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Abstract. On the basis of the concept of grades of a fuzzy point to belongingness (∈)
or quasi-coincident (q) or belongingness and quasi-coincident (∈ ∧q) or belongingness or
quasi-coincident (∈ ∨q) in an intuitionistic fuzzy set of a ring, the notion of a (α,β )-
intuitionistic fuzzy subring and ideal is introduced by applying the Lukasiewicz 3-valued
implication operator. Using the notion of fuzzy cut set of an intuitionistic fuzzy set, the
support and α-level set of an intuitionistic fuzzy set are defined and it is established that,
for α 6=∈ ∧q, the support of a (α,β )-intuitionistic fuzzy ideal of a ring is an ideal of the
ring. It is also established that the level sets of an intuitionistic fuzzy ideal with thresholds
(s, t) of a ring is an ideal of the ring. We investigate that an intuitionistic fuzzy set A of a
ring is a (∈,∈) (or (∈,∈ ∨q ) or (∈ ∧q,∈) )-intuitionistic fuzzy ideal of the ring if and only
if A is an intuitionistic fuzzy ideal with thresholds (0,1) (or (0,0.5) or (0.5,1)) of the ring
respectively. We also establish that A is a (∈,∈) (or (∈,∈ ∨q ) or (∈ ∧q,∈) )-intuitionistic
fuzzy ideal of the ring if and only if for any a ∈ (0,1] (or a ∈ (0,0.5] or a ∈ (0.5,1] ), Aa is a
fuzzy ideal of the ring. Finally, we investigate that an intuitionistic fuzzy set of a ring is an
intuitionistic fuzzy ideal with thresholds (s, t) of the ring if and only if for any a ∈ (s, t], the
cut set Aa is a fuzzy ideal of R.
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1. Introduction

Since the introduction of fuzzy sets by Zadeh [26] in 1965, the researchers have been car-
rying out research in various concepts of abstract algebra in fuzzy setting. Fuzzy subgroups
of a group was introduced by Rosenfeld [19] in 1971. Since then many generalization of
this fundamental concept have been done. A self contained survey of the state of art of
the fuzzy binary relations and some of their applications has been provided by Beg and
Ashraf in [4]. Bhakat and Das in [5, 6], redefined fuzzy subgroups of a group using the
notion of belongings to (∈) and quasi-coincident (q) of a fuzzy point to a fuzzy set of the
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group. In [7], fuzzy subring and ideal are redefined. Davvaz et al. in [9,10], generalized the
concept to Hv-submodules and redefined fuzzy Hv-submodules by applying many valued
implication operators. In [14] the notion of interval valued fuzzy k-ideals of semirings is
introduced, which is a generalization of a fuzzy k-ideal. As a generalization of fuzzy set,
intuitionistic fuzzy set was introduced by Atanassov [1], also see [2, 3]. Since then vari-
ous concepts of fuzzy setting have been generalized to intuitionistic fuzzy set, for example
see [8, 11–13, 15, 24]. Fuzzy aspects of ordered semigroups have been studied by many
researchers as seen in [16,20,21]. Characterization of different types of (α,β )-intuitionistic
fuzzy subgroups A of a group using the notions of grades of a fuzzy point belongs to A or
quasi-coincident with A or belongs to and quasi-coincident (∈ ∧q) or belongs to or quasi-
coincident (∈ ∨q) has been done in [23]. Intuitionistic fuzzy ideal with thresholds (s, t) of
a ring was introduced in [22]. In this paper, using the notions of grades of a fuzzy point xa
belongs to an intuitionistic fuzzy set A, in a ring R or quasi-coincident with A or belongs to
and quasi-coincident (∈ ∧q) or belongs to or quasi-coincident (∈ ∨q), a (α,β )-intuitionistic
fuzzy subring and ideal is defined by applying the Lukasiewicz 3-valued implication oper-
ator, see [17]. The support and α-level set of an intuitionistic fuzzy set is defined based on
fuzzy cut set and grades of belongs to respectively. It is established that, for α 6=∈ ∧q, the
support of a (α,β )-intuitionistic fuzzy ideal of a ring is an ideal of the ring. We investigate
that the level sets of an intuitionistic fuzzy ideal with thresholds (s, t) of a ring is an ideal of
the ring. We obtain necessary and sufficient conditions between (α,β )-intuitionistic fuzzy
ideal and intuitionistic fuzzy ideal with thresholds (s, t). It is established that an intuition-
istic fuzzy set A of a ring is a (∈,∈) (or (∈,∈ ∨q ) or (∈ ∧q,∈) )-intuitionistic fuzzy ideal
of the ring if and only if A is an intuitionistic fuzzy ideal with thresholds (0,1) (or (0,0.5)
or (0.5,1)) of the ring respectively. We also establish that A is a (∈,∈) (or (∈,∈ ∨q) or
(∈ ∧q,∈)-intuitionistic fuzzy ideal of the ring if and only if for any a ∈ (0,1] (or a ∈ (0,0.5]
or a ∈ (0.5,1]), Aa is a fuzzy ideal of the ring respectively. Finally, we investigate that an
intuitionistic fuzzy set of a ring is an intuitionistic fuzzy ideal with thresholds (s, t) of the
ring if and only if for any a ∈ (s, t], the cut set Aa is a fuzzy ideal of R.

2. Basic definitions and notations

A ring is a non-empty set R having two binary operations addition (+) and multiplication
(·), where (R,+) is a commutative group, (R, ·) is a semigroup and addition is distributive
with respect to multiplication. By zero (0) we mean the additive identity of R. A non-empty
subset I of R is called an ideal of R, if for any x, y ∈ I and r ∈ R, we have x− y,rx,xr ∈ I.
A fuzzy set on a non-empty set was introduced by Zadeh [26] in 1965 and was defined as
follows:

By a fuzzy set of a ring R, we mean any mapping µ from R to [0,1]. By [0,1]R we will
denote the set of all fuzzy subsets of R. For each fuzzy set µ in R and any α ∈ [0,1], we
define two sets

U(µ ,α)={x ∈ R | µ(x)≥ α} and L(µ,α) = {x ∈ R | µ(x)≤ α},
which are called an upper level cut and a lower level cut of µ , respectively. The complement
of µ , denoted by µc, is the fuzzy set on R defined by µc(x) = 1−µ(x).

Let x ∈ R and t ∈ (0,1], then a fuzzy subset µ ∈ [0,1]R is called a fuzzy point if

µ(y) =

{
t, if y = x
0, if y 6= x
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and it is denoted by xt .

Definition 2.1. [5] Let µ be a fuzzy subset of R and xa be a fuzzy point. Then
(1) If µ(x)≥ a, then we say xa belongs to µ , and it is denoted by xa ∈ µ .
(2) If µ(x) + a > 1, then we say xa is quasi-coincident with µ , and it is denoted by

xaqµ .
(3) xa ∈ ∧qµ ⇔ xa ∈ µ and xaqµ .
(4) xa ∈ ∨qµ ⇔ xa ∈ µ or xaqµ .

The symbol ∈ ∨q means that ∈ ∨q does not hold. Let µ,σ ∈ [0,1]R. Then, the intersec-
tion and union of µ and σ are given by the fuzzy sets µ ∩σ and µ ∪σ respectively and are
defined as follows:

(1) (µ ∩σ)(x)= µ(x)∧σ(x);
(2) (µ ∪σ)(x)= µ(x)∨σ(x),

where µ(x)∧σ(x) = min{µ(x),σ(x)} and µ(x)∨σ(x) = max{µ(x),σ(x)}.

Definition 2.2. [18] Let R be a ring and µ be a fuzzy subset in R. Then, µ is called a fuzzy
subring of R if and only if for every x,y ∈ R the following conditions are satisfied:

(1) µ(x+ y)≥ µ(x)∧µ(y);
(2) µ(−x)≥ µ(x);
(3) µ(xy)≥ µ(x)∧µ(y).

Definition 2.3. [18] Let R be a ring and µ be a fuzzy subset in R. Then, µ is called a fuzzy
ideal of R if and only if for every x,y ∈ R the following conditions are satisfied:

(1) µ(x+ y)≥ µ(x)∧µ(y);
(2) µ(−x)≥ µ(x);
(3) µ(xy)≥ µ(x)∨µ(y).

An intuitionistic fuzzy set (abbreviated as IFS) introduced by Atanassov in [1] was de-
fined as follows: An intuitionistic fuzzy set in a ring R, is an object of the form A =
{(x,µA(x),νA(x)) | x ∈ R}, where µA and νA are fuzzy sets in R and denote the degree
of membership (namely µA(x)) and the degree of non-membership (namely νA(x)) of each
element x ∈ R to the set A respectively, and 0≤ µA(x)+νA(x)≤ 1 for all x ∈ R. By IFS(R)
we denote the set of all IFSs of R.

Let A = (µA,νA) and B = (µB,νB) be IFSs of R. Then
(1) A⊆ B if and only if µA(x)≤ µB(x) and νA(x)≥ νB(x) for all x ∈ R;
(2) A∩B = {(x,µA(x)∧µB(x)),νA(x)∨νB(x)) | x ∈ R};
(3) A∪B = {(x,µA(x)∨µB(x),νA(x)∧νB(x)) | x ∈ R}.

For our convenience we shall use the notation A(x) ≥ B(x), when µA(x) ≥ µB(x) and
νA(x)≤ νB(x) for all x ∈ R.

Definition 2.4. [22] Let A = (µA,νA) be an intuitionistic fuzzy set in R. Then, A is said
to be an intuitionistic fuzzy ideal with thresholds (α,β ) of R, if it satisfies the following
properties:

(1) µA(x+ y)∨α ≥ (µA(x)∧µA(y))∧β ;
(2) µA(−x)∨α ≥ µA(x)∧β ;
(3) µA(xy)∨α ≥ (µA(x)∨µA(y))∧β ;
(4) νA(x+ y)∧ (1−α)≤ (νA(x)∨νA(y))∨ (1−β );
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(5) νA(−x)∧ (1−α)≤ νA(x)∨ (1−β );
(6) νA(xy)∧ (1−α)≤ (νA(x)∧νA(y))∨ (1−β ).

for all x,y ∈ R, where α,β ∈ [0,1].

Definition 2.5. [25] Let A = (µA,νA) be an IFSs of R, and a ∈ [0,1]. Then

(1)

Aa(x) =


1, if µA(x)≥ a
1
2 , if µA(x) < a≤ 1−νA(x)
0, for a > 1−νA(x)

and

Aa(x) =


1, if µA(x) > a
1
2 , if µA(x)≤ a < 1−νA(x)
0, for a≥ 1−νA(x)

are called the a-upper cut set and a- strong upper cut set of A, respectively.

(2)

Aa(x) =


1, if νA(x)≥ a
1
2 , if νA(x) < a≤ 1−µA(x)
0, for a > 1−µA(x)

and

Aa(x) =


1, if νA(x) > a
1
2 , if νA(x)≤ a < 1−µA(x)
0, for a≥ 1−µA(x)

are called the a-lower cut set and a- strong lower cut set of A, respectively.

(3)

A[a](x) =


1, if µA(x)+a≥ 1
1
2 , if νA(x)≤ a < 1−µA(x)
0, for a < νA(x)

and

A[a](x) =


1, if µA(x)+a > 1
1
2 , if νA(x) < a≤ 1−µA(x)
0, for a≤ νA(x)

are called the a-upper Q-cut set and a- strong upper Q-cut set of A, respectively.

(4)

A[a](x) =


1, if νA(x)+a≥ 1
1
2 , if µA(x)≤ a < 1−νA(x)
0, for a < µA(x)
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and

A[a](x) =


1, if νA(x)+a > 1
1
2 , if µA(x) < a≤ 1−νA(x)
0, for a≤ µA(x)

are called the a-lower Q-cut set and a-strong lower Q-cut set of A, respectively.

Definition 2.6. [23] Let A = (µA,νA) be an IFSs of R, and a ∈ [0,1],x ∈ R. Then
(1) The grades of xa ∈A and xaqA denoted by [xa ∈A] and [xaqA] respectively are given

by the following relations:
[xa ∈ A] = Aa(x) and [xaqA] = A[a](x).

(2) The grades of xa ∈ ∧qA and xa ∈ ∨qA denoted by [xa ∈ ∧qA] and [xa ∈ ∨qA] re-
spectively are given by the following relations:

[xa ∈ ∧qA] = [xa ∈ A]∧ [xaqA] = Aa(x)∧A[a](x)
and

[xa ∈ ∨qA] = [xa ∈ A]∨ [xaqA] = Aa(x)∨A[a](x).
(3) The grades of xa∈A and xaqA denoted by [xa∈A] and [xaqA] respectively are given

by the following relations:
[xa∈A] = Aa(x) and [xaqA] = A[a](x).

(4) The grades of xa∈ ∧qA and xa∈ ∨qA denoted by [xa∈ ∧qA] and [xa∈ ∨qA] respec-
tively are given by the following relations:

[xa∈ ∧qA] = [xa∈∨qA] = [xa∈A]∨ [xaqA] = Aa(x)∨A[a](x)
and

[xa∈ ∨qA] = [xa∈∧qA] = [xa∈A]∧ [xaqA] = Aa(x)∧A[a](x).

Table 1. The table of truth value of Lukasiewicz implication.

→ 0 1/2 1
0 1 1 1

1/2 1/2 1 1
1 0 1/2 1

As in [23] we have
(1) [xa∈A] = [xa ∈ Ac], [xaqA] = [xaqAc].
(2) [xa∈∧qA] = [xa ∈ ∧qAc], [xa∈∨qA] = [xa ∈ ∨qAc].
(3) [xa ∈ (

⋂
t∈T At)] =

∧
t∈T [xa ∈ A], [xaq(

⋃
t∈T At)] =

∨
t∈T [xaqA].

(4) [xa∈(
⋃

t∈T At)] =
∧

t∈T [xa∈A], [xaq(
⋂

t∈T At)] =
∨

t∈T [xaqA].
In the next section we present our main results.

3. Main results

Let R be a ring and α,β ∈ {∈, q, ∈∧q, ∈∨q}. Then, for a∈ [0,1], x∈ R, xa is a fuzzy point
and [xaαA], [xaβA] ∈ {0,1/2,1}.

Definition 3.1. Let R be a ring and A = (µA,νA) be an IF set in R. If for any α,β ∈ {∈
, q, ∈ ∧q, ∈ ∨q}, s, t ∈ (0,1], and x,y ∈ R, the following conditions are satisfied:
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(1) ([xsαA]∧ [ytαA]→ [(xs + yt)βA]) = 1;
(2) ([xsαA]→ [−xsβA]) = 1;
(3) ([xsαA]∧ [ytαA]→ [(xsyt)βA]) = 1; then A is called a (α,β )-intuitionistic fuzzy

subring of R, where (xs + yt) = (x+ y)s∧t ,−xs = (−x)s, and (xsyt) = (xy)s∧t .

It is to note that, for p, q ∈ {0, 1/2, 1}, we have from Table1, (p→ q) = 1⇔ q ≥ p.
Therefore, Definition 3.1 is equivalent to the following definition.

Definition 3.2. Let R be a ring and A = (µA,νA) be an IF set in R. If for any α,β ∈ {∈
, q, ∈ ∧q, ∈ ∨q}, s, t ∈ (0,1], and x,y ∈ R, the following conditions are satisfied

(1) [(xs + yt)βA]≥ [xsαA]∧ [ytαA];
(2) [−xsβA]≥ [xsαA];
(3) [(xsyt)βA]≥ [xsαA]∧ [ytαA];

then A is called a (α,β )- intuitionistic fuzzy subring of R, where (xs +yt) = (x+y)s∧t ,−xs =
(−x)s, and (xsyt) = (xy)s∧t .

Definition 3.3. Let R be a ring and A = (µA,νA) be an IF set in R. If for any α,β ∈ {∈
, q, ∈ ∧q, ∈ ∨q}, s, t ∈ (0,1], and x,y ∈ R, the following conditions are satisfied

(1) ([xsαA]∧ [ytαA]→ [(xs + yt)βA]) = 1;
(2) ([xsαA]→ [−xsβA]) = 1;
(3) ([xsαA]∨ [ytαA]→ [(xsyt)βA]) = 1;

then A is called a (α,β )- intuitionistic fuzzy ideal of R, where (xs + yt) = (x+ y)s∧t ,−xs =
(−x)s, and (xsyt) = (xy)s∨t .

This is equivalent to:

Definition 3.4. Let R be a ring and A = (µA,νA) be an IF set in R. If for any α,β ∈ {∈
, q, ∈ ∧q, ∈ ∨q}, s, t ∈ (0,1], and x,y ∈ R, the following conditions are satisfied:

(1) [(xs + yt)βA]≥ [xsαA]∧ [ytαA];
(2) [−xsβA]≥ [xsαA];
(3) [(xsyt)βA]≥ [xsαA]∨ [ytαA];

then A is called a (α,β )- intuitionistic fuzzy ideal of R, where (xs + yt) = (x+ y)s∧t ,−xs =
(−x)s, and (xsyt) = (xy)s∨t .

Example 3.1. Consider the ring R = Z4 = {0, 1 ,2 ,3}, where operations are addition mod-
ulo 4 and multiplication modulo 4. Let A = {0 ,2}. Then, A is an ideal of R. We consider
the following IFS of R

µA(x) =

{
0.4, if x ∈ A
0.2, for x /∈ A

and

νA(x) =

{
0.2, if x ∈ A
0.7, for x /∈ A.

Then, we can verify that A = (µA,νA) is both (∈,∈) and (∈,∈ ∨q)-IF ideal of R. Also, we
consider A, defined as follows:

µA(x) =

{
0.7, if x ∈ A
0.2, for x /∈ A
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and

νA(x) =

{
0.2, if x ∈ A
0.6, for x /∈ A.

Then, it can be easily verified that A = (µA,νA) is a (∈ ∧q,∈)-IF ideal of R. However,
A = (µA,νA) is not a (q,q)-IF ideal of R, because if take x ∈ A, y /∈ A and s = 0.4, t = 0.85,
then x + y /∈ A and [xsqA]∧ [ytqA] = 1 but [(xs + yt)qA] < 1. Again, if we take µA(x) = 0.4
and νA(x) = 0.6 for all x ∈ R, then A = (µA,νA) is a (q,q)-IF ideal of R. We note that, in
this case A is not a (∈,∈)-IF ideal of R.

Example 3.2. Consider the ring R = {0,a,b,c} with addition and multiplication operations
defined as follows:

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

and
· 0 a b c
0 0 0 0 0
a 0 0 0 0
b 0 0 b b
c 0 0 b b

Take µA(0) = r, µA(a) = r, µA(b) = s, µA(c) = s and νA(0) = 1− t, νA(a) = 1− t,
νA(b) = w, νA(c) = w, where 0 < s < t < 1, r ∈ [0,s) and w ∈ [0,1− t]. Then, A = (µA,νA)
is an intuitionistic fuzzy ideal with thresholds (s, t) of R. However, if we take x = b,y =
b,α =∈,β =∈ and let p,q∈ [0,1] be such that [xpαA]∧ [yqαA] = 1, then we have s≥ p,s≥
q. Thus, s ≥ p∧ q. Since x + y = 0 so we have µA(x + y) = r < s. Now if A is a (∈,∈)-
intuitionistic fuzzy ideal of R, then [(xp +yq)βA]≥ [xpαA]∧ [yqαA] implies r≥ p∧q, which
will lead to a contradiction if we choose r < p,q < s. Therefore, A is not a (∈,∈)-IF ideal
of R. Here, we note that A is not an intuitionistic fuzzy ideal of R with thresholds (0,1).

Definition 3.5. Let A = (µA,νA) be an intuitionistic fuzzy set in R. Then, by the support of
A, we mean a crisp subset, A∗ of R, and it is defined as follows:

A∗ = {x ∈ R | µA(x)∨ (1−νA(x)) > 0}
That is , A∗ = {x ∈ R | A0(x) > 0}.

Definition 3.6. Let A = (µA,νA) be an intuitionistic fuzzy set in R and α ∈ [0,1]. Then, by
a α-level set of A, we mean a crisp subset, Aα of R, and it is defined as follows:

Aα = {x ∈ R | [xα ∈ A] > 0}

Theorem 3.1. Let A = (µA,νA) be a non-zero (i.e.A 6= (0,1)) (α,β )-intuitionistic fuzzy
ideal of R. If α 6=∈ ∧q, then A0 is a fuzzy ideal of R.

Proof. We show
(1) A0(x+ y)≥ A0(x)∧A0(y),
(2) A0(−x)≥ A0(x),
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(3) A0(xy)≥ A0(x)∨A0(y).
Since (R,+) is a group so, (1) and (2) follow from Theorem 4.1 of [23], because A is

also a (α,β )-intuitionistic fuzzy subgroup of (R,+).

(I) For (3), first we claim that, A0(x)∨A0(y) = 1⇒ A0(xy) = 1. Let A0(x)∨A0(y) = 1.
Then, A0(x) = 1 or A0(y) = 1,⇒ µA(x) > 0 or µA(y) > 0. Put t = µA(x)∨µA(y), then t > 0.
Therefore, we must have s ∈ (0,1) such that 0 < 1− s < t = µA(x)∨µA(y). Now, we have

t = µA(x)∨µA(y),

⇒ either µA(x) = t or µA(y) = t,

⇒ either At(x) = 1 or At(y) = 1,

⇒ either [xt ∈ A] = 1 or [yt ∈ A] = 1, and

1− s < t = µA(x)∨µA(y),

⇒ either 1− s < µA(x) or 1− s < µA(y),

⇒ either A[s](x) = 1 or A[s](y) = 1,

⇒ either [xsqA] = 1 or [ysqA] = 1.

Now,
(i) if α =∈, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q} we have from (3) of Definition 3.3

1≥ [(xtyt)βA]≥ [xtαA]∨ [ytαA] = [xt ∈ A]∨ [yt ∈ A] = 1,
because [xt ∈ A] = 1 or [yt ∈ A] = 1. Therefore, [(xy)tβA] = 1⇒ either At(xy) = 1
or A[t](xy) = 1 ⇒ either µA(xy) ≥ t > 0 or µA(xy) > 1− t ≥ 0 ⇒ µA(xy) > 0⇒
A0(xy) = 1.

(ii) if α =∈ ∨q, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q} we have from (3) of Definition 3.3
1≥ [(xtyt)βA]≥ [xtαA]∨ [ytαA] = [xt ∈∨qA]∨ [yt ∈∨qA] = [xt ∈A]∨ [xtqA]∨ [yt ∈
A]∨ [ytqA] = 1, because [xt ∈ A] = 1 or [yt ∈ A] = 1. Therefore, [(xy)tβA] = 1,
⇒ either At(xy) = 1 or A[t](xy) = 1;
⇒ either µA(xy)≥ t > 0 or µA(xy) > 1− t ≥ 0;
⇒ µA(xy) > 0⇒ A0(xy) = 1.

(iii) if α = q, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q} we have from (3) of Definition 3.3
1 ≥ [(xsys)βA] ≥ [xsαA]∨ [ysαA] = [xsqA]∨ [ysqA] = 1, because [xaqA] = 1 or
[ysqA] = 1. Therefore, [(xy)sβA] = 1 ⇒ either As(xy) = 1 or A[s](xy) = 1 ⇒ ei-
ther µA(xy)≥ s > 0 or µA(xy) > 1− s≥ 0⇒ µA(xy) > 0⇒ A0(xy) = 1.

(II) Next we show, A0(x)∨A0(y) = 1/2⇒ A0(xy)≥ 1/2. Let A0(x)∨A0(y) = 1/2. Then,
A0(x) = 1/2 or A0(y) = 1/2⇒ νA(x) < 1 or νA(y) < 1⇒ νA(x)∧νA(y) < 1. So, there exists
s, t ∈ (0,1) such that νA(x)∧νA(y) < 1− t < s < 1. Then

0 < t < 1−νA(x)∧νA(y) = (1−νA(x))∨ (1−νA(y)),

⇒ either µA(x) = 0 < t < 1−νA(x) or µA(y) = 0 < t < 1−νA(y),

⇒ either At(x) = 1/2 or At(y) = 1/2,

⇒ either [xt ∈ A] = 1/2 or [yt ∈ A] = 1/2, and

νA(x)∧νA(y) < s < 1,

⇒ either νA(x) < s≤ 1 = 1−0 = 1−µA(x) or νA(y) < s≤ 1 = 1−0 = 1−µA(y),



On the Definition of Atanassov’s Intuitionistic Fuzzy Subrings and Ideals 409

⇒ either A[s](x) = 1/2 or A[s](y) = 1/2,

⇒ either [xsqA] = 1/2 or [ysqA] = 1/2.

Now,
(i) if α =∈, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q} we have from (3) of Definition 3.3

[(xtyt)βA]≥ [xtαA]∨ [ytαA] = [xt ∈ A]∨ [yt ∈ A] = 1/2,
because [xt ∈ A] = 1/2 or [yt ∈ A] = 1/2. Therefore, [(xy)tβA] ≥ 1/2 ⇒ either
At(xy)≥ 1/2 or A[t](xy)≥ 1/2⇒ either νA(xy)≤ 1−t < 1−0 or νA(xy) < t < 1−0
⇒ νA(xy) < 1−0⇒ A0(xy)≥ 1/2.

(ii) if α =∈ ∨q, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q}, we have from (3) of Definition 3.3

[(xtyt)βA]≥ [xtαA]∨ [ytαA] = [xt ∈ ∨qA]∨ [yt ∈ ∨qA]

= [xt ∈ A]∨ [xtqA]∨ [yt ∈ A]∨ [ytqA]≥ 1/2,

because [xt ∈ A] = 1/2 or [yt ∈ A] = 1/2. Therefore, [(xy)tβA] ≥ 1/2 whence
A0(xy)≥ 1/2.

(iii) if α = q, then for β ∈ {∈, q, ∈ ∧q, ∈ ∨q}, we have from (3) of Definition 3.3
[(xsys)βA]≥ [xsαA]∨ [ysαA] = [xsqA]∨ [ysqA] = 1/2,

because [xaqA] = 1/2 or [ysqA] = 1/2. Therefore, [(xy)sβA]≥ 1/2⇒ either As(xy)≥
1/2 or A[s](xy) ≥ 1/2⇒ either νA(xy) ≤ 1− s < 1 or νA(xy) < s < 1⇒ νA(xy) <
1⇒ A0(xy)≥ 1/2.

Also, if A0(x)∨ A0(y) = 0, then obviously A0(xy) ≥ 0. Thus, in all cases we have
A0(xy)≥ A0(x)∨A0(y).

Theorem 3.2. Let A = (µA,νA) be a non-zero (α,β )-intuitionistic fuzzy ideal of R. If
α 6=∈ ∧q, then the support A∗ is an ideal of R.

Proof. Let x,y ∈ A∗ and r ∈ R. Then, A0(x) > 0 and A0(y) > 0. From Theorem 3.1, we
have A0(x + y)≥ A0(x)∧A0(y) > 0. Thus, x + y ∈ A∗. Similarly, −x ∈ A∗. Also, A0(xr)≥
A0(x)∨A0(r) > 0, because A0(x) > 0 and so xr ∈ A∗. Similarly, ry ∈ A∗. Hence, A∗ is an
ideal of R.

Theorem 3.3. Let A = (µA,νA) be an intuitionistic fuzzy ideal with thresholds (s, t) of R.
Then, for any p ∈ (s, t], Ap is an ideal of R.

Proof. Let x,y ∈ Ap = {x ∈ R | [xp ∈ A] > 0}. Then, [xp ∈ A] > 0 and [yp ∈ A] > 0, which
implies that p≤ 1−νA(x) and p≤ 1−νA(y). Now, νA(x+y)∧ (1− s)≤ (νA(x)∨νA(y))∨
(1− t), implies (1− νA(x + y))∨ s ≥ (1− νA(x))∧ (1− νA(y))∧ t ≥ p∧ p∧ t = p. Thus,
1−νA(x+ y)≥ p, and so [(x+ y)p ∈ A]≥ 1/2 > 0. Therefore, x+ y ∈ Ap. Similarly, −x ∈
Ap. Let r ∈ R. Now, νA(xr)∧ (1− s)≤ (νA(x)∧νA(r))∨ (1− t), implies (1−νA(xr))∨ s≥
((1− νA(x))∨ (1− νA(r)))∧ t ≥ (p∨ (1− νA(r)))∧ t ≥ p∧ t = p. Thus, 1− νA(xr) ≥ p,
and so [(xr)p ∈ A]≥ 1/2 > 0. Therefore, xr ∈ Ap. Similarly, we have rx ∈ Ap. Hence, Ap is
an ideal of R.

Theorem 3.4. An IFS A = (µA,νA) of R is a (∈,∈)-intuitionistic fuzzy ideal of R if and only
if A is an intuitionistic fuzzy ideal of R with thresholds (0,1).

Proof. Suppose that A = (µA,νA) is a (∈,∈)-intuitionistic fuzzy ideal of R. To show A is an
intuitionistic fuzzy ideal of R with thresholds (0,1) i.e. to show
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(1) µA(x+ y)≥ µA(x)∧µA(y);
(2) µA(−x)≥ µA(x);
(3) µA(xy)≥ µA(x)∨µA(y);
(4) νA(x+ y)≤ νA(x)∨νA(y);
(5) νA(−x)≤ νA(x);
(6) νA(xy)≤ νA(x)∧νA(y), for all x,y ∈ R.

For (1), let t = µA(x)∧µA(y). Then, µA(x)≥ t and µA(y)≥ t, which implies that At(x) =
1 and At(y) = 1, and so [xt ∈ A] = 1 and [yt ∈ A] = 1. Now 1 ≥ [(xt + yt) ∈ A] ≥ [xt ∈
A]∧ [yt ∈ A] = 1⇒ [(xt + yt) ∈ A] = 1⇒ µA(x+ y)≥ t = µA(x)∧µA(y).

In a similar manner we can prove (2).
(3) Let t = µA(x)∨µA(y), then either µA(x) = t or µA(y) = t, which implies either At(x) =

1 or At(y) = 1, and so either [xt ∈ A] = 1 or [yt ∈ A] = 1. Now 1 ≥ [(xtyt) ∈ A] ≥ [xt ∈
A]∨ [yt ∈ A] = 1⇒ [(xy)t ∈ A] = 1⇒ µA(xy)≥ t = µA(x)∨µA(y).

(4) If νA(x + y) = 0, then it is obvious. Let s = νA(x + y) > 0 and let t ∈ [0,1] be such
that t > 1− s = 1−νA(x+ y), then we have 0 = [(xt + yt) ∈ A]≥ [xt ∈ A]∧ [yt ∈ A]⇒ [xt ∈
A]∧ [yt ∈ A] = 0⇒ [xt ∈ A] = 0 or [yt ∈ A] = 0 i.e., either t > 1−νA(x) or t > 1−νA(y)⇒
either νA(x) > 1− t or νA(y) > 1− t ⇒ νA(x)∨νA(y) > 1− t. Therefore, νA(x)∨νA(y) ≥
∨{1− t | t > 1−s}=∨{1− t | s > 1− t}= s = νA(x+y). Thus, νA(x+y)≤ νA(x)∨νA(y).

Similarly, we have (5).
Lastly, if νA(xy) = 0, then it is obvious. Let s = νA(xy) > 0 and let t ∈ [0,1] be such that

t > 1− s = 1−νA(xy), then we have 0 = [(xtyt) ∈ A]≥ [xt ∈ A]∨ [yt ∈ A]⇒ [xt ∈ A]∨ [yt ∈
A] = 0⇒ [xt ∈ A] = 0 and [yt ∈ A] = 0 i.e., t > 1−νA(x) and t > 1−νA(y)⇒ νA(x) > 1− t
and νA(y) > 1−t⇒ νA(x)∧νA(y) > 1−t. Therefore, νA(x)∧νA(y)≥∨{1−t | t > 1−s}=
∨{1− t | s > 1− t}= s = νA(xy). Thus, νA(xy)≤ νA(x)∧νA(y).

Conversely, we assume A is an intuitionistic fuzzy ideal of R with thresholds (0,1).
We need to show A = (µA,νA) is a (∈,∈)-intuitionistic fuzzy ideal of R. Let x,y ∈ R and
s, t ∈ (0,1].

Let a = [xs ∈ A]∧ [yt ∈ A].
Case I. a = 1. Then, [xs ∈ A] = 1 and [yt ∈ A] = 1⇒ µA(x)≥ s and µA(y)≥ t⇒ µA(x+

y)≥ µA(x)∧µA(y)≥ s∧ t⇒ [(xs + yt) ∈ A] = 1≥ 1 = [xs ∈ A]∧ [yt ∈ A].
Case II. a = 1/2. Then, [xs ∈ A] ≥ 1/2 and [yt ∈ A] ≥ 1/2⇒ 1− νA(x) ≥ s and 1−

νA(y)≥ t⇒ 1−νA(x+y)≥ 1−νA(x)∨νA(y) = (1−νA(x))∧ (1−νA(y))≥ s∧ t⇒ [(xs +
yt) ∈ A]≥ 1/2 = [xs ∈ A]∧ [yt ∈ A].

Case III. a = 0. Then, the result is obvious. Thus, in all cases we have [(xs + yt) ∈ A]≥
[xs ∈ A]∧ [yt ∈ A]. In a similar manner we can prove that [−xs ∈ A]≥ [xs ∈ A].

Let b = [xs ∈ A]∨ [yt ∈ A].
Case I. b = 1. Then, either [xs ∈ A] = 1 or [yt ∈ A] = 1⇒ either µA(x) ≥ s or µA(y) ≥

t⇒ µA(xy)≥ µA(x)∨µA(y)≥ s∨ t⇒ [(xsyt) ∈ A] = 1≥ 1 = [xs ∈ A]∨ [yt ∈ A].
Case II. b = 1/2. Then, either [xs ∈ A] = 1/2 or [yt ∈ A] = 1/2⇒ either 1−νA(x) ≥ s

or 1− νA(y) ≥ t ⇒ 1− νA(xy) ≥ 1− νA(x)∧ νA(y) = (1− νA(x))∨ (1− νA(y)) ≥ s∨ t ⇒
[(xsyt) ∈ A] ≥ 1/2 = [xs ∈ A]∨ [yt ∈ A]. Hence, A is a (∈,∈)-intuitionistic fuzzy ideal of
R.

As a consequence of Theorem 3.3 and Theorem 3.4, we have the following:

Theorem 3.5. If an IFS A = (µA,νA) of R is a (∈,∈)-intuitionistic fuzzy ideal of R, then for
any p ∈ (0,1], Ap is an ideal of R.
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Theorem 3.6. An IFS A = (µA,νA) of R is a (∈,∈ ∨q)-intuitionistic fuzzy ideal of R if and
only if A is an intuitionistic fuzzy ideal of R with thresholds (0,0.5).

Proof. Suppose that A = (µA,νA) is a (∈,∈ ∨q)-intuitionistic fuzzy ideal of R. To show A
is an intuitionistic fuzzy ideal of R with thresholds (0,0.5) i.e. to show

(1) µA(x+ y)≥ (µA(x)∧µA(y))∧0.5;
(2) µA(−x)≥ µA(x)∧0.5;
(3) µA(xy)≥ (µA(x)∨µA(y))∧0.5;
(4) νA(x+ y)≤ (νA(x)∨νA(y))∨0.5;
(5) νA(−x)≤ νA(x)∨0.5;
(6) νA(xy)≤ (νA(x)∧νA(y))∨0.5, for all x,y ∈ R.

For (1), let t = (µA(x)∧µA(y))∧0.5, then µA(x)≥ t, µA(y)≥ t⇒ [xt ∈ A] = 1, [yt ∈ A] = 1.
Therefore, from (1) of Definition 3.4 we have 1≥ [(xt +yt)∈∨qA]≥ [xt ∈ A]∧ [yt ∈ A] = 1.
Thus, [(xt + yt) ∈ ∨qA] = 1,
⇒ [(xt + yt) ∈ A]∨ [(xt + yt)qA] = 1,
⇒ [(xt + yt) ∈ A] = 1 or [(xt + yt)qA] = 1,
⇒ µA(x+ y)≥ t or µA(x+ y)+ t > 1,
⇒ µA(x+ y)≥ t or µA(x+ y) > 1− t ≥ 0.5≥ t,
⇒ µA(x+ y)≥ t = (µA(x)∧µA(y))∧0.5.
Similarly, we can prove (2).
(3)Let t = (µA(x) ∨ µA(y)) ∧ 0.5 = (µA(x) ∧ 0.5) ∨ (µA(y) ∧ 0.5). This implies that

(µA(x)∧0.5)= t or (µA(y)∧0.5)= t⇒ µA(x)≥ t or µA(y)≥ t⇒ [xt ∈A] = 1 or [yt ∈A] = 1.
Therefore, from (3) of Definition 3.4 we have
1≥ [(xtyt) ∈ ∨qA]≥ [xt ∈ A]∨ [yt ∈ A] = 1. Thus, [(xtyt) ∈ ∨qA] = 1,
⇒ [(xtyt) ∈ A] = 1 or [(xtyt)qA] = 1,
⇒ µA(xy)≥ t or µA(xy)+ t > 1,
⇒ µA(xy)≥ t or µA(xy) > 1− t ≥ 0.5≥ t,
⇒ µA(xy)≥ t = (µA(x)∨µA(y))∧0.5.
(4) Let νA(x)∨νA(y)∨0.5 = 1−s. Then, νA(x)≤ 1−s and νA(y)≤ 1−s⇒ s≤ 1−νA(x)

and s ≤ 1− νA(y) ⇒ [xs ∈ A] ≥ 1/2 and [ys ∈ A] ≥ 1/2. Therefore, from (1) of defi-
nition 3.4 we have, 1 ≥ [(xt + yt) ∈ ∨qA] ≥ [xt ∈ A]∧ [yt ∈ A] ≥ 1/2. This implies that
[(xt + yt) ∈ A]∨ [(xt + yt)qA]≥ 1/2,
⇒ [(xt + yt) ∈ A]≥ 1/2 or [(xt + yt)qA]≥ 1/2,
⇒ either s≤ 1−νA(x+ y) or νA(x+ y) < s≤ 1− s, [since 1− s≥ 0.5 so, s≤ 0.5]
⇒ νA(x+ y)≤ 1− s = νA(x)∨νA(y)∨0.5.
Similarly, we can prove (5).
(6) Let (νA(x)∧νA(y))∨0.5 = 1− s. Then
1− (νA(x)∨0.5)∧ (νA(y)∨0.5) = s,
⇒ (1−νA(x)∨0.5)∨ (1−νA(y)∨0.5) = s,
⇒ ((1−νA(x))∧0.5)∨ ((1−νA(y))∧0.5) = s,
⇒ (1−νA(x))∧0.5 = s or (1−νA(y))∧0.5 = s,
⇒ (1−νA(x))≥ s or (1−νA(y))≥ s,
⇒ [xs ∈ A]≥ 1/2 or [ys ∈ A]≥ 1/2,
⇒ [xsys ∈ ∨qA]≥ [xs ∈ A]∨ [ys ∈ A]≥ 1/2, [By (3) of Definition 3.4]
⇒ [xsys ∈ ∨qA]≥ 1/2,
⇒ [xsys ∈ A]≥ 1/2 or [xsysqA]≥ 1/2,
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⇒ s≤ 1−νA(xy) or νA(xy) < s≤ 1− s, [Since 1− s≥ 0.5, so s≤ 0.5]
⇒ νA(xy)≤ 1− s or νA(xy)≤ 1− s,
⇒ νA(xy)≤ 1− s = (νA(x)∧νA(y))∨0.5
Conversely, we assume A is an intuitionistic fuzzy ideal of R with thresholds (0,0.5).

We claim A is a (∈,∈ ∨q)-intuitionistic fuzzy ideal of R. Let x,y ∈ R and for s, t ∈ [0,1], let
a = [xs ∈ A]∧ [yt ∈ A].

Case I. a = 1. Then, [xs ∈ A] = 1 and [yt ∈ A] = 1, which implies that µA(x) ≥ s and
µA(y)≥ t.
If [(xs + yt) ∈ ∨qA] ≤ 1/2, then µA(x + y) < s∧ t and µA(x + y) ≤ 1− s∧ t. Thus, 0.5 >
µA(x + y) ≥ µA(x)∧ µA(y)∧0.5. So, µA(x + y) ≥ µA(x)∧ µA(y) ≥ s∧ t, a contradiction to
µA(x+ y) < s∧ t . Thus, we must have [(xs + yt) ∈ ∨qA] = 1.

Case II. a = 1/2. Then, [xs ∈A]≥ 1/2 and [yt ∈A]≥ 1/2 which implies that 1−νA(x)≥ s
and 1−νA(y)≥ t. Now

1−νA(x)∨νA(y) = (1−νA(x))∧ (1−νA(y))≥ s∧ t

If [(xs + yt) ∈ ∨qA] = 0, then (1− νA(x + y)) < s∧ t and νA(x + y) ≥ s∧ t. Now, from
0.5 < νA(x+y)≤ νA(x)∨νA(y)∨0.5, we get νA(x+y)≤ νA(x)∨νA(y) and 1−νA(x+y)≥
1−νA(x)∨νA(y) = (1−νA(x))∧ (1−νA(y)) ≥ s∧ t, which contradicts (1−νA(x + y)) <
s∧ t. Therefore, we must have [(xs + yt) ∈ ∨qA]≥ 1/2 = [xs ∈ A]∧ [yt ∈ A].

Case III. a = 0. Then, the result is obvious. Thus, in all cases, [(xs + yt) ∈ ∨qA]≥ [xs ∈
A]∧ [yt ∈ A].

Similarly, we can prove that [−xs ∈ ∨qA]≥ [xs ∈ A].
Next, we claim that [(xsyt) ∈ ∨qA]≥ [xs ∈ A]∨ [yt ∈ A]. Let b = [xs ∈ A]∨ [yt ∈ A].
Case I. b = 1. Then, either [xs ∈ A] = 1 or [yt ∈ A] = 1, which implies either µA(x)≥ s or

µA(y)≥ t. If [xsyt ∈∨qA]≤ 1/2, then [xsyt ∈ A]≤ 1/2 and [xsytqA]≤ 1/2⇒ µA(xy) < s∨ t
and s∨ t ≤ 1− µA(xy) ⇒ µA(xy) < s∨ t and µA(xy) ≤ 1− s∨ t. Now, 0.5 > µA(xy) ≥
(µA(x)∨ µA(y))∧ 0.5 implies µA(xy) ≥ µA(x)∨ µA(y) ≥ s∨ t, a contradiction to µA(xy) <
s∨ t. Therefore, we must have [xsyt ∈ ∨qA] = 1.

Case II. b = 1/2. Then, either [xs ∈ A] = 1/2 or [yt ∈ A] = 1/2, which implies either
s ≤ 1− νA(x) or t ≤ 1− νA(y). If [xsyt ∈ ∨qA] = 0, then [xsyt ∈ A] = 0 and [xsytqA] =
0⇒ s∨ t > 1−νA(xy) and s∨ t ≤ νA(xy)⇒ νA(xy) > 1− s∨ t and s∨ t ≤ νA(xy)⇒ 0.5 <
νA(xy)≤ (νA(x)∧νA(y))∨0.5⇒ νA(xy)≤ νA(x)∧νA(y). Now, 1−νA(xy)≥ 1−νA(x)∧
νA(y) = (1−νA(x))∨(1−νA(y))≥ s∨t, a contradiction to s∨t > 1−νA(xy). Therefore, we
have [xsyt ∈ ∨qA]≥ 1/2 = [xs ∈ A]∨ [yt ∈ A]. Hence, [xsyt ∈ ∨qA]≥ [xs ∈ A]∨ [yt ∈ A].

As a consequence of Theorem 3.3 and Theorem 3.6, we have the following:

Theorem 3.7. If an IFS A = (µA,νA) of R is a (∈,∈ ∨q)-intuitionistic fuzzy ideal of R, then
for any p ∈ (0,0.5], Ap is an ideal of R.

Theorem 3.8. An IFS A = (µA,νA) of R is a (∈ ∧q,∈)-intuitionistic fuzzy ideal of R if and
only if A is an intuitionistic fuzzy ideal of R with thresholds (0.5,1).

Proof. Suppose that A = (µA,νA) is a (∈ ∧q,∈)-intuitionistic fuzzy ideal of R. To show
(1) µA(x+ y)∨0.5≥ µA(x)∧µA(y);
(2) µA(−x)∨0.5≥ µA(x);
(3) µA(xy)∨0.5≥ µA(x)∨µA(y);
(4) νA(x+ y)∧0.5≤ νA(x)∨νA(y);
(5) νA(−x)∧0.5≤ νA(x);
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(6) νA(xy)∧0.5≤ νA(x)∧νA(y), for all x,y ∈ R.
Let x,y ∈ R and t = µA(x)∧µA(y). If µA(x+ y)∨0.5 < t = µA(x)∧µA(y), then

µA(x)≥ t > 0.5 and µA(y)≥ t > 0.5,
⇒ [xt ∈ A] = 1, [xtqA] = 1, [yt ∈ A] = 1, [ytqA] = 1,
⇒ [xt ∈ ∧qA] = 1, [yt ∈ ∧qA] = 1,
⇒ [xt ∈ ∧qA]∧ [yt ∈ ∧qA] = 1.
Therefore, [(xt +yt)∈A]≥ [xt ∈∧qA]∧ [yt ∈∧qA] = 1, which gives [(xt +yt)∈A] = 1⇒

µA(x+y)≥ t, a contradiction to our assumption µA(x+y)≤ µA(x+y)∨0.5 < t. Therefore,
we have µA(x+ y)∨0.5≥ t = µA(x)∧µA(y).

Similarly, we can prove that µA(−x)∨0.5≥ µA(x).
Next, let t = µA(x)∨µA(y), then µA(x) = t or µA(y) = t. If µA(xy)∨0.5 < t, then either

µA(x) = t > 0.5 or µA(y) = t > 0.5, which implies that [xt ∈ ∧qA] = 1, or [yt ∈ ∧qA] = 1.
Now

[(xtyt) ∈ A]≥ [xt ∈ ∧qA]∨ [yt ∈ ∧qA] = 1
From which we get [(xtyt) ∈ A] = 1⇒ µA(xy) ≥ t, which contradicts to our assumption
µA(xy) < t. Therefore, we must have µA(xy)∨0.5≥ t = µA(x)∨µA(y).

(4) let t = 1− s = νA(x)∨νA(y), then 1− s≥ νA(x),1− s≥ νA(y). If νA(x+y)∧0.5 > t,
then we have s≤ 1−νA(x), s≤ 1−νA(y), νA(x+ y) > t and s > 0.5 > t, and so [xs ∈ A]≥
1/2, [ys ∈ A] ≥ 1/2, νA(x + y) > t and s > 0.5 > t. Also, νA(x) ≤ t < s and νA(y) ≤ t < s
imply [xsqA] ≥ 1/2, [ysqA] ≥ 1/2. Therefore, from [(xs + ys) ∈ A] ≥ [xs ∈ ∧qA]∧ [ys ∈
∧qA] ≥ 1/2 we have [(xs + ys) ∈ A] ≥ 1/2. This implies that s ≤ 1−νA(x + y), which is a
contradiction to νA(x+ y) > t = 1− s. Hence, νA(x+ y)∧0.5≤ t = νA(x)∨νA(y).

Similarly, we can prove that νA(−x)∧0.5≤ νA(x).
(6) Let t = 1− s = νA(x)∧νA(y). Then
s = (1−νA(x))∨ (1−νA(y)),
⇒ s = 1−νA(x) or s = 1−νA(y),
⇒ [xs ∈ A]≥ 1/2 or [ys ∈ A]≥ 1/2.
If νA(xy)∧ 0.5 > t, then νA(xy) > t and t < 0.5 < s. Therefore, s = 1− νA(x) or s =

1−νA(y) which implies that νA(x) = 1− s = t < s or νA(y) = 1− s = t < s⇒ [xsqA]≥ 1/2
or [ysqA]≥ 1/2. Thus, we have
[xs ∈ A]≥ 1/2 or [ys ∈ A]≥ 1/2 and [xsqA]≥ 1/2 or [ysqA]≥ 1/2.
Now if [xs ∈ A]≥ 1/2 and [xsqA] = 0, then we get s≤ 1−νA(x) and s≤ νA(x)⇒ νA(x)≤
1− s = t < 0.5 < s, (since t < 0.5 < s), which contradicts to νA(x)≥ s.

Therefore, [xs ∈ A] ≥ 1/2 and [xsqA] = 0 can’t hold simultaneously.Thus, if [xs ∈ A] ≥
1/2, then [xsqA]≥ 1/2.

Similarly, if [ys ∈ A]≥ 1/2, then [ysqA]≥ 1/2.
Again, if [xsqA]≥ 1/2 and [xs ∈ A] = 0, then we get νA(x) < s, s > 1−νA(x). Therefore,

s > νA(x) > 1− s, which is true for all s > 0.5 > t. Hence, we must have, νA(x) = 0.5.
Similarly, if [ysqA]≥ 1/2 and [ys ∈ A] = 0, then νA(y) = 0.5. Now, t = νA(x)∧νA(y) = 0.5,
which contradicts to t < 0.5. Therefore, we must have

[xsqA]≥ 1/2 and [xs ∈ A]≥ 1/2 or [ysqA]≥ 1/2 and [ys ∈ A]≥ 1/2.
Thus, if [xs ∈ A]≥ 1/2, then [xsqA]≥ 1/2 and vice versa.
or, if [ys ∈ A]≥ 1/2, then [ysqA]≥ 1/2 and vice versa.

Thus, in all cases, we have
[(xsys) ∈ A]≥ [xs ∈ ∧qA]∨ [ys ∈ ∧qA],
⇒ [(xsys) ∈ A] ≥ (([xs ∈ A] ∨ [ys ∈ A]) ∧ ([xsqA] ∨ [ys ∈ A])) ∧ (([xs ∈ A] ∨ [ysqA]) ∧
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([xsqA]∨ [ysqA]))≥ 1/2,
⇒ [(xsys)∈ A]≥ 1/2⇒ s≤ 1−νA(xy). Therefore, νA(xy)≤ 1−s = t, which contradicts

to νA(xy) > t. Hence, νA(xy)∧0.5≤ t = νA(x)∧νA(y).
Conversely, we assume A is an intuitionistic fuzzy ideal with thresholds (0.5,1). Let

x,y ∈ R, s, t ∈ [0,1] and a = [xs ∈ ∧qA]∧ [yt ∈ ∧qA]. Then
Case I. a = 1. Then, µA(x)≥ s,µA(x)+ s > 1,µA(y)≥ t,µA(y)+ t > 1. This implies that

µA(x)≥ 0.5 and µA(y)≥ 0.5. Now, we have µA(x+y)≥ µA(x)∧µA(y)≥ s∧ t, from which
we get [(xs + yt) ∈ A] = 1.

Case II. a = 1/2. Then, s≤ 1−νA(x), νA(x) < s, t ≤ 1−νA(y), νA(y) < t,
⇒ 1−νA(x)≥ s > νA(x), 1−νA(y)≥ t > νA(y),
⇒ νA(x) < 0.5, νA(x) < 0.5.
Therefore, νA(x + y)∧ 0.5 ≤ νA(x)∨νA(y)⇒ νA(x + y) ≤ νA(x)∨νA(y) which implies

that 1−νA(x + y) ≥ (1−νA(x))∧ (1−νA(y)) ≥ s∧ t. Thus, [(xs + yt) ∈ A] ≥ 1/2. Hence,
[(xs + yt) ∈ A]≥ [xs ∈ ∧qA]∧ [yt ∈ ∧qA].

Similarly, we can prove that [−xs ∈A]≥ [xs ∈∧qA]. Next, let b = [xs ∈∧qA]∨ [yt ∈∧qA].
Case I. b = 1. Then, either µA(x) ≥ s,µA(x)+ s > 1 or µA(y) ≥ t,µA(y)+ t > 1. This

implies, either µA(x)≥ 0.5 or µA(y)≥ 0.5. Now,
µA(xy)≥ µA(x)∨µA(y)≥ s∨ t, from which we get [(xsyt) ∈ A] = 1.

Case II. a = 1/2. Then, either s≤ 1−νA(x), νA(x) < s or t ≤ 1−νA(y), νA(y) < t,
⇒ 1−νA(x)≥ s > νA(x) or 1−νA(y)≥ t > νA(y),
⇒ νA(x) < 0.5 or νA(x) < 0.5.
Therefore, νA(xy)∧ 0.5 ≤ νA(x)∧ νA(y)⇒ νA(xy) ≤ νA(x)∧ νA(y) which implies that

1−νA(xy) ≥ (1−νA(x))∨ (1−νA(y)) ≥ s∨ t. Thus, [(xsyt) ∈ A] ≥ 1/2. Hence, [(xsyt) ∈
A]≥ [xs ∈ ∧qA]∨ [yt ∈ ∧qA]. Therefore, A is a (∈ ∧q,∈)-intuitionistic fuzzy ideal of R.

As a consequence of Theorem 3.3 and Theorem 3.8, we have the following:

Theorem 3.9. If an IFS A = (µA,νA) of R is a (∈ ∧q,∈)-intuitionistic fuzzy ideal of R, then
for any p ∈ (0.5,1], Ap is an ideal of R.

Theorem 3.10. An intuitionistic fuzzy set, A = (µA,νA) of R is a (∈,∈)-intuitionistic fuzzy
ideal of R if and only if for any a ∈ [0,1], Aa is a fuzzy ideal of R.

Proof. Suppose that A is a (∈,∈)-intuitionistic fuzzy ideal of R. Let x,y ∈ R and a ∈ [0,1].
Then

Aa(x+ y) = [(x+ y)a ∈ A] = [(xa + ya) ∈ A]≥ [xa ∈ A]∧ [ya ∈ A] = Aa(x)∧Aa(y),
Aa(−x) = [−xa ∈ A]≥ [xa ∈ A] = Aa(x),
Aa(xy) = [(xy)a ∈ A] = [(xaya) ∈ A]≥ [xa ∈ A]∨ [ya ∈ A] = Aa(x)∨Aa(y),
Hence, Aa is a fuzzy ideal of R.
Conversely, we assume for any a ∈ [0,1], Aa is a fuzzy ideal of R. Let x,y ∈ R and

s, t ∈ [0,1]. We will prove [(xsyt) ∈ A] ≥ [xs ∈ A]∨ [yt ∈ A] and proofs of the other two
conditions [(xs + yt) ∈ A]≥ [xs ∈ A]∧ [yt ∈ A] and [−xs ∈ A]≥ [xs ∈ A] are straightforward
and can be obtained in the similar manner. Let a = [xs ∈ A]∨ [yt ∈ A].

Case I. a = 1. Then, either [xs ∈ A] = 1 or [xt ∈ A] = 1, which gives either As(x) = 1 or
At(y) = 1. Now, if As(x) = 1, then As(xy)≥ As(x)∨As(y) = 1. Therefore, As(xy) = 1, and
so µA(xy)≥ s. Similarly, if At(y) = 1, then µA(xy)≥ t. Thus, µA(xy)≥ s∨ t which implies
that As∨t(xy) = 1. Hence, [xsyt ∈ A] = 1.

Case II. a = 1/2. Then, either [xs ∈A]≥ 1/2 or [xt ∈A]≥ 1/2, which gives either As(x)≥
1/2 or At(y) ≥ 1/2. Now, if As(x) ≥ 1/2, then As(xy) ≥ As(x)∨As(y) ≥ 1/2. Therefore,
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As(xy)≥ 1/2, and so s ≤ 1−νA(xy). Similarly, if At(y)≥ 1/2, then t ≤ 1−νA(xy). Thus,
s∨ t ≤ 1−νA(xy), which implies that As∨t(xy)≥ 1/2. Hence, [xsyt ∈ A]≥ 1/2. Thus, in all
cases, we get [xsyt ∈ A]≥ [xs ∈ A]∨ [yt ∈ A].

Theorem 3.11. An intuitionistic fuzzy set, A = (µA,νA) of R is a (∈,∈ ∨q)-intuitionistic
fuzzy ideal of R if and only if for any a ∈ [0,0.5], Aa is a fuzzy ideal of R.

Proof. Suppose that A is a (∈,∈ ∨q)-intuitionistic fuzzy ideal of R. Then, for any a ∈
(0,0.5] and x,y ∈ R, we have

[xaya ∈ ∨q]≥ [xa ∈ A]∨ [ya ∈ A]⇒ Aa(xy)∨A[a](xy)≥ Aa(x)∨Aa(y).

Since 0 < a≤ 0.5, therefore we have a≤ 0.5≤ 1−a. Then

A[a](xy) = A1−a(xy)≤ Aa(xy)≤ Aa(xy).

Therefore, Aa(x)∨Aa(y)≤ Aa(xy)∨A[a](xy)≤ Aa(xy)∨Aa(xy) = Aa(xy), and so Aa(xy)≥
Aa(x)∨Aa(y). Similarly, we can prove that Aa(x+y)≥ Aa(x)∧Aa(y) and Aa(−x)≥ Aa(x).
Therefore, for any a ∈ [0,0.5], Aa is a fuzzy ideal of R.

Conversely, we assume for any a ∈ [0,0.5], Aa is a fuzzy ideal of R. Let s, t ∈ [0,1] and
x,y ∈ R.

(1) If s∧ t ≤ 0.5, then let a = [xs ∈ A]∧ [yt ∈ A].
Case I. a = 1. Then, As(x) = 1 and At(y) = 1, and so As∧t(x + y) ≥ As∧t(x)∧As∧t(y) ≥

As(x)∧At(y) = 1. Therefore, we have As∧t(x + y) = 1⇒ [(xs + yt) ∈ A] = 1. Now, [(xs +
yt) ∈ ∨qA] = [(xs + yt) ∈ A]∨ [(xs + yt)qA] = 1.

Case II. a = 1/2. Then, As(x) ≥ 1/2 and At(y) ≥ 1/2, and so As∧t(x + y) ≥ As∧t(x)∧
As∧t(y) ≥ As(x)∧At(y) ≥ 1/2. Therefore, we have As∧t(x + y) ≥ 1/2⇒ [(xs + yt) ∈ A] ≥
1/2. Now, [(xs + yt) ∈ ∨qA] = [(xs + yt) ∈ A]∨ [(xs + yt)qA]≥ 1/2. Therefore, [(xs + yt) ∈
∨qA]≥ [xs ∈ A]∧ [yt ∈ A].

If s∧ t > 0.5, then let a ∈ (0,1) such that 1− s∧ t < a < 0.5 < s∧ t. Now, A[s∧t](x+y) =
A1−s∧t(x+ y)≥ As∧t(x+ y) and A[s∧t](x+ y) = A1−s∧t(x+ y)≥ Aa(x+ y).

Therefore, [(xs +yt)∈∨qA] = [(xs +yt)∈A]∨ [(xs +yt)qA] = As∧t(x+y)∨A[s∧t](x+y) =
A[s∧t](x + y) ≥ Aa(x + y) ≥ Aa(x)∧Aa(y) ≥ As(x)∧At(y) = [xs ∈ A]∧ [yt ∈ A], and hence
[(xs + yt) ∈ ∨qA]≥ [xs ∈ A]∧ [yt ∈ A].

Similarly, we can prove that [−xs ∈ ∨qA]≥ [xs ∈ A].
(3) If s∨ t ≤ 0.5, then let b = [xs ∈ A]∨ [yt ∈ A].
Case I. b = 1. Then, either As(x) = 1 or At(y) = 1. If As(x) = 1, then As(xy) ≥

As(x)∨As(y) = 1, and so As(xy) = 1. This implies that µA(xy)≥ s. Similarly, if At(y) = 1,
then µA(xy) ≥ t. Therefore, we obtain µA(xy) ≥ s∨ t, from which we get [(xsyt) ∈ A] = 1.
Thus, [(xsyt) ∈ ∨qA] = [(xsyt) ∈ A]∨ [(xsyt)qA] = 1.

Case II. b = 1/2. Then, either As(x) = 1/2 or At(y) = 1/2. If As(x) = 1/2, then
As(xy) ≥ As(x) ∨ As(y) ≥ 1/2, and so s ≤ 1− νA(xy). Similarly, if At(y) = 1/2, then
t ≤ 1− νA(xy). Therefore, we have s∨ t ≤ 1− νA(xy) which implies that As∨t(xy) ≥ 1/2.
Thus, [xsyt ∈ A]≥ 1/2, and so [(xsyt) ∈ ∨qA] = [(xsyt) ∈ A]∨ [(xsyt)qA]≥ 1/2. Therefore,
[(xsyt) ∈ ∨qA]≥ [xs ∈ A]∨ [yt ∈ A].

If s∨ t > 0.5, then let a ∈ (0,1) be such that 1− s∨ t < a < 0.5 < s∨ t. Now,
A[s∨t](xy) = A1−s∨t(xy)≥ As∨t(xy), and A[s∨t](xy) = A1−s∨t(xy)≥ Aa(xy).
Therefore, [(xsyt)∈∨qA] = [(xsyt)∈A]∨[(xsyt)qA] = As∨t(xy)∨A[s∨t](xy)= A[s∨t](xy)≥

Aa(xy) ≥ Aa(x)∨Aa(y) ≥ As(x)∨At(y) = [xs ∈ A]∨ [yt ∈ A], and hence [(xsyt) ∈ ∨qA] ≥
[xs ∈ A]∨ [yt ∈ A].
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Theorem 3.12. An intuitionistic fuzzy set, A = (µA,νA) of R is a (∈ ∧q,∈)-intuitionistic
fuzzy ideal of R if and only if for any a ∈ (0.5,1], Aa is a fuzzy ideal of R.

Proof. Suppose that A is a (∈ ∧q,∈)-intuitionistic fuzzy ideal of R. Let a ∈ (0.5,1] and
x,y ∈ R, then A[a](x)≥ Aa(x). Thus,

Aa(x+ y) = [(xa + ya) ∈ A]≥ [xa ∈ ∧qA]∧ [ya ∈ ∧qA]

= Aa(x)∧A[a](x)∧Aa(y)∧A[a](y) = Aa(x)∧Aa(y).

Therefore, Aa(x+ y)≥ Aa(x)∧Aa(y). Similarly, we have Aa(−x)≥ Aa(x).

Aa(xy) = [xaya ∈ A]≥ [xa ∈ ∧qA]∨ [ya ∈ ∧qA]

= (Aa(x)∧A[a](x))∨ (Aa(y)∧A[a](y)) = Aa(x)∨Aa(y).

Therefore, Aa(xy)≥ Aa(x)∨Aa(y).
Conversely, we assume for any a ∈ (0.5,1], Aa is a fuzzy ideal of R. Let x,y ∈ R,s, t ∈

(0,1].
(1) Let b = [xs ∈ ∧qA]∧ [yt ∈ ∧qA].
Case I. b = 1. Then, µA(x) ≥ s, µA(x) > 1− s, µA(y) ≥ t, µA(y) > 1− t. Therefore,

µA(x) > 0.5, µA(y) > 0.5. Let a = µA(x)∧µA(y). Then, a > 0.5 and µA(x)≥ a, µA(y)≥ a,
and so Aa(x) = 1, Aa(y) = 1. Thus, Aa(x + y) ≥ Aa(x)∧Aa(y) = 1 implies Aa(x + y) = 1,
and so µA(x+ y)≥ a = µA(x)∧µA(y)≥ s∧ t. Therefore, [(xs + yt) ∈ A] = 1.

Case II. b = 1/2. Then, 1− νA(x) ≥ s, s > νA(x) and 1− νA(y) ≥ t, t > νA(y) which
implies that νA(x) < 0.5,νA(y) < 0.5. Thus, 1−νA(x) > 0.5, 1−νA(y) > 0.5. Let a = (1−
νA(x))∧(1−νA(y)), then a > 0.5. Therefore, Aa(x+y)≥ Aa(x)∧Aa(y)≥ 1/2∧1/2 = 1/2,
[Since 1−νA(x) ≥ a, 1−νA(y) ≥ a]. This implies that 1−νA(x + y) ≥ a = (1−νA(x))∧
(1−νA(y))≥ s∧ t. Therefore, [(xs + yt) ∈ A]≥ 1/2 = [xs ∈ ∧qA]∧ [yt ∈ ∧qA].

(2) Similarly, we can prove that [−xs ∈ A]≥ [xs ∈ ∧qA].
(3) Let b = [xs ∈ ∧qA]∨ [yt ∈ ∧qA].
Case I. b = 1. Then, either µA(x)≥ s, µA(x) > 1− s or µA(y)≥ t, µA(y) > 1− t. There-

fore, µA(x) > 0.5 or µA(y) > 0.5. Let a = µA(x)∨µA(y), then a > 0.5. Also, µA(x) = a or
µA(y) = a, and so Aa(x) = 1 or Aa(y) = 1. Thus, Aa(xy)≥ Aa(x)∨Aa(y) = 1 which implies
that Aa(xy) = 1, and so µA(xy)≥ a = µA(x)∨µA(y)≥ s∨ t. Therefore, [(xsyt) ∈ A] = 1.

Case II. b = 1/2. Then, either 1− νA(x) ≥ s, s > νA(x) or 1− νA(y) ≥ t, t > νA(y),
which implies either νA(x) < 0.5 or νA(y) < 0.5. Thus, 1−νA(x) > 0.5 or 1−νA(y) > 0.5.
Let a = (1− νA(x))∨ (1− νA(y)), then a > 0.5. Therefore, Aa(xy) ≥ Aa(x)∨ Aa(y) ≥
1/2∨1/2 = 1/2, [Since 1−νA(x) = a or 1−νA(y) = a]. This implies that 1−νA(xy)≥ a =
(1−νA(x))∨(1−νA(y))≥ s∨t. Therefore, [(xsyt)∈A]≥ 1/2 = [xs ∈∧qA]∨ [yt ∈∧qA].

Theorem 3.13. An intuitionistic fuzzy set A = (µA,νA) of R is an intuitionistic fuzzy ideal
with thresholds (s, t) of R if and only if for any a ∈ (s, t], Aa is a fuzzy ideal of R.

Proof. Suppose that A is an intuitionistic fuzzy ideal with thresholds (s, t) of R. Let a ∈
(s, t],x,y ∈ R and b = Aa(x)∨Aa(y).

Case I. b = 1. Then, Aa(x) = 1 or Aa(y) = 1. This implies that µA(x)≥ a > s or µA(y)≥
a > s. Now, µA(xy)∨ s≥ (µA(x)∨µA(y))∧ t ≥ (a∨a)∧ t = a. Therefore µA(xy)≥ a which
implies that Aa(xy) = 1.

Case II. b = 1/2. Then, Aa(x) = 1/2 or Aa(y) = 1/2, which implies that 1−νA(x) ≥ a
or 1− νA(y) ≥ a. Thus, νA(x)∧ νA(y) ≤ 1− a < 1− s. Now, νA(xy)∧ (1− s) ≤ (νA(x)∧
νA(y))∨ (1− t) ≤ (1− a)∨ (1− t) = 1− a, [ Since t ≥ a and 1− s > 1− a ]. Therefore,
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1−νA(xy)≥ a, and so Aa(xy)≥ 1/2 = Aa(x)∨Aa(y). Hence, Aa(xy)≥ Aa(x)∨Aa(y).
Similarly, we have Aa(x+ y)≥ Aa(x)∧Aa(y) and Aa(−x)≥ Aa(x).
Conversely, we assume for any a ∈ (s, t], Aa is a fuzzy ideal of R.
(1) To show µA(x + y)∨ s≥ µA(x)∧µA(y)∧ t. If µA(x + y)∨ s < a = µA(x)∧µA(y)∧ t,

then a ∈ (s, t] and µA(x) ≥ a,µA(y) ≥ a. Thus, from Aa(x + y) ≥ Aa(x)∧Aa(y) = 1, we
have Aa(x + y) = 1, and so µA(x + y) ≥ a, which contradicts to µA(x + y) < a. Therefore,
µA(x+ y)∨ s≥ µA(x)∧µA(y)∧ t.

(2) Similarly, we have µA(−x)∨ s≥ µA(x)∧ t.
(3) To show µA(xy)∨ s ≥ (µA(x)∨ µA(y))∧ t. If µA(xy)∨ s < a = (µA(x)∨ µA(y))∧ t,

then a ∈ (s, t] and µA(x)≥ a or µA(y)≥ a. Thus, from Aa(xy)≥ Aa(x)∨Aa(y) = 1, we have
Aa(xy) = 1, and so µA(xy) ≥ a, which contradicts to µA(xy) < a. Therefore, µA(xy)∨ s ≥
(µA(x)∨µA(y))∧ t.

(4) To show νA(x + y)∧ (1− s) ≤ (νA(x)∨ νA(y))∨ (1− t). If νA(x + y)∧ (1− s) >
a = (νA(x)∨ νA(y))∨ (1− t), then (1− νA(x + y))∨ s < b = 1− a = (1− νA(x))∧ (1−
νA(y))∧ t, and so b ∈ (s, t] and (1−νA(x)) ≥ b, (1−νA(y)) ≥ b. Thus, from Aa(x + y) ≥
Aa(x)∧Aa(y)≥ 1/2, we have Aa(x+y)≥ 1/2, and so 1−νA(x+y)≥ b = 1−a. Therefore,
νA(x + y) ≤ a, which contradicts to νA(x + y) > a. Hence, νA(x + y)∧ (1− s) ≤ (νA(x)∨
νA(y))∨ (1− t).

(5) Similarly, we have νA(−x)∧ (1− s)≤ νA(x)∨ (1− t).
(6) To show νA(xy)∧(1−s)≤ (νA(x)∧νA(y))∨(1−t). If νA(xy)∧(1−s) > a = (νA(x)∧

νA(y))∨ (1− t), then (1−νA(xy))∨ s < b = 1− a = (1−νA(x))∨ (1−νA(y))∧ t, and so
b ∈ (s, t] and (1− νA(x)) ≥ b or (1− νA(y)) ≥ b. Thus, from Aa(xy) ≥ Aa(x)∨Aa(y) ≥
1/2, we have Aa(xy) ≥ 1/2, and so 1−νA(xy) ≥ b = 1−a. Therefore, νA(xy) ≤ a, which
contradicts to νA(xy) > a. Hence, νA(xy)∧ (1− s)≤ (νA(x)∧νA(y))∨ (1− t).

Hence, A = (µA,νA) is an intuitionistic fuzzy ideal with thresholds (s, t) of R.

4. Conclusion

In this article, we have defined a new kind of fuzzy subring and ideal namely, (α,β )-
intuitionistic fuzzy subrings and ideals, where α,β ∈ {∈, q, ∈ ∧q, ∈ ∨q}. Among the 16
such intuitionistic fuzzy ideals, (∈,∈), (∈,∈ ∨q ) and (∈ ∧q,∈) are significant. We have
investigated various properties of (α,β )-intuitionistic fuzzy ideals and attempted to con-
nect intuitionistic fuzzy ideal with thresholds (s, t). In our opinion this is an opening for
investigations of different types of (α,β )-intuitionistic fuzzy ideals.
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