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1. Introduction

There are many papers on linear operators that preserve some properties of matrices [2]-
[12]. We call such a topic of research “Linear Preserver Problems”. These linear preserver
problems have been studied for various characterizations of matrices during a century. In
1896, Frobenius characterized the linear operators that preserve the determinant of matri-
ces over the real field, which was the first result on linear preserver problems. After his
result, many researchers have studied linear operators that preserve some matrix functions,
say, rank and the permanent of matrices [11]. Beasley and Guterman [1] investigated rank
inequalities of matrices over semirings. And they characterized the equality cases for some
inequalities in [2]. These characterization problems are open even over fields (see [3]). The
structure of matrix varieties which arise as extremal cases in these inequalities is far from
being understood over fields, as well as over semirings. A usual way to generate elements
of such a variety is to find a pair of matrices which belongs to it and to act on this pair
by various linear operators that preserve this variety. The investigation of the corresponding
problems over semirings for the column rank function was done in [3]. The complete classi-
fication of linear operators that preserve equality cases in matrix inequalities over fields was
obtained in [5]. For details on linear operators preserving matrix invariants one can see [10]
and [11]. Almost all research on linear preserver problems over semirings have dealt with
those semirings without zero-divisors to avoid the difficulties of multiplication arithmetic
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for the elements in those semirings [2]-[7]. But nonbinary Boolean algebra is not the case.
That is, all elements except 0 and 1 in most nonbinary Boolean algebras are zero-divisors.
So there are few results on the linear preserver problems for the matrices over nonbinary
Boolean algebra [8], [9] and [12]. Kirkland and Pullman characterized the linear operators
that preserve rank of matrices over nonbinary Boolean algebra in [9].

In this paper, we characterize the linear operators that preserve the sets of matrix ordered
pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices
over nonbinary Boolean algebra.

2. Preliminaries and basic results

Definition 2.1. A semiring S consists of a set S with two binary operations, addition and
multiplication, such that:

• S is an Abelian monoid under addition (the identity is denoted by 0);
• S is a monoid under multiplication (the identity is denoted by 1, 1 6= 0);
• multiplication is distributive over addition on both sides;
• s0 = 0s = 0 for all s ∈ S.

Definition 2.2. A semiring S is called antinegative if the zero element is the only element
with an additive inverse.

Definition 2.3. A semiring S is called a Boolean algebra if S is equivalent to a set of subsets
of a given set M, the sum of two subsets is their union, and the product is their intersection.
The zero element is the empty set and the identity element is the whole set M.

Let Sk = {a1,a2, · · · ,ak} be a set of k-elements, P(Sk) be the set of all subsets of Sk and
Bk be a Boolean algebra of subsets of Sk = {a1,a2, · · · ,ak}, which is a subset of P(Sk).
It is straightforward to see that a Boolean algebra Bk is a commutative and antinegative
semiring. If Bk consists of only the empty subset and M then it is called a binary Boolean
algebra. If Bk is not binary Boolean algebra then it is called a nonbinary Boolean algebra.
Let Mm,n(Bk) denote the set of m×n matrices with entries from the Boolean algebra Bk. If
m = n, we use the notation Mn(Bk) instead of Mn,n(Bk).

Throughout the paper, we assume that m ≤ n and Bk denotes the nonbinary Boolean
algebra, which contains at least 3 elements. The matrix In is the n×n identity matrix, Jm,n is
the m×n matrix of all ones and Om,n is the m×n zero matrix. We omit the subscripts when
the order is obvious from the context and we write I, J and O, respectively. The matrix Ei, j,
which is called a cell, denotes the matrix with exactly one nonzero entry, that being a one
in the (i, j)th entry. A weighted cell is any nonzero scalar multiple of a cell, that is, αEi, j

is a weighted cell for any 0 6= α ∈ Bk. Let Ri denote the matrix whose ith row is all ones
and is zero elsewhere, and C j denote the matrix whose jth column is all ones and is zero
elsewhere. We denote by #(A) the number of nonzero entries in the matrix A. We denote by
A[i,j|r,s] the 2×2 submatrix of A which lies in the intersection of the ith and jth rows with
the rth and sth columns.

Definition 2.4. The matrix A ∈ Mm,n(Bk) is said to be of Boolean rank r if there exist
matrices B ∈Mm,r(Bk) and C ∈Mr,n(Bk) such that A = BC and r is the smallest positive
integer that such a factorization exists. We denote b(A) = r.

By definition, the unique matrix with Boolean rank equal to 0 is the zero matrix O.
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If S is a field, then there is the usual rank function ρ(A) for any matrix A ∈Mm,n(S).
It is well-known that the behavior of the function ρ with respect to matrix addition and
multiplication is given by the following inequalities [4]:

• the rank-sum inequalities:
|ρ(A)−ρ(B)| ≤ ρ(A+B)≤ ρ(A)+ρ(B),

• Sylvester’s laws:
ρ(A)+ρ(B)−n≤ ρ(AB)≤ min{ρ(A),ρ(B)},

where A, B are conformal matrices with entries from a field.
The arithmetic properties of Boolean rank are restricted by the following list of inequal-

ities [1], since the Boolean algebra is antinegative:
(1) b(A+B)≤ b(A) + b(B);
(2) b(AB)≤ min{b(A), b(B)}.

(3) b(A + B)≥

 b(A) if B = O,
b(B) if A = O,
1 if A 6= O and B 6= O;

Below, we use the following notation in order to denote sets of matrices that arise as
extremal cases in the inequalities listed above:

RSA(Bk) = {(X ,Y ) ∈Mm,n(Bk)2| b(X +Y ) = b(X)+b(Y )},
RS1(Bk) = {(X ,Y ) ∈Mm,n(Bk)2| b(X +Y ) = 1}.
In this paper, we characterize the linear operators that preserve RSA(Bk) and RS1(Bk).

Definition 2.5. We say that an operator T preserves a set P if X ∈P implies that T (X) ∈
P or if P is the set of ordered pairs such that (X ,Y ) ∈P implies ((T (X),T (Y )) ∈P .

Definition 2.6. An operator T strongly preserves a set P if X ∈P if and only if T (X)∈P
or if P is the set of ordered pairs such that (X ,Y ) ∈P if and only if (T (X),T (Y )) ∈P .

Definition 2.7. For X ,Y ∈Mm,n(S), the matrix X ◦Y denotes the Hadamard or Schur prod-
uct, i.e., the (i, j)th entry of X ◦Y is xi, jyi, j.

Definition 2.8. An operator T is called a (P,Q,B)-operator if there exist permutation ma-
trices P and Q and a matrix B ∈Mm,n(S) with no zero entries such that T (X) = P(X ◦B)Q
for all X ∈Mm,n(S) or if for m = n, T (X) = P(X ◦B)T Q for all X ∈Mm,n(S). A (P,Q,B)-
operator is called a (P,Q)-operator if B = J, the matrix of all ones.

Definition 2.9. An operator T : Mm,n(Bk)→Mm,n(Bk) is called linear if it satisfies T (X +
Y ) = T (X)+T (Y ) and T (αX) = αT (X) for all X ,Y ∈Mm,n(Bk) and α ∈ Bk.

Definition 2.10. A line of a matrix A is a row or a column of the matrix A.

Definition 2.11. We say that the matrix A dominates the matrix B if and only if bi, j 6= 0
implies that ai, j 6= 0, and we write A≥ B or B≤ A.

Lemma 2.1. Let P and Q be permutation matrices of m-square and n-square respectively.
If T : Mm,n(Bk)→Mm,n(Bk)is defined by T (X) = PX or T (X) = XQ for any X ∈Mm,n(Bk).
Then T preserves Boolean rank. That is b(T (X)) = b(X).

Proof. Let A,B∈Mm,n(Bk) and P be an m×m permutation matrix. Since b(AB)≤min{b(A),
b(B)}, we have b(PX) ≤ min{b(P), b(X)} ≤b(X). And b(X) = b(IX) = b((PT P)X) =
b(PT (PX)) ≤b(PX). Hence b(PX) = b(X). Similarly b(XQ) = b(X) for all n× n permu-
tation matrix Q.
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Lemma 2.2. Let A =
[

a b
c d

]
∈M2,2(Bk). Then b(A)=1 if and only if ad = bc.

Proof. Suppose that b(A) = 1. Then there exist vectors x = [x1,x2]T and y = [y1,y2] such
that A = xy. Thus

A =
[

a b
c d

]
=
[

x1
x2

][
y1 y2

]
=
[

x1y1 x1y2
x2y1 x2y2

]
.

Hence ad = x1x2y1y2 = bc.
Conversely, assume that ad = bc. Then[

a+b
c+d

][
a+ c b+d

]
=
[

(a+b)(a+ c) (a+b)(b+d)
(c+d)(a+ c) (c+d)(b+d)

]

=
[

aa+ba+ac+bc ab+bb+ad +bd
ca+ cc+da+dc cb+db+ cd +dd

]
=
[

a+bc b+ad
c+ad d +bc

]
=
[

a+ad b+bc
c+bc d +ad

]
=
[

a b
c d

]
= A,

where the 3rd and 5th equalities come from the definitions of addition and multiplication of
Boolean algebra and the 4th equality comes from assumption. Thus b(A) = 1.

Lemma 2.3. Let A ∈Mm,n(Bk), where m,n ≥ 2. b(A) = 1 if and only if b(A′) = 1 for any
2×2 submatrix A′ of A.

Proof. ⇒) Suppose that b(A) = 1, then there exist vectors a = [a1,a2, . . . , am]T and b =
[b1,b2, . . . ,bn] such that A = ab. i.e., ai, j = aib j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Thus for
any 2×2 submatrix

A′ = A[i, j|r,s] =
[

aibr aibs
a jbr a jbs

]
=
[

ai
b j

][
br bs

]
.

That is, b(A′) = 1.
⇐) Suppose that b(A) = r > 1. Then there exist matrices B∈Mm,r(Bk) and C ∈Mr,n(Bk)

such that A = BC. Thus there exist matrices B′ ∈Mm,2(Bk) and C′ ∈M2,n(Bk) such that
A′ = B′C′ has Boolean rank 2. Therefore there exist matrices B′′ ⊂ B′ and C′′ ⊂ C′ in
M2,2(Bk) such that A′′ = B′′C′′ ∈M2,2(Bk) with b(A′′) = 2, a contradiction.

Theorem 2.1. Let T : Mm,n(Bk)→ Mm,n(Bk) be a linear operator. Then the following
conditions are equivalent:

(a) T is bijective;
(b) T is surjective;
(c) T is injective;
(d) there exists a permutation σ on {(i, j)|i = 1,2, . . . ,m; j = 1,2, . . . ,n} such that T (Ei, j)=

Eσ(i, j) for all 1≤ i≤ m and 1≤ j ≤ n.

Proof. (a), (b) and (c) are equivalent since Mm,n(Bk) is a finite set.
(d)⇒(b) For any D ∈Mm,n(Bk), we may write

D =
m

∑
i=1

n

∑
j=1

di, jEi, j.
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Since σ is a permutation, there exist σ−1(i, j) and

D′ =
m

∑
i=1

n

∑
j=1

dσ−1(i, j)Eσ−1(i, j)

such that

T (D′) = T

(
m

∑
i=1

n

∑
j=1

dσ−1(i, j)Eσ−1(i, j)

)
=

m

∑
i=1

n

∑
j=1

dσσ−1(i, j)Eσσ−1(i, j)

=
m

∑
i=1

n

∑
j=1

di, jEi, j = D.

(a)⇒(d) We assume that T is bijective. Suppose that T (Ei, j) 6= Eσ(i, j) where σ be a
permutation on {(i, j)|i = 1,2, . . . ,m; j = 1,2, . . . ,n}. Then there exist some pairs (i, j) and
(r,s) such that T (Ei, j) = αEr,s(α 6= 1) or some pairs (i, j),(r,s) and (u,v) ((r,s) 6= (u,v))
such that T (Ei, j) = αEr,s + βEu,v + Z(α 6= 0,β 6= 0,Z ∈Mm,n(Bk)), where the (r,s)th and
(u,v)th entries of Z are zeros.

Case 1. Suppose that there exist some pairs (i, j) and (r,s) such that T (Ei, j) = αEr,s(α 6=
1). Since T is bijective, there exist Xr,s ∈Mm,n(Bk) such that T (Xr,s) = Er,s. Then αT (Xr,s) =
αEr,s = T (Ei, j), and hence αXr,s = Ei, j, which contradicts the fact that α 6= 1.

Case 2. Suppose that there exist some pairs (i, j),(r,s) and (u,v) such that T (Ei, j) =
αEr,s +βEu,v +Z(α 6= 0,β 6= 0,Z ∈Mm,n(Bk)), where the (r,s)th and (u,v)th entries of Z are
zeros. Since T is bijective, there exist Xr,s, Xu,v and Z′ ∈Mm,n(Bk) such that T (Xr,s) = αEr,s,
T (Xu,v) = βEu,v, and T (Z′) = Z. Thus T (Ei, j) = αEr,s + βEu,v + Z = T (Xr,s)+ T (Xu,v)+
T (Z′) = T (Xr,s +Xu,v +Z′). So Ei, j = Xr,s +Xu,v +Z′, a contradiction.

Remark 2.1. One can easily verify that if m = 1 or n = 1, then all operators under consid-
eration are (P,Q,B)-operators and if m = n = 1, then all operators under consideration are
(P,PT ,B)-operators.

Henceforth we will always assume that m,n≥ 2.

Lemma 2.4. Let T : Mm,n(Bk)→ Mm,n(Bk) be a linear operator which maps a line to
a line and T be defined by the rule T (Ei, j) = bi, jEσ(i, j), where σ is a permutation on
the set {(i, j)|i = 1,2, . . . ,m; j = 1,2, . . . ,n} and bi, j ∈ Bk are nonzero elements for i =
1,2, . . . ,m; j = 1,2, . . . ,n. Then T is a (P,Q,B)-operator.

Proof. Since no combination of p rows and q columns can dominate J for any nonzero p
and q with p + q = m, we have that either the image of each row is a row and the image
of each column is a column, or m = n and the image of each row is a column and the
image of each column is a row. Thus there are permutation matrices P and Q such that
T (Ri) ≤ PRiQ, T (C j) ≤ PC jQ or, if m = n, T (Ri) ≤ P(Ri)T Q, T (C j) ≤ P(C j)T Q. Since
each nonzero entry of a cell lies in the intersection of a row and a column and T maps
nonzero cells into nonzero (weighted) cells, it follows that T (Ei, j) = Pbi, jEi, jQ = P(Ei, j ◦
B)Q, or, if m = n, T (Ei, j) = P(bi, jEi, j)T Q = P(Ei, j ◦B)T Q where B = (bi, j) is defined by
the action of T on the cells.

Lemma 2.5. If T (X) = X ◦B for all X ∈Mm,n(Bk) and b(B) = 1 then there exist diagonal
matrices D and E such that T (X) = DXE for all X ∈Mm,n(Bk).
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Proof. Since b(B) = 1, there exist vectors d = [di,d2, . . . ,dm]T ∈Mm,1 and e = [ei,e2, . . . ,en]∈
M1,n such that B = de or bi, j = die j. Let D = diag{d1,d2, . . . ,dm} and E = diag{e1,e2, . . . ,en}.
Now the (i, j)th entry of T (X) is bi, jxi, j and the (i, j)th entry of DXE is dixi, je j = bi, jxi, j.
Hence T (X) = DXE.

Example 2.1. Consider the linear operator T : M3,3(B3)→M3,3(B3) defined by T (X) =
X ◦B for all X ∈M3,3(B3) with B3 = P({a,b,c}). Then b(B) = 1 but T does not preserve
the Boolean rank.

Consider X =

 {a,b} {a,b,c} {a,b}
{a,c} {a,b} {a,c}
{a} {b,c} {a,b,c}

 and B =

 {a} {b} {a}{a} {b} {a}
{a} {b} {a}

.

Then b(X) = 3, but

T (X) = X ◦B =

 {a} {b} {a}{a} {b} {a}
{a} {b} {a}

=

 1
1
1

[ {a} {b} {a} ] .
That is, b(T (X)) = b(X ◦B) = 1 6= 3 =b(X). Thus b(B) = 1 but T does not preserve Boolean
rank.

3. Linear preservers of RSA(Bk)

Recall that

RSA(Bk) = {(X ,Y ) ∈Mm,n(Bk)2| b(X +Y ) = b(X)+b(Y )}.

We begin with some general observations on linear operators of special types that preserve
RSA(Bk).

Lemma 3.1. Let σ be a permutation of the set {(i, j)|i = 1,2, . . . , m; j = 1,2, . . . ,n}, and
T : Mm,n(Bk)→Mm,n(Bk) be a linear operator defined by T (Ei, j) = bi, jEσ(i, j) for some
nonzero scalars bi, j, 1≤ i≤m and 1≤ j≤ n. If T preserves RSA(Bk), then T is a (P,Q,B)-
operator.

Proof. We examine the action of T on rows and columns of a matrix. Suppose that the
image of two cells are in the same line, but the cells are not, say, E and F are cells such that
b(E + F) = 2 and b(T (E +F)) = 1. Then (E,F) ∈RSA(Bk) but (T (E),T (F)) /∈RSA(Bk), a
contradiction since T preserves RSA(Bk). Thus T maps any line to a line. By Lemma 2.4,
we obtain that T is a (P,Q,B)-operator.

Lemma 3.2. Let T : Mm,n(Bk)→Mm,n(Bk) be a linear operator. If for some B = (bi, j),
where bi, j are nonzero scalars for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, T (X) = X ◦B preserves
RSA(Bk), then b(B) = 1. Moreover, T (X) = DXE for diagonal matrices D and E of appro-
priate sizes.

Proof. If b(B) ≥ 2, then by Lemma 2.3, there is a 2× 2 submatrix B[i, j|r,s] such that
b(B[i, j|r,s]) = 2. Let Y = Ei,r +E j,r +Ei,s +E j,s. Thus T (Y ) = bi,rEi,r +b j,rE j,r +bi,sEi,s +
b j,sE j,s = Z has Boolean rank 2 from b(B[i, j|r,s]) = 2. Then for q 6= r,s, we have b(Ei,q +Y )
= 2 = b(Ei,q) + b(Y ), so that (Ei,q,Y ) ∈RSA(Bk), while b(T (Ei,q +Y )) = b(bi,qEi,q + Z) = 2
6= b(bi,qEi,q) + b(Z) = 1 + 2 = 3, a contradiction since T preserves RSA(Bk). Thus b(B) = 1.
Moreover, by Lemma 2.5, there exist diagonal matrices D and E such that T (X) = DXE.
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Theorem 3.1. Let T : Mm,n(Bk)→Mm,n(Bk) be a surjective linear operator. If T preserves
RSA(Bk), then T is a (P,Q)-operator.

Proof. If T is surjective, then by Theorem 2.1, we have that T is defined by a permutation
σ on the set {(i, j)|i = 1,2, . . . ,m; j = 1,2, . . . ,n} such that T (Ei, j) = Eσ(i, j) for all 1 ≤
i ≤ m and 1 ≤ j ≤ n. By Lemma 3.1, we have that T is a (P,Q,J)-operator. Thus T is a
(P,Q)-operator.

Corollary 3.1. Let T : Mm,n(Bk)→Mm,n(Bk) be a surjective linear operator. The operator
T preserves RSA(Bk) if and only if T is a (P,Q)-operator.

Proof. Suppose that T preserves RSA(Bk). Then T is a (P,Q)-operator by Theorem 3.1.
Conversely, assume that T is a (P,Q)-operator. For any (X ,Y ) ∈RSA(Bk), we have

b(X +Y ) = b(X) + b(Y ). Thus

b(T (X)+T (Y )) = b(T (X +Y )) = b(P(X +Y )Q) = b(X +Y )

= b(X)+b(Y ) = b(PXQ)+b(PY Q) = b(T (X))+b(T (Y )).

Hence the operator T preserves RSA(Bk).

Lemma 3.3. Let T : Mm,n(Bk)→Mm,n(Bk) be a linear operator. Then there is a power of
T which is idempotent.

Proof. Since Bk is finite, there are only finitely many linear operators from Mm,n(Bk) into
Mm,n(Bk). Thus the sequence {T,T 2,T 3, . . . ,T m, . . .} is finite for sufficiently large n. That
is, there exist integers N ≥ 1 and d≥ 1 such that for m,n≥N with m≡ n (mod d), T m = T n.
Let p = Nd. Then 2p≡ p(mod d). Hence (T p)2 = T 2p = T p. That is, T p is idempotent.

Theorem 3.2. Let T : Mm,n(Bk)→Mm,n(Bk) be a linear operator. Then T strongly pre-
serves RSA(Bk) if and only if T is a (P,Q)-operator.

Proof. By Lemma 3.3, there is a power of T which is idempotent. Say L = T p with L2 = L.
If X ∈Mm,n(Bk) and (X ,X) ∈RSA(Bk), then b(X) = b(X + X) = b(X) + b(X). Thus b(X)
= 0, X = Om,n. Similarly, if (T (X),T (X)) ∈ RSA(Bk), then T (X) = Om,n. Thus (X ,X) ∈
RSA(Bk) if and only if (L(X),L(X)) ∈RSA(Bk) since T strongly preserves RSA(Bk). So,
b(X) = 0 if and only if b(L(X)) = 0. That is, X = Om,n if and only if L(X) = Om,n. Hence, if
A 6= O, then we have L(A) 6= O since T strongly preserves RSA(Bk). We examine the action
of L on rows and columns. Assume that L(Ri) is not dominated by Ri. Then there is some
(r,s) such that Er,s ≤ L(Ri) while Er,s 6≤ Ri. Then it is easy to see that

(3.1) (Ri,aEr,s) ∈RSA(Bk).

Since Er,s ≤ L(Ri), we can find a matrix X = (xi, j) ∈ Mm,n(Bk) with xr,s = 0 such that
L(Ri) = aEr,s +X for nonzero a in Bk. We have L(Ri +aEr,s) = L(Ri)+L(aEr,s) = L2(Ri)+
L(aEr,s) = L(aEr,s +X)+L(aEr,s) = L(X)+L(aEr,s)+L(aEr,s) = L(X)+L(aEr,s) = L(X +
aEr,s) = L(L(Ri)) = L2(Ri) = L(Ri). That is,

(3.2) b(L(Ri)+L(aEr,s)) = b(L(Ri +aEr,s)) = b(L(Ri)).

But if b(L(Ri)) + b(L(aEr,s)) = b(L(Ri)+ L(aEr,s)) = b(L(Ri)), then b(L(aEr,s)) = 0. Then
L(aEr,s) = 0 and aEr,s = 0; which is impossible. Thus (L(Ri)), L(aEr,s) /∈RSA(Bk), contra-
diction from (3.1), since T and L strongly preserves RSA(Bk). Therefore we have estab-
lished that L(Ri) ≤ Ri for all i. Similarly, L(C j) ≤ C j for all j. By considering that Ei, j
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is dominated by both Ri and C j, we have that L(Ei, j) ≤ Ri and L(Ei, j) ≤ C j, and hence
L(Ei, j) ≤ Ei, j. Since Bk is antinegative, T also maps a cell to a weighted cell and T (J)
has all nonzero entries. So, T induces a permutation σ on the set {(i, j)|i = 1,2, . . . ,m; j =
1,2, . . . ,n}. That is, T (Ei, j) = bi, jEσ(i, j) for some nonzero scalar bi, j in Bk. By Lemma 3.1,
T is a (P,Q,B)-operator.

It remains to show that B = J. On the contrary assume that B 6= J say bi, j 6= 1. Consider
Y = Rk +bi, jRi for some k 6= i. Then b(Y )= 1 and (Y,Ei, j)∈RSA(Bk) while (T (Y ),T (Ei, j)) /∈
RSA(Bk) since b(T (Y )+T (Ei, j)) = b(P(Y ◦B)Q+P(Ei, j ◦B)Q) = b(P(Y ◦B)Q) = b(T (Y ))
6= b(T (Y ))+b(T (Ei, j)). This fact implies that T does not preserve RSA(Bk).

The converse is obvious.

4. Linear preservers of RS1(Bk)

Recall that
RS1(Bk) = {(X ,Y ) ∈Mm,n(Bk)2| b(X +Y ) = 1}.

Theorem 4.1. Let T : Mm,n(Bk)→Mm,n(Bk) be a surjective linear operator. Then T pre-
serves RS1(Bk) if and only if T is a (P,Q)-operator.

Proof. If T is a surjective linear operator, by Theorem 2.1, we have that T (Ei, j) = Eσ(i, j)
for all 1≤ i≤ m and 1≤ j ≤ n. It is easy to see that the weighted cells αEi, j and βEr,s are
in the same line if and only if b(αEi, j + βEr,s) = 1 if and only if (αEi, j,βEr,s) ∈RS1(Bk).
If T preserves RS1(Bk), then (T (αEi, j), T (βEr,s))∈RS1(Bk) for (αEi, j,βEr,s)∈RS1(Bk).
And hence b(T (αEi, j)+T (βEr,s)) = 1 which implies T (αEi, j) and T (βEr,s) are weighted
cells in the same line. Thus lines are mapped to lines by T , and we have that T is a (P,Q,B)-
operator by Lemma 2.4. Here we have B = J from T (Ei, j) = Eσ(i, j). Thus T be a (P,Q)-
operator.

Conversely let T be a (P,Q)-operator and consider any (X ,Y ) ∈RS1(Bk). Then b(X +
Y ) = 1. Thus b(T (X) + T (Y )) = b(T (X +Y )) = b(P(X +Y )Q) = b(X +Y ) = 1. That is,
(T (X),T (Y )) ∈RS1(Bk). Hence T preserves RS1(Bk).

Theorem 4.2. Let T : Mm,n(Bk)→ Mm,n(Bk) be a linear operator preserving RS1(Bk).
Then the following conditions are equivalent:

(a) T is bijective;
(b) T is injective;
(c) T is surjective;
(d) T strongly preserves RS1(Bk);
(e) T is a (P,Q)-operator.

Proof. (a), (b) and (c) are equivalent by Theorem 2.1.
(c)⇒(e) If T is a surjective linear operator preserving RS1(Bk), then T is a (P,Q)-operator

by Theorem 4.1.
(e)⇒(d) Assume that T is a (P,Q)-operator. Then (X ,Y ) ∈RS1(Bk) if and only if b(X +

Y ) = 1 if and only if b(P(X +Y )Q) = 1 if and only if b(T (X +Y )) = 1 if and only if b(T (X)+
T (Y )) = 1 if and only if (T (X),T (Y )) ∈RS1(Bk). That is T strongly preserves RS1(Bk).

(d)⇒(c) Suppose T strongly preserves RS1(Bk). We claim that T is surjective. Assume
that T is not surjective. Then T is not injective by (b) and hence T is not injective on the set
of all mn cells in Mm,n(Bk). Therefore there exists two distinct cells Ei, j,Eh,l ∈Mm,n(Bk)
such that T (Ei, j) = T (Eh,l) = Er,s. Then we have 3 cases as follows:
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Case 1. Two cells in distinct lines are mapped to a cell. That is T (Ei, j) = Er,s = T (Eh,l)
with i 6= h, j 6= l. Let X = Ei, j, Y = Eh,l . Then b(X +Y ) = 2, but b(T (X)+T (Y )) = b(Er,s)
= 1; contradicts the fact that T strongly preserves RS1(Bk).

Case 2. Two cells in a row are mapped to a cell. That is T (Ei, j) = Er,s = T (Ei,l) with
j 6= l. Since T strongly preserves RS1(Bk), ith row are mapped to rth row (or sth column) and
jth column are mapped to sth column (or rth row) under T . Say T (Eu, j) = Ev,s with i 6= u.
Let X = Ei, j +Ei,l and Y = Eu, j. Then b(X +Y ) = 2, but b(T (X)+ T (Y )) = b(Er,s +Ev,s) =
1; contradicts the fact that T strongly preserves RS1(Bk).

Case 3. Two cells in a column are mapped to a cell. We have a similar contradiction as
Case 2.

Therefore these 3 cases implies that T is injective and hence T is surjective by the equiv-
alence of (a)∼(c).

As a concluding remark, we have characterized the linear operators that preserve the
extreme sets of matrix ordered pairs over nonbinary Boolean algebra which come from
certain Boolean rank inequalities.
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