BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On the Total {*k*}**-Domination and Total** {*k*}**-Domatic Number of Graphs**

¹H. Aram, ²S. M. Sheikholeslami and ³L. Volkmann

^{1,2}Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I. R. Iran ³Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Abstract. For a positive integer k, a *total* $\{k\}$ -*dominating function* of a graph G without isolated vertices is a function f from the vertex set V(G) to the set $\{0, 1, 2, ..., k\}$ such that for any vertex $v \in V(G)$, the condition $\sum_{u \in N(v)} f(u) \ge k$ is fulfilled, where N(v) is the open neighborhood of v. The *weight* of a total $\{k\}$ -dominating function f is the value $\omega(f) = \sum_{v \in V} f(v)$. The *total* $\{k\}$ -*domination number*, denoted by $\gamma_t^{\{k\}}(G)$, is the minimum weight of a total $\{k\}$ -dominating function on G. A set $\{f_1, f_2, \ldots, f_d\}$ of total $\{k\}$ -dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \le k$ for each $v \in V(G)$, is called a *total* $\{k\}$ -dominating family (of functions) on G. The maximum number of functions in a total $\{k\}$ -dominating family on G is the *total* $\{k\}$ -domatic number of G, denoted by $d_t^{\{k\}}(G)$. Note that $d_t^{\{1\}}(G)$ is the classic total domatic number $d_t(G)$. In this paper, we present bounds for the total $\{k\}$ -domination number of cylinders and we give a Nordhaus-Gaddum type result.

2010 Mathematics Subject Classification: 05C69

Keywords and phrases: Total $\{k\}$ -dominating function, total $\{k\}$ -domination number, total $\{k\}$ -domatic number.

1. Introduction

In this paper, *G* is a simple graph with no isolated vertices and with vertex set V = V(G) and edge set E = E(G). The order |V| of *G* is denoted by n = n(G). For every vertex $v \in V$, the *open neighborhood* N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the *closed neighborhood* of v is the set $N[v] = N(v) \cup \{v\}$. The *degree* of a vertex $v \in V$ is d(v) = |N(v)|. The *minimum* and *maximum degree* of a graph *G* are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The *open neighborhood* of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the *closed neighborhood* of *S* is the set $N[S] = N(S) \cup S$. If $S \subseteq V(G)$, then G[S] is the subgraph of *G* induced by *S*. The complement of a graph *G* is denoted by \overline{G} . Consult [3, 6] for the notation and terminology which are not defined here.

Communicated by Sanming Zhou.

Received: October 14, 2010; Revised: January 12, 2011.

A subset S of vertices of G is a *total dominating set* if N(S) = V. The *total domination* number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. A total domatic partition is a partition of V into total dominating sets, and the total domatic number $d_t(G)$ is the largest number of sets in a total domatic partition. The total domatic number was introduced by Cockayne *et al.* in [2].

For a positive integer k, a *total* {k}-*dominating function* (T{k}DF) of a graph G without isolated vertices is a function f from the vertex set V(G) to the set $\{0, 1, 2, ..., k\}$ such that for any vertex $v \in V(G)$, the condition $\sum_{u \in N(v)} f(u) \ge k$ is fulfilled. The *weight* of a T{k}DF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The *total* {k}-*domination number* of a graph G, denoted by $\gamma_t^{\{k\}}(G)$, is the minimum weight of a T{k}DF of G. A $\gamma_t^{\{k\}}(G)$ -function is a total {k}-dominating function of G with weight $\gamma_t^{\{k\}}(G)$. Note that $\gamma_t^{\{1\}}(G)$ is the classical total domination number $\gamma_t(G)$. The total {k}-domination number was introduced by Li and Hou [4].

A set $\{f_1, f_2, ..., f_d\}$ of distinct total $\{k\}$ -dominating functions of G with the property that $\sum_{i=1}^d f_i(v) \le k$ for each $v \in V(G)$, is called a *total* $\{k\}$ -dominating family (of functions) on G. The maximum number of functions in a total $\{k\}$ -dominating family (T $\{k\}$ D family) on G is the *total* $\{k\}$ -domatic number of G, denoted by $d_t^{\{k\}}(G)$. The total $\{k\}$ -domatic number is well-defined and

$$(1.1) d_t^{\{k\}}(G) \ge 1$$

for all graphs *G* without isolated vertices, since the set consisting of the function $f: V(G) \rightarrow \{0, 1, 2, ..., k\}$ defined by f(v) = k for each $v \in V(G)$, forms a T{k}D family on *G*. The total {k}-domatic number was introduced by Sheikholeslami and Volkmann [5] and has also been studied in [1].

In this paper, we continue the study of the total $\{k\}$ -domination number and total $\{k\}$ -domatic number in graphs. We first study bounds for the total $\{k\}$ -domination number and total $\{k\}$ -domatic number. Then we determine the total $\{k\}$ -domatic number of some cylinders and we present a Nordhaus-Gaddum type result.

The following known results are useful for our investigations.

Theorem 1.1 (Chen, Hou, Li [1]). Let *G* be a graph without isolated vertices and $\delta = \delta(G)$. If $\delta | k$, then $d_t^{\{k\}}(G) \ge \delta - 1$, and if $\delta \not| k$, then $d_t^{\{k\}}(G) \ge |k/ \lfloor \frac{k}{\delta} \rfloor|$.

Theorem 1.2 (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated vertices, then

$$\gamma_t^{\{k\}}(G) \cdot d_t^{\{k\}}(G) \le kn$$

Moreover, if $\gamma_t^{\{k\}}(G) \cdot d_t^{\{k\}}(G) = kn$, then for each $T\{k\}D$ family $\{f_1, f_2, \dots, f_d\}$ on G with $d = d_t^{\{k\}}(G)$, each function f_i is a $\gamma_t^{\{k\}}(G)$ -function and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V$.

Theorem 1.3 (Sheikholeslami, Volkmann [5]). For every graph G without isolated vertices,

$$d_t^{\{k\}}(G) \le \delta(G).$$

Moreover, if $d_t^{\{k\}}(G) = \delta(G)$, then for each function of any $T\{k\}D$ family $\{f_1, f_2, \dots, f_d\}$ and for all vertices v of degree $\delta(G)$, $\sum_{u \in N(v)} f_i(u) = k$ and $\sum_{i=1}^d f_i(u) = k$ for every $u \in N(v)$. **Theorem 1.4** (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated vertices and k a positive integer, then

$$\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le nk + 1.$$

Theorem 1.5 (Sheikholeslami, Volkmann [5]). Let G be a graph of order n without isolated vertices and k a positive integer. If $d_t^{\{k\}}(G) > 2$, then

$$\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \frac{kn}{2} + 2.$$

If each component of a graph G has at least three vertices, then we can improve Theorem 1.4 a little bit.

Proposition 1.1. Let $k \ge 2$ be an integer, and let G be a graph of order n. If each component of G has at least three vertices, then

$$\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \frac{2kn}{3} + 1 \le kn - 1.$$

Proof. In view of [2], the inequality $\gamma_t(G) \leq 2n/3$ is valid. This implies that

$$\gamma_t^{\{k\}}(G) \le k\gamma_t(G) \le \frac{2kn}{3}$$

If $d_t^{\{k\}}(G) = 1$, then it follows that

$$\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \frac{2kn}{3} + 1 \le kn - 1.$$

If $d_t^{\{k\}}(G) > 2$, then we deduce from Theorem 1.5 that

$$\gamma_t^{\{k\}}(G) + d_t^{\{k\}}(G) \le \frac{kn}{2} + 2 \le \frac{2kn}{3} + 1 \le kn - 1.$$

Observation 1.1. If $G = P_r \times P_t$ is a grid of order n = rt such that $2 \le r \le t$, then $d_r^{\{k\}}(G) =$ 2.

Proof. According to Theorem 1.3, $d_i^{\{k\}}(G) \leq 2$. Now let $V(G) = \{x_{i,j} | 1 \leq i \leq r \text{ and } 1 \leq i \leq r \}$ $j \le t$ be the vertex set of G. Define $f, g: V(G) \to \{0, 1, 2, \dots, k\}$ by $f(x_{i,j}) = k$ if i is odd and $f(x_{i,j}) = 0$ if *i* is even and $g(x_{i,j}) = k$ if *i* is even and $g(x_{i,j}) = 0$ if *i* is odd. Now $\{f, g\}$ is a T{k}D family on G. Therefore $d_t^{\{k\}}(G) \ge 2$ and thus $d_t^{\{k\}}(G) = 2$.

2. Total $\{k\}$ -domination and domatic numbers of *p*-partite graphs

Theorem 2.1. Let G be a p-partite graph without isolated vertices and $p \ge 2$. If $k \ge 1$ is an integer, then

(2.1)
$$\gamma_t^{\{k\}}(G) \ge \left\lceil \frac{pk}{p-1} \right\rceil$$

Proof. Let f be a $\gamma_t^{\{k\}}(G)$ -function, and let V_1, V_2, \ldots, V_p be the particle sets of G. If $w_i \in V_i$ for $1 \le i \le p$, then the definition implies that $\sum_{x \in N(w_i)} f(x) \ge k$ for $1 \le i \le p$. It follows that

$$(p-1)\omega(f) = (p-1)\sum_{x \in V(G)} f(x) = \sum_{i=1}^{p} \sum_{x \in (V(G)-V_i)} f(x) \ge \sum_{i=1}^{p} \sum_{x \in N(w_i)} f(x) \ge pk$$

hus $\gamma_i^{\{k\}}(G) \ge \lceil pk/(p-1) \rceil$.

and th $S \gamma_t^{CS}(G) \ge |p\kappa/(p-1)|$

Since each graph without isolated vertices is *p*-partite for some $p \ge 2$, the next corollary follows immediately from Theorem 2.1.

Corollary 2.1 (Sheikholeslami, Volkmann [5]). For each positive integer k and any graph G without isolated vertices, $\gamma_t^{\{k\}}(G) \ge k+1$.

The next examples will demonstrate that inequality (2.1) is sharp.

Let $k \ge 1$ be an integer, and let H be a complete p-partite $(p \ge 2)$ graph with the partite sets V_1, V_2, \ldots, V_p such that $v_i \in V_i$ for $i = 1, 2, \ldots, p$.

Assume first that k = s(p-1) with an integer $s \ge 1$. Define $f: V(H) \to \{0, 1, 2, ..., k\}$ by $f(v_i) = s$ for i = 1, 2, ..., p and f(x) = 0 for $x \in V(H) - \{v_1, v_2, ..., v_p\}$. We observe that $\sum_{v \in N(u)} f(x) \ge (p-1)s = k$ for each vertex $u \in V(H)$, and therefore f is a T $\{k\}$ DF. It follows that $\gamma_t^{\{k\}}(H) \le ps = \lceil pk/(p-1) \rceil$ and thus Theorem 2.1 implies that $\gamma_t^{\{k\}}(H) = \lceil pk/(p-1) \rceil$.

Assume second that k = s(p-1) + r with integers $s \ge 0$ and $1 \le r \le p-2$. Define $f: V(H) \rightarrow \{0, 1, 2, ..., k\}$ by $f(v_1) = f(v_2) = ... = f(v_{r+1}) = s+1$, $f(v_{r+2}) = f(v_{r+3}) = ... = f(v_p) = s$ and f(x) = 0 for $x \in V(H) - \{v_1, v_2, ..., v_p\}$. We see that $\sum_{v \in N(u)} f(x) \ge (p-1)s + r = k$ for each vertex $u \in V(H)$, and therefore f is a T{k}DF. It follows that

$$\gamma_t^{\{k\}}(H) \le ps + r + 1 = ps + r + \left\lceil \frac{r}{p-1} \right\rceil = ps + \left\lceil \frac{(p-1)r + r}{p-1} \right\rceil$$
$$= ps + \left\lceil \frac{pr}{p-1} \right\rceil = \left\lceil \frac{ps(p-1) + pr}{p-1} \right\rceil = \left\lceil \frac{pk}{p-1} \right\rceil$$

and thus Theorem 2.1 implies that $\gamma_t^{\{k\}}(H) = \lceil pk/(p-1) \rceil$.

Proposition 2.1. Let G be a bipartite graph without isolated vertices. If $k \ge 1$ is an integer and X and Y are the partite sets of G, then $\gamma_t^{\{k\}}(G) \ge 2k$ with equality if and only if there exist two vertices $u \in X$ and $v \in Y$ such that N(u) = Y and N(v) = X.

Proof. It follows from Theorem 2.1 that $\gamma_t^{\{k\}}(G) \ge 2k$. If there exist two vertices $u \in X$ and $v \in Y$ such that N(u) = Y and N(v) = X, then define $f : V(G) \to \{0, 1, 2, ..., k\}$ by f(u) = f(v) = k and f(x) = 0 for $x \in V(G) - \{u, v\}$. Obviously, f is a total $\{k\}$ -dominating function of G. This implies that $\gamma_t^{\{k\}}(G) \le 2k$ and so $\gamma_t^{\{k\}}(G) = 2k$.

Conversely, assume that $\gamma_t^{\{k\}}(G) = 2k$, and let f be a $\gamma_t^{\{k\}}(G)$ -function. It follows that

$$\sum_{x \in X} f(x) = \sum_{y \in Y} f(y) = k.$$

Now let $X^+ \subseteq X$ be such that $\sum_{x \in X^+} f(x) = k$ and $f(x) \ge 1$ for $x \in X^+$ and $Y^+ \subseteq Y$ be such that $\sum_{y \in Y^+} f(x) = k$ and $f(x) \ge 1$ for $y \in X^+$. Then $Y^+ \subseteq N(x)$ for each vertex $x \in X$ and $X^+ \subseteq N(y)$ for each vertex $y \in Y$. This leads to N(x) = Y for each vertex $x \in X^+$ and N(y) = X for each vertex $y \in Y^+$, and the proof is complete.

Corollary 2.2. If k is a positive integer, and G is a bipartite graph of order n without isolated vertices, then

$$d_t^{\{k\}}(G) \le \frac{n}{2},$$

with equality only if n is even and $\gamma_t^{\{k\}}(G) = 2k$.

Proof. According to Theorem 2.1, we have $\gamma_t^{\{k\}}(G) \ge 2k$. Therefore it follows from Theorem 1.2 that

$$d_t^{\{k\}}(G) \le \frac{kn}{\gamma_t^{\{k\}}(G)} \le \frac{kn}{2k} = \frac{n}{2},$$

and this is the desired inequality.

Assume that $d_t^{\{k\}}(G) = n/2$. The inequality chain above shows that $\gamma_t^{\{k\}}(G) = 2k$ and that *n* is even.

Let *G* be isomorphic to the complete bipartite graph $K_{p,p}$ with the partite sets $\{u_1, u_2, \ldots, u_p\}$ and $\{v_1, v_2, \ldots, v_p\}$. Define $f_i : V(G) \to \{0, 1, 2, \ldots, k\}$ by $f_i(u_i) = f_i(v_i) = k$ and $f_i(x) = 0$ when $x \in V(G) - \{u_i, v_i\}$ for $1 \le i \le p$. Now $\{f_1, f_2, \ldots, f_p\}$ is a T $\{k\}$ D family on *G* and thus $d_t^{\{k\}}(G) \ge p$. By Corollary 2.2, $d_t^{\{k\}}(G) \le p$ and thus $d_t^{\{k\}}(G) = p$. This example shows that Corollary 2.2 is sharp.

3. Cylinder and torus

The *Cartesian product* $G = G_1 \times G_2$ of two disjoint graphs G_1 and G_2 has $V(G) = V(G_1) \times V(G_2)$, and two vertices (u_1, u_2) and (v_1, v_2) of G are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or $u_2 = v_2$ and $u_1v_1 \in E(G_1)$. The Cartesian product of a cycle $C_r = (x_1x_2...x_r)$ and a path $P_t = y_1y_2...y_t$ is called a *cylinder* and the Cartesian product of two cycles $C_r = (x_1x_2...x_r)$ and $C_t = (y_1y_2...y_t)$ is called a *torus*. If G is a cylinder (or torus), then let $V(G) = \{x_{i,j} | 1 \le i \le r \text{ and } 1 \le j \le t\}$ be the vertex set of G.

In this section we determine the total $\{k\}$ -domination and domatic number of some cylinders and torus. First we determine the exact value of $d_t^{\{k\}}(C_n \times P_2)$. We start with the following proposition.

Proposition 3.1. If $G = C_{3r} \times P_t$ is a cylinder of order n = 3rt such that $2 \le t$, then $d_t^{\{k\}}(G) = 3$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \leq 3$. Define $f, g, h: V(G) \rightarrow \{0, 1, 2, \dots, k\}$ by $f(x_{i,j}) = k$ if $i \equiv 1 \pmod{3}$ and $f(x_{i,j}) = 0$ otherwise, $g(x_{i,j}) = k$ if $i \equiv 2 \pmod{3}$ and $g(x_{i,j}) = 0$ otherwise and $h(x_{i,j}) = k$ if $i \equiv 0 \pmod{3}$ and $h(x_{i,j}) = 0$ otherwise. Now $\{f, g, h\}$ is a T $\{k\}$ D family on G. Therefore $d_t^{\{k\}}(G) \geq 3$ and thus $d_t^{\{k\}}(G) = 3$.

Proposition 3.2. *For* $n \ge 3$,

$$d_t^{\{k\}}(C_n \times P_2) = \begin{cases} 3 & \text{if } n \equiv 0 \pmod{3} \\ 2 & \text{otherwise.} \end{cases}$$

Proof. If $n \equiv 0 \pmod{3}$, then the result follows from Proposition 3.1.

Let now $n \neq 0 \pmod{3}$. Suppose that $\{f, g, h\}$ is a T $\{k\}$ D family of $C_n \times P_2$. By Theorem 1.3, $\sum_{u \in N(v)} f(u) = k$ for each $v \in V(C_n \times P_2)$. Assume that $f(x_{1,1}) = a, f(x_{1,2}) = a', f(x_{2,1}) = b$ and $f(x_{2,2}) = b'$. Since $\sum_{u \in N(x_{2,1})} f(u) = k$ and $\sum_{u \in N(x_{2,2})} f(u) = k$, we have $f(x_{3,1}) = k - a - b'$ and $f(x_{3,2}) = k - a' - b$. Since also $\sum_{u \in N(x_{3,1})} f(u) = k$ and $\sum_{u \in N(x_{3,2})} f(u) = k$, we have $f(x_{4,1}) = a'$ and $f(x_{4,2}) = a$. By repeating this process, we distinguish four cases.

Case 1. Assume that $n \equiv 4 \pmod{6}$.

Then
$$f(x_{n-2,1}) = b$$
, $f(x_{n-2,2}) = b'$, $f(x_{n-1,1}) = k - a - b'$, $f(x_{n-1,2}) = k - a' - b$, $f(x_{n,1}) = a'$

and $f(x_{n,2}) = a$. By Theorem 1.3,

(3.1)
$$k = \sum_{u \in N(x_{n,1})} f(u) = a + k - b'$$

(3.2)
$$k = \sum_{u \in N(x_{n,2})} f(u) = a' + k - b_{n,2}$$

(3.3)
$$k = \sum_{u \in N(x_{1,1})} f(u) = 2a' + b,$$

(3.4)
$$k = \sum_{u \in N(x_{1,2})} f(u) = 2a + b'.$$

It follows from (3.1) and (3.4) that $a = b' = \frac{k}{3}$ and from (3.2) and (3.3) that a' = b = k/3. This implies that $f(x_{i,j}) = k/3$ for each *i* and *j*. An argument similar to that described above shows that $g(x_{i,j}) = k/3$ for each *i* and *j* which leads to the contradiction f = g.

Case 2. Assume that $n \equiv 5 \pmod{6}$.

Then $f(x_{n-2,1}) = k - a - b'$, $f(x_{n-2,2}) = k - a' - b$, $f(x_{n-1,1}) = a'$, $f(x_{n-1,2}) = a$, $f(x_{n,1}) = b'$ and $f(x_{n,2}) = b$.

Case 3. Assume that $n \equiv 1 \pmod{6}$.

Then $f(x_{n-2,1}) = b', f(x_{n-2,2}) = b, f(x_{n-1,1}) = k - a' - b, f(x_{n-1,2}) = k - a - b', f(x_{n,1}) = a$ and $f(x_{n,2}) = a'$.

Case 4. Assume that $n \equiv 2 \pmod{6}$.

Then $f(x_{n-2,1}) = k - a' - b$, $f(x_{n-2,2}) = k - a - b'$, $f(x_{n-1,1}) = a$, $f(x_{n-1,2}) = a'$, $f(x_{n,1}) = b$ and $f(x_{n,2}) = b'$.

Using the same arguments as in Case 1, the Cases 2, 3 and 4 lead to a contradiction too. It follows that $d_t^{\{k\}}(C_n \times P_2) \le 2$. In addition, if we define $f, g: V(C_n \times P_2) \to \{0, 1, 2, \dots, k\}$ by $f(x_{i,1}) = k$ and $f(x_{i,2}) = 0$ and $g(x_{i,1}) = 0$ and $g(x_{i,2}) = k$ for $1 \le i \le n$, then $\{f, g\}$ is a T $\{k\}$ D family on $C_n \times P_2$. Therefore $d_t^{\{k\}}(C_n \times P_2) \ge 2$ and thus $d_t^{\{k\}}(C_n \times P_2) = 2$ in these four cases, and the proof is complete.

Proposition 3.3. *If* $G = C_{3r+1} \times P_t$ *is a cylinder of order* n = (3r+1)t, $t \ge 3$ *and k is even, then* $d_t^{\{k\}}(G) = 3$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \le 3$. Define $f, g, h: V(G) \to \{0, 1, 2, ..., k\}$ as follows: $f(x_{1,1}) = f(x_{1,t}) = k/2$, $f(x_{3m+2,j}) = f(x_{3m+4,j}) = k/2$ if $0 \le m \le r-1$, $1 \le j \le t$ and $f(x_{i,j}) = 0$ otherwise; $g(x_{2,1}) = g(x_{2,t}) = k/2$, $g(x_{1,j}) = g(x_{3,j}) = g(x_{3m+2,j}) = g(x_{3m+3,j}) = k/2$ for $1 \le j \le t$, $1 \le m \le r-1$ when $r \ge 2$ and $g(x_{i,j}) = 0$ otherwise and $h(x_{3m+3,j}) = h(x_{3m+4,j}) = k/2$ if $0 \le m \le r-1$, $1 \le j \le t$ and $h(x_{1,3s+2}) = h(x_{2,3s+2}) = k/2$ for $0 \le s \le (t-3)/3$ if $t \equiv 0 \pmod{3}$, $h(x_{1,2}) = h(x_{2,2}) = h(x_{1,3s+3}) = h(x_{2,3s+4}) = k/2$ for $0 \le s \le (t-4)/3$ if $t \equiv 1 \pmod{3}$, $h(x_{1,2}) = h(x_{2,2}) = h(x_{1,3s+4}) = h(x_{2,3s+4}) = k/2$ for $0 \le s \le (t-5)/3$ if $t \equiv 2 \pmod{3}$, $h(x_{i,j}) = 0$ otherwise. Now it is easy to verify that $\{f, g, h\}$ is a T $\{k\}$ D family on *G*. Therefore $d_t^{\{k\}}(G) \ge 3$ and thus $d_t^{\{k\}}(G) = 3$.

Proposition 3.4. If $G = C_{3r+2} \times P_t$ is a cylinder of order n = (3r+2)t, $t \ge 3$ and k is even, then $d_t^{\{k\}}(G) = 3$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \leq 3$. Consider two cases.

Case 1. Assume that $t \equiv 1 \pmod{2}$. Then t = 3 + 2m for some $m \ge 0$. Define $f, g, h : V(G) \to \{0, 1, 2, ..., k\}$ as follows: $f(x_{2,2s+1}) = f(x_{3,2s+1}) = k/2$ if $0 \le s \le m+1$, $f(x_{1,j}) = f(x_{4,j}) = k/2$ if $1 \le j \le t$, $f(x_{3l+6,j}) = f(x_{3l+7,j}) = k/2$ if $0 \le l \le r-2$ $(r \ge 2)$, $1 \le j \le t$, and $f(x_{i,j}) = 0$ otherwise, $g(x_{3,2s+1}) = g(x_{4,2s+1}) = k/2$ if $0 \le s \le m+1$, $g(x_{2,j}) = g(x_{5,j}) = k/2$ if $1 \le j \le t$, $g(x_{3l+7,j}) = g(x_{3l+8,j}) = k/2$ if $0 \le l \le r-2$ $(r \ge 2)$, $1 \le j \le t$, and $g(x_{i,j}) = 0$ otherwise, and $h(x_{2,2s}) = h(x_{4,2s}) = k/2$ if $0 \le l \le r-2$ $(r \ge 2)$, $1 \le j \le t$, and $g(x_{i,j}) = k/2$ if $1 \le j \le t$, $h(x_{3l+6,j}) = h(x_{3l+8,j}) = k/2$ if $0 \le l \le r-2$ $(r \ge 2)$, $1 \le j \le t$, $1 \le j \le t$, and $h(x_{i,j}) = 0$ otherwise. It is easy to verify that $\{f, g, h\}$ is a T $\{k\}$ D family on *G*. Therefore $d_t^{\{k\}}(G) \ge 3$ and so $d_t^{\{k\}}(G) = 3$.

Case 2. Assume that $t \equiv 0 \pmod{2}$. Then t = 4 + 2m for some $m \ge 0$. Define $f, g, h : V(G) \to \{0, 1, 2, \dots, k\}$ as follows: $f(x_{2,1}) = f(x_{3,1}) = k/2$, $f(x_{2,2s+4}) = f(x_{3,2s+4}) = k/2$ if $0 \le s \le m$, $f(x_{3l+6,j}) = f(x_{3l+7,j}) = k/2$ if $0 \le l \le r-2$ ($r \ge 2$), $1 \le j \le t$, $f(x_{1,j}) = f(x_{4,j}) = k/2$ if $0 \le s \le m$, $g(x_{3l+6,j}) = 0$ otherwise, $g(x_{3,1}) = g(x_{4,1}) = k/2$, $g(x_{3,2s+4}) = g(x_{4,2s+4}) = k/2$ if $0 \le s \le m$, $g(x_{3l+7,j}) = g(x_{3l+8,j}) = k/2$ if $0 \le l \le r-2$ ($r \ge 2$), $1 \le j \le t$, $g(x_{2,j}) = g(x_{5,j}) = k/2$ if $1 \le j \le t$ and $g(x_{i,j}) = 0$ otherwise, and $h(x_{2,2}) = h(x_{2,2s+1}) = k/2$, $h(x_{3,2}) = h(x_{3,2s+3}) = k$ if $0 \le s \le m$, $h(x_{3l+5,j}) = h(x_{3l+6,j}) = k/2$ if $0 \le l \le r-2$ ($r \ge 2$), $1 \le j \le t$, $h(x_{1,j}) = h(x_{3r+2,j}) = k/2$ if $1 \le j \le t$ and $h(x_{i,j}) = 0$ otherwise. It is easy to verify that $\{f, g, h\}$ is a T $\{k\}$ D family on G. Therefore $d_t^{\{k\}}(G) \ge 3$ and so $d_t^{\{k\}}(G) = 3$.

Proposition 3.5. If $G = C_{4r} \times P_{3t}$ is a cylinder of order n = 12rt such that $t, r \ge 1$, then $d_t^{\{k\}}(G) = 3$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \leq 3$. Define $f, g, h: V(G) \rightarrow \{0, 1, 2, \dots, k\}$ by $f(x_{i,j}) = k$ if $i \equiv 1 \pmod{4}$ and $j \equiv 1, 2 \pmod{3}$ and $f(x_{i,j}) = k$ if $i \equiv 3 \pmod{4}$ and $j \equiv 0, 2 \pmod{3}$ and $f(x_{i,j}) = 0$ otherwise, $g(x_{i,j}) = k$ if $i \equiv 2 \pmod{4}$ and $j \equiv 1, 2 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 1, 2 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 0 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 0 \pmod{4}$ and $j \equiv 0 \pmod{4}$ and $j \equiv 1 \pmod{4}$ and $j \equiv 0 \pmod{4}$

Proposition 3.6. *If* $G = C_{4r} \times P_{2t+1}$ *is a cylinder of order* n = 4r(2t+1) *such that* $t, r \ge 1$ *, then* $d_t^{\{k\}}(G) = 3$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \leq 3$. Define $f, g, h: V(G) \to \{0, 1, 2, \dots, k\}$ by $f(x_{4m+1,4l+1}) = f(x_{4m+2,4l+1}) = (k+1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lfloor t/2 \rfloor$, $f(x_{4m+1,4l+3}) = f(x_{4m+2,4l+3}) = (k-1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lceil t/2 \rceil - 1$, $f(x_{4m+3,4l+1}) = f(x_{4m+4,4l+1}) = (k-1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lfloor t/2 \rfloor$, $f(x_{4m+3,4l+3}) = f(x_{4m+4,4l+3}) = (k+1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lfloor t/2 \rfloor$, $f(x_{4m+3,4l+3}) = f(x_{4m+4,4l+3}) = (k+1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lfloor t/2 \rfloor$, $f(x_{4m+3,4l+3}) = f(x_{4m+4,4l+3}) = (k+1)/2$, $0 \leq m \leq r-1$, $0 \leq l \leq \lceil t/2 \rceil - 1$, $f(x_{i,j}) = 0$ otherwise, $g(x_{i,j}) = k - f(x_{i,j})$ when $f(x_{i,j}) \neq 0$ and $g(x_{i,j}) = 0$ otherwise, and $h(x_{i,2s}) = k$ if $1 \leq i \leq 4r$, $1 \leq s \leq t$ and $h(x_{i,j}) = 0$ otherwise. Clearly $\{f, g, h\}$ is a T $\{k\}$ D family on G. Therefore $d_t^{\{k\}}(G) \geq 3$ and thus $d_t^{\{k\}}(G) = 3$.

Theorem 3.1. Let $p, r \ge 2$ be two integers, and let G be a p-regular graph of order pr. If V(G) has a partition in p sets $\{u_1^i, u_2^i, \ldots, u_r^i\}$ such that the subgraph $G[\{u_1^i, u_2^i, \ldots, u_r^i\}]$ has no isolated vertices and $N(u_1^i) \cup N(u_2^i) \cup \ldots \cup N(u_r^i) = V(G)$ for $i = 1, 2, \ldots, p$, then $d_t^{\{k\}}(G) = p$. *Proof.* According to Theorem 1.3, $d_t^{\{k\}}(G) \leq p$. Define $f_i : V(G) \to \{0, 1, 2, \dots, k\}$ by $f_i(u_1^i) = f_i(u_2^i) = \dots = f_i(u_r^i) = k$ and $f_i(x) = 0$ for $x \in V(G) - \{u_1^i, u_2^i, \dots, u_r^i\}$ for $i = 1, 2, \dots, p$. The hypothesis shows that $\{f_1, f_2, \dots, f_p\}$ is a T $\{k\}$ D family on G. Therefore $d_t^{\{k\}}(G) \geq p$ and thus $d_t^{\{k\}}(G) = p$.

The complete bipartite graph $K_{p,p}$ and the torus $C_4 \times C_4$ are examples which fulfil the conditions of Theorem 3.1. Furthermore, one can show that $C_{4s} \times C_{4t}$ fulfils the condition of Theorem 3.1 for $s, t \ge 1$ and therefore $d_t^{\{k\}}(C_{4s} \times C_{4t}) = 4$.

Proposition 3.7. If $G = C_{2n} \times C_{2m}$ is a torus of order 4nm such that $n, m \ge 2$ and k is even, then $d_t^{\{k\}}(G) = 4$.

Proof. According to Theorem 1.3, $d_t^{\{k\}}(G) \leq 4$. Define $f_s : V(G) \to \{0, 1, 2, ..., k\}$ by $f_1(x_{2i-1,j}) = k/2$, $f_2(x_{2i,j}) = k/2$ if $1 \leq i \leq n$, $1 \leq j \leq 2m$, and $f_3(x_{i,2j-1}) = k/2$, $f_4(x_{i,2j}) = k/2$ if $1 \leq i \leq 2n$, $1 \leq j \leq m$ and $f_s(x_i, x_j) = 0$ otherwise for s = 1, 2, 3, 4. Clearly, $\{f_1, f_2, f_3, f_4\}$ is a T $\{k\}$ D family on *G*. Therefore $d_t^{\{k\}}(G) \geq 4$ and thus $d_t^{\{k\}}(G) = 4$.

Proposition 3.8. If $G = C_n \times C_m$ is a torus of order nm such that $4 \nmid nmk$, then $d_t^{\{k\}}(G) \leq 3$.

Proof. Let $4 \nmid nmk$ and let f belong to a T $\{k\}$ D family on G. Since $C_n \times C_m$ is 4-regular, according to Theorem 1.3, $d_t^{\{k\}}(G) \le 4$. Suppose to the contrary that $d_t^{\{k\}}(G) = 4$. By Theorem 1.3,

$$nmk = \sum_{v \in V(G)} \sum_{u \in N(v)} f(u) = 4 \sum_{u \in V(G)} f(u) = 4w(f).$$

It follows that 4 | *nmk* which is a contradiction. Hence $d_t^{\{k\}}(G) \le 3$.

We conclude this section with two problems.

Problem 3.1. Prove or disprove: If $G = C_n \times P_m$ is a cylinder of order *nm* such that $m, n \ge 3$, then $d_t^{\{k\}}(G) = 3$.

Problem 3.2. Prove or disprove: Let $G = C_n \times C_m$ be a torus of order *nm*. If $4 \nmid nmk$, then $d_t^{\{k\}}(G) = 3$ and $d_t^{\{k\}}(G) = 4$ otherwise.

4. A Nordhaus-Gaddum bound

In this section we present a lower bound on the sum $d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G})$.

Theorem 4.1. For every δ -regular graph of order $n \ge 5$ in which neither G nor \overline{G} have isolated vertices,

$$d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \ge \min\left\{k+1, \left\lceil \frac{n-2}{2} \right\rceil\right\}.$$

Proof. Let $\delta = \delta(G)$ and $\overline{\delta} = \delta(\overline{G})$. Since G is δ -regular, we observe that $\delta + \overline{\delta} = n - 1$. If we assume, without loss of generality, that $\delta \geq \overline{\delta}$, then $\delta \geq (n-1)/2$.

Case 1. Assume that $k \le (n-1)/2$. Thus $\delta \ge k$. If $\delta = k$, then Theorem 1.1 implies that $d_t^{\{k\}}(G) \ge \delta - 1$ and therefore

$$d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \ge \delta - 1 + 1 = \delta \ge \frac{n-1}{2} \ge \min\left\{k+1, \left\lceil \frac{n-2}{2} \right\rceil\right\}.$$

If $\delta > k$, then it follows from Theorem 1.1 that

$$d_t^{\{k\}}(G) \ge \left\lfloor \frac{k}{\left\lceil \frac{k}{\delta} \right\rceil} \right\rfloor = k$$

and hence

$$d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \ge k+1 \ge \min\left\{k+1, \left\lceil \frac{n-2}{2} \right\rceil\right\}.$$

Case 2. Assume that k > (n-1)/2. If $\delta > k$, then we obtain as above the desired bound. Finally, assume that $k \ge \delta$. If $\delta | k$, then Theorem 1.1 leads to $d_t^{\{k\}}(G) \ge \delta - 1 \ge (\delta - 1)/2$, and if $\delta \not| k$, then Theorem 1.1 implies that

$$d_t^{\{k\}}(G) \ge \left\lfloor \frac{k}{\left\lceil \frac{k}{\delta} \right\rceil} \right\rfloor > \frac{k}{\left\lceil \frac{k}{\delta} \right\rceil} - 1 \ge \frac{k}{\frac{k}{\delta} + 1} - 1 = \frac{k\delta}{k + \delta} - 1 \ge \frac{\delta}{2} - 1.$$

Consequently, $d_t^{\{k\}}(G) \ge (\delta - 1)/2$ in every case. As $k \ge \overline{\delta}$, we obtain analogously the inequality

$$d_t^{\{k\}}(\overline{G}) \ge \frac{\overline{\delta} - 1}{2}$$

and therefore

$$d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \ge \frac{\delta - 1}{2} + \frac{\delta - 1}{2} = \frac{n - 3}{2} \ge \min\left\{k + 1, \frac{n - 3}{2}\right\}.$$

If *n* is even, then this inequality chain leads to the desired bound. If *n* is odd, then it follows that δ and $\overline{\delta}$ are even and thus $d_t^{\{k\}}(G) \ge \delta/2$ and $d_t^{\{k\}}(\overline{G}) \ge \overline{\delta}/2$ and so

$$d_t^{\{k\}}(G) + d_t^{\{k\}}(\overline{G}) \ge \frac{\delta}{2} + \frac{\delta}{2} = \frac{n-1}{2} \ge \min\left\{k+1, \left\lceil \frac{n-2}{2} \right\rceil\right\}.$$

References

- J. Chen, X. Hou and N. Li, The total {k}-domatic number of wheels and complete graphs, J. Comb. Optim. DOI 10.1007/s 10878-010-9374-y.
- [2] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total domination in graphs, *Networks* 10 (1980), no. 3, 211–219.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of Domination in Graphs*, Monographs and Textbooks in Pure and Applied Mathematics, 208, Dekker, New York, 1998.
- [4] N. Li and X. Hou, On the total {k}-domination number of Cartesian products of graphs, J. Comb. Optim. 18 (2009), no. 2, 173–178.
- [5] S. M. Sheikholeslami and L. Volkmann, The total k-domatic number of a graph, J. Comb. Optim. 23 (2012), no. 2, 252–260.
- [6] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.