,2, . . . ,k} as follows: f (x2,2s+1) = f (x3,2s+1) = k/2 if 0≤ s≤m+1 , f (x1, j) =
f (x4, j) = k/2 if 1 ≤ j ≤ t, f (x3l+6, j) = f (x3l+7, j) = k/2 if 0 ≤ l ≤ r− 2 (r ≥ 2) , 1 ≤
j ≤ t, and f (xi, j) = 0 otherwise, g(x3,2s+1) = g(x4,2s+1) = k/2 if 0≤ s≤ m+1 , g(x2, j) =
g(x5, j) = k/2 if 1 ≤ j ≤ t, g(x3l+7, j) = g(x3l+8, j) = k/2 if 0 ≤ l ≤ r− 2 (r ≥ 2) , 1 ≤ j ≤
t, and g(xi, j) = 0 otherwise, and h(x2,2s) = h(x4,2s) = k/2 , h(x3,2s) = k if 1 ≤ s ≤ m +
1 , h(x1, j) = h(x5, j) = k/2 if 1 ≤ j ≤ t, h(x3l+6, j) = h(x3l+8, j) = k/2 if 0 ≤ l ≤ r− 2 (r ≥
2) , 1≤ j ≤ t, and h(xi, j) = 0 otherwise. It is easy to verify that { f ,g,h} is a T{k}D family
on G. Therefore d{k}t (G)≥ 3 and so d{k}t (G) = 3.
Case 2. Assume that t ≡ 0 (mod 2). Then t = 4 + 2m for some m ≥ 0. Define f ,g,h :
V (G) → {0,1,2, . . . ,k} as follows: f (x2,1) = f (x3,1) = k/2 , f (x2,2s+4) = f (x3,2s+4) =
k/2 if 0≤ s≤m, f (x3l+6, j) = f (x3l+7, j) = k/2 if 0≤ l ≤ r−2 (r≥ 2) , 1≤ j≤ t, f (x1, j) =
f (x4, j) = k/2 if 1≤ j ≤ t and f (xi, j) = 0 otherwise, g(x3,1) = g(x4,1) = k/2 , g(x3,2s+4) =
g(x4,2s+4) = k/2 if 0≤ s≤m, g(x3l+7, j) = g(x3l+8, j) = k/2 if 0≤ l≤ r−2 (r≥ 2) , 1≤ j≤
t, g(x2, j) = g(x5, j) = k/2 if 1≤ j ≤ t and g(xi, j) = 0 otherwise, and h(x2,2) = h(x2,2s+1) =
k/2 , h(x3,2) = h(x3,2s+3) = k if 0≤ s≤m, h(x3l+5, j) = h(x3l+6, j) = k/2 if 0≤ l≤ r−2 (r≥
2) , 1≤ j≤ t, h(x1, j) = h(x3r+2, j) = k/2 if 1≤ j≤ t and h(xi, j) = 0 otherwise. It is easy to
verify that { f ,g,h} is a T{k}D family on G. Therefore d{k}t (G)≥ 3 and so d{k}t (G) = 3.

Proposition 3.5. If G = C4r ×P3t is a cylinder of order n = 12rt such that t,r ≥ 1, then
d{k}t (G) = 3.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 3. Define f ,g,h : V (G)→ {0,1,2, . . . ,k}
by f (xi, j) = k if i ≡ 1 (mod 4) and j ≡ 1,2 (mod 3) and f (xi, j) = k if i ≡ 3 (mod 4) and
j≡ 0,2 (mod 3) and f (xi, j) = 0 otherwise, g(xi, j) = k if i≡ 2 (mod 4) and j≡ 1,2 (mod 3)
and g(xi, j) = k if i ≡ 0 (mod 4) and j ≡ 0,2 (mod 3) and g(xi, j) = 0 otherwise, h(xi, j) = k
if i ≡ 0,3 (mod 4) and j ≡ 1 (mod 3) and h(xi, j) = k if i ≡ 1,2 (mod 4) and j ≡ 0 (mod 3)
and h(xi, j) = 0 otherwise. Now { f ,g,h} is a T{k}D family on G. Therefore d{k}t (G) ≥ 3
and thus d{k}t (G) = 3.

Proposition 3.6. If G = C4r×P2t+1 is a cylinder of order n = 4r(2t +1) such that t,r ≥ 1,
then d{k}t (G) = 3.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 3. Define f ,g,h : V (G)→ {0,1,2, . . . ,k} by
f (x4m+1,4l+1) = f (x4m+2,4l+1) = (k+1)/2 , 0≤m≤ r−1 , 0≤ l ≤ bt/2c, f (x4m+1,4l+3) =
f (x4m+2,4l+3) = (k−1)/2 , 0≤m≤ r−1 , 0≤ l≤ dt/2e−1, f (x4m+3,4l+1) = f (x4m+4,4l+1)
= (k−1)/2 , 0≤m≤ r−1 , 0≤ l≤ bt/2c, f (x4m+3,4l+3) = f (x4m+4,4l+3) = (k+1)/2 , 0≤
m ≤ r− 1 , 0 ≤ l ≤ dt/2e− 1, f (xi, j) = 0 otherwise, g(xi, j) = k− f (xi, j) when f (xi, j) 6=
0 and g(xi, j) = 0 otherwise, and h(xi,2s) = k if 1 ≤ i ≤ 4r , 1 ≤ s ≤ t and h(xi, j) =
0 otherwise. Clearly { f ,g,h} is a T{k}D family on G. Therefore d{k}t (G) ≥ 3 and thus
d{k}t (G) = 3.

Theorem 3.1. Let p,r ≥ 2 be two integers, and let G be a p-regular graph of order pr.
If V (G) has a partition in p sets {ui

1,u
i
2, . . . ,u

i
r} such that the subgraph G[{ui

1,u
i
2, . . . ,u

i
r}]

has no isolated vertices and N(ui
1)∪N(ui

2)∪ . . .∪N(ui
r) = V (G) for i = 1,2, . . . , p, then

d{k}t (G) = p.



46 H. Aram, S. M. Sheikholeslami and L. Volkmann

Proof. According to Theorem 1.3, d{k}t (G) ≤ p. Define fi : V (G) → {0,1,2, . . . ,k} by
fi(ui

1) = fi(ui
2) = . . . = fi(ui

r) = k and fi(x) = 0 for x ∈ V (G)−{ui
1,u

i
2, . . . ,u

i
r} for i =

1,2, . . . , p. The hypothesis shows that { f1, f2, . . . , fp} is a T{k}D family on G. Therefore
d{k}t (G)≥ p and thus d{k}t (G) = p.

The complete bipartite graph Kp,p and the torus C4×C4 are examples which fulfil the
conditions of Theorem 3.1. Furthermore, one can show that C4s×C4t fulfils the condition
of Theorem 3.1 for s, t ≥ 1 and therefore d{k}t (C4s×C4t) = 4.

Proposition 3.7. If G = C2n×C2m is a torus of order 4nm such that n,m≥ 2 and k is even,
then d{k}t (G) = 4.

Proof. According to Theorem 1.3, d{k}t (G) ≤ 4. Define fs : V (G) → {0,1,2, . . . ,k} by
f1(x2i−1, j) = k/2 , f2(x2i, j) = k/2 if 1≤ i≤ n , 1≤ j≤ 2m, and f3(xi,2 j−1) = k/2 , f4(xi,2 j)
= k/2 if 1 ≤ i ≤ 2n , 1 ≤ j ≤ m and fs(xi,x j) = 0 otherwise for s = 1,2,3,4. Clearly,
{ f1, f2, f3, f4} is a T{k}D family on G. Therefore d{k}t (G)≥ 4 and thus d{k}t (G) = 4.

Proposition 3.8. If G = Cn×Cm is a torus of order nm such that 4 - nmk, then d{k}t (G)≤ 3.

Proof. Let 4 - nmk and let f belong to a T{k}D family on G. Since Cn×Cm is 4-regular,
according to Theorem 1.3, d{k}t (G) ≤ 4. Suppose to the contrary that d{k}t (G) = 4. By
Theorem 1.3,

nmk = ∑
v∈V (G)

∑
u∈N(v)

f (u) = 4 ∑
u∈V (G)

f (u) = 4w( f ).

It follows that 4 | nmk which is a contradiction. Hence d{k}t (G)≤ 3.
We conclude this section with two problems.

Problem 3.1. Prove or disprove: If G =Cn×Pm is a cylinder of order nm such that m,n≥ 3,
then d{k}t (G) = 3.

Problem 3.2. Prove or disprove: Let G = Cn×Cm be a torus of order nm. If 4 - nmk, then
d{k}t (G) = 3 and d{k}t (G) = 4 otherwise.

4. A Nordhaus-Gaddum bound

In this section we present a lower bound on the sum d{k}t (G)+d{k}t (G).

Theorem 4.1. For every δ -regular graph of order n ≥ 5 in which neither G nor G have
isolated vertices,

d{k}t (G)+d{k}t (G)≥min
{

k +1,

⌈
n−2

2

⌉}
.

Proof. Let δ = δ (G) and δ = δ (G). Since G is δ -regular, we observe that δ + δ = n−1.
If we assume, without loss of generality, that δ ≥ δ , then δ ≥ (n−1)/2.
Case 1. Assume that k ≤ (n− 1)/2. Thus δ ≥ k. If δ = k, then Theorem 1.1 implies that
d{k}t (G)≥ δ −1 and therefore

d{k}t (G)+d{k}t (G)≥ δ −1+1 = δ ≥ n−1
2
≥min

{
k +1,

⌈
n−2

2

⌉}
.
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If δ > k, then it follows from Theorem 1.1 that

d{k}t (G)≥

⌊
k⌈ k
δ

⌉⌋= k

and hence

d{k}t (G)+d{k}t (G)≥ k +1≥min
{

k +1,

⌈
n−2

2

⌉}
.

Case 2. Assume that k > (n− 1)/2. If δ > k, then we obtain as above the desired bound.
Finally, assume that k≥ δ . If δ |k, then Theorem 1.1 leads to d{k}t (G)≥ δ −1≥ (δ −1)/2,
and if δ 6 | k, then Theorem 1.1 implies that

d{k}t (G)≥

⌊
k⌈ k
δ

⌉⌋>
k⌈ k
δ

⌉ −1≥ k
k
δ

+1
−1 =

kδ

k +δ
−1≥ δ

2
−1.

Consequently, d{k}t (G) ≥ (δ − 1)/2 in every case. As k ≥ δ , we obtain analogously the
inequality

d{k}t (G)≥ δ −1
2

and therefore

d{k}t (G)+d{k}t (G)≥ δ −1
2

+
δ −1

2
=

n−3
2
≥min

{
k +1,

n−3
2

}
.

If n is even, then this inequality chain leads to the desired bound. If n is odd, then it follows
that δ and δ are even and thus d{k}t (G)≥ δ/2 and d{k}t (G)≥ δ/2 and so

d{k}t (G)+d{k}t (G)≥ δ

2
+

δ

2
=

n−1
2
≥min

{
k +1,

⌈
n−2

2

⌉}
.
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