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Abstract. For a positive integer k, a total {k}-dominating function of a graph G without
isolated vertices is a function f from the vertex set V(G) to the set {0,1,2,...,k} such that
for any vertex v € V(G), the condition }.,,c(,) f(u) > k is fulfilled, where N(v) is the open
neighborhood of v. The weight of a total {k}-dominating function f is the value w(f) =
Y ev f(v). The rotal {k}-domination number, denoted by %{k} (G), is the minimum weight
of a total {k}-dominating function on G. A set {f1,f2,...,fs} of total {k}-dominating
functions on G with the property that Y, fi(v) < k for each v € V(G), is called a rotal
{k}-dominating family (of functions) on G. The maximum number of functions in a total
{k}-dominating family on G is the total {k}-domatic number of G, denoted by d\*' (G).
Note that d,{l}(G) is the classic total domatic number d;(G). In this paper, we present
bounds for the total {k}-domination number and total {k }-domatic number. In addition, we
determine the total {k}-domatic number of cylinders and we give a Nordhaus-Gaddum type
result.
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1. Introduction

In this paper, G is a simple graph with no isolated vertices and with vertex set V =V (G) and
edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex v € V, the
open neighborhood N(v) is the set {u € V(G) | uv € E(G)} and the closed neighborhood of
vis the set N[v] = N(v) U{v}. The degree of a vertex v € V is d(v) = |[N(v)|. The minimum
and maximum degree of a graph G are denoted by 8 = 6 (G) and A = A(G), respectively. The
open neighborhood of a set S C V is the set N(S) = U,esN(v), and the closed neighborhood
of S is the set N[S] = N(S)US. If S C V(G), then G[S] is the subgraph of G induced by
S. The complement of a graph G is denoted by G. Consult [3, 6] for the notation and
terminology which are not defined here.
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A subset S of vertices of G is a total dominating set if N(S) = V. The total domination
number ¥ (G) is the minimum cardinality of a total dominating set of G. A total domatic
partition is a partition of V into total dominating sets, and the total domatic number &, (G)
is the largest number of sets in a total domatic partition. The total domatic number was
introduced by Cockayne et al. in [2].

For a positive integer , a total {k}-dominating function (T{k}DF) of a graph G without
isolated vertices is a function f from the vertex set V(G) to the set {0,1,2,...,k} such
that for any vertex v € V(G), the condition Y,,cn(y) f(u) > k is fulfilled. The weight of a
T{k}DF f is the value ©(f) =Y, cy f(v). The fotal {k}-domination number of a graph G,
denoted by ¥} (G), is the minimum weight of a T{k}DF of G. A %} (G)-function is a
total {k}-dominating function of G with weight y,{k} (G). Note that )/,{l}(G) is the classical
total domination number % (G). The total {k }-domination number was introduced by Li and
Hou [4].

A set {f1,/2,...,fa} of distinct total {k}-dominating functions of G with the property
that Y4, fi(v) < k for each v € V(G), is called a total {k}-dominating family (of functions)
on G. The maximum number of functions in a total {k}-dominating family (T{k}D family)

on G is the rotal {k}-domatic number of G, denoted by d,{k}(G). The total {k}-domatic
number is well-defined and

(1.1) a6y >1

for all graphs G without isolated vertices, since the set consisting of the function f: V(G) —
{0,1,2,...,k} defined by f(v) =k for each v € V(G), forms a T{k}D family on G. The total
{k}-domatic number was introduced by Sheikholeslami and Volkmann [5] and has also been
studied in [1].

In this paper, we continue the study of the total {k}-domination number and total {k}-
domatic number in graphs. We first study bounds for the total {k}-domination number
and total {k}-domatic number. Then we determine the total {k}-domatic number of some
cylinders and we present a Nordhaus-Gaddum type result.

The following known results are useful for our investigations.

Theorem 1.1 (Chen, Hou, Li [1]). Let G be a graph without isolated vertices and 6 = 8(G).
18|k then d™(G) > 6 — 1, and if § [k, then d™ (G) > |k/ [£]].

Theorem 1.2 (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated
vertices, then

7 (G)-d (G) < kn.

Moreover, ifyl{k} (G) -d,{k} (G) = kn, then for each T{k}D family {fi, f2,..., fs} on G with
d= d,{k} (G), each function f; is a }/,{k} (G)-function and Y4, f;(v) = k for allv € V.

Theorem 1.3 (Sheikholeslami, Volkmann [5]). For every graph G without isolated vertices,
M G) < 8(6).

Moreover, ifd,{k}(G) = 6(G), then for each function of any T{k}D family {fi,f2, -+, fa}
and for all vertices v of degree §(G), Lyen(v) fi(u) =k and YL, filu) =k foreveryu € N(v).
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Theorem 1.4 (Sheikholeslami, Volkmann [5]). If G is a graph of order n without isolated
vertices and k a positive integer, then

W (G) +aM (G) < nk+1.
Theorem 1.5 (Sheikholeslami, Volkmann [5]). Let G be a graph of order n without isolated
vertices and k a positive integer. If dt{k} (G) > 2, then

k
WG +a e < T +2.

If each component of a graph G has at least three vertices, then we can improve Theo-
rem 1.4 a little bit.
Proposition 1.1. Let k > 2 be an integer, and let G be a graph of order n. If each component
of G has at least three vertices, then
2k
7w +a™G) < T” F1<hkn—1.
Proof. In view of [2], the inequality %;(G) < 2n/3 is valid. This implies that
k 2kn
W(6) <kn(6) < 5.
It ) (G) = 1, then it follows that
2k
W6 +a™ G < T” F1<kn—1.
If d,{k} (G) > 2, then we deduce from Theorem 1.5 that
k 2k
%{k}(G)—kd,{k}(G)§§+2§Tn+1§kn—l. I

Observation 1.1. If G = P, x P, is a grid of order n = rt such that 2 < r <¢, then dt{k}(G) =
2.

Proof. According to Theorem 1.3, dt{k}(G) <2. Now let V(G) ={x;j|l <i<rand1l <
J <t} be the vertex set of G. Define f,g:V(G) — {0,1,2,...,k} by f(x; ;) = kif i is odd
and f(x; j) = 0if i is even and g(x; ;) = k if i is even and g(x; ;) = 0 if i is odd. Now {f, g}
is a T{k}D family on G. Therefore d,{k}(G) > 2 and thus dt{k}(G) =2 1

2. Total {k}-domination and domatic numbers of p-partite graphs

Theorem 2.1. Let G be a p-partite graph without isolated vertices and p > 2. If k > 1 is
an integer, then

@.1) WG > [”"] |
p—1

Proof. Let f be a '}/t{k}(G)-function, and let V1,V4,...,V, be the partite sets of G. If w; € V;
for 1 <i < p, then the definition implies that ¥ ¢y ;) f (x) > kfor 1 <i< p. It follows that

-0 =p-1) ¥ /=Y ¥ 0=y ¥ sz

xeV(G) i=lxe(V(G)-V;) i=1xeN(w;)

and thus }/,{k}(G) > [pk/(p—1)]. i

14
=1



42 H. Aram, S. M. Sheikholeslami and L. Volkmann

Since each graph without isolated vertices is p-partite for some p > 2, the next corollary
follows immediately from Theorem 2.1.

Corollary 2.1 (Sheikholeslami, Volkmann [5]). For each positive integer k and any graph
G without isolated vertices, %{k} (G) > k+1.

The next examples will demonstrate that inequality (2.1) is sharp.

Let k > 1 be an integer, and let H be a complete p-partite (p > 2) graph with the partite
sets Vi, V2,...,V, such thatv; € Vi fori=1,2,..., p.

Assume first that k = s(p — 1) with an integer s > 1. Define f: V(H) — {0,1,2,...,k}
by f(vi) =sfori=1,2,...,p and f(x) =0 for x € V(H) — {vi,v2,...,v,}. We observe
that Y,y () f(x) > (p— 1)s = k for each vertex u € V(H), and therefore f is a T{k}DF.
It follows that %{k} (H) < ps=[pk/(p—1)] and thus Theorem 2.1 implies that }/,{k} (H) =
[pk/(p—1)1.

Assume second that k = s(p — 1) 4+ r with integers s > 0 and 1 < r < p—2. Define
f:V(H) - {071727"'7k} be(Vl) :f(VZ) = :f(VH—l) :s+1’f(vr+2) :f(vr+3) =
.= f(vp) =sand f(x) =0 forx € V(H) — {vi,v2,...,v,}. We see that },en(u f(x) >
(p—1)s+r =k for each vertex u € V(H), and therefore f is a T{k}DF. It follows that

-1
yt{k}(H) <ps+r+1=ps+r+ [r-‘ =ps+ {(p)r—kr-‘
p—1 p—1
_pH[ pr W _ {pS(p—l)errw _ { pk W
p—1 p—1 p—1

and thus Theorem 2.1 implies that %{k} (H)=[pk/(p—1)].

Proposition 2.1. Letr G be a bipartite graph without isolated vertices. If k > 1 is an integer

and X and Y are the partite sets of G, then %{k} (G) > 2k with equality if and only if there
exist two vertices u € X and v € Y such that N(u) =Y and N(v) = X.

Proof. It follows from Theorem 2.1 that }/t{k} (G) > 2k. If there exist two vertices u € X
and v € Y such that N(u) =Y and N(v) = X, then define f: V(G) — {0,1,2,...,k} by
f(u)=f(v)=kand f(x) =0 for x € V(G) — {u,v}. Obviously, f is a total {k }-dominating
function of G. This implies that y,{k} (G) <2k and so y,{k} (G) = 2k.

Conversely, assume that }/t{k}(G) =2k, and let f be a )/,{k} (G)-function. It follows that

Y [ =) fo) =k

xeX yeyYy
Now let X* C X be such that ¥ .x+ f(x) =k and f(x) > 1 forx € X" and Y+ CY be
such that ¥',.cy+ f(x) =k and f(x) > 1 fory € X*. Then Y C N(x) for each vertex x € X

and X C N(y) for each vertex y € Y. This leads to N(x) =Y for each vertex x € X and
N(y) = X for each vertex y € Y, and the proof is complete. 1

Corollary 2.2. If k is a positive integer, and G is a bipartite graph of order n without
isolated vertices, then

with equality only if n is even and %{k} (G) =2k.
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Proof. According to Theorem 2.1, we have }/,{k} (G) > 2k. Therefore it follows from Theo-

rem 1.2 that
k) kn kn n
dl (G) S k S AL A
%{ }(G) 2k 2

and this is the desired inequality.

Assume that dt{k}(G) = n/2. The inequality chain above shows that }/t{k}(G) = 2k and
that n is even. 1

Let G be isomorphic to the complete bipartite graph K), , with the partite sets {uy,uz, ...,
up}and {vi,va,...,vp}. Define fj: V(G) — {0,1,2,...,k} by fi(u;) = fi(vi) =k and fj(x) =
0 whenx € V(G) — {u;,v;} for 1 <i < p. Now {fi, f2,..., fp} is a T{k}D family on G and
thus dt{k}(G) > p. By Corollary 2.2, d,{k} (G) < p and thus d,{k} (G) = p. This example
shows that Corollary 2.2 is sharp.

3. Cylinder and torus

The Cartesian product G = G| X G, of two disjoint graphs G| and G has V(G) =V (G;) x
V(G,), and two vertices (u;,u3) and (vq,v;) of G are adjacent if and only if either u; = v;
and uyv, € E(G,) or up = v, and ujv; € E(Gy). The Cartesian product of a cycle C, =
(x1x2...x,) and a path P, = y1y, ...y, is called a cylinder and the Cartesian product of two
cycles C, = (x1x3...x,) and C; = (y1y2...y) is called a rorus. If G is a cylinder (or torus),
then let V(G) = {x; j|1 <i<rand1 < j <t} be the vertex set of G.

In this section we determine the total {k}-domination and domatic number of some cylin-
ders and torus. First we determine the exact value of d,{k}(Cn x Py). We start with the
following proposition.

Proposition 3.1. If G = C3, X P, is a cylinder of order n = 3rt such that 2 < t, then
4" (G) =3.

Proof. According to Theorem 1.3, dt{k}(G) < 3. Define f,g,h:V(G) — {0,1,2,... k} by
f(xij) =k if i =1 (mod3) and f(x;;) = 0 otherwise, g(x; ;) = k if i = 2 (mod 3) and
g(x;ij) = 0 otherwise and h(x; ;) = k if i = 0 (mod 3) and h(x; ;) = O otherwise. Now
{f,g,h} is a T{k}D family on G. Therefore d,{k}(G) > 3 and thus dt{k}(G) =3. i

Proposition 3.2. Forn > 3,

3 if n=0(mod3)
2 otherwise.

d,{k}(C,, X Pz) = {

Proof. If n =0 (mod 3), then the result follows from Proposition 3.1.

Let now n #Z 0 (mod 3). Suppose that {f,g,h} is a T{k}D family of C, x P,. By The-
orem 1.3, ¥, cn() f(u) = k for each v € V(C, x P). Assume that f(x1,1) = a, f(x12) =
alvf(xZ,l) =b and f(x2,2) =b'. Since ZueN(xzﬁl)f(u) =k and ZueN(xz,z)f(u) =k, we
have f(x31) = k—a—b' and f(x32) = k—a —b. Since also ¥ep(y,,).f(#) = k and
YueN(us,) (1) =k, we have f(xs;) = d and f(x42) = a. By repeating this process, we
distinguish four cases.

Case 1. Assume that n =4 (mod 6).
Then f(xy—21) = b, f(xp-22) =V, f(xn-11) =k—a—b', f(xu-12) =k—d —b, f(x,1) =d
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and f(x,2) = a. By Theorem 1.3,

3.1 k=Y flu)=a+k-V,
UEN (xp,1)

(3.2) k=Y flu)y=d+k—b,
uEN (x2)

(3.3) k=Y f(u)=2d+b,
uEN(xl,l)

(3.4) k=Y  flu)=2a+V.
ueN(x12)

It follows from (3.1) and (3.4) that a = b’ = % and from (3.2) and (3.3) that @’ = b = k/3.
This implies that f(x; ;) = k/3 for each i and j. An argument similar to that described above
shows that g(x; j) = k/3 for each i and j which leads to the contradiction f = g.
Case 2. Assume that n =5 (mod 6).
Then f(x,—21) =k—a—"b, f(xp_22) =k—d —b, f(x4—1,1) =d, f(xn—12) =a, f(x,1) =1
and f(x,2) = b.
Case 3. Assume that n =1 (mod 6).
Then f(xy—2.1) =0, f(xn—22) =b, f(xn—1,1) =k—d —b, f(xy—12) =k—a—b, f(xy1) =a
and f(x,2) =d'.
Case 4. Assume that n =2 (mod 6).
Then f(xn_qu) =k— a’ — b,f(xn_;z) =k—a— b/af(xn—l,l) = a,f(xn_lﬁz) = a’,f(xnﬁl) =b
and f(x,2) ="',

Using the same arguments as in Case 1, the Cases 2, 3 and 4 lead to a contradiction too.
It follows that ) (C, x P») < 2. In addition, if we define f,g:V (C, x Py) — {0,1,2,...,k}
by f(xi1) =k and f(x;2) =0and g(x;1) =0and g(x;») =k for 1 <i<n,then {f,g}isa
T{k}D family on C, x Py. Therefore d\*) (C, x P») > 2 and thus d{* (C, x P,) = 2 in these
four cases, and the proof is complete. 1

Proposition 3.3. If G = Cs,41 X P, is a cylinder of order n = (3r+1)t, t > 3 and k is even,
then ™ (G) = 3.

Proof. According to Theorem 1.3, d,{k}(G) < 3. Define f,g,h:V(G) —{0,1,2,...,k} as
follows: f(xlﬁl) = f(xl,t) =k/2, f(X3m+2’j) = f()C3m+4’j) = k/2 fo<m<r—1,1<
Jj<t and f(xi,j) = 0 otherwise; g(X2,1) = g(ng) = k/2 s g(xlﬁj) = g(x37j) = g(X3m+2’j) =
8(x3my3,j) =k/2for1 < j<t,1<m<r—1whenr>2and g(x;;) =0 otherwise and
h(x3m43,j) = h(xX3m44,j) = k/2if0<m <r—1,1<j<tand h(x;3542) = h(x23542) =
k/2for0<s < (r—3)/3if t =0 (mod 3), h(xl’z) = h(xlz) = h(x13543) = h()C2’3s+3) =
k/2 for0 <s<(r —4)/3 ifr =1 (mod 3), /’l(xl’z) = h()Cz.’z) = h(x113s+4) = h()Cz735+4) = k/2
for 0 <s < (r—5)/3if t =2 (mod 3), h(x; j) = 0 otherwise. Now it is easy to verify that
{f,g,h} is a T{k}D family on G. Therefore dt{k} (G) > 3 and thus d,{k} (G)=3. 1

Proposition 3.4. If G = Cs,42 X P, is a cylinder of order n = (3r+2)t, t > 3 and k is even,
then i (G) = 3.

Proof. According to Theorem 1.3, dt{k} (G) < 3. Consider two cases.



On the Total {k}-Domination and Total {k}-Domatic Number of Graphs 45

Case 1. Assume that # = 1 (mod 2). Then ¢t = 3 + 2m for some m > 0. Define f,g,h :
V(G)—{0,1,2,...,k} asfollows: f(x22541) = f(x325+1) =k/2if0<s<m+1, f(x1 ;)
flxay) =k/2if 1 < j<t, f(x316,) = f(x3147,) = k/21f0<1<r—2(r>2),

J <t,and f(x; ;) = 0 otherwise, g(x32511) = g(x42541) =k/2if0<s<m+1, g(x2 ;)
g(x57j) = k/2 if 1 < ] < t, g(X31+77j) :g(_x3l+87j) :k/2 if 0 < l < r—2 (r > 2) 5 1< ] <
t, and g(x; ;) = O otherwise, and h(x225) = h(xaps) = k/2 , h(xzps) =k if 1 <s <m+
1 3 h(xld-) = h(x57j) = k/2 if 1 S ] S t, h(x31+6,j) = h(X3l+g7j) = k/2 if 0 S l S r—2 (r 2
2), 1< j<t, and h(x; ;) = 0 otherwise. It is easy to verify that {f, g, i} is a T{k}D family
on G. Therefore dt{k}(G) >3 and so d,{k} (G)=3.

Case 2. Assume that t = 0 (mod 2). Then t = 4 + 2m for some m > 0. Define f,g,h :
V(G) — {0,1,2,...,k} as follows: f(x21) = f(x31) = k/2, f(x225+4) = f(X32544) =
k/2 if 0<s Sm,f(Xer(,A’j) :f(x3l+7,j) :k/21f0§ [<r-2 (7‘2 2) , 1 §j§t,f(x1_,j) =
flxaj)=k/2if 1 < j<r and f(x;;) =0 otherwise, g(x31) = g(x4,1) =k/2, g(x32544) =
g(xap514) =k/2if 0 <s<m, g(x3117,;) = g(x3148,;) =k/2if0<I<r—2(r>2), 1< <
t,8(x2,;) = g(xs, ;) =k/2if 1 < j <t and g(x; ;) = 0 otherwise, and h(x22) = h(x22541) =
k2, h(x3p) =h(x32543) =k if 0 <s<m, h(x3115,;) =h(x3146;) =k/2if0<I<r—2(r>
2), 1 <j<t, h(x1j) =h(x3,42,;) =k/2if 1 < j <t and h(x;;) = 0 otherwise. It is easy to
verify that {f,g,h} is a T{k}D family on G. Therefore dt{k}(G) >3 and so d,{k}(G) =3. 1

VAN

Proposition 3.5. If G = Cy4, X Py, is a cylinder of order n = 12rt such that t,r > 1, then
M (G) =3.

Proof. According to Theorem 1.3, d,{k}(G) < 3. Define f,g,h:V(G) — {0,1,2,...,k}
by f(xi;) =kif i=1(mod4) and j = 1,2 (mod 3) and f(x; ;) = k if i = 3 (mod 4) and
J=0,2 (mod 3) and f(x; ;) = 0 otherwise, g(x; j) =k if i=2 (mod 4) and j = 1,2 (mod 3)
and g(x; j) =kif i =0 (mod 4) and j = 0,2 (mod 3) and g(x; ;) = 0 otherwise, h(x; ;) =k
ifi=0,3 (mod4) and j =1 (mod 3) and h(x; j) = kif i = 1,2 (mod 4) and j =0 (mod 3)
and h(x; j) = 0 otherwise. Now {f,g,h} is a T{k}D family on G. Therefore d,{k}(G) >3
and thus d,{k} (G) =3. 1

Proposition 3.6. If G = Cay X Py is a cylinder of order n = 4r(2t + 1) such that t,r > 1,
then ™ (G) = 3.

Proof. According to Theorem 1.3, d,{k}(G) < 3. Define f,g,h:V(G) — {0,1,2,...,k} by
FCamyraret) = f(amiaare1) = (k+1)/2,0<m <r—1,0 <1< [t/2], f(Xam14143) =
fxami24143) =(k—1)/2,0<m<r—1,0<1< [t/2] =1, f(xame3 4141) = f(Xamsa 4141)
S /2,0 €m<r—1,0 <1< [1/2], f(umssarss) = f(amssarss) = (k+1)/2,0<
m<r—1,0<1< [t/2] -1, f(xi;) =0 otherwise, g(x; ;) = k— f(x; ;) when f(x; ;) #
0 and g(x; ;) = 0 otherwise, and h(xjo) =k if 1 <i<4r,1<s<t and h(x;;) =
0 otherwise. Clearly {f,g,h} is a T{k}D family on G. Therefore dt{k}(G) > 3 and thus
4" (G) =3. [
Theorem 3.1. Let p,r > 2 be two integers, and let G be a p-regular graph of order pr.
If V(G) has a partition in p sets {u’,ul,... ,ul} such that the subgraph G[{u} ,u, ... u.}]
has no isolated vertices and N(u') UN(ub)U...UN(ul) = V(G) for i = 1,2,...,p, then
a(G) = p.
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Proof. According to Theorem 1.3, dl{k}(G) < p. Define f; : V(G) — {0,1,2,...,k} by

fi(uh) = fi(uh) = ... = fi(ul) = k and fi(x) = 0 for x € V(G) — {u},ub,...,u.} for i =
1,2,...,p. The hypothesis shows that {fi, f2,..., f,} is a T{k}D family on G. Therefore
d*(G) > p and thus 4 (G) = p. [

The complete bipartite graph K, , and the torus C4 x Cy4 are examples which fulfil the
conditions of Theorem 3.1. Furthermore, one can show that C4 X Cy; fulfils the condition

of Theorem 3.1 for 5,7 > 1 and therefore dt{k} (Ca5 X Cgy) = 4.

Proposition 3.7. If G = Cy,, X Cyy, is a torus of order 4nm such that n,m > 2 and k is even,
then d* (G) = 4.

Proof. According to Theorem 1.3, d,{k}(G) < 4. Define f; : V(G) — {0,1,2,...,k} by
Ji(xie1,j) =k/2, folxij) =k/2if 1<i<n,1<j<2m,and f3(xizj—1) =k/2, falxi2;)
=k/2 if 1<i<2n,1<j<mand fi(x;,x;) = 0 otherwise for s = 1,2,3,4. Clearly,

{1, fo. f5. f+} is a T{k}D family on G. Therefore d;*} (G) > 4 and thus &'/ (G) =4. 1
Proposition 3.8. If G = C, x Cy, is a torus of order nm such that 4t nmk, then d,{k} (G)<3.

Proof. Let 4 t nmk and let f belong to a T{k}D family on G. Since C, x C,, is 4-regular,

according to Theorem 1.3, d,{k} (G) < 4. Suppose to the contrary that d,{k}(G) =4. By
Theorem 1.3,

nmk = Z Z flu)y=4 f(u) =4w(f).

veV(G)ueN(v) ueV(G)

It follows that 4 | nmk which is a contradiction. Hence d,{k} (G) <3. 1
We conclude this section with two problems.

Problem 3.1. Prove or disprove: If G = C,, x P,, is a cylinder of order nm such that m,n > 3,
then 4} (G) = 3.

Problem 3.2. Prove or disprove: Let G = C,, x C,, be a torus of order nm. If 4 { nmk, then
dt{k}(G) =3 and d,{k}(G) = 4 otherwise.

4. A Nordhaus-Gaddum bound

In this section we present a lower bound on the sum d,{k} (G)+ d,{k} (G).

Theorem 4.1. For every 8-regular graph of order n > 5 in which neither G nor G have

isolated vertices,
_ -2
4 (G) + 4 (G) > min {k+ 1, [” . W } .

Proof. Let § = 8(G) and § = §(G). Since G is d-regular, we observe that & +86=n—1.
If we assume, without loss of generality, that 6 > §, then § > (n— 1) /2.
Case 1. Assume that k < (n—1)/2. Thus 6 > k. If 0 = k, then Theorem 1.1 implies that

d,{k} (G) > 6 — 1 and therefore

a6 +dM (G =6-1+1=6> % zmin{kJrl, [”ZZH.
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If 6 > k, then it follows from Theorem 1.1 that

4" (G) > {A:J::k
9=

%”HG}+¢”%G)>k+l>wmn{k+l{n22W}.

Case 2. Assume that k > (n—1)/2. If § > k, then we obtain as above the desired bound.

Finally, assume that k > &. If 0 | k, then Theorem 1.1 leads to d,{k}(G) >6—-1>(6-1)/2,
and if & [k, then Theorem 1.1 implies that

and hence

k ko 0
4™ (G 0 712 —1= —1>Z-1
3] k 5+1 k+96 2
Consequently, d{ }( )>(6-1) / 2 in every case. As k > &, we obtain analogously the
inequality
— _6-1
M@=
and therefore
—_8-1 686-1 n-3 3
6+ (G) 2 S+ - =" min{k—H " }

If n is even, then this inequality chain leads to the desired bound. If n is odd, then it follows
that § and § are even and thus d,{k}( G) > 6/2 and d,{k} (G) > 8/2 and so

85n—

1 n—2
> mi . 1
2 5 5 mm{k—i—l,{ 5 -‘}
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