BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On the Definition of Atanassov's Intuitionistic Fuzzy Subrings and Ideals

¹SAIFUR RAHMAN, ²HELEN K. SAIKIA AND ³B. DAVVAZ

¹Department of Mathematics, Rajiv Gandhi University, Itanagar - 791112, India ²Department of Mathematics, Gauhati University, Guwahati-781014, India ³Department of Mathematics, Yazd University, Yazd, Iran

¹saifur_ms@yahoo.co.in ²hsaikia@yahoo.com ³davvaz@yazduni.ac.ir, ³bdavvaz@yahoo.com

Abstract. On the basis of the concept of grades of a fuzzy point to belongingness (\in) or quasi-coincident (q) or belongingness and quasi-coincident ($\in \land q$) or belongingness or quasi-coincident ($\in \forall q$) in an intuitionistic fuzzy set of a ring, the notion of a (α, β) intuitionistic fuzzy subring and ideal is introduced by applying the Lukasiewicz 3-valued implication operator. Using the notion of fuzzy cut set of an intuitionistic fuzzy set, the support and α -level set of an intuitionistic fuzzy set are defined and it is established that, for $\alpha \neq \in \land q$, the support of a (α, β) -intuitionistic fuzzy ideal of a ring is an ideal of the ring. It is also established that the level sets of an intuitionistic fuzzy ideal with thresholds (s,t) of a ring is an ideal of the ring. We investigate that an intuitionistic fuzzy set A of a ring is a (\in, \in) (or $(\in, \in \forall q)$) or $(\in \land q, \in)$)-intuitionistic fuzzy ideal of the ring if and only if A is an intuitionistic fuzzy ideal with thresholds (0,1) (or (0,0.5) or (0.5,1)) of the ring respectively. We also establish that A is a (\in, \in) (or $(\in, \in \lor q)$) or $(\in \land q, \in)$)-intuitionistic fuzzy ideal of the ring if and only if for any $a \in (0, 1]$ (or $a \in (0, 0.5]$ or $a \in (0.5, 1]$), A_a is a fuzzy ideal of the ring. Finally, we investigate that an intuitionistic fuzzy set of a ring is an intuitionistic fuzzy ideal with thresholds (s,t) of the ring if and only if for any $a \in (s,t]$, the cut set A_a is a fuzzy ideal of R.

2010 Mathematics Subject Classification: 08A72, 16D25.

Keywords and phrases: Intuitionistic fuzzy set, fuzzy subring, fuzzy ideal, intuitionistic fuzzy subring, intuitionistic fuzzy ideal, Lukasiewicz implication operator.

1. Introduction

Since the introduction of fuzzy sets by Zadeh [26] in 1965, the researchers have been carrying out research in various concepts of abstract algebra in fuzzy setting. Fuzzy subgroups of a group was introduced by Rosenfeld [19] in 1971. Since then many generalization of this fundamental concept have been done. A self contained survey of the state of art of the fuzzy binary relations and some of their applications has been provided by Beg and Ashraf in [4]. Bhakat and Das in [5, 6], redefined fuzzy subgroups of a group using the notion of belongings to (\in) and quasi-coincident (q) of a fuzzy point to a fuzzy set of the

Communicated by Lee See Keong.

Received: April 8, 2011; Revised: August 13, 2011.

group. In [7], fuzzy subring and ideal are redefined. Davvaz et al. in [9, 10], generalized the concept to H_{ν} -submodules and redefined fuzzy H_{ν} -submodules by applying many valued implication operators. In [14] the notion of interval valued fuzzy k-ideals of semirings is introduced, which is a generalization of a fuzzy k-ideal. As a generalization of fuzzy set, intuitionistic fuzzy set was introduced by Atanassov [1], also see [2, 3]. Since then various concepts of fuzzy setting have been generalized to intuitionistic fuzzy set, for example see [8, 11–13, 15, 24]. Fuzzy aspects of ordered semigroups have been studied by many researchers as seen in [16,20,21]. Characterization of different types of (α,β) -intuitionistic fuzzy subgroups A of a group using the notions of grades of a fuzzy point belongs to A or quasi-coincident with A or belongs to and quasi-coincident $(\in \land q)$ or belongs to or quasicoincident ($\in \forall q$) has been done in [23]. Intuitionistic fuzzy ideal with thresholds (s,t) of a ring was introduced in [22]. In this paper, using the notions of grades of a fuzzy point x_a belongs to an intuitionistic fuzzy set A, in a ring R or quasi-coincident with A or belongs to and quasi-coincident ($\in \land q$) or belongs to or quasi-coincident ($\in \lor q$), a (α, β)-intuitionistic fuzzy subring and ideal is defined by applying the Lukasiewicz 3-valued implication operator, see [17]. The support and α -level set of an intuitionistic fuzzy set is defined based on fuzzy cut set and grades of belongs to respectively. It is established that, for $\alpha \neq \in \land q$, the support of a (α, β) -intuitionistic fuzzy ideal of a ring is an ideal of the ring. We investigate that the level sets of an intuitionistic fuzzy ideal with thresholds (s,t) of a ring is an ideal of the ring. We obtain necessary and sufficient conditions between (α, β) -intuitionistic fuzzy ideal and intuitionistic fuzzy ideal with thresholds (s,t). It is established that an intuitionistic fuzzy set A of a ring is a (\in, \in) (or $(\in, \in \lor q)$ or $(\in \land q, \in)$)-intuitionistic fuzzy ideal of the ring if and only if A is an intuitionistic fuzzy ideal with thresholds (0,1) (or (0,0.5)) or (0.5, 1)) of the ring respectively. We also establish that A is a (\in, \in) (or $(\in, \in \lor a)$ or $(\in \land q, \in)$ -intuitionistic fuzzy ideal of the ring if and only if for any $a \in (0, 1]$ (or $a \in (0, 0.5]$) or $a \in (0.5, 1]$, A_a is a fuzzy ideal of the ring respectively. Finally, we investigate that an intuitionistic fuzzy set of a ring is an intuitionistic fuzzy ideal with thresholds (s,t) of the ring if and only if for any $a \in (s,t]$, the cut set A_a is a fuzzy ideal of R.

2. Basic definitions and notations

A ring is a non-empty set *R* having two binary operations addition (+) and multiplication (·), where (R, +) is a commutative group, (R, \cdot) is a semigroup and addition is distributive with respect to multiplication. By zero (0) we mean the additive identity of *R*. A non-empty subset *I* of *R* is called an ideal of *R*, if for any $x, y \in I$ and $r \in R$, we have $x - y, rx, xr \in I$. A fuzzy set on a non-empty set was introduced by Zadeh [26] in 1965 and was defined as follows:

By a fuzzy set of a ring *R*, we mean any mapping μ from *R* to [0,1]. By $[0,1]^R$ we will denote the set of all fuzzy subsets of *R*. For each fuzzy set μ in *R* and any $\alpha \in [0,1]$, we define two sets

 $U(\mu,\alpha) = \{x \in R \mid \mu(x) \ge \alpha\} \text{ and } L(\mu,\alpha) = \{x \in R \mid \mu(x) \le \alpha\},\$

which are called an upper level cut and a lower level cut of μ , respectively. The complement of μ , denoted by μ^c , is the fuzzy set on *R* defined by $\mu^c(x) = 1 - \mu(x)$.

Let $x \in R$ and $t \in (0, 1]$, then a fuzzy subset $\mu \in [0, 1]^R$ is called a fuzzy point if

$$\mu(y) = \begin{cases} t, & \text{if } y = x \\ 0, & \text{if } y \neq x \end{cases}$$

and it is denoted by x_t .

Definition 2.1. [5] Let μ be a fuzzy subset of *R* and x_a be a fuzzy point. Then

- (1) If $\mu(x) \ge a$, then we say x_a belongs to μ , and it is denoted by $x_a \in \mu$.
- (2) If $\mu(x) + a > 1$, then we say x_a is quasi-coincident with μ , and it is denoted by $x_a q \mu$.
- (3) $x_a \in \land q\mu \Leftrightarrow x_a \in \mu \text{ and } x_a q\mu$.
- (4) $x_a \in \lor q\mu \Leftrightarrow x_a \in \mu \text{ or } x_a q\mu.$

The symbol $\overline{\in \forall q}$ means that $\in \forall q$ does not hold. Let $\mu, \sigma \in [0, 1]^R$. Then, the intersection and union of μ and σ are given by the fuzzy sets $\mu \cap \sigma$ and $\mu \cup \sigma$ respectively and are defined as follows:

- (1) $(\mu \cap \sigma)(x) = \mu(x) \wedge \sigma(x);$
- (2) $(\mu \cup \sigma)(x) = \mu(x) \vee \sigma(x)$, where $\mu(x) \wedge \sigma(x) = \min\{\mu(x), \sigma(x)\}$ and $\mu(x) \vee \sigma(x) = \max\{\mu(x), \sigma(x)\}$.

Definition 2.2. [18] Let *R* be a ring and μ be a fuzzy subset in *R*. Then, μ is called a fuzzy subring of *R* if and only if for every $x, y \in R$ the following conditions are satisfied:

- (1) $\mu(x+y) \ge \mu(x) \land \mu(y);$
- (2) $\mu(-x) \ge \mu(x);$
- (3) $\mu(xy) \ge \mu(x) \land \mu(y)$.

Definition 2.3. [18] Let *R* be a ring and μ be a fuzzy subset in *R*. Then, μ is called a fuzzy ideal of *R* if and only if for every $x, y \in R$ the following conditions are satisfied:

- (1) $\mu(x+y) \ge \mu(x) \land \mu(y);$
- (2) $\mu(-x) \ge \mu(x);$
- (3) $\mu(xy) \ge \mu(x) \lor \mu(y)$.

An intuitionistic fuzzy set (abbreviated as IFS) introduced by Atanassov in [1] was defined as follows: An intuitionistic fuzzy set in a ring *R*, is an object of the form $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in R\}$, where μ_A and ν_A are fuzzy sets in *R* and denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in R$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in R$. By IFS(R) we denote the set of all IFSs of *R*.

Let $A = (\mu_A, v_A)$ and $B = (\mu_B, v_B)$ be IFSs of R. Then

- (1) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in R$;
- (2) $A \cap B = \{(x, \mu_A(x) \land \mu_B(x)), \nu_A(x) \lor \nu_B(x)) \mid x \in R\};$
- (3) $A \cup B = \{(x, \mu_A(x) \lor \mu_B(x), v_A(x) \land v_B(x)) \mid x \in R\}.$

For our convenience we shall use the notation $A(x) \ge B(x)$, when $\mu_A(x) \ge \mu_B(x)$ and $\nu_A(x) \le \nu_B(x)$ for all $x \in R$.

Definition 2.4. [22] Let $A = (\mu_A, v_A)$ be an intuitionistic fuzzy set in R. Then, A is said to be an intuitionistic fuzzy ideal with thresholds (α, β) of R, if it satisfies the following properties:

- (1) $\mu_A(x+y) \lor \alpha \ge (\mu_A(x) \land \mu_A(y)) \land \beta$;
- (2) $\mu_A(-x) \lor \alpha \ge \mu_A(x) \land \beta$;
- (3) $\mu_A(xy) \lor \alpha \ge (\mu_A(x) \lor \mu_A(y)) \land \beta;$
- (4) $v_A(x+y) \wedge (1-\alpha) \leq (v_A(x) \vee v_A(y)) \vee (1-\beta);$

(5)
$$v_A(-x) \wedge (1-\alpha) \leq v_A(x) \vee (1-\beta);$$

(6) $v_A(xy) \wedge (1-\alpha) \leq (v_A(x) \wedge v_A(y)) \vee (1-\beta).$

for all $x, y \in R$, where $\alpha, \beta \in [0, 1]$.

Definition 2.5. [25] *Let* $A = (\mu_A, \nu_A)$ *be an IFSs of* R*, and* $a \in [0, 1]$ *. Then* (1)

$$A_{a}(x) = \begin{cases} 1, & \text{if } \mu_{A}(x) \ge a \\ \frac{1}{2}, & \text{if } \mu_{A}(x) < a \le 1 - \nu_{A}(x) \\ 0, & \text{for } a > 1 - \nu_{A}(x) \end{cases}$$

and

$$A_{\underline{a}}(x) = \begin{cases} 1, & \text{if } \mu_A(x) > a \\ \frac{1}{2}, & \text{if } \mu_A(x) \le a < 1 - \nu_A(x) \\ 0, & \text{for } a \ge 1 - \nu_A(x) \end{cases}$$

are called the a-upper cut set and a- strong upper cut set of A, respectively.

(2)

$$A^{a}(x) = \begin{cases} 1, & \text{if } \mathbf{v}_{A}(x) \ge a \\ \frac{1}{2}, & \text{if } \mathbf{v}_{A}(x) < a \le 1 - \mu_{A}(x) \\ 0, & \text{for } a > 1 - \mu_{A}(x) \end{cases}$$

and

$$A^{\underline{a}}(x) = \begin{cases} 1, & \text{if } v_A(x) > a \\ \frac{1}{2}, & \text{if } v_A(x) \le a < 1 - \mu_A(x) \\ 0, & \text{for } a \ge 1 - \mu_A(x) \end{cases}$$

are called the a-lower cut set and a- strong lower cut set of A, respectively.

(3)

$$A_{[a]}(x) = \begin{cases} 1, & \text{if } \mu_A(x) + a \ge 1\\ \frac{1}{2}, & \text{if } \nu_A(x) \le a < 1 - \mu_A(x)\\ 0, & \text{for } a < \nu_A(x) \end{cases}$$

and

$$A_{[\underline{a}]}(x) = \begin{cases} 1, & \text{if } \mu_A(x) + a > 1\\ \frac{1}{2}, & \text{if } \nu_A(x) < a \le 1 - \mu_A(x)\\ 0, & \text{for } a \le \nu_A(x) \end{cases}$$

are called the a-upper Q-cut set and a- strong upper Q-cut set of A, respectively.

(4)

$$A^{[a]}(x) = \begin{cases} 1, & \text{if } \mathbf{v}_A(x) + a \ge 1\\ \frac{1}{2}, & \text{if } \mu_A(x) \le a < 1 - \mathbf{v}_A(x)\\ 0, & \text{for } a < \mu_A(x) \end{cases}$$

and

$$A^{[\underline{a}]}(x) = \begin{cases} 1, & \text{if } \mathbf{v}_A(x) + a > 1\\ \frac{1}{2}, & \text{if } \mu_A(x) < a \le 1 - \mathbf{v}_A(x)\\ 0, & \text{for } a \le \mu_A(x) \end{cases}$$

are called the a-lower Q-cut set and a-strong lower Q-cut set of A, respectively.

Definition 2.6. [23] Let $A = (\mu_A, \nu_A)$ be an IFSs of R, and $a \in [0, 1], x \in R$. Then

(1) The grades of $x_a \in A$ and $x_a q A$ denoted by $[x_a \in A]$ and $[x_a q A]$ respectively are given by the following relations:

$$[x_a \in A] = A_a(x) \text{ and } [x_a q A] = A_{[a]}(x).$$

(2) The grades of $x_a \in \land qA$ and $x_a \in \lor qA$ denoted by $[x_a \in \land qA]$ and $[x_a \in \lor qA]$ respectively are given by the following relations:

$$[x_a \in \land qA] = [x_a \in A] \land [x_a qA] = A_a(x) \land A_{[\underline{a}]}(x)$$

and

$$[x_a \in \lor qA] = [x_a \in A] \lor [x_a qA] = A_a(x) \lor A_{\underline{[a]}}(x).$$

(3) The grades of x_a∈A and x_aqA denoted by [x_a∈A] and [x_aqA] respectively are given by the following relations:

$$[x_a \overline{\in} A] = A^a(x) \text{ and } [x_a \overline{q} A] = A^{\underline{[a]}}(x).$$

(4) The grades of $x_a \in \overline{\land q}A$ and $x_a \in \overline{\lor q}A$ denoted by $[x_a \in \overline{\land q}A]$ and $[x_a \in \overline{\lor q}A]$ respectively are given by the following relations:

$$[x_a \overline{\in \land q} A] = [x_a \overline{\in} \lor \overline{q} A] = [x_a \overline{\in} A] \lor [x_a \overline{q} A] = A^a(x) \lor A^{[\underline{a}]}(x)$$

and

$$[x_a\overline{\in \lor q}A] = [x_a\overline{\in} \land \overline{q}A] = [x_a\overline{\in}A] \land [x_a\overline{q}A] = A^a(x) \land A^{[\underline{a}]}(x).$$

Table 1.	The table of truth	value of Lukasiewicz i	mplication.

\rightarrow	0	1/2	1
0	1	1	1
1/2	1/2	1	1
1	0	1/2	1

As in [23] we have

(1) $[x_a \in A] = [x_a \in A^c], [x_a \overline{q}A] = [x_a q A^c].$

- (2) $[x_a \overline{\in} \land \overline{q}A] = [x_a \in \land qA^c], [x_a \overline{\in} \lor \overline{q}A] = [x_a \in \lor qA^c].$
- (3) $[x_a \in (\bigcap_{t \in T} A_t)] = \bigwedge_{t \in T} [x_a \in A], \ [x_a q(\bigcup_{t \in T} A_t)] = \bigvee_{t \in T} [x_a qA].$
- (4) $[x_a \overline{\in} (\bigcup_{t \in T} A_t)] = \bigwedge_{t \in T} [x_a \overline{e} A], \ [x_a \overline{q} (\bigcap_{t \in T} A_t)] = \bigvee_{t \in T} [x_a \overline{q} A].$

In the next section we present our main results.

3. Main results

Let *R* be a ring and $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$. Then, for $a \in [0, 1]$, $x \in R$, x_a is a fuzzy point and $[x_a \alpha A], [x_a \beta A] \in \{0, 1/2, 1\}$.

Definition 3.1. Let *R* be a ring and $A = (\mu_A, \nu_A)$ be an *IF* set in *R*. If for any $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$, $s, t \in (0, 1]$, and $x, y \in R$, the following conditions are satisfied:

- (1) $([x_s \alpha A] \land [y_t \alpha A] \rightarrow [(x_s + y_t)\beta A]) = 1;$
- (2) $([x_s \alpha A] \rightarrow [-x_s \beta A]) = 1;$
- (3) $([x_s \alpha A] \land [y_t \alpha A] \rightarrow [(x_s y_t)\beta A]) = 1$; then A is called a (α, β) -intuitionistic fuzzy subring of R, where $(x_s + y_t) = (x + y)_{s \land t}, -x_s = (-x)_s$, and $(x_s y_t) = (xy)_{s \land t}$.

It is to note that, for $p, q \in \{0, 1/2, 1\}$, we have from Table 1, $(p \rightarrow q) = 1 \Leftrightarrow q \ge p$. Therefore, Definition 3.1 is equivalent to the following definition.

Definition 3.2. Let *R* be a ring and $A = (\mu_A, \nu_A)$ be an *IF* set in *R*. If for any $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$, $s, t \in (0, 1]$, and $x, y \in R$, the following conditions are satisfied

- (1) $[(x_s + y_t)\beta A] \ge [x_s \alpha A] \land [y_t \alpha A];$
- (2) $[-x_s\beta A] \ge [x_s\alpha A];$
- (3) $[(x_s y_t)\beta A] \ge [x_s \alpha A] \land [y_t \alpha A];$

then A is called a (α, β) - intuitionistic fuzzy subring of R, where $(x_s + y_t) = (x+y)_{s \wedge t}$, $-x_s = (-x)_s$, and $(x_sy_t) = (xy)_{s \wedge t}$.

Definition 3.3. Let *R* be a ring and $A = (\mu_A, \nu_A)$ be an *IF* set in *R*. If for any $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$, $s, t \in (0, 1]$, and $x, y \in R$, the following conditions are satisfied

- (1) $([x_s \alpha A] \land [y_t \alpha A] \rightarrow [(x_s + y_t)\beta A]) = 1;$
- (2) $([x_s \alpha A] \rightarrow [-x_s \beta A]) = 1;$
- (3) $([x_s \alpha A] \vee [y_t \alpha A] \rightarrow [(x_s y_t)\beta A]) = 1;$

then A is called a (α, β) - intuitionistic fuzzy ideal of R, where $(x_s + y_t) = (x + y)_{s \wedge t}$, $-x_s = (-x)_s$, and $(x_s y_t) = (xy)_{s \vee t}$.

This is equivalent to:

Definition 3.4. Let *R* be a ring and $A = (\mu_A, \nu_A)$ be an *IF* set in *R*. If for any $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$, $s, t \in (0, 1]$, and $x, y \in R$, the following conditions are satisfied:

- (1) $[(x_s + y_t)\beta A] \ge [x_s \alpha A] \land [y_t \alpha A];$
- (2) $[-x_s\beta A] \ge [x_s\alpha A];$
- (3) $[(x_s y_t)\beta A] \ge [x_s \alpha A] \lor [y_t \alpha A];$

then A is called a (α, β) - intuitionistic fuzzy ideal of R, where $(x_s + y_t) = (x + y)_{s \wedge t}$, $-x_s = (-x)_s$, and $(x_s y_t) = (xy)_{s \vee t}$.

Example 3.1. Consider the ring $R = \mathbb{Z}_4 = \{0, 1, 2, 3\}$, where operations are addition modulo 4 and multiplication modulo 4. Let $A = \{0, 2\}$. Then, *A* is an ideal of *R*. We consider the following IFS of *R*

$$\mu_A(x) = \begin{cases} 0.4, & \text{if } x \in A \\ 0.2, & \text{for } x \notin A \end{cases}$$

and

$$\mathbf{v}_A(x) = \begin{cases} 0.2, & \text{if } x \in A\\ 0.7, & \text{for } x \notin A \end{cases}$$

Then, we can verify that $A = (\mu_A, \nu_A)$ is both (\in, \in) and $(\in, \in \lor q)$ -IF ideal of *R*. Also, we consider *A*, defined as follows:

$$\mu_A(x) = \begin{cases} 0.7, & \text{if } x \in A \\ 0.2, & \text{for } x \notin A \end{cases}$$

and

$$\mathbf{v}_A(x) = \begin{cases} 0.2, & \text{if } x \in A \\ 0.6, & \text{for } x \notin A. \end{cases}$$

Then, it can be easily verified that $A = (\mu_A, v_A)$ is a $(\in \land q, \in)$ -IF ideal of R. However, $A = (\mu_A, v_A)$ is not a (q, q)-IF ideal of R, because if take $x \in A$, $y \notin A$ and s = 0.4, t = 0.85, then $x + y \notin A$ and $[x_sqA] \land [y_tqA] = 1$ but $[(x_s + y_t)qA] < 1$. Again, if we take $\mu_A(x) = 0.4$ and $v_A(x) = 0.6$ for all $x \in R$, then $A = (\mu_A, v_A)$ is a (q, q)-IF ideal of R. We note that, in this case A is not a (\in, \in) -IF ideal of R.

Example 3.2. Consider the ring $R = \{0, a, b, c\}$ with addition and multiplication operations defined as follows:

+	0	a	b	С
0	0	a	b	С
a	a	0	С	b
b	b	С	0	a
С	С	b	a	0

and

•	0	а	b	С
0	0	0	0	0
a	0	0	0	0
b	0	0	b	b
С	0	0	b	b

Take $\mu_A(0) = r$, $\mu_A(a) = r$, $\mu_A(b) = s$, $\mu_A(c) = s$ and $v_A(0) = 1 - t$, $v_A(a) = 1 - t$, $v_A(b) = w$, $v_A(c) = w$, where 0 < s < t < 1, $r \in [0, s)$ and $w \in [0, 1 - t]$. Then, $A = (\mu_A, v_A)$ is an intuitionistic fuzzy ideal with thresholds (s, t) of R. However, if we take $x = b, y = b, \alpha = \epsilon, \beta = \epsilon$ and let $p, q \in [0, 1]$ be such that $[x_p \alpha A] \land [y_q \alpha A] = 1$, then we have $s \ge p, s \ge q$. Thus, $s \ge p \land q$. Since x + y = 0 so we have $\mu_A(x + y) = r < s$. Now if A is a (ϵ, ϵ) -intuitionistic fuzzy ideal of R, then $[(x_p + y_q)\beta A] \ge [x_p \alpha A] \land [y_q \alpha A]$ implies $r \ge p \land q$, which will lead to a contradiction if we choose r < p, q < s. Therefore, A is not a (ϵ, ϵ) -IF ideal of R. Here, we note that A is not an intuitionistic fuzzy ideal of R of an intuitionistic fuzzy ideal of R and $n \in c$.

Definition 3.5. Let $A = (\mu_A, v_A)$ be an intuitionistic fuzzy set in *R*. Then, by the support of *A*, we mean a crisp subset, A^* of *R*, and it is defined as follows:

$$A^* = \{ x \in R \mid \mu_A(x) \lor (1 - \nu_A(x)) > 0 \}$$

That is, $A^* = \{x \in R \mid A_0(x) > 0\}.$

Definition 3.6. Let $A = (\mu_A, v_A)$ be an intuitionistic fuzzy set in R and $\alpha \in [0, 1]$. Then, by a α -level set of A, we mean a crisp subset, $A_{\overline{\alpha}}$ of R, and it is defined as follows:

$$A_{\overline{\alpha}} = \{x \in R \mid [x_{\alpha} \in A] > 0\}$$

Theorem 3.1. Let $A = (\mu_A, v_A)$ be a non-zero (i.e. $A \neq (0, 1)$) (α, β) -intuitionistic fuzzy ideal of R. If $\alpha \neq \in \land q$, then A_0 is a fuzzy ideal of R.

Proof. We show

- (1) $A_0(x+y) \ge A_0(x) \land A_0(y)$,
- (2) $A_0(-x) \ge A_0(x)$,

(3) $A_0(xy) \ge A_0(x) \lor A_0(y)$.

Since (R, +) is a group so, (1) and (2) follow from Theorem 4.1 of [23], because A is also a (α, β) -intuitionistic fuzzy subgroup of (R, +).

(I) For (3), first we claim that, $A_{\underline{0}}(x) \lor A_{\underline{0}}(y) = 1 \Rightarrow A_{\underline{0}}(xy) = 1$. Let $A_{\underline{0}}(x) \lor A_{\underline{0}}(y) = 1$. Then, $A_{\underline{0}}(x) = 1$ or $A_{\underline{0}}(y) = 1$, $\Rightarrow \mu_A(x) > 0$ or $\mu_A(y) > 0$. Put $t = \mu_A(x) \lor \mu_A(y)$, then t > 0. Therefore, we must have $s \in (0, 1)$ such that $0 < 1 - s < t = \mu_A(x) \lor \mu_A(y)$. Now, we have

$$t = \mu_A(x) \lor \mu_A(y),$$

$$\Rightarrow \text{ either } \mu_A(x) = t \text{ or } \mu_A(y) = t,$$

$$\Rightarrow \text{ either } A_t(x) = 1 \text{ or } A_t(y) = 1,$$

$$\Rightarrow \text{ either } [x_t \in A] = 1 \text{ or } [y_t \in A] = 1, \text{ and}$$

$$1 - s < t = \mu_A(x) \lor \mu_A(y),$$

$$\Rightarrow \text{ either } 1 - s < \mu_A(x) \text{ or } 1 - s < \mu_A(y),$$

$$\Rightarrow \text{ either } A_{[\underline{s}]}(x) = 1 \text{ or } A_{[\underline{s}]}(y) = 1,$$

$$\Rightarrow \text{ either } [x_s qA] = 1 \text{ or } [y_s qA] = 1.$$

Now,

(i) if
$$\alpha = \in$$
, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$ we have from (3) of Definition 3.3

 $1 \ge [(x_t y_t)\beta A] \ge [x_t \alpha A] \lor [y_t \alpha A] = [x_t \in A] \lor [y_t \in A] = 1,$

because $[x_t \in A] = 1$ or $[y_t \in A] = 1$. Therefore, $[(xy)_t\beta A] = 1 \Rightarrow$ either $A_t(xy) = 1$ or $A_{[t]}(xy) = 1 \Rightarrow$ either $\mu_A(xy) \ge t > 0$ or $\mu_A(xy) > 1 - t \ge 0 \Rightarrow \mu_A(xy) > 0 \Rightarrow A_0(xy) = 1$.

- (ii) if $\alpha = \in \lor q$, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$ we have from (3) of Definition 3.3 $1 \ge [(x_t y_t)\beta A] \ge [x_t \alpha A] \lor [y_t \alpha A] = [x_t \in \lor qA] \lor [y_t \in \lor qA] = [x_t \in A] \lor [x_t qA] \lor [y_t \in A]$ $A] \lor [y_t qA] = 1$, because $[x_t \in A] = 1$ or $[y_t \in A] = 1$. Therefore, $[(xy)_t \beta A] = 1$, \Rightarrow *either* $A_t(xy) = 1$ or $A_{[\underline{t}]}(xy) = 1$; \Rightarrow *either* $\mu_A(xy) \ge t > 0$ or $\mu_A(xy) > 1 - t \ge 0$; $\Rightarrow \mu_A(xy) > 0 \Rightarrow A_0(xy) = 1$.
- (iii) if $\alpha = q$, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$ we have from (3) of Definition 3.3 $1 \ge [(x_s y_s)\beta A] \ge [x_s \alpha A] \lor [y_s \alpha A] = [x_s qA] \lor [y_s qA] = 1$, because $[x_a qA] = 1$ or $[y_s qA] = 1$. Therefore, $[(xy)_s \beta A] = 1 \Rightarrow$ either $A_s(xy) = 1$ or $A_{[\underline{s}]}(xy) = 1 \Rightarrow$ either $\mu_A(xy) \ge s > 0$ or $\mu_A(xy) > 1 - s \ge 0 \Rightarrow \mu_A(xy) > 0 \Rightarrow A_{\underline{0}}(xy) = 1$.

(II) Next we show, $A_{\underline{0}}(x) \lor A_{\underline{0}}(y) = 1/2 \Rightarrow A_{\underline{0}}(xy) \ge 1/2$. Let $A_{\underline{0}}(x) \lor A_{\underline{0}}(y) = 1/2$. Then, $A_{\underline{0}}(x) = 1/2$ or $A_{\underline{0}}(y) = 1/2 \Rightarrow v_A(x) < 1$ or $v_A(y) < 1 \Rightarrow v_A(x) \land v_A(y) < 1$. So, there exists $s, t \in (0, 1)$ such that $v_A(x) \land v_A(y) < 1 - t < s < 1$. Then

$$\begin{aligned} 0 < t < 1 - v_A(x) \land v_A(y) &= (1 - v_A(x)) \lor (1 - v_A(y)), \\ \Rightarrow \text{ either } \mu_A(x) &= 0 < t < 1 - v_A(x) \text{ or } \mu_A(y) = 0 < t < 1 - v_A(y), \\ \Rightarrow \text{ either } A_t(x) &= 1/2 \text{ or } A_t(y) = 1/2, \\ \Rightarrow \text{ either } [x_t \in A] &= 1/2 \text{ or } [y_t \in A] = 1/2, \text{ and} \\ v_A(x) \land v_A(y) < s < 1, \\ \Rightarrow \text{ either } v_A(x) < s \le 1 = 1 - 0 = 1 - \mu_A(x) \text{ or } v_A(y) < s \le 1 = 1 - 0 = 1 - \mu_A(y) \end{aligned}$$

$$\Rightarrow \text{ either } A_{[\underline{s}]}(x) = 1/2 \text{ or } A_{[\underline{s}]}(y) = 1/2,$$

$$\Rightarrow \text{ either } [x_s qA] = 1/2 \text{ or } [y_s qA] = 1/2.$$

Now,

(i) if $\alpha = \in$, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$ we have from (3) of Definition 3.3 $[(x_t y_t)\beta A] \ge [x_t \alpha A] \lor [y_t \alpha A] = [x_t \in A] \lor [y_t \in A] = 1/2,$

because $[x_t \in A] = 1/2$ or $[y_t \in A] = 1/2$. Therefore, $[(xy)_t\beta A] \ge 1/2 \Rightarrow$ either $A_t(xy) \ge 1/2$ or $A_{[t]}(xy) \ge 1/2 \Rightarrow$ either $v_A(xy) \le 1-t < 1-0$ or $v_A(xy) < t < 1-0 \Rightarrow v_A(xy) < 1-0 \Rightarrow A_{\underline{0}}(xy) \ge 1/2$.

(ii) if $\alpha = \in \forall q$, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$, we have from (3) of Definition 3.3

$$[(x_t y_t)\beta A] \ge [x_t \alpha A] \lor [y_t \alpha A] = [x_t \in \lor qA] \lor [y_t \in \lor qA]$$
$$= [x_t \in A] \lor [x_t qA] \lor [y_t \in A] \lor [y_t qA] \ge 1/2,$$

because $[x_t \in A] = 1/2$ or $[y_t \in A] = 1/2$. Therefore, $[(xy)_t\beta A] \ge 1/2$ whence $A_0(xy) \ge 1/2$.

(iii) if $\alpha = q$, then for $\beta \in \{\in, q, \in \land q, \in \lor q\}$, we have from (3) of Definition 3.3 $[(x_s y_s)\beta A] \ge [x_s \alpha A] \lor [y_s \alpha A] = [x_s q A] \lor [y_s q A] = 1/2,$

because $[x_a qA] = 1/2$ or $[y_s qA] = 1/2$. Therefore, $[(xy)_s \beta A] \ge 1/2 \Rightarrow$ either $A_s(xy) \ge 1/2$ or $A_{[\underline{s}]}(xy) \ge 1/2 \Rightarrow$ either $v_A(xy) \le 1 - s < 1$ or $v_A(xy) < s < 1 \Rightarrow v_A(xy) < 1 \Rightarrow A_{\underline{0}}(xy) \ge 1/2$.

Also, if $A_{\underline{0}}(x) \lor A_{\underline{0}}(y) = 0$, then obviously $A_{\underline{0}}(xy) \ge 0$. Thus, in all cases we have $A_{\underline{0}}(xy) \ge A_{\underline{0}}(x) \lor A_{\underline{0}}(y)$.

Theorem 3.2. Let $A = (\mu_A, v_A)$ be a non-zero (α, β) -intuitionistic fuzzy ideal of R. If $\alpha \neq \in \land q$, then the support A^* is an ideal of R.

Proof. Let $x, y \in A^*$ and $r \in R$. Then, $A_{\underline{0}}(x) > 0$ and $A_{\underline{0}}(y) > 0$. From Theorem 3.1, we have $A_{\underline{0}}(x+y) \ge A_{\underline{0}}(x) \land A_{\underline{0}}(y) > 0$. Thus, $x+y \in A^*$. Similarly, $-x \in A^*$. Also, $A_{\underline{0}}(xr) \ge A_{\underline{0}}(x) \lor A_{\underline{0}}(r) > 0$, because $A_{\underline{0}}(x) > 0$ and so $xr \in A^*$. Similarly, $ry \in A^*$. Hence, A^* is an ideal of R.

Theorem 3.3. Let $A = (\mu_A, v_A)$ be an intuitionistic fuzzy ideal with thresholds (s,t) of R. Then, for any $p \in (s,t]$, $A_{\overline{p}}$ is an ideal of R.

Proof. Let $x, y \in A_{\overline{p}} = \{x \in R \mid [x_p \in A] > 0\}$. Then, $[x_p \in A] > 0$ and $[y_p \in A] > 0$, which implies that $p \leq 1 - v_A(x)$ and $p \leq 1 - v_A(y)$. Now, $v_A(x+y) \wedge (1-s) \leq (v_A(x) \vee v_A(y)) \vee (1-t)$, implies $(1 - v_A(x+y)) \vee s \geq (1 - v_A(x)) \wedge (1 - v_A(y)) \wedge t \geq p \wedge p \wedge t = p$. Thus, $1 - v_A(x+y) \geq p$, and so $[(x+y)_p \in A] \geq 1/2 > 0$. Therefore, $x + y \in A_{\overline{p}}$. Similarly, $-x \in A_{\overline{p}}$. Let $r \in R$. Now, $v_A(xr) \wedge (1-s) \leq (v_A(x) \wedge v_A(r)) \vee (1-t)$, implies $(1 - v_A(xr)) \vee s \geq ((1 - v_A(x)) \vee (1 - v_A(r))) \wedge t \geq (p \vee (1 - v_A(r))) \wedge t \geq p \wedge t = p$. Thus, $1 - v_A(xr) \geq p$, and so $[(xr)_p \in A] \geq 1/2 > 0$. Therefore, $xr \in A_{\overline{p}}$. Similarly, we have $rx \in A_{\overline{p}}$. Hence, $A_{\overline{p}}$ is an ideal of R.

Theorem 3.4. An IFS $A = (\mu_A, v_A)$ of R is a (\in, \in) -intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy ideal of R with thresholds (0, 1).

Proof. Suppose that $A = (\mu_A, \nu_A)$ is a (\in, \in) -intuitionistic fuzzy ideal of R. To show A is an intuitionistic fuzzy ideal of R with thresholds (0, 1) i.e. to show

- (1) $\mu_A(x+y) \ge \mu_A(x) \land \mu_A(y);$
- (2) $\mu_A(-x) \ge \mu_A(x);$
- (3) $\mu_A(xy) \ge \mu_A(x) \lor \mu_A(y);$
- (4) $v_A(x+y) \leq v_A(x) \vee v_A(y);$
- (5) $v_A(-x) \leq v_A(x);$
- (6) $v_A(xy) \le v_A(x) \land v_A(y)$, for all $x, y \in R$.

For (1), let $t = \mu_A(x) \land \mu_A(y)$. Then, $\mu_A(x) \ge t$ and $\mu_A(y) \ge t$, which implies that $A_t(x) = 1$ and $A_t(y) = 1$, and so $[x_t \in A] = 1$ and $[y_t \in A] = 1$. Now $1 \ge [(x_t + y_t) \in A] \ge [x_t \in A] \land [y_t \in A] = 1 \Rightarrow [(x_t + y_t) \in A] = 1 \Rightarrow \mu_A(x + y) \ge t = \mu_A(x) \land \mu_A(y)$.

In a similar manner we can prove (2).

(3) Let $t = \mu_A(x) \lor \mu_A(y)$, then either $\mu_A(x) = t$ or $\mu_A(y) = t$, which implies either $A_t(x) = 1$ or $A_t(y) = 1$, and so either $[x_t \in A] = 1$ or $[y_t \in A] = 1$. Now $1 \ge [(x_t y_t) \in A] \ge [x_t \in A] \lor [y_t \in A] = 1 \Rightarrow [(xy)_t \in A] = 1 \Rightarrow \mu_A(xy) \ge t = \mu_A(x) \lor \mu_A(y)$.

(4) If $v_A(x+y) = 0$, then it is obvious. Let $s = v_A(x+y) > 0$ and let $t \in [0,1]$ be such that $t > 1 - s = 1 - v_A(x+y)$, then we have $0 = [(x_t + y_t) \in A] \ge [x_t \in A] \land [y_t \in A] \Rightarrow [x_t \in A] \land [y_t \in A] = 0 \Rightarrow [x_t \in A] = 0$ or $[y_t \in A] = 0$ i.e., either $t > 1 - v_A(x)$ or $t > 1 - v_A(y) \Rightarrow$ either $v_A(x) > 1 - t$ or $v_A(y) > 1 - t \Rightarrow v_A(x) \lor v_A(y) > 1 - t$. Therefore, $v_A(x) \lor v_A(y) \ge \lor \{1 - t \mid t > 1 - s\} = \lor \{1 - t \mid s > 1 - t\} = s = v_A(x+y)$. Thus, $v_A(x+y) \le v_A(x) \lor v_A(y)$. Similarly, we have (5).

Lastly, if $v_A(xy) = 0$, then it is obvious. Let $s = v_A(xy) > 0$ and let $t \in [0, 1]$ be such that $t > 1 - s = 1 - v_A(xy)$, then we have $0 = [(x_ty_t) \in A] \ge [x_t \in A] \lor [y_t \in A] \Rightarrow [x_t \in A] \lor [y_t \in A] = 0$ and $[y_t \in A] = 0$ i.e., $t > 1 - v_A(x)$ and $t > 1 - v_A(y) \Rightarrow v_A(x) > 1 - t$ and $v_A(y) > 1 - t \Rightarrow v_A(x) \land v_A(y) > 1 - t$. Therefore, $v_A(x) \land v_A(y) \ge \lor \{1 - t \mid t > 1 - s\} = \lor \{1 - t \mid s > 1 - t\} = s = v_A(xy)$. Thus, $v_A(xy) \le v_A(x) \land v_A(y)$.

Conversely, we assume A is an intuitionistic fuzzy ideal of R with thresholds (0,1). We need to show $A = (\mu_A, \nu_A)$ is a (\in, \in) -intuitionistic fuzzy ideal of R. Let $x, y \in R$ and $s, t \in (0,1]$.

Let $a = [x_s \in A] \land [y_t \in A]$.

Case I. a = 1. Then, $[x_s \in A] = 1$ and $[y_t \in A] = 1 \Rightarrow \mu_A(x) \ge s$ and $\mu_A(y) \ge t \Rightarrow \mu_A(x + y) \ge \mu_A(x) \land \mu_A(y) \ge s \land t \Rightarrow [(x_s + y_t) \in A] = 1 \ge 1 = [x_s \in A] \land [y_t \in A].$

Case II. a = 1/2. Then, $[x_s \in A] \ge 1/2$ and $[y_t \in A] \ge 1/2 \Rightarrow 1 - v_A(x) \ge s$ and $1 - v_A(y) \ge t \Rightarrow 1 - v_A(x+y) \ge 1 - v_A(x) \lor v_A(y) = (1 - v_A(x)) \land (1 - v_A(y)) \ge s \land t \Rightarrow [(x_s + y_t) \in A] \ge 1/2 = [x_s \in A] \land [y_t \in A].$

Case III. a = 0. Then, the result is obvious. Thus, in all cases we have $[(x_s + y_t) \in A] \ge [x_s \in A] \land [y_t \in A]$. In a similar manner we can prove that $[-x_s \in A] \ge [x_s \in A]$.

Let
$$b = [x_s \in A] \lor [y_t \in A]$$
.

Case I. b = 1. Then, either $[x_s \in A] = 1$ or $[y_t \in A] = 1 \Rightarrow$ either $\mu_A(x) \ge s$ or $\mu_A(y) \ge t \Rightarrow \mu_A(xy) \ge \mu_A(x) \lor \mu_A(y) \ge s \lor t \Rightarrow [(x_sy_t) \in A] = 1 \ge 1 = [x_s \in A] \lor [y_t \in A].$

Case II. b = 1/2. Then, either $[x_s \in A] = 1/2$ or $[y_t \in A] = 1/2 \Rightarrow$ either $1 - v_A(x) \ge s$ or $1 - v_A(y) \ge t \Rightarrow 1 - v_A(xy) \ge 1 - v_A(x) \land v_A(y) = (1 - v_A(x)) \lor (1 - v_A(y)) \ge s \lor t \Rightarrow$ $[(x_s y_t) \in A] \ge 1/2 = [x_s \in A] \lor [y_t \in A]$. Hence, A is a (\in, \in) -intuitionistic fuzzy ideal of R.

As a consequence of Theorem 3.3 and Theorem 3.4, we have the following:

Theorem 3.5. If an IFS $A = (\mu_A, \nu_A)$ of R is a (\in, \in) -intuitionistic fuzzy ideal of R, then for any $p \in (0, 1]$, $A_{\overline{p}}$ is an ideal of R.

Theorem 3.6. An IFS $A = (\mu_A, v_A)$ of R is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy ideal of R with thresholds (0, 0.5).

Proof. Suppose that $A = (\mu_A, v_A)$ is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R. To show A is an intuitionistic fuzzy ideal of R with thresholds (0, 0.5) i.e. to show

- (1) $\mu_A(x+y) \ge (\mu_A(x) \land \mu_A(y)) \land 0.5;$
- (2) $\mu_A(-x) \ge \mu_A(x) \land 0.5;$

(3) $\mu_A(xy) \ge (\mu_A(x) \lor \mu_A(y)) \land 0.5;$

- (4) $v_A(x+y) \le (v_A(x) \lor v_A(y)) \lor 0.5;$
- (5) $v_A(-x) \le v_A(x) \lor 0.5;$
- (6) $v_A(xy) \leq (v_A(x) \wedge v_A(y)) \lor 0.5$, for all $x, y \in R$.

For (1), let $t = (\mu_A(x) \land \mu_A(y)) \land 0.5$, then $\mu_A(x) \ge t$, $\mu_A(y) \ge t \Rightarrow [x_t \in A] = 1$, $[y_t \in A] = 1$. Therefore, from (1) of Definition 3.4 we have $1 \ge [(x_t + y_t) \in \lor qA] \ge [x_t \in A] \land [y_t \in A] = 1$. Thus, $[(x_t + y_t) \in \lor qA] = 1$,

- $\Rightarrow [(x_t + y_t) \in A] \lor [(x_t + y_t)qA] = 1,$ $\Rightarrow [(x_t + y_t) \in A] = 1 \text{ or } [(x_t + y_t)qA] = 1,$ $\Rightarrow \mu_A(x+y) \ge t \text{ or } \mu_A(x+y) + t > 1,$ $\Rightarrow \mu_A(x+y) \ge t \text{ or } \mu_A(x+y) > 1-t \ge 0.5 \ge t,$ $\Rightarrow \mu_A(x+y) \ge t = (\mu_A(x) \land \mu_A(y)) \land 0.5.$ Similarly, we can prove (2). (3)Let $t = (\mu_A(x) \lor \mu_A(y)) \land 0.5 = (\mu_A(x) \land 0.5) \lor (\mu_A(y) \land 0.5)$. This implies that $(\mu_A(x) \land 0.5) = t$ or $(\mu_A(y) \land 0.5) = t \Rightarrow \mu_A(x) > t$ or $\mu_A(y) > t \Rightarrow [x_t \in A] = 1$ or $[y_t \in A] = 1$. Therefore, from (3) of Definition 3.4 we have $1 \ge [(x_t y_t) \in \forall qA] \ge [x_t \in A] \lor [y_t \in A] = 1$. Thus, $[(x_t y_t) \in \forall qA] = 1$, $\Rightarrow [(x_t y_t) \in A] = 1 \text{ or } [(x_t y_t) qA] = 1,$ $\Rightarrow \mu_A(xy) \ge t \text{ or } \mu_A(xy) + t > 1,$ $\Rightarrow \mu_A(xy) \ge t \text{ or } \mu_A(xy) > 1 - t \ge 0.5 \ge t,$ $\Rightarrow \mu_A(xy) \ge t = (\mu_A(x) \lor \mu_A(y)) \land 0.5.$ (4) Let $v_A(x) \lor v_A(y) \lor 0.5 = 1 - s$. Then, $v_A(x) \le 1 - s$ and $v_A(y) \le 1 - s \Rightarrow s \le 1 - v_A(x)$ and $s \leq 1 - v_A(y) \Rightarrow [x_s \in A] \geq 1/2$ and $[y_s \in A] \geq 1/2$. Therefore, from (1) of definition 3.4 we have, $1 \ge [(x_t + y_t) \in \forall qA] \ge [x_t \in A] \land [y_t \in A] \ge 1/2$. This implies that $[(x_t + y_t) \in A] \vee [(x_t + y_t)qA] \ge 1/2,$ $\Rightarrow [(x_t + y_t) \in A] \ge 1/2 \text{ or } [(x_t + y_t)qA] \ge 1/2,$ \Rightarrow either $s \le 1 - v_A(x+y)$ or $v_A(x+y) < s \le 1 - s$, [since $1 - s \ge 0.5$ so, $s \le 0.5$] \Rightarrow $\mathbf{v}_A(x+y) \leq 1-s = \mathbf{v}_A(x) \lor \mathbf{v}_A(y) \lor 0.5.$ Similarly, we can prove (5). (6) Let $(v_A(x) \land v_A(y)) \lor 0.5 = 1 - s$. Then $1 - (v_A(x) \lor 0.5) \land (v_A(y) \lor 0.5) = s,$ $\Rightarrow (1 - v_A(x) \lor 0.5) \lor (1 - v_A(y) \lor 0.5) = s,$ $\Rightarrow ((1 - v_A(x)) \land 0.5) \lor ((1 - v_A(y)) \land 0.5) = s,$ \Rightarrow $(1 - v_A(x)) \land 0.5 = s$ or $(1 - v_A(y)) \land 0.5 = s$, \Rightarrow $(1 - v_A(x)) \ge s$ or $(1 - v_A(y)) \ge s$, \Rightarrow [$x_s \in A$] $\ge 1/2$ or [$y_s \in A$] $\ge 1/2$, $\Rightarrow [x_s y_s \in \lor qA] \ge [x_s \in A] \lor [y_s \in A] \ge 1/2$, [By (3) of Definition 3.4] $\Rightarrow [x_s y_s \in \lor qA] \ge 1/2,$
 - \Rightarrow [$x_s y_s \in A$] $\ge 1/2$ or [$x_s y_s qA$] $\ge 1/2$,

- $\Rightarrow s \le 1 v_A(xy) \text{ or } v_A(xy) < s \le 1 s, \text{ [Since } 1 s \ge 0.5, \text{ so } s \le 0.5]$ $\Rightarrow v_A(xy) \le 1 - s \text{ or } v_A(xy) \le 1 - s,$
- $\Rightarrow \mathbf{v}_A(xy) \leq 1 s = (\mathbf{v}_A(x) \wedge \mathbf{v}_A(y)) \lor 0.5$

Conversely, we assume *A* is an intuitionistic fuzzy ideal of *R* with thresholds (0,0.5). We claim *A* is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of *R*. Let $x, y \in R$ and for $s, t \in [0, 1]$, let $a = [x_s \in A] \land [y_t \in A]$.

Case I. a = 1. Then, $[x_s \in A] = 1$ and $[y_t \in A] = 1$, which implies that $\mu_A(x) \ge s$ and $\mu_A(y) \ge t$.

If $[(x_s + y_t) \in \forall qA] \leq 1/2$, then $\mu_A(x + y) < s \land t$ and $\mu_A(x + y) \leq 1 - s \land t$. Thus, $0.5 > \mu_A(x + y) \geq \mu_A(x) \land \mu_A(y) \land 0.5$. So, $\mu_A(x + y) \geq \mu_A(x) \land \mu_A(y) \geq s \land t$, a contradiction to $\mu_A(x + y) < s \land t$. Thus, we must have $[(x_s + y_t) \in \forall qA] = 1$.

Case II. a = 1/2. Then, $[x_s \in A] \ge 1/2$ and $[y_t \in A] \ge 1/2$ which implies that $1 - v_A(x) \ge s$ and $1 - v_A(y) \ge t$. Now

$$1 - \mathbf{v}_A(x) \lor \mathbf{v}_A(y) = (1 - \mathbf{v}_A(x)) \land (1 - \mathbf{v}_A(y)) \ge s \land t$$

If $[(x_s + y_t) \in \lor qA] = 0$, then $(1 - v_A(x + y)) < s \land t$ and $v_A(x + y) \ge s \land t$. Now, from $0.5 < v_A(x+y) \le v_A(x) \lor v_A(y) \lor 0.5$, we get $v_A(x+y) \le v_A(x) \lor v_A(y)$ and $1 - v_A(x+y) \ge 1 - v_A(x) \lor v_A(y) = (1 - v_A(x)) \land (1 - v_A(y)) \ge s \land t$, which contradicts $(1 - v_A(x+y)) < s \land t$. Therefore, we must have $[(x_s + y_t) \in \lor qA] \ge 1/2 = [x_s \in A] \land [y_t \in A]$.

Case III. a = 0. Then, the result is obvious. Thus, in all cases, $[(x_s + y_t) \in \lor qA] \ge [x_s \in A] \land [y_t \in A]$.

Similarly, we can prove that $[-x_s \in \lor qA] \ge [x_s \in A]$.

Next, we claim that $[(x_s y_t) \in \lor qA] \ge [x_s \in A] \lor [y_t \in A]$. Let $b = [x_s \in A] \lor [y_t \in A]$.

Case I. b = 1. Then, either $[x_s \in A] = 1$ or $[y_t \in A] = 1$, which implies either $\mu_A(x) \ge s$ or $\mu_A(y) \ge t$. If $[x_sy_t \in \lor qA] \le 1/2$, then $[x_sy_t \in A] \le 1/2$ and $[x_sy_tqA] \le 1/2 \Rightarrow \mu_A(xy) < s \lor t$ and $s \lor t \le 1 - \mu_A(xy) \Rightarrow \mu_A(xy) < s \lor t$ and $\mu_A(xy) \le 1 - s \lor t$. Now, $0.5 > \mu_A(xy) \ge (\mu_A(x) \lor \mu_A(y)) \land 0.5$ implies $\mu_A(xy) \ge \mu_A(x) \lor \mu_A(y) \ge s \lor t$, a contradiction to $\mu_A(xy) < s \lor t$. Therefore, we must have $[x_sy_t \in \lor qA] = 1$.

Case II. b = 1/2. Then, either $[x_s \in A] = 1/2$ or $[y_t \in A] = 1/2$, which implies either $s \le 1 - v_A(x)$ or $t \le 1 - v_A(y)$. If $[x_s y_t \in \lor qA] = 0$, then $[x_s y_t \in A] = 0$ and $[x_s y_t qA] = 0 \Rightarrow s \lor t > 1 - v_A(xy)$ and $s \lor t \le v_A(xy) \Rightarrow v_A(xy) > 1 - s \lor t$ and $s \lor t \le v_A(xy) \Rightarrow 0.5 < v_A(xy) \le (v_A(x) \land v_A(y)) \lor 0.5 \Rightarrow v_A(xy) \le v_A(x) \land v_A(y)$. Now, $1 - v_A(xy) \ge 1 - v_A(x) \land v_A(y) = (1 - v_A(x)) \lor (1 - v_A(y)) \ge s \lor t$, a contradiction to $s \lor t > 1 - v_A(xy)$. Therefore, we have $[x_s y_t \in \lor qA] \ge 1/2 = [x_s \in A] \lor [y_t \in A]$. Hence, $[x_s y_t \in \lor qA] \ge [x_s \in A] \lor [y_t \in A]$.

As a consequence of Theorem 3.3 and Theorem 3.6, we have the following:

Theorem 3.7. If an IFS $A = (\mu_A, \nu_A)$ of R is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R, then for any $p \in (0, 0.5]$, $A_{\overline{p}}$ is an ideal of R.

Theorem 3.8. An IFS $A = (\mu_A, v_A)$ of R is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of R if and only if A is an intuitionistic fuzzy ideal of R with thresholds (0.5, 1).

Proof. Suppose that $A = (\mu_A, \nu_A)$ is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of R. To show

- (1) $\mu_A(x+y) \lor 0.5 \ge \mu_A(x) \land \mu_A(y);$
- (2) $\mu_A(-x) \lor 0.5 \ge \mu_A(x);$
- (3) $\mu_A(xy) \lor 0.5 \ge \mu_A(x) \lor \mu_A(y);$
- (4) $v_A(x+y) \wedge 0.5 \le v_A(x) \lor v_A(y);$
- (5) $v_A(-x) \wedge 0.5 \leq v_A(x);$

(6) $v_A(xy) \wedge 0.5 \leq v_A(x) \wedge v_A(y)$, for all $x, y \in R$.

Let $x, y \in R$ and $t = \mu_A(x) \land \mu_A(y)$. If $\mu_A(x+y) \lor 0.5 < t = \mu_A(x) \land \mu_A(y)$, then

 $\mu_A(x) \ge t > 0.5$ and $\mu_A(y) \ge t > 0.5$,

 \Rightarrow [$x_t \in A$] = 1, [$x_t qA$] = 1, [$y_t \in A$] = 1, [$y_t qA$] = 1,

 $\Rightarrow [x_t \in \wedge qA] = 1, [y_t \in \wedge qA] = 1,$

 $\Rightarrow [x_t \in \wedge qA] \wedge [y_t \in \wedge qA] = 1.$

Therefore, $[(x_t + y_t) \in A] \ge [x_t \in \land qA] \land [y_t \in \land qA] = 1$, which gives $[(x_t + y_t) \in A] = 1 \Rightarrow \mu_A(x+y) \ge t$, a contradiction to our assumption $\mu_A(x+y) \le \mu_A(x+y) \lor 0.5 < t$. Therefore, we have $\mu_A(x+y) \lor 0.5 \ge t = \mu_A(x) \land \mu_A(y)$.

Similarly, we can prove that $\mu_A(-x) \lor 0.5 \ge \mu_A(x)$.

Next, let $t = \mu_A(x) \lor \mu_A(y)$, then $\mu_A(x) = t$ or $\mu_A(y) = t$. If $\mu_A(xy) \lor 0.5 < t$, then either $\mu_A(x) = t > 0.5$ or $\mu_A(y) = t > 0.5$, which implies that $[x_t \in \land qA] = 1$, or $[y_t \in \land qA] = 1$. Now

$$[(x_t y_t) \in A] \ge [x_t \in \land qA] \lor [y_t \in \land qA] = 1$$

From which we get $[(x_t y_t) \in A] = 1 \Rightarrow \mu_A(xy) \ge t$, which contradicts to our assumption $\mu_A(xy) < t$. Therefore, we must have $\mu_A(xy) \lor 0.5 \ge t = \mu_A(x) \lor \mu_A(y)$.

(4) let $t = 1 - s = v_A(x) \lor v_A(y)$, then $1 - s \ge v_A(x)$, $1 - s \ge v_A(y)$. If $v_A(x+y) \land 0.5 > t$, then we have $s \le 1 - v_A(x)$, $s \le 1 - v_A(y)$, $v_A(x+y) > t$ and s > 0.5 > t, and so $[x_s \in A] \ge 1/2$, $[y_s \in A] \ge 1/2$, $v_A(x+y) > t$ and s > 0.5 > t. Also, $v_A(x) \le t < s$ and $v_A(y) \le t < s$ imply $[x_sqA] \ge 1/2$, $[y_sqA] \ge 1/2$. Therefore, from $[(x_s + y_s) \in A] \ge [x_s \in \land qA] \land [y_s \in \land qA] \ge 1/2$ we have $[(x_s + y_s) \in A] \ge 1/2$. This implies that $s \le 1 - v_A(x+y)$, which is a contradiction to $v_A(x+y) > t = 1 - s$. Hence, $v_A(x+y) \land 0.5 \le t = v_A(x) \lor v_A(y)$.

Similarly, we can prove that $v_A(-x) \wedge 0.5 \le v_A(x)$.

(6) Let $t = 1 - s = v_A(x) \land v_A(y)$. Then

 $s = (1 - v_A(x)) \lor (1 - v_A(y)),$

$$\Rightarrow$$
 s = 1 - $V_A(x)$ or s = 1 - $V_A(y)$,

 \Rightarrow [$x_s \in A$] $\ge 1/2$ or [$y_s \in A$] $\ge 1/2$.

If $v_A(xy) \wedge 0.5 > t$, then $v_A(xy) > t$ and t < 0.5 < s. Therefore, $s = 1 - v_A(x)$ or $s = 1 - v_A(y)$ which implies that $v_A(x) = 1 - s = t < s$ or $v_A(y) = 1 - s = t < s \Rightarrow [x_sqA] \ge 1/2$ or $[y_sqA] \ge 1/2$. Thus, we have

 $[x_s \in A] \ge 1/2$ or $[y_s \in A] \ge 1/2$ and $[x_sqA] \ge 1/2$ or $[y_sqA] \ge 1/2$.

Now if $[x_s \in A] \ge 1/2$ and $[x_sqA] = 0$, then we get $s \le 1 - v_A(x)$ and $s \le v_A(x) \Rightarrow v_A(x) \le 1 - s = t < 0.5 < s$, (since t < 0.5 < s), which contradicts to $v_A(x) \ge s$.

Therefore, $[x_s \in A] \ge 1/2$ and $[x_sqA] = 0$ can't hold simultaneously. Thus, if $[x_s \in A] \ge 1/2$, then $[x_sqA] \ge 1/2$.

Similarly, if $[y_s \in A] \ge 1/2$, then $[y_s qA] \ge 1/2$.

Again, if $[x_sqA] \ge 1/2$ and $[x_s \in A] = 0$, then we get $v_A(x) < s$, $s > 1 - v_A(x)$. Therefore, $s > v_A(x) > 1 - s$, which is true for all s > 0.5 > t. Hence, we must have, $v_A(x) = 0.5$. Similarly, if $[y_sqA] \ge 1/2$ and $[y_s \in A] = 0$, then $v_A(y) = 0.5$. Now, $t = v_A(x) \land v_A(y) = 0.5$, which contradicts to t < 0.5. Therefore, we must have

 $[x_sqA] \ge 1/2$ and $[x_s \in A] \ge 1/2$ or $[y_sqA] \ge 1/2$ and $[y_s \in A] \ge 1/2$.

Thus, if $[x_s \in A] \ge 1/2$, then $[x_s qA] \ge 1/2$ and vice versa.

or, if $[y_s \in A] \ge 1/2$, then $[y_s qA] \ge 1/2$ and vice versa.

Thus, in all cases, we have

 $[(x_sy_s) \in A] \ge [x_s \in \land qA] \lor [y_s \in \land qA],$ $\Rightarrow [(x_sy_s) \in A] \ge (([x_s \in A] \lor [y_s \in A]) \land ([x_sqA] \lor [y_s \in A])) \land (([x_s \in A] \lor [y_sqA]) \land$ $([x_sqA] \lor [y_sqA])) \ge 1/2,$

 $\Rightarrow [(x_s y_s) \in A] \ge 1/2 \Rightarrow s \le 1 - v_A(xy).$ Therefore, $v_A(xy) \le 1 - s = t$, which contradicts to $v_A(xy) > t$. Hence, $v_A(xy) \land 0.5 \le t = v_A(x) \land v_A(y).$

Conversely, we assume A is an intuitionistic fuzzy ideal with thresholds (0.5, 1). Let $x, y \in R$, $s, t \in [0, 1]$ and $a = [x_s \in \land qA] \land [y_t \in \land qA]$. Then

Case I. a = 1. Then, $\mu_A(x) \ge s$, $\mu_A(x) + s > 1$, $\mu_A(y) \ge t$, $\mu_A(y) + t > 1$. This implies that $\mu_A(x) \ge 0.5$ and $\mu_A(y) \ge 0.5$. Now, we have $\mu_A(x+y) \ge \mu_A(x) \land \mu_A(y) \ge s \land t$, from which we get $[(x_s + y_t) \in A] = 1$.

Case II. a = 1/2. Then, $s \le 1 - v_A(x)$, $v_A(x) < s$, $t \le 1 - v_A(y)$, $v_A(y) < t$,

 $\Rightarrow 1 - \mathbf{v}_A(x) \ge s > \mathbf{v}_A(x), \ 1 - \mathbf{v}_A(y) \ge t > \mathbf{v}_A(y),$

 $\Rightarrow v_A(x) < 0.5, v_A(x) < 0.5.$

Therefore, $v_A(x+y) \wedge 0.5 \leq v_A(x) \vee v_A(y) \Rightarrow v_A(x+y) \leq v_A(x) \vee v_A(y)$ which implies that $1 - v_A(x+y) \geq (1 - v_A(x)) \wedge (1 - v_A(y)) \geq s \wedge t$. Thus, $[(x_s + y_t) \in A] \geq 1/2$. Hence, $[(x_s + y_t) \in A] \geq [x_s \in \wedge qA] \wedge [y_t \in \wedge qA]$.

Similarly, we can prove that $[-x_s \in A] \ge [x_s \in \land qA]$. Next, let $b = [x_s \in \land qA] \lor [y_t \in \land qA]$. Case I. b = 1. Then, either $\mu_A(x) \ge s$, $\mu_A(x) + s > 1$ or $\mu_A(y) \ge t$, $\mu_A(y) + t > 1$. This implies, either $\mu_A(x) \ge 0.5$ or $\mu_A(y) \ge 0.5$. Now,

 $\begin{aligned} \mu_A(xy) &\geq \mu_A(x) \lor \mu_A(y) \geq s \lor t, \text{ from which we get } [(x_s y_t) \in A] = 1. \\ \text{Case II. } a &= 1/2. \text{ Then, either } s \leq 1 - v_A(x), v_A(x) < s \text{ or } t \leq 1 - v_A(y), v_A(y) < t, \\ &\Rightarrow 1 - v_A(x) \geq s > v_A(x) \text{ or } 1 - v_A(y) \geq t > v_A(y), \\ &\Rightarrow v_A(x) < 0.5 \text{ or } v_A(x) < 0.5. \end{aligned}$

Therefore, $v_A(xy) \wedge 0.5 \leq v_A(x) \wedge v_A(y) \Rightarrow v_A(xy) \leq v_A(x) \wedge v_A(y)$ which implies that $1 - v_A(xy) \geq (1 - v_A(x)) \vee (1 - v_A(y)) \geq s \vee t$. Thus, $[(x_s y_t) \in A] \geq 1/2$. Hence, $[(x_s y_t) \in A] \geq [x_s \in \land qA] \vee [y_t \in \land qA]$. Therefore, *A* is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of *R*.

As a consequence of Theorem 3.3 and Theorem 3.8, we have the following:

Theorem 3.9. If an IFS $A = (\mu_A, \nu_A)$ of R is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of R, then for any $p \in (0.5, 1]$, $A_{\overline{p}}$ is an ideal of R.

Theorem 3.10. An intuitionistic fuzzy set, $A = (\mu_A, v_A)$ of R is a (\in, \in) -intuitionistic fuzzy ideal of R if and only if for any $a \in [0, 1]$, A_a is a fuzzy ideal of R.

Proof. Suppose that *A* is a (\in, \in) -intuitionistic fuzzy ideal of *R*. Let $x, y \in R$ and $a \in [0, 1]$. Then

 $\begin{array}{l} A_{a}(x+y) = [(x+y)_{a} \in A] = [(x_{a}+y_{a}) \in A] \geq [x_{a} \in A] \wedge [y_{a} \in A] = A_{a}(x) \wedge A_{a}(y), \\ A_{a}(-x) = [-x_{a} \in A] \geq [x_{a} \in A] = A_{a}(x), \\ A_{a}(xy) = [(xy)_{a} \in A] = [(x_{a}y_{a}) \in A] \geq [x_{a} \in A] \vee [y_{a} \in A] = A_{a}(x) \vee A_{a}(y), \\ \text{Hence, } A_{a} \text{ is a fuzzy ideal of } R. \end{array}$

Conversely, we assume for any $a \in [0,1]$, A_a is a fuzzy ideal of R. Let $x, y \in R$ and $s,t \in [0,1]$. We will prove $[(x_sy_t) \in A] \ge [x_s \in A] \lor [y_t \in A]$ and proofs of the other two conditions $[(x_s + y_t) \in A] \ge [x_s \in A] \land [y_t \in A]$ and $[-x_s \in A] \ge [x_s \in A]$ are straightforward and can be obtained in the similar manner. Let $a = [x_s \in A] \lor [y_t \in A]$.

Case I. a = 1. Then, either $[x_s \in A] = 1$ or $[x_t \in A] = 1$, which gives either $A_s(x) = 1$ or $A_t(y) = 1$. Now, if $A_s(x) = 1$, then $A_s(xy) \ge A_s(x) \lor A_s(y) = 1$. Therefore, $A_s(xy) = 1$, and so $\mu_A(xy) \ge s$. Similarly, if $A_t(y) = 1$, then $\mu_A(xy) \ge t$. Thus, $\mu_A(xy) \ge s \lor t$ which implies that $A_{s\lor t}(xy) = 1$. Hence, $[x_sy_t \in A] = 1$.

Case II. a = 1/2. Then, either $[x_s \in A] \ge 1/2$ or $[x_t \in A] \ge 1/2$, which gives either $A_s(x) \ge 1/2$ or $A_t(y) \ge 1/2$. Now, if $A_s(x) \ge 1/2$, then $A_s(xy) \ge A_s(x) \lor A_s(y) \ge 1/2$. Therefore,

 $A_s(xy) \ge 1/2$, and so $s \le 1 - v_A(xy)$. Similarly, if $A_t(y) \ge 1/2$, then $t \le 1 - v_A(xy)$. Thus, $s \lor t \le 1 - v_A(xy)$, which implies that $A_{s \lor t}(xy) \ge 1/2$. Hence, $[x_s y_t \in A] \ge 1/2$. Thus, in all cases, we get $[x_s y_t \in A] \ge [x_s \in A] \lor [y_t \in A]$.

Theorem 3.11. An intuitionistic fuzzy set, $A = (\mu_A, v_A)$ of R is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R if and only if for any $a \in [0, 0.5]$, A_a is a fuzzy ideal of R.

Proof. Suppose that A is a $(\in, \in \lor q)$ -intuitionistic fuzzy ideal of R. Then, for any $a \in (0, 0.5]$ and $x, y \in R$, we have

$$[x_a y_a \in \forall q] \ge [x_a \in A] \lor [y_a \in A] \Rightarrow A_a(xy) \lor A_{[\underline{a}]}(xy) \ge A_a(x) \lor A_a(y).$$

Since $0 < a \le 0.5$, therefore we have $a \le 0.5 \le 1 - a$. Then

$$A_{[\underline{a}]}(xy) = A_{\underline{1-a}}(xy) \le A_{\underline{a}}(xy) \le A_{a}(xy).$$

Therefore, $A_a(x) \lor A_a(y) \le A_a(xy) \lor A_{[\underline{a}]}(xy) \le A_a(xy) \lor A_a(xy) = A_a(xy)$, and so $A_a(xy) \ge A_a(x) \lor A_a(y)$. Similarly, we can prove that $A_a(x+y) \ge A_a(x) \land A_a(y)$ and $A_a(-x) \ge A_a(x)$. Therefore, for any $a \in [0, 0.5]$, A_a is a fuzzy ideal of R.

Conversely, we assume for any $a \in [0, 0.5]$, A_a is a fuzzy ideal of R. Let $s, t \in [0, 1]$ and $x, y \in R$.

(1) If $s \wedge t \leq 0.5$, then let $a = [x_s \in A] \wedge [y_t \in A]$.

Case I. a = 1. Then, $A_s(x) = 1$ and $A_t(y) = 1$, and so $A_{s \wedge t}(x+y) \ge A_{s \wedge t}(x) \wedge A_{s \wedge t}(y) \ge A_s(x) \wedge A_t(y) = 1$. Therefore, we have $A_{s \wedge t}(x+y) = 1 \Rightarrow [(x_s+y_t) \in A] = 1$. Now, $[(x_s+y_t) \in \forall qA] = [(x_s+y_t) \in A] \lor [(x_s+y_t)qA] = 1$.

Case II. a = 1/2. Then, $A_s(x) \ge 1/2$ and $A_t(y) \ge 1/2$, and so $A_{s \land t}(x+y) \ge A_{s \land t}(x) \land A_{s \land t}(y) \ge A_s(x) \land A_t(y) \ge 1/2$. Therefore, we have $A_{s \land t}(x+y) \ge 1/2 \Rightarrow [(x_s+y_t) \in A] \ge 1/2$. Now, $[(x_s+y_t) \in \lor qA] = [(x_s+y_t) \in A] \lor [(x_s+y_t)qA] \ge 1/2$. Therefore, $[(x_s+y_t) \in \lor \lor qA] \ge [x_s \in A] \land [y_t \in A]$.

If $s \wedge t > 0.5$, then let $a \in (0, 1)$ such that $1 - s \wedge t < a < 0.5 < s \wedge t$. Now, $A_{[s \wedge t]}(x+y) = A_{1-s \wedge t}(x+y) \ge A_{s \wedge t}(x+y)$ and $A_{[s \wedge t]}(x+y) = A_{1-s \wedge t}(x+y) \ge A_a(x+y)$.

Therefore, $[(x_s+y_t) \in \lor qA] = [(x_s+y_t) \in A] \lor [(x_s+y_t)qA] = A_{s \land t}(x+y) \lor A_{[s \land t]}(x+y) = A_{[s \land t]}(x+y) \ge A_a(x+y) \ge A_a(x) \land A_a(y) \ge A_s(x) \land A_t(y) = [x_s \in A] \land [y_t \in A], \text{ and hence } [(x_s+y_t) \in \lor qA] \ge [x_s \in A] \land [y_t \in A].$

Similarly, we can prove that $[-x_s \in \lor qA] \ge [x_s \in A]$.

(3) If $s \lor t \le 0.5$, then let $b = [x_s \in A] \lor [y_t \in A]$.

Case I. b = 1. Then, either $A_s(x) = 1$ or $A_t(y) = 1$. If $A_s(x) = 1$, then $A_s(xy) \ge A_s(x) \lor A_s(y) = 1$, and so $A_s(xy) = 1$. This implies that $\mu_A(xy) \ge s$. Similarly, if $A_t(y) = 1$, then $\mu_A(xy) \ge t$. Therefore, we obtain $\mu_A(xy) \ge s \lor t$, from which we get $[(x_sy_t) \in A] = 1$. Thus, $[(x_sy_t) \in \lor qA] = [(x_sy_t) \in A] \lor [(x_sy_t)qA] = 1$.

Case II. b = 1/2. Then, either $A_s(x) = 1/2$ or $A_t(y) = 1/2$. If $A_s(x) = 1/2$, then $A_s(xy) \ge A_s(x) \lor A_s(y) \ge 1/2$, and so $s \le 1 - v_A(xy)$. Similarly, if $A_t(y) = 1/2$, then $t \le 1 - v_A(xy)$. Therefore, we have $s \lor t \le 1 - v_A(xy)$ which implies that $A_{s\lor t}(xy) \ge 1/2$. Thus, $[x_sy_t \in A] \ge 1/2$, and so $[(x_sy_t) \in \lor qA] = [(x_sy_t) \in A] \lor [(x_sy_t)qA] \ge 1/2$. Therefore, $[(x_sy_t) \in \lor qA] \ge [x_s \in A] \lor [y_t \in A]$.

If $s \lor t > 0.5$, then let $a \in (0, 1)$ be such that $1 - s \lor t < a < 0.5 < s \lor t$. Now,

 $A_{[s\lor t]}(xy) = A_{1-s\lor t}(xy) \ge A_{s\lor t}(xy), \text{ and } A_{[s\lor t]}(xy) = A_{1-s\lor t}(xy) \ge A_a(xy).$

Therefore, $[(x_sy_t) \in \lor qA] = [(x_sy_t) \in A] \lor [(x_sy_t)qA] = A_{s\lor t}(xy) \lor A_{[s\lor t]}(xy) = A_{[s\lor t]}(xy) \ge A_a(xy) \ge A_a(x) \lor A_a(y) \ge A_s(x) \lor A_t(y) = [x_s \in A] \lor [y_t \in A]$, and hence $[(x_sy_t) \in \lor qA] \ge [x_s \in A] \lor [y_t \in A]$.

Theorem 3.12. An intuitionistic fuzzy set, $A = (\mu_A, v_A)$ of R is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of R if and only if for any $a \in (0.5, 1]$, A_a is a fuzzy ideal of R.

Proof. Suppose that A is a $(\in \land q, \in)$ -intuitionistic fuzzy ideal of R. Let $a \in (0.5, 1]$ and $x, y \in R$, then $A_{[a]}(x) \ge A_a(x)$. Thus,

$$A_a(x+y) = [(x_a+y_a) \in A] \ge [x_a \in \wedge qA] \wedge [y_a \in \wedge qA]$$
$$= A_a(x) \wedge A_{[a]}(x) \wedge A_a(y) \wedge A_{[a]}(y) = A_a(x) \wedge A_a(y).$$

Therefore, $A_a(x+y) \ge A_a(x) \land A_a(y)$. Similarly, we have $A_a(-x) \ge A_a(x)$.

$$\begin{aligned} A_a(xy) &= [x_a y_a \in A] \ge [x_a \in \land qA] \lor [y_a \in \land qA] \\ &= (A_a(x) \land A_{\underline{[a]}}(x)) \lor (A_a(y) \land A_{\underline{[a]}}(y)) = A_a(x) \lor A_a(y) \end{aligned}$$

Therefore, $A_a(xy) \ge A_a(x) \lor A_a(y)$.

Conversely, we assume for any $a \in (0.5, 1]$, A_a is a fuzzy ideal of R. Let $x, y \in R, s, t \in (0, 1]$.

(1) Let $b = [x_s \in \land qA] \land [y_t \in \land qA]$.

Case I. b = 1. Then, $\mu_A(x) \ge s$, $\mu_A(x) > 1 - s$, $\mu_A(y) \ge t$, $\mu_A(y) > 1 - t$. Therefore, $\mu_A(x) > 0.5$, $\mu_A(y) > 0.5$. Let $a = \mu_A(x) \land \mu_A(y)$. Then, a > 0.5 and $\mu_A(x) \ge a$, $\mu_A(y) \ge a$, and so $A_a(x) = 1$, $A_a(y) = 1$. Thus, $A_a(x+y) \ge A_a(x) \land A_a(y) = 1$ implies $A_a(x+y) = 1$, and so $\mu_A(x+y) \ge a = \mu_A(x) \land \mu_A(y) \ge s \land t$. Therefore, $[(x_s + y_t) \in A] = 1$.

Case II. b = 1/2. Then, $1 - v_A(x) \ge s$, $s > v_A(x)$ and $1 - v_A(y) \ge t$, $t > v_A(y)$ which implies that $v_A(x) < 0.5$, $v_A(y) < 0.5$. Thus, $1 - v_A(x) > 0.5$, $1 - v_A(y) > 0.5$. Let $a = (1 - v_A(x)) \land (1 - v_A(y))$, then a > 0.5. Therefore, $A_a(x+y) \ge A_a(x) \land A_a(y) \ge 1/2 \land 1/2 = 1/2$, [Since $1 - v_A(x) \ge a$, $1 - v_A(y) \ge a$]. This implies that $1 - v_A(x+y) \ge a = (1 - v_A(x)) \land (1 - v_A(y)) \ge s \land t$. Therefore, $[(x_s + y_t) \in A] \ge 1/2 = [x_s \in \land qA] \land [y_t \in \land qA]$.

(2) Similarly, we can prove that $[-x_s \in A] \ge [x_s \in \land qA]$.

(3) Let $b = [x_s \in \land qA] \lor [y_t \in \land qA]$.

Case I. b = 1. Then, either $\mu_A(x) \ge s$, $\mu_A(x) > 1 - s$ or $\mu_A(y) \ge t$, $\mu_A(y) > 1 - t$. Therefore, $\mu_A(x) > 0.5$ or $\mu_A(y) > 0.5$. Let $a = \mu_A(x) \lor \mu_A(y)$, then a > 0.5. Also, $\mu_A(x) = a$ or $\mu_A(y) = a$, and so $A_a(x) = 1$ or $A_a(y) = 1$. Thus, $A_a(xy) \ge A_a(x) \lor A_a(y) = 1$ which implies that $A_a(xy) = 1$, and so $\mu_A(xy) \ge a = \mu_A(x) \lor \mu_A(y) \ge s \lor t$. Therefore, $[(x_sy_t) \in A] = 1$.

Case II. b = 1/2. Then, either $1 - v_A(x) \ge s$, $s > v_A(x)$ or $1 - v_A(y) \ge t$, $t > v_A(y)$, which implies either $v_A(x) < 0.5$ or $v_A(y) < 0.5$. Thus, $1 - v_A(x) > 0.5$ or $1 - v_A(y) > 0.5$. Let $a = (1 - v_A(x)) \lor (1 - v_A(y))$, then a > 0.5. Therefore, $A_a(xy) \ge A_a(x) \lor A_a(y) \ge 1/2 \lor 1/2 = 1/2$, [Since $1 - v_A(x) = a$ or $1 - v_A(y) = a$]. This implies that $1 - v_A(xy) \ge a = (1 - v_A(x)) \lor (1 - v_A(y)) \ge s \lor t$. Therefore, $[(x_sy_t) \in A] \ge 1/2 = [x_s \in \land qA] \lor [y_t \in \land qA]$.

Theorem 3.13. An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of R is an intuitionistic fuzzy ideal with thresholds (s,t) of R if and only if for any $a \in (s,t]$, A_a is a fuzzy ideal of R.

Proof. Suppose that A is an intuitionistic fuzzy ideal with thresholds (s,t) of R. Let $a \in (s,t], x, y \in R$ and $b = A_a(x) \lor A_a(y)$.

Case I. b = 1. Then, $A_a(x) = 1$ or $A_a(y) = 1$. This implies that $\mu_A(x) \ge a > s$ or $\mu_A(y) \ge a > s$. Now, $\mu_A(xy) \lor s \ge (\mu_A(x) \lor \mu_A(y)) \land t \ge (a \lor a) \land t = a$. Therefore $\mu_A(xy) \ge a$ which implies that $A_a(xy) = 1$.

Case II. b = 1/2. Then, $A_a(x) = 1/2$ or $A_a(y) = 1/2$, which implies that $1 - v_A(x) \ge a$ or $1 - v_A(y) \ge a$. Thus, $v_A(x) \land v_A(y) \le 1 - a < 1 - s$. Now, $v_A(xy) \land (1 - s) \le (v_A(x) \land v_A(y)) \lor (1 - t) \le (1 - a) \lor (1 - t) = 1 - a$, [Since $t \ge a$ and 1 - s > 1 - a]. Therefore, $1 - v_A(xy) \ge a$, and so $A_a(xy) \ge 1/2 = A_a(x) \lor A_a(y)$. Hence, $A_a(xy) \ge A_a(x) \lor A_a(y)$. Similarly, we have $A_a(x+y) \ge A_a(x) \land A_a(y)$ and $A_a(-x) \ge A_a(x)$. Conversely, we assume for any $a \in (s,t]$, A_a is a fuzzy ideal of R.

(1) To show $\mu_A(x+y) \lor s \ge \mu_A(x) \land \mu_A(y) \land t$. If $\mu_A(x+y) \lor s < a = \mu_A(x) \land \mu_A(y) \land t$, then $a \in (s,t]$ and $\mu_A(x) \ge a, \mu_A(y) \ge a$. Thus, from $A_a(x+y) \ge A_a(x) \land A_a(y) = 1$, we have $A_a(x+y) = 1$, and so $\mu_A(x+y) \ge a$, which contradicts to $\mu_A(x+y) < a$. Therefore, $\mu_A(x+y) \lor s \ge \mu_A(x) \land \mu_A(y) \land t$.

(2) Similarly, we have $\mu_A(-x) \lor s \ge \mu_A(x) \land t$.

(3) To show $\mu_A(xy) \lor s \ge (\mu_A(x) \lor \mu_A(y)) \land t$. If $\mu_A(xy) \lor s < a = (\mu_A(x) \lor \mu_A(y)) \land t$, then $a \in (s,t]$ and $\mu_A(x) \ge a$ or $\mu_A(y) \ge a$. Thus, from $A_a(xy) \ge A_a(x) \lor A_a(y) = 1$, we have $A_a(xy) = 1$, and so $\mu_A(xy) \ge a$, which contradicts to $\mu_A(xy) < a$. Therefore, $\mu_A(xy) \lor s \ge (\mu_A(x) \lor \mu_A(y)) \land t$.

(4) To show $v_A(x+y) \wedge (1-s) \leq (v_A(x) \vee v_A(y)) \vee (1-t)$. If $v_A(x+y) \wedge (1-s) > a = (v_A(x) \vee v_A(y)) \vee (1-t)$, then $(1-v_A(x+y)) \vee s < b = 1-a = (1-v_A(x)) \wedge (1-v_A(y)) \wedge t$, and so $b \in (s,t]$ and $(1-v_A(x)) \geq b$, $(1-v_A(y)) \geq b$. Thus, from $A_a(x+y) \geq A_a(x) \wedge A_a(y) \geq 1/2$, we have $A_a(x+y) \geq 1/2$, and so $1-v_A(x+y) \geq b = 1-a$. Therefore, $v_A(x+y) \leq a$, which contradicts to $v_A(x+y) > a$. Hence, $v_A(x+y) \wedge (1-s) \leq (v_A(x) \vee v_A(y)) \vee (1-t)$.

(5) Similarly, we have $v_A(-x) \wedge (1-s) \leq v_A(x) \vee (1-t)$.

(6) To show $v_A(xy) \wedge (1-s) \leq (v_A(x) \wedge v_A(y)) \vee (1-t)$. If $v_A(xy) \wedge (1-s) > a = (v_A(x) \wedge v_A(y)) \vee (1-t)$, then $(1-v_A(xy)) \vee s < b = 1-a = (1-v_A(x)) \vee (1-v_A(y)) \wedge t$, and so $b \in (s,t]$ and $(1-v_A(x)) \geq b$ or $(1-v_A(y)) \geq b$. Thus, from $A_a(xy) \geq A_a(x) \vee A_a(y) \geq 1/2$, we have $A_a(xy) \geq 1/2$, and so $1-v_A(xy) \geq b = 1-a$. Therefore, $v_A(xy) \leq a$, which contradicts to $v_A(xy) > a$. Hence, $v_A(xy) \wedge (1-s) \leq (v_A(x) \wedge v_A(y)) \vee (1-t)$.

Hence, $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy ideal with thresholds (s, t) of R.

4. Conclusion

In this article, we have defined a new kind of fuzzy subring and ideal namely, (α, β) -intuitionistic fuzzy subrings and ideals, where $\alpha, \beta \in \{\in, q, \in \land q, \in \lor q\}$. Among the 16 such intuitionistic fuzzy ideals, (\in, \in) , $(\in, \in \lor q)$ and $(\in \land q, \in)$ are significant. We have investigated various properties of (α, β) -intuitionistic fuzzy ideals and attempted to connect intuitionistic fuzzy ideal with thresholds (s, t). In our opinion this is an opening for investigations of different types of (α, β) -intuitionistic fuzzy ideals.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96.
- K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, *Fuzzy Sets and Systems* 61 (1994), no. 2, 137–142.
- [3] K. T. Atanassov, Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing, 35, Physica, Heidelberg, 1999.
- [4] I. Beg and S. Ashraf, Fuzzy relational calculus, Bull. Malays. Math. Sci. Soc. (2), accepted.
- [5] S. K. Bhakat and P. Das, On the definition of a fuzzy subgroup, *Fuzzy Sets and Systems* 51 (1992), no. 2, 235–241.
- [6] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, *Fuzzy Sets and Systems* **80** (1996), no. 3, 359–368.
- [7] S. K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, *Fuzzy Sets and Systems* 81 (1996), no. 3, 383–393.
- [8] R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Fortum, 10 (1989), 37-46.

- [9] B. Davvaz, J. Zhan and K. P. Shum, Generalized fuzzy H_v-submodules endowed with interval valued membership functions, *Inform. Sci.* 178 (2008), no. 15, 3147–3159.
- [10] B. Davvaz and P. Corsini, Redefined fuzzy H_v-submodules and many valued implications, Inform. Sci. 177 (2007), no. 3, 865–875.
- [11] B. Davvaz, Intuitionistic hyperideals of semihypergroups, Bull. Malays. Math. Sci. Soc. (2) 29 (2006), no. 2, 203–207.
- [12] B. Davvaz, P. Corsini and V. Leoreanu-Fotea, Atanassov's intuitionistic (S, T)-fuzzy n-ary sub-hypergroups and their properties, *Inform. Sci.* 179 (2009), no. 5, 654–666.
- [13] B. Davvaz and V. Leoreanu-Fotea, Intuitionistic fuzzy n-ary hypergroups, J. Mult.-Valued Logic Soft Comput. 16 (2010), no. 1-2, 87–103.
- [14] H. Hedayati, Generalized fuzzy k-ideals of semirings with interval-valued membership functions, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 3, 409–424.
- [15] C. Gunduz and B. Davvaz, The universal coefficient theorem in the category of intuitionistic fuzzy modules, *Util. Math.* 81 (2010), 131–156.
- [16] Y. B. Jun, A. Khan and M. Shabir, Ordered semigroups characterized by their (∈, ∈ ∨q)-fuzzy bi-ideals, Bull. Malays. Math. Sci. Soc. (2) 32 (2009), no. 3, 391–408.
- [17] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall PTR, Upper Saddle River, NJ, 1995.
- [18] J. N. Mordeson and D. S. Malik, Fuzzy Commutative Algebra, World Sci. Publishing, River Edge, NJ, 1998.
- [19] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [20] M. Shabir and A. Khan, Fuzzy quasi-ideals of ordered semigroups, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 1, 87–102.
- [21] M. Shabir, M. S. Arif, A. Khan and M. Aslam, On Intuitionistic Fuzzy Prime Bi-Ideals of Semigroups, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 983–996.
- [22] J. Wang, X. Lin and Y. Yin, Intuitionistic fuzzy ideals with thresholds (α, β) of rings, *Int. Math. Forum* 4 (2009), no. 21-24, 1119–1127.
- [23] X. Yuan, H. Li and E. S. Lee, On the definition of the intuitionistic fuzzy subgroups, *Comput. Math. Appl.* 59 (2010), no. 9, 3117–3129.
- [24] S. Yamak, O. Kazanc and B. Davvaz, Divisible and pure intuitionistic fuzzy subgroups and their properties, *Int. J. Fuzzy Syst.* 10 (2008), no. 4, 298–307.
- [25] X. H. Yuan, H. X. Li and K. B. Sun, The cut sets, decomposition theorems and representation theorems on intuitionistic fuzzy sets and interval-valued fuzzy sets, *Science in China Series F: Information Sciences*, 39 (2009), no. 9, 933–945.
- [26] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.