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Abstract. Let T ∆
n denote the set of trees of order n, in which the degree of each vertex is

bounded by some integer ∆. Suppose that every tree in T ∆
n is equally likely. For any given

small tree H, we first show that the number of occurrences of H in trees of T ∆
n has mean

(µH +o(1))n and variance (σH +o(1))n, where µH , σH are some constants. Then we apply
this result to estimate the value of the Estrada index EE for almost all trees in T ∆

n , and
give a theoretical explanation to the approximate linear correlation between EE and the first
Zagreb index obtained by quantitative analysis.
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1. Introduction

We denote the set of trees with n vertices and maximum degree at most ∆ by T ∆
n . Setting

tn = |T ∆
n |, we introduce a generating function for these trees:

t(x) = ∑
n≥1

tnxn.

Let H be a given small tree. For a tree T ∆
n ∈ T ∆

n , we say that H occurs in T ∆
n if there is

a subtree of T ∆
n isomorphic to H. Denote the number of occurrences of H in a tree T ∆

n
by tT ∆

n ,H . To count the occurrences, we introduce a generating function in two variables as
follows:

t(x,u) = ∑
n≥1,T ∆

n ∈T ∆
n

xnu
t
T ∆n ,H .

It can be simplified into
t(x,u) = ∑

n≥1,k≥0
tn,kxnuk,

where tn,k denotes the number of trees in T ∆
n such that the number of occurrences of H in

each of these trees is k. Note that t(x,1) = t(x), i.e., tn = ∑k≥0 tn,k.
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Furthermore, suppose that every tree in T ∆
n is equally likely. Then, we can regard tT ∆

n ,H

as a random variable Xn(T ∆
n ) in T ∆

n on the space T ∆
n , simply denoted by Xn. Clearly, the

probability distribution of Xn is given by

Pr[Xn = k] =
tn,k

tn
.

If H occurs in a tree and the degrees of the internal vertices (vertices of degrees greater
than 1) coincide with those of the corresponding vertices in the tree, then the corresponding
subtree of the tree is called a pattern of H. If there is no degree restriction on the trees,
many results have been established for the number of occurrences of a pattern. Kok [9]
showed that the number Xn for any pattern in trees without degree restriction has mean
E(Xn) = (µ + o(1))n and variance Var(Xn) = (σ + o(1))n, and (Xn−E(Xn))/(

√
Var(Xn))

is asymptotic to a distribution with density (A + Bx2)e−Cx2
for some constants A,B,C ≥ 0.

Moreover, if the pattern is a star, then the number for this pattern in a tree is exactly the
number of vertices with degrees equal to the degree of the internal vertex of the star. It has
been shown that for the number Xn of vertices of a given degree, (Xn−E(Xn))/(

√
Var(Xn))

is asymptotically normally distributed. We refer the readers to [5,12] for more details. And,
analogous results have been obtained for other classes of trees, such as simply generated
trees, rooted trees, et al. (see [2, 5, 9, 10]). However, for the number of occurrences of H in
general trees, similar results have not been obtained so far. It seems that this is very difficult.

In this paper, we will first show that the number of occurrences of H in planted trees and
rooted trees with bounded degree is also asymptotically normally distributed with mean and
variance in Θ(n), but for T ∆

n , we can only get a weak result. Then, we will use this result
to estimate the Estrada index EE for the trees in T ∆

n , and give a theoretical explanation to
the approximate linear correlation between EE and the first Zagreb index [7] obtained by
quantitative analysis. The definition of EE will be introduced in Section 3, and we refer the
readers to a survey [3] for more information on the Estrada index. Section 2 is devoted to
a systematic treatment of the number of occurrences of a given small tree H. In Section 3,
we investigate the Estrada index for the trees in T ∆

n .

2. The number of occurrences of a given small tree

In this section, we show that the number of occurrences of H in T ∆
n has mean (µH +

o(1))n and variance (σH + o(1))n for some constants µH and σH . In the procedure of our
discussion, we get related results for planted trees and rooted trees first. In what follows, we
introduce some terminology and notations which will be used in the sequel. For the others
not defined here, we refer to book [8].

Analogous to trees, we introduce the generating functions for rooted trees and planted
trees. Let R∆

n denote the set of rooted trees of order n with degrees bounded by an integer
∆. Setting rn = |R∆

n |, we have
r(x) = ∑

n≥1
rnxn

and
r(x,u) = ∑

n≥1,k≥0
rn,kxnuk,

where rn,k denotes the number of trees in R∆
n such that H occurs k times in each of these

trees. A planted tree is formed by adding a vertex to the root of a rooted tree. The new



The Asymptotic Behavior of the Estrada Index for Trees 99

vertex is called the plant, and we never count it in the sequel. Analogously, let P∆
n denote

the set of planted trees of order n with degrees bounded by ∆. Setting pn = |P∆
n |, we have

p(x) = ∑
n≥1

pnxn

and
p(x,u) = ∑

n≥1,k≥0
pn,kxnuk,

where pn,k denotes the number of trees in P∆
n such that H occurs k times in each of these

trees. By the definition of planted trees, one can readily see that p(x,1) = p(x) = r(x,1) =
r(x). Moreover, in [11], it has been shown that there exists a number x0 such that

(2.1) p(x) = b1 +b2
√

x0− x+b3(x0− x)+ · · · ,
where b1,b2,b3 are some constants not equal to zero, for any |x| ≤ x0, p(x) is convergent
(evidently, p(x0) = b1), and for any ∆≥ 2, x0 ≤ 1/2.

Let p(∆−1)(x) be the generating function of planted trees such that the degrees of the
roots are not more than ∆−1, while the degrees of the other vertices are still bounded by ∆.
Then, we have (see [11])

(2.2) p(∆−1)(x0) = 1.

And, this fact will play an important role in the following proof.
Let y(x,u) = (y1(x,u), . . . ,yN(x,u))T be a column vector. We suppose that G(x,y,u) is

an analytic function with non-negative Taylor coefficients. G(x,y,u) can be expanded as

G(x,y,u) = ∑
n≥1,k≥0

gn,kxnuk.

Let Xn denote a random variable with probability

(2.3) Pr[Xn = k] =
gn,k

gn
,

where gn = ∑k gn,k. First, we introduce a useful lemma [2, 4].

Lemma 2.1. Let F(x,y,u) = (F1(x,y,u), . . . ,FN(x,y,u))T be functions analytic around x =
0, y = (y1, . . . ,yN)T = 0, u = 0, with Taylor coefficients all are non-negative. Suppose
F(0,y,u) = 0, F(x,0,u) 6= 0, Fx(x,y,u) 6= 0, and for some j, Fy jy j(x,y,u) 6= 0. Furthermore,
assume that x = x0 together with y = y0 is a non-negative solution of the system of equations

y = F(x,y,1)(2.4)

0 = det(I−Fy(x,y,1))(2.5)

inside the region of convergence of F, I is the unit matrix. Let y = (y1(x,u), . . . ,yN(x,u))T

denote the analytic solution of the system

(2.6) y = F(x,y,u)

with y(0,u) = 0.
If the dependency graph GF of the function system Equation (2.6) is strongly connected,

then there exist functions f (u) and gi(x,u), hi(x,u) (1 ≤ i ≤ N) which are analytic around
x = x0, u = 1, such that

(2.7) yi(x,u) = gi(x,u)−hi(x,u)
√

1− x
f (u)
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is analytically continued around u = 1, x = f (u) with arg(x− f (u)) 6= 0, where x = f (u)
together with y = y( f (u),u) is the solution of the extended system

y = F(x,y,u)(2.8)

0 = det(I−Fy(x,y,u)).(2.9)

Moreover, let G(x,y,u) be an analytic function with non-negative Taylor coefficients such
that the point (x0,y(x0,1),1) is contained in the region of convergence. Finally, let Xn be the
random variable defined in Equation (2.3). Then the random variable Xn is asymptotically
normal with mean

E(Xn) = µn+O(1) (n→ ∞),

and variance

Var(Xn) = σn+O(1) (n→ ∞)

with µ =− f ′(1)/ f (1).

Remark 2.1. We say that the dependency graph GF of y = F(x,y,u) is strongly connected
if there is no subsystem of equations that can be solved independently from others. If GF is
strongly connected, then I−Fy(x0,y0,1) has rank N−1. Suppose that vT is a vector with
vT (I−Fy(x0,y0,1)) = 0. Then, µ = (vT (Fu(x0,y0,1)))/(x0vT (Fx(x0,y0,1))). We refer the
readers to [2, 4] for more details.

Now, we focus our attention on the generating function p(x,u). For the subtree H, we
suppose that the diameter of H is h. The height of a vertex in a planted tree is the distance
from the vertex to the root. The height of a planted tree is the largest distance from the
vertices to the root. We split up P∆

n into two sets W0 and W , which denotes the set of trees
with height not more than h−1 and the trees with height greater than h−1, respectively. We
can see that if H occurs in the planted tree and the corresponding subtree contains the root,
then the height of the subtree is not more than h. Moreover, since we mainly consider the
asymptotic number of subtrees, the trees in W0 will contribute nothing to the coefficient of
xnuk for any k when n is large enough. Therefore, in this paper, we do not need to know the
exact expression of the generating function for the trees in W0, and we denote it by φ(x,u).
Now, we focus on the trees in W .

First, we introduce some concepts. For a planted tree in W , the planted subtree formed
by the vertices with height not more than ` is called `-height subtree of this tree. Now,
we split up W according to the h-height subtree. That is, the trees in W having the same
h-height subtree wi form a subset Hi of W . Since the degrees of the vertices in W are
bounded by ∆, there are finite number N∆ of different h-height subtrees. So, 1 ≤ i ≤ N∆.
Therefore, we obtain that

(2.10) p(x,u) = φ(x,u)+
N∆

∑
i=1

awi,h(x,u),

where awi,h(x,u) denotes the generating function of Hi.
To establish the system of functional equations for awi,h(x,u), we need other functions

aw′i,h−1(x,u) as follows. For some tree w′i of height h−1, we denote H ′
i to be the subset of

W such that the (h−1)-height subtree of each planted tree in H ′
i is w′i. Note that w′i /∈H ′

i .
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Then, we use aw′i,h−1(x,u) to denote the generating function of H ′
i ∪{w′i}, it follows that

(2.11) aw′i,h−1(x,u) = ∑
wi∈H ′

i

awi,h(x,u)+w′i(x,u),

where w′i(x,u) serves to count the occurrences of H on w′i.
There will appear an expression of the form Z(Sn, f (x,u)) (or f (x)), which is the substitu-

tion of the counting series f (x,u) (or f (x)) into the cycle index Z(Sn) of the symmetric group
Sn. This involves replacing each variable si in Z(Sn) by f (xi,ui) (or f (xi)). For instance,
if n = 3, then Z(S3) = (1/3!)(s3

1 + 3s1s2 + 2s3), and Z(S3, f (x,u)) = (1/3!)( f (x,u)3 +
3 f (x,u) f (x2,u2)+2 f (x3,u3)). We refer the readers to [8] for details.

Note that a planted tree can be seen as a root attached to some branches, and each
branch is also a planted subtree. Employing the classic Pólya enumeration theorem, we
have Z(S j−1; p(x)) as the counting series of the planted trees whose roots have degree j,
and the coefficient of xp in x ·Z(S j−1; p(x)) is the number of planted trees with p vertices
(see [8, p.51–54]). Therefore,

p(x) = x ·
∆−1

∑
j=0

Z(S j; p(x)),

and

p(∆−1)(x) = x ·
∆−2

∑
j=0

Z(S j; p(x)).

By means of the same method, awi,h(x,u) can be expressed in terms of aw′i,h−1(x,u).
Suppose that the roots of the trees in Hi have degree j, and each has j′ planted subtrees
with height at least h− 1 attached to it. Clearly, j′ belongs to {1, . . . , j− 1}, and some of
these subtrees may have the same w′i. Denote these different (h−1)-height subtrees by {w′s}
and suppose w′s happens `s times. Evidently, ∑`s = j′. It follows that

(2.12) awi,h(x,u) = x ·∏
s

Z(S`s ;aw′s,h−1) ·φwi(x,u) ·uk(`s,φwi ) (1≤ i≤ N∆).

Here, φwi(x,u) denotes the counting function of the other j− 1− j′ branches of wi. The
factor uk(`s,φwi ) serves to count the number of occurrences of H using the root of the new
tree, and k(`s,φwi) denotes the corresponding number. In this case, all the vertices of the
new tree corresponding the vertices of H have height not more than h. And, since we know
that the h-height subtree of the new tree is wi, the number of occurrences including the root
can be calculated, that is, the exponent k(ls,φwi) can be calculated. Therefore, combining
with Equation (2.11), the functions system of awi,h(x,u) has been established.

Now, we start to show that all the conditions of Lemma 2.1 hold for awi,h(x,u). For conve-
nience, we still use F to denote the functions system. Set vector a(x,u)= (aw1,h, . . . ,awN∆

,h)T .
We suppose that the i-th component F i(x,a,u) of F equals awi,h(x,u). Since p(x,1) = p(x)
and p(x0) = b1, one can see that awi,h(x0,1) is convergent. So, x0 and a(x0,1) are inside
the region of convergence of F. Clearly, the other conditions are easy to verify except
for Equation (2.5). In what follows, we shall show that the sum Sawi ,h

of every column
of Fa(x0,a(x0,1),1) equals 1. Consequently, the equation det(I−Fa(x0,a(x0,1),1)) = 0
holds.
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We consider the derivative to awi0 ,h. Suppose the degree of the root of wi0 is j. If
F i(x,a,u) is not a function of awi0 ,h, then F i

awi0
,h
(x,a,u) will contribute nothing to the sum

Sawi0
,h . Thus, we just need to consider the functions F i(x,a,u) with some aw′s,h−1 having the

term awi0 ,h. In Equation (2.12), if both aw′s1
,h−1 and aw′s2

,h−1 have the term awi0 ,h, which im-
plies that the trees corresponding to aw′s1

,h−1, aw′s2
,h−1 have the same (h−1)-height subtree,

then by the definition of aw′s,h−1, we get that aw′s1
,h−1 = aw′s2

,h−1. Therefore, there exists
exactly one product factor, say Z(S`s0

;aw′s0
,h−1), that is a function of awi0 ,h.

Moreover, it is well-known that the partial derivative of Z(Sn; ·) enjoys (see [5])

(2.13)
∂

∂ s1
Z(Sn;s1, . . . ,sn) = Z(Sn−1;s1, . . . ,sn−1).

For the planted tree, we have (∂Z(Sn; p(x,1)))/(∂ p(x,1)) = Z(Sn−1; p(x,1)), which corre-
sponds to the generating function obtained by deleting one branch from the root. Analo-
gously, we have

F i
awi0

,h
= x ·∏

s 6=s0

Z(S`s ;aw′s,h−1) ·Z(S`s0−1;aw′s0
,h−1) ·φwi0

(x,u) ·uk(`s,φwi0
)
,

and it is exactly the new generating function produced by deleting one branch of H ′
s0
∪w′s0

.
Clearly, the root of the new planted tree is of degree j− 1. Particularly, if `s0 = 1, after
taking the derivative, the yielded function corresponds to the trees with roots of degree
j− 1 such that every branch does not belong to H ′

s0
∪{w′s0

}. Hence, Sawi0
,h(x,a(x,u),u)

counts the number of occurrences in all planted trees with roots of degree not more than
∆−1. Set u = 1. Generally, it follows that Sawi ,h

(x,a(x,1),1) equals the generating function

p(∆−1)(x,1). Combining with the fact p(∆−1)(x0,1) = 1, we obtain Sawi ,h
(x0,a(x0,1),1) = 1.

Immediately, the Equation (2.5)

det(I−Fa(x0,a(x0,1),1)) = 0

follows.
Employing Lemma 2.1, we have that awi,h(x,u) is in the form of Equation (2.7), namely,

for some f (u) and gwi,h(x,u), hwi,h(x,u) which are analytic around x = x0, u = 1. It follows
that

awi,h(x,u) = gwi,h(x,u)−hwi,h(x,u)
√

1− x
f (u)

is analytically continued around u = 1, x = f (u) with arg(x− f (u)) 6= 0. From Equation
(2.10), we can see that p(x,u) can be written into a function of a(x,u), and denote it by
P(x,a(x,u),u). Clearly, all the coefficients of P(x,a(x,u),u) are non-negative. Therefore,
p(x,u) is also in the form of Equation (2.7). Moreover, recalling Equation (2.1), we can see
that f (1) = x0. Apply Lemma 2.1 to P(x,a(x,u),u), the following result is obtained.

Theorem 2.1. For any given subtree H, the number Xn of occurrences of H in P∆
n is

asymptotical to be normal with mean E(Xn) = µHn+O(1) and variance Var(Xn) = σ
p
Hn+

O(1) for some constants µH and σ
p
H .

A rooted tree in R∆
n can also be seen as a root attached by some planted trees. That

is, by the classic Pólya enumeration theorem, analogous to Equation (2.12), the generating
function of R∆

n is also a function in a(x,u). We denote the function by R(x,a(x,u),u), and
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r(x,u) = R(x,a(x,u),u). By means of the above analysis, it is not difficult to see that the
Taylor coefficients of R(x,a(x,u),u) are non-negative. Thus, r(x,u) also has the form of
Equation (2.7). And, apply Lemma 2.1 to R(x,a(x,u),u), the following result is obtained.

Theorem 2.2. For any given subtree H, the number Xn of occurrences of H in R∆
n is asymp-

totically normally distributed with mean E(Xn) = µHn + O(1) and variance Var(Xn) =
σ r

Hn+O(1) for some constants µH and σ r
H .

Remark 2.2. Since r(x,u) and p(x,u) correspond to the same function f (u), by Lemma
2.1 we can see that the means of Xn with respect to R∆

n and P∆
n are with the same constant

µH . Moreover, it has been shown that the sum of each column of Fa(x0,a(x0,1),1) equals
1, then we have vT = (1, . . . ,1) such that vT (I−Fy(x0,y0,1)) = 0. Therefore, it is easy to
see that µH is positive by Remark 2.1.

In what follows, we investigate the generating function of trees. Two edges in a tree are
similar, if they are the same under some automorphism of the tree. To join two planted trees
is to connect the two roots with a new edge and get rid of the two plants. If the two panted
trees are the same, we say that the new edge is symmetric. Then, we have the following
lemma due to [11].

Lemma 2.2. For any tree, the number of rooted trees corresponding to this tree minus the
number of nonsimilar edges (except for the symmetric edge) is the number 1.

Note that, if we delete any one edge from a similar set in a tree, the yielded trees are
the same two trees. Hence, different pairs of planted trees correspond to nonsimilar edges.
Now, we have

t(x,u) = r(x,u)− 1
2

(
∑

1≤i1,i2≤N∆

awi1 ,h(x,u)awi2 ,h(x,u) ·uk(wi1 ,wi2 )

)

+
1
2 ∑

1≤i≤N∆

awi,h
(
x2,u2) ·uk(wi,wi),

(2.14)

where k(wi1 ,wi2) serves to count the subtrees taking vertices both in wi1 and wi2 . Conse-
quently, we obtain that t(x,u) is also in the form of Equation (2.7), i.e., there exist some
functions g(x,u), h(x,u) which are analytic around x = x0, u = 1, such that

t(x,u) = g(x,u)−h(x,u)
√

1− x
f (u)

.

is analytically continued around u = 1, x = f (u) with arg(x− f (u)) 6= 0. Here, we could not
get the result of trees likes planted trees and rooted trees. Some instances show that t(x,u)
does not have non-negative Taylor coefficients of awi1 ,h and awi2 ,h, so Lemma 2.1 fails in
this case. However, we can use the following result due to [9] to get a weak result for t(x,u).

Lemma 2.3. Suppose that t(x,u) has the form

t(x,u) = g(x,u)−h(x,u)
√

1− x
f (u)

,

where g(x,u), h(x,u) and f (u) are analytic functions around x = f (1) and u = 1 that satisfy
h( f (1),1) = 0, hx( f (1),1) 6= 0, f (1) > 0 and f ′(1) < 0. Furthermore, x = f (u) is the
only singularity on the circle |x| = | f (u)| for u is close to 1. Suppose that Xn is defined as
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Equation (2.3) to y(x,u). Then, E(Xn) = (µ + o(1))n and Var(Xn) = (σ + o(1))n, where
µ =− f ′(1)/ f (1) and σ is some constant.

Remark 2.3. If h( f (1),1) 6= 0, this lemma is trivial by Lemma 2.1. But if h( f (u),u) = 0,
we can still get that the limiting distribution of Xn is normal by further analysis (see [5]).

For t(x), it has been obtained that [11]

t(x) = c0 + c1(x0− x)+ c2(x0− x)3/2 + · · · ,
where c0, c1, c2 are some constants not equal to 0. Combining with the fact t(x,1) = t(x), we
can see that h( f (1),1) = 0 and hx( f (1),1) 6= 0. Moreover, the other conditions in Lemma
2.3 are easy to verify. Then, we formulate the following theorem.

Theorem 2.3. Let Xn be the number of occurrences of a given small tree H in the trees of
T ∆

n . Then it follows that
E(Xn) = (µH +o(1))n

and
Var(Xn) = (σ t

H +o(1))n,

where µH and σ t
H are some constants with respect to the subtree H.

Following book [1], we will say that almost every (a.e.) graph in a random graph space
Gn has a certain property Q if the probability Pr(Q) in Gn converges to 1 as n tends to infinity.
Occasionally, we shall write almost all instead of almost every.

By Chebyshev inequality one can get that

Pr
[∣∣Xn−E(Xn)

∣∣> n3/4]≤ Var(Xn)
n3/2 → 0 as n→ ∞.

Therefore, for any subtree H, Xn = (µH + o(1))n a.e. in T ∆
n . Then, an immediate conse-

quence is the following.

Corollary 2.1. For almost all trees in T ∆
n , the number of occurrences of H equals (µH +

o(1))n.

3. The Estrada index

In this section, we investigate the Estrada index for trees in T ∆
n . Let G be a simple graph

with n vertices. The eigenvalues of the adjacency matrix of G are said to be the eigenvalues
of G and to form the spectrum. Suppose that the eigenvalues of G are λi, 1 ≤ i ≤ n. The
Estrada index was defined as

EE(G) =
n

∑
i=1

eλi .

This index was invented in year 2000, and is nowadays widely accepted and used in the
information-theoretical and network-theoretical applications. For this graph invariant, many
results have been established. We refer the readers to a survey [3] for more details. Further-
more, for trees with n vertices, it has been shown that the path has the minimum Estrada
index and the star has the maximum. By quantitative analysis, there is an approximate linear
correlation between EE and the first Zagreb index, i.e., ∑d2

i for trees. Denote ∑d2
i by D.

That is,

(3.1) EE ≈ aD+b,
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where a and b are some constants. We refer the readers to [3, 7]. In what follows, we shall
get the estimate of EE for almost all trees in T ∆

n and give a theoretical explanation to the
correlation (3.1).

Denoting by Mk = Mk(G) = ∑
n
i=1 λ k

i the k-th spectral moment of G, and bearing in mind
the power-series expansion of ex, we have

EE(G) =
∞

∑
k=0

Mk(G)
k!

.

Note that Mk(G) is equal to the number of closed walks of length k. For trees, one can
readily see that

(3.2) EE(T ) =
∞

∑
k=0

M2k

(2k)!
.

Then, in a tree, the closed walk of length 2k forms a subtree with at most k +1 vertices. We
have got that, for any given subtree, the number of occurrences of the subtree in T ∆

n equals
(µH +o(1))n a.e. Since there are finitely many different subtrees with at most k+1 vertices,
and each subtree corresponds to finite numbers of 2k closed walks, we can obtain that there
exists a constant µ2k such that the number of 2k closed walks is (µ2k +o(1))n a.e., namely,

M2k = (µ2k +o(1))n a.e.

in T ∆
n . Moreover, we introduce a lemma due to Fiol and Garriga [6].

Lemma 3.1. For any graph G, M2k ≤ ∑
n
i=1 d2k

i

Recall that the degrees of a tree in T ∆
n are bounded by ∆. So, ∑

n
i=1 d2k

i ≤ ∆2kn and
thus EE(T ∆

n ) ≤ e∆n. Moreover, since ∑k=0((∆2k)/((2k)!)) is convergent, for any positive
number ε , there exists an integer j0 such that for any j > j0, ∑k= j+1((M2k)/((2k)!)) < εn.
Evidently, it is uniform for all the trees in T ∆

n . Therefore, we have
j

∑
k=0

M2k

(2k)!
≤ EE(T ∆

n )≤
j

∑
k=0

M2k

(2k)!
+ εn.

Hence, we just have to consider the closed walks of length at most j0.
For any integer j, we have ∑

j
k=0((µ2k)/((2k)!)) ≤ e∆. Therefore, ∑k=0((µ2k)/((2k)!))

is convergent, and denote the limit by µ∆. It follows that

(µ∆− ε)n <
j

∑
k=0

M2k

(2k)!
=

j

∑
k=0

(µ2k +o(1))n
(2k)!

≤ (µ∆ +o(1))n a.e.

Then, we have that (µ∆− ε)n < EE(T ∆
n ) < (µ∆ + ε)n a.e. Now, we can formulate the fol-

lowing theorem.

Theorem 3.1. For any ε > 0, the Estrada index of a tree in T ∆
n enjoys

(µ∆− ε)n < EE(T ∆
n ) < (µ∆ + ε)n a.e.,

where µ∆ is some constant.

If we suppose that the given subtree H is a path L of length 2, then there exists some
constant uL such that in T ∆

n , the number of occurrences Xn of L is (uL + o(1))n a.e. In
this case, it is easy to see that for each tree T ∆

n , Xn(T ∆
n ) = ∑i

(di
2

)
= (1/2)D(T ∆

n )− n +
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1. Therefore, the value of D also enjoys (uD + o(1))n a.e. for some constant uD. Then,
combining with Theorem 3.1, we can see that, for trees in T ∆

n , the correlation between EE
and D is approximately linear.
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