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Abstract. This paper is concerned with the nonlinear boundary value problems for first or-
der integro-differential equations with impulsive integral conditions. By using of the method
of lower and upper solutions coupled with the monotone iterative technique, we give condi-
tions for the existence of extremal solutions.
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1. Introduction

In this paper, we consider the following nonlinear boundary value problem:

X' (1) = f(t,x(0),(Tx)(), (S 0)(@)), tel”,
(1.1) Ax(t) = I([[*, x(s)ds— [“ T K()ds), k=1,2,+,m,

8(x(0),x(T)) =0,

where f € C(JXRR), g€ (RLR), J =[0,T], J~ =J—{t1,2,+tw}, 0=1tg <11 <1 <
o <ty <tme1 =T, Iy € CR,R), Ax(ty) = x(t) = x(1), 0 < op—1 < (tx —1-1)/2, 0 < 7 <
(tr—t,-1)/2,k=1,2---m , and

' T
(Tx)(t) = f k(t,s)x(s)ds, (Sx)@) = f h(t, s)x(s)ds.
0 0

ke C(D,R*), D={(t,s) e JXJ: t=s}, he C(JXJ,R").

Recently, the general theory of impulsive differential equations has become an important
aspect of differential equations for its extensively application. As an important branch,
boundary value problems (BVPS) have drawn much attention (cf. [1-23]).

In the problem (1.1), we deal with the nonlinear boundary value problem g(x(0),x(T)) =
0, which includes three typical boundary valued problems:
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(1) If g(x(0), x(T)) = x(0) —x(T), (1.1) reduces to the periodic boundary value problem:
x(0) = x(T), which have been considered by many authors (cf. [6,8,9,13,17,20,23]).
@) If g(x(0),x(T)) = x(0) + x(T), (1.1) reduces to the anti-periodic boundary value
problem: x(0) = —x(T'), which also have been considered by many authors (cf.
[1,2,5,7,14,16,18]).
(iii) If g(x(0),x(T)) = x(0) —d, for any d € R, (1.1) reduces to initial value problem:
x(0) =d (cf. [3,12] and the references therein).

It is well known that the monotone iterative technique offers an approach for obtaining
approximate solutions of nonlinear differential equations. There also exist several works
devoted to the applications of this technique to boundary value problems of impulsive
differential equations. In [1, 2], the authors discussed the anti-periodic boundary value
problem of impulsive differential equations with monotone iterative technique. And in
[6, 8,9, 13, 17], the authors discussed the periodic boundary value problem of impulsive
differential equations with the same technique. However, in all papers connected with ap-
plications of the monotone iterative technique to impulsive problems, the authors assumed
that Ax(tx) = Ix(x(tx)) that is a short-term rapid change of the state at impulse points #
depends on the left side of their limits of x(#) (cf. [8,9, 15]).

Just recently, Jessada Tariboon [21] discussed a kind of functional differential equations

Th—1+0 k-1
) x(s)ds —f x(s)ds). We

Tk—1

note that the new jump conditions depend on the functional of path history on [fx — Tk, k]
before impulse points #; and functional of path history on (#x_1,#-1 + 0k-1] after the past
impulse points #;_;. It should be noticed that BVP (1.1) has a memory of the past state and
the history of the effects of impulses.

Chen and Sun [4] and Jankowski [10,11] discussed the nonlinear boundary value problem
of first order impulsive functional differential equations. Tariboon [21] considered bound-
ary value problems for first order functional differential equations with impulsive integral
conditions. Encouraged by the papers [4, 10, 11,21], we first establish a new comparison
principle for nonlinear boundary value problems for first order integro-differential equations
with impulsive integral conditions and then obtain the existence of extremal solutions by the
upper-lower solution and monotone iterative techniques.

with the new impulsive integral conditions Ax(#) = I ( ft :‘

-

2. Preliminaries and lemmas

Let PC(J) ={x:J — R;x(t) is continuous everywhere except for some #; at which x(t;)
and x(t,;) exist, and x(t];) =x(tx), k=1,2,---,m}). PC'(J) = {x € PC(J): X'(¢) is continuous
everywhere except for some # at which x'(z) and x'(z,) exist, and X'(7;) = x'(#), k =
1,2,---,m}. It is well known that PC(J) and PC'(J) are Banach spaces with the norms

Il x llpc=sup{lx®I: t€J}, |l xllpcr=max{ll xllpc, | " llpc}.

Denote a = max{tys1 —tx, k=0,1,2---m}.
A function x € PC'(J) is called a solution of problem (1.1) if it satisfies (1.1). In the
sequel, we shall need the following lemmas.
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Lemma 2.1. Let x(¢) € PCY(J) such that

X () +Mx(@)+ N@)(Tx)(@)+ NS x)(@) <0, te,
2.1) Ax(i) < =Ly [ x(s)ds, k=12, m,

x(0) < ux(T),

where M > 0, N(t),Ni(t) € C(,R),NO)+ N1 () 0in J, 0< Ly <1, 0<opq < (tx -
t-1)/2, 0< T < (tx —t5-1)/2, k=1,2---m, 0 < u < eMT. Suppose in addition that

T m
2.2) (e™™)7I fo q(s)ds + % ; Li(eMeien) — My < 1,

with

10=N0) f tk(t’ $)eM ™ ds + Ny (1) f ' h(t, s)eM=9ds.
Then x(t) <0 on J. ’ ‘
Proof. Let u(f) = M x(r), then we have

W (1) < ~N(@) [y k(t,$)e"Du(s)ds — Ny (1) [ ht, $)eMDu(s)ds, 1€,
(2.3) {Au(t) < —Li [ eMUIu(s)ds, k=12 .m.

l—1+0)—1

u(0) < ue M7 u(T).

Obviously, the function u(¢) and x(¢) have the same sign.
Suppose, to the contrary, that u(z) > 0 for some ¢ € J. It is enough to consider the follow-
ing two cases:

(i) There exists at~ € J, such that u(r~) > 0, and u(t) > 0 for all r € J.

(i) There exist t,, t* € J, such that u(t,) <0, u(t*) > 0.
Case (i) In view of (2.3), we know that u’(#) < 0 on J~ and Au(f;) < 0, hence u(¢) is non-
increasing, which implies u(0) > u(¢7) > 0 ,u(T) < u(0) < ue_MTu(T).

If 0 < u < M’ we get u(T) < 0, furthermore u(0) < 0, which is a contradiction.

If u = eMT | then u(0) < u(T),but u(t) is non-increasing, so u(t) = constant = u(t~) > 0, in
view of (2.3), we have 0 = u’ (1) < —N(¢) fo’k(t, $)eM=9 y(s)ds— Ny (1) fOT h(t, $)eM=y(s)ds <
0, which is a contradiction.

Case (ii) Let 7. € (t;,t;+11, i € {0,1,2,---m}, such that u(t,) = inf{u(t) : t€ J} <0, and t* €
(tj,tjs1], j€10,1,2,---m}, such that u(*) > 0.
If t. < t*, then i < j. Integrating the differential inequality in (2.3) from ¢, to ¢*, we obtain

u(t™) —u(t,)

£+ s £+ T J
S—N(t)f dsf k(s,r)eM(S_’)u(r)dr—Nl(t)f dsf h(s,NeMSu(r)dr + Z Au(ty)
ts 0 ts 0

k=i+1

Tk —Tk

r* ] r* j
< —u(t*)f q(s)ds+ Z Au(ty) < —u(t*)f q(s)ds —u(t,) Z Li eM=9) g ¢
b k=i+1 & k=i+1 lg—1+0k-1

=Tk

T m
< _u(t*)[f C](S)dS+Zka eM(tk_S)dS]
0 k=1 I

_1+0k—1
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T 1 m

=] [ s ) LMD M)
0 M =

T m
< —u(t)(ue M7 fo q(s)ds + % ;Lk(em*“”-” — My < —u(z,),

which is a contradiction to u(z*) > 0.
Ift. > ", theni> j.

(a) Suppose that u(T") > 0. Integrating the differential inequality in (2.3) from ¢, to T,
we obtain

u(T) —u(t,)

T X T T m
< —-N(7) f ds f k(s, NeMS D u(r)dr — Ni(f) f ds f h(s, e Du(rdr + Z Au(ty)
e 0 s 0 el

r 2 T U 1T
< —u(t, d Au(ty) < —u(t, ds —u(t, L Mt=s)q
< “(”f, g(s)ds+ ) Aulty) < “(’)ft q(s)ds—u(t) ) L e s

* k=i+1 * k=i+1 I—1+0)—1

=Tk

T m
< —uft, ds+ > L M(u=$) 4
u()[foq(s)szkf e 51

k=1 lg—110%—1

T m
1
= —u(t.)l f gUs)ds+ D7 LMW1k - M)
0 k=1

T m
< —u(t)(pe ™M fo q(s)ds + % ; Li(eM@k0) —  MTy] < —u(t,).

Then u(T) < 0,which is a contradiction.
(b) Suppose that u(T') <0, then

t* J
0 < u(t*) < u(0) — u(t,) f q(s)ds+ Z Au(ty).
0 =1
On the other hand
T m
w(T) < u(t,) - u(t,) f g(s)ds+ Z Au(ty).

* k=i+1

This implies

r J
0 < u(r*) < ue ™M u(T) - u(t,) f q(s)ds + Z Au(ty)
0 k=1

T m r* J
< pe M u(z,) —,ue_MTu(t*)f q(s)ds+pe™™MT Z Au(ty) - u(t*)f q(s)ds+ Z Au(ty).
8 k=i+1 0 k=1
So we obtain that

T 1 m
| f gs)ds+ - D LMD = M) > 1,
0 =1

which is a contradiction.



Nonlinear Boundary Value Problems for First Order Integro-Differential Equations 439

The proof is complete. 1
Let us consider the linear boundary value problem of (1.1):

X' (1) + Mx(t) + N(t)(Tx)(t) + N1 (£)(S x)(t) = o(¢), telJ,
=T, Tk
Ax(ty) = —Ly f o x(s)ds + Ik(fk n(s)ds
t—1+0 k-1 Tk—Tk

2.4) ti—1+0k-1 1 =Tk
- f n(s)ds) + Ly f n(s)ds,
Tr-1 l—1+0k-1
8(n(0),n(T)) + M1(x(0) —n(0)) = Ma(x(T) —n(T)) = 0,

where M > 0, N(t),Ni(t) e C(,R"), 0< Ly <1, 0 <01 < (tr —13-1)/2, 0 < 13 < (1 —
tr-1)/2, k=1,2---m, and o, n € PC(J).

Lemma 2.2. x € PC'(J) is a solution of (2.4) if and only if x € PC(J) is a solution of the
impulsive integral equation:

T m 1T,
x(f) = Ce‘MtBTI + f G(t,s)F(s)ds+ Z G(t, tk)[ — L f o x(s)ds
0 I

k=1 —110k-1

T lk—1+0 -1 Tk~ Tk
+ Ik(f n(s)ds — f n(s)ds) + ka r](s)ds],
=Tk T—1 l—1+0k-1

where F(t) = o(t) = N(O)(T x)(1) = N1 ()(S x)(?), Bn = —g(n(0),n(T)) + M3(0)— Man(T), C =
(M = Mre™TY 1 My # Mae™T and
CMyeMG—1=T) 4 MG—0 < s<t<T
G(t,s) = u
CMyeMis=1=1) 0<t<s<T.

Proof. 1f x(¢) is a solution of (2.4), by directly computation we have the following

Te—Tk

T m
x(t) = Ce_M’Bn + f G(t,s)F(s)ds+ Z G(t, tk)[ - Ly f x(s)ds
0 k=1 T

—1+0k-1
T lf—1+0)—1 =Tk
+ Ik(f n(s)ds — f n(s)ds) + ka n(s)ds].
=Tk Tj—1 -1 +0 -1
If x(¢) is a solution of the above mentioned integral equation, then for any # € J~, we have

y T
X = —M{Ce_MtBn +f (CMzeM(S_’_T) +eM(S_’))F(s)ds+f CMeM"DE(s5)ds
0

t

Tk—Tk Tk
+ Z (CMzeM(tk_t_T) +eM(”‘_’))[—ka x(s)ds+1k(f n(s)ds
1, 1,

0<ty <t k-110k-1 kK~ Tk
Th—1+t0 k-1 T —Tk Te—Tk
—f n(s)ds)+ka n(s)ds|+ Z CMzeM(tk_’_T)[—ka x(s)ds
k-1 I-1+0)-1 1<tp<T f-1+0)-1
T Tk—1+0k-1 Te—Tk
+ Ii( r](s)ds—f n(s)ds)+ka n(s)ds }+F(t)
=Tk Tr—1 lg—1+0k-1

Te—Tk

T m
= —M{Ce_M’Br] + f G(t,s)F(s)ds + Z G(t, tk)[ - ka x(s)ds
0 =1 i

—_1+0k—1
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Tk Ti—1+0k—1 =Tk
+ Ik(f n(s)ds — f n(s)ds) + ka n(s)ds
=Tk k-1 I—1+0)-1

= —Mx(t) + F(f).

} + F(1)

Ax(t) = x(1{) = x(1})

= e MT 4
(CMe_T 1)

Te—Tk Tic Tk—-1+0k-1
—ka x(s)ds+]k(f n(s)ds—f n(s)ds)
I—1+0)—1 =Tk Ti-1

Tk—Tk Tk—Tk T
+ka n(s)ds —CMge_MT[—ka x(s)ds+[k(f n(s)ds
174 174 174

—1+0)-1 —11t0%-1 ~Tk

Tj—1+0 -1 1 =Tk
—f n(s)ds)+ka n(s)ds}
th—1 fg-1+0)—1

=Tk U3 T—1+0k-1 =Tk
= —ka x(s)ds + Ik(f n(s)ds —f n(s)ds) + ka n(s)ds.
-1 +0k—1 =Tk Ti—1 T—1+0k-1

T m =Tk
x(0) = CBn+f CMzeM(S_T)F(s)ds+ZCMzeM(tk_T)[—ka x(s)ds
0 173

k=1 —1+t0k-1
U Tk—1+0k—1 T~ Tk
+Ik(f n(s)ds—f n(s)ds)+ka n(s)ds].
=Tk Ti-1 I—1+0 -1

T m
x(T)=Ce ™M By + f CMeM6™2D 4 MDD p(g)ds + Z CMeMt2D) 4 M=T)
0 k=1

=Tk U3 T—1+0k—1 Tk—Tk
— Ly f x(s)ds + Ik(f n(s)ds — f n(s)ds) + Ly f n(s)ds].
Ik—1+0)—1 =Tk k-1 le-11+0k-1

M, x(0) — Myx(T) = CM By — CMae ™" By = By = —g(1(0),7(T)) + M7 (0) - Man(T).
This yields g(r7(0),7(T)) + M (x(0) —(0)) — Mp(x(T) —n(T)) = 0. The proof is complete. 1

X

Then

Lemma 2.3. Assume that M >0, 0< Ly <1, 0<op1 < (tr —tr-1)/2, 0 < 7 < (t —
t-1)/2, k=1,2---m and the following inequality holds

T X T
supf G(t,s)[N(s)f k(s,r)dr+N1(s)f h(s,r)dr|ds
0 0 0

teJ

2.5)

m
+u ) Lia=(opr +m) < 1,
k=1
where N(t),Ny(t) € C(J,R"), u=max(| CM; |,| CMy |), C = (Mj — Mae™™T)~1, M, #
Mre™MT G(t,5) is defined as in Lemma 2.2. Then (2.4) has a unique solution.

Proof. For convenience, we set for any fixed n € PC(J)

k= Tk

T m
(Ax)(1) = Ce_M’Bn + f G(t,s)F(s)ds+ Z G(t, tk)[ - L f x(s)ds
0 =1 ’k

—1+0k-1
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T Tk—1+0 -1 k= Tk
+ Ik(f n(s)ds — f n(s)ds) + ka r](s)ds].
=Tk Tk-1 l-110k-1

Ifx,ye PC'(J), are two solutions of (2.4), by Lemma 2.2, they satisfy the following two im-
pulsive integral equation, respectively: x(¢) = (Ax)(t), y(t) = (Ay)(¢). Since maxej{G(t, 5)} =
max(| CMy |,| CM; |) = u, we have

| x=yllpc =l (Ax)(®) = (Ay)(@) llpc

T X T
= H f G(t, s)[N(s)f k(s,r)(—x(r) + y(r))dr + Nl(s)f h(s,r)(—x(r)+ y(r))dr}ds
0 0 0

m 1Tk T —Tk
+ ; ~LiG(t, tk)( L x(s)ds — ftk y(s)ds)

—1+0)—] —11t0k-1

PC

T X T
< supf G(t, s)[N(s)f k(s,r)dr+N1(s)f h(s,r)dr]ds [l x=yllpc
0 0 0

teJ

m
+1 ) Lia=(opr +m) =y llpc
k=1

T s T
= {supf G(t, s)[N(s)f k(s,r)dr+ Nl(s)f h(s, r)dr]ds
teJ JO 0 0

+M2Lk(a_(0'k—l +Tk))} lx=yllpc -

k=1
From (2.5) and the Banach fixed point theorem, the impulsive integral equation x = Ax has

a unique fixed point x € PC'(J). By Lemma 2.2, x is also the unique solution of (2.4). The
proof is complete. 1

3. Main result

In this section, we establish existence criteria for solution of problem (1.1) by the method of
lower and upper solutions and the monotone iterative technique,we shall need the following
definition.

Definition 3.1. A function a € PCY(J) is called a lower solution of (1.1) if:
o' () < f(t,a(0),(Ta)®), (S a)(D)), rel,
Batw) < ([ a@)ds— [ a(sds), k=12, m,
8(a(0),a(T)) <0.

Analogously, B€ PC'(J) is called an upper solution of (1.1) if:

B'@) 2 f(t.50),(TB®),(SB)D)), telJ,
8800 > ([ Bs - [ ploids). k=12,
8(B(0),8(T)) = 0.

For convenience, let us list the following conditions:
(H1) a(r), B(¢) are lower and upper solutions of (1.1) such that a(f) < B(¢).
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(H2) There exist constants M > 0 such that
f(t’x’y’z) —f(t,)_C,_)_),Z) 2 —M()C— }_C) —N(f)()’_)_’) _N] (t)(Z—Z),
wherever N(¢), N1(f) € C(J,R"), N()+ N1 (t) 0 in J, a(r) < x(¢) < x(t) < (1), (Ta)(r)

< Y@ <y < (TPB)D), (S a)(®) < 2(0) < z(r) < (SB)(D).
(H3) There exist constants 0 < L; < 1 for k = 1,2,---m, such that

Tk Tk—1+0)—1
Ik(f x(s)ds—f x(s)ds)
=Tk Tr-1
T k-1 01 Tk—Tk
—Ik( f ¥(s)ds - f y(s)ds)z—Lk( f X(5)— y(5)ds),
=Tk Tk-1 le-11+0k-1

wherever a(ty) < y(tx) < x(1) < B(ty), k=1,2,---m.
Remark 3.1. The assumption (H3) was also used by Tariboon in [21].
(H4) There exist constants M;, M, with 0 < M>e ™7 < M;, M; > 0 such that

g, y)—g(x",y ) SM(x—x")-M>(y-y"),

wherever a(0) < x~ <x<B(0), and a(T) <y <y <B(T)
(HS) The inequalities (2.2) and (2.5) hold.
Let [a(1).8(1)] = { x € PCY(J) : at) < x(0) < p(1) Ve € T},
Now we are in the position to establish the main results of this paper.

Theorem 3.1. Let (H1)—(H5) hold. Then there exist monotone sequences {a,(t)},{B,(f)} C
PC'(J) with a=ap<a <-a,<--<B,<---<B1 <Po=p such that lim, e, =
X«(1), limy—e0 By = x*(¢), uniformly on J. Moreover, x.(t),x*(t) are minimal and maximal
solution of (1.1)in [a(1),B(t)], respectively.

Proof. For each n € [a(7),B(1)], we consider (2.4) with

o (1) = f(&.n@),(Tn)(0), (S(®) + Mi(t) + NO)(T1)(®) + N1 ()(S n)(0).

By Lemma 2.3, we know that for any 5 € PC(J), (2.4) has a unique solution x € PC'(J).
Now we define an operator B as: x = An. then the operator B has the following proper-
ties:

(a). ap < Bay, BBy < Bo.
(b). By < B, if ag <m < < Po.
To prove (a), let @1 = Bay, and m(t) = ao(t) — a1 (t).
m’ (1) = a(1) — @ (1)
< ftao(®),(Tao)(®), (S ao)(®)) — [ f(t,a0(®), (Tao)(®), (S ao)(®)) + Mao(t)
+N@)(Tao)(t) + N1(t)(S @) — May () = N(t)(Tay )(2) = N1()(S a1)(1)]
= —M(ao(1) — a1(1) = N(@)(T (o — a1))(#) = N1()(S (o — a1))(7)
= —=Mm(1) = N@O)(Tm)(t) = N1 (1)(S m)(2).

Am(ty) = Aao(t) — Aa1 (t)

U T—1+0k-1 =Tk
< Ik(f ao(s)ds—f a/o(s)ds)—[—ka ai(s)ds
=Tk Tk—1 l—1+0k-1
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Tk Tk—-1+0)-1 Tk Tk
+ 1 (f ap(s)ds— f ao(s)ds) + Ly f ag(s)ds]
=Tk T-1 I-1t0k-1

Te—Tk Te—Tk
= —ka (ao(s) —ai(s))ds = —ka m(s)ds.
T

—11+0%-1 I-1t0)-1

m(0) = ao(0) —a1(0)
1 M,
<ao(T)- —ﬁg(ao(O),ao(T)) +ao(0)+ V(QI(T) —ao(T))
1 1
M, M,
M (ao(T) —a(T)) M, m(T)
By Lemma 2.1, we get m(t) <0 for r € J, thatis, @g < Bag. Similarly, we can prove that
BBy < fo.
To prove (b), let m(t) = x1(¢) — x2(¢), where x; = Bny, x» = Bnps.

m' (1) = x{(t) = x,(1)
= [f (6, (D), (Tn)@), (Sn1)@) + My () + N@O)(Tn1)(@) + Ni(D)(S 1)) — Mxi (1)
=N@OTx1)(®) = N1 (0)(S x)(D] = [f @, m2(8), (T2)(0), (S 72)(0)) + M2 (1)
+ N@(T12)(@) + N1 (0)(S m2) (1) — Mxa(8) = N(O)(Tx2)(#) = N1 (0)(S x2)(1)]
< =M(x1 (1) — x2(1)) = N(@)(T (x1 — x2))(#) = N1 (£)(S (x1 — x2))(7)
= =Mm(1) = N@)(Tm)(1) — N1 (H)(S m)(?).

Am(ty) = Axy (1) = Axz (1)

T~ Tk Tk Tk—1+0k-1 k= Tk
S[—ka xl(s)ds+lk(f nl(s)ds—f nl(s)ds)+ka nl(s)ds}
lg—1+0k-1 =Tk Ti-1 l-1+0)-1

=Tk U Ti—1+0k-1 =Tk
—[—ka xz(s)ds+lk(f r)z(s)ds—f nz(s)ds)+ka m(s)ds
I-1+0k-1 =Tk k-1 I—1+0)—1

=Tk Tk =Tk
< —ka (x1(s)—x2(8))ds = —ka m(s)ds.
1

k=110k-1 l-110k-1
m(0) = x1(0) — x2(0)
1 M,
= ——g(m(O), m(T) +m(0)+ —(X1(T) -ni(T))
[——g(nz(O) (1)) +m2(0) + —(X2(T) nA(T))

By Lemma 2.1, we get m(t) <0 for r € J, thatis Bn; < Bn,. Then (b) is proved.
Let @, = Bay—1 and 8, = BB, for k=1,2,--- we get

a=ap<a1 <@y < <Py < <P <Po=f

[SE—]
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Obviously, each a;, B; (i=1,2--) satisfies:
a;(1) + Ma;(t) + N()(Ta;)(t) + N1 (1)(S ;)(0) = f(t, i1 (1), (Tai-1)(®),(S @i-1)(1))
+Ma; () + NO(Tai- 1))+ Ni(D)( S a;i-1)(@), tel,
1—T, 1
Aa;(ty) = —kak ‘ a;(s)ds +Ik(fk a;_1(s)ds
178 17

—1+0 k-1 Tk

lj—1+0 -1 fe—Thk
—f ai—l(s)ds)"‘ka ai—1(8)ds, k=1,2,---.m,
th-1 Tk

—1+0k-1

8(@;-1(0),a;—1(T)) + M1 (;(0) — @i-1(0)) — M2 (a;(T) — a;-1(T)) = 0,

and
Bi(0) + MBi(t) + N()(TBi) (1) + N1 ()(S Bi)(t) = f(t,Bi—1 (1), (TBi=1)(1), (S Bi=1)(1))
+MBi1() + NO(TBi—)@) + N (DS Bi—1)(D), ted,

=Tk 1
ABi(t) = ~ Ly f ﬂi(s)ds+1k( B 1(s)ds
fe—1+0k—1
l—1+0k-1 =Tk
‘f ﬁil(S)dS)+ka Bici(s)ds, k=1,2,---,m,
Ik-1 ty.

=Tk
—1+0k-1

8(Bi-1(0),Bi-1(T)) + M1 (Bi(0) = Bi-1(0)) = M2(B«(T) = Bi-1(T)) = 0.

Therefore there exist x, and x* such that

lim @, = x.(t), lim B, = x"(¢)
n—oo n—oo
uniformly on J. Moreover, x.(t), x*(¢f) are solutions of (1.1) in [a(?),3(?)].
To prove that x.(¢), x*(f) are extremal solutions of (1.1), let x(¢) € [a(?),3(¢)] be any
solution of (1.1), that is:

x'(t) = £, x(@),(Tx)(0), (S x)(1)), tel,
Ax(t) = I ( [, sds— [0 x(s)ds), k=12 m,

8(x(0),x(T)) = 0.
Suppose that there exists a positive integer n such that a@,(f) < x < 8,(¢) on J. Then, let
m(t) = a4 1(t) — x(t), we have:
m' () = a,,,()—x' (1)
= [f(t, an(0), (T an)(1), (S @n)(1)) + May (1) + N(O)(T a,)() + N1 (£)(S a)(1)
—May,1 (1) = N(O(T ap1)(1) = N1 (DS @ns1)(O] = f(2,x(0), (T x)(2), (S x)(1))
< =M(ap.1(1) = x(1)) = NO(T (@ps1 = 2))(0) = N1 (D)(S (@1 = X))(1)
= —=Mm(1) = N()(T'm)(1) = N1 (£)(S m)(D).

Am(ty) = A1 (1) — Ax(ty)

Te—Tk U3 Tk—1+0k—1
—ka a,,+1(s)ds+lk(f a/n(s)ds—f a/n(s)ds)
Ig—-1+0)-1 =Tk |

=Tk U3 -1 +0 -1
+ Ly f a/n(s)ds] - Ik(f x(s)ds— f x(s)ds)
fe—1+0k-1 =Tk T-1
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=Tk 1 —Th
<L f (e (5) = x())ds = Ly f m(s)ds.
1

k=110k-1 I—1+0k-1
1 M,
m(0) = a,,41(0) — x(0) = —Vg(an(()), an(T)) + a,(0) + ﬁ(a’nﬂ (T) — au(T)) — x(0)
1 1

< L1 (x(0), (T + My x(0) = Mox(T)] + 22 (1) = 3(0) = 221
= M[ 5 1 2 M1 n+1 M] .

By Lemma 2.1, m(¢) <0 on J, i.e, @,+1(¢) < x on J. Similarly we obtain x < 8,4(¢) on J.
Since ag < x(f) < Bp on J, by induction we get a,(7) < x < 8,(¢) on J for every n. Therefore,
x«(t) < x(t) < x*(t) on J by taking n — co. The proof is complete. 1

Example 3.1. Consider the following boundary value problem:
xX'(H) = =2x(t) + % sin x(7) fotx(s)ds— 1—10 fol x(s)ds, te[0,1],t# %,
1
(3.1) Ax(%) =1 [} x(s)ds,
x(0)=2x(1)-x2(1)+1=0.
Let Ly =1/2,M =2,N(t) = N1(t) = 1/10,k(t,s) = h(t,s) = 1,J = [0,1],u = eM M| = My = 1.
Then for x;,yi,zi,i = 1,2,x1 2 x2,y1 2 y2,21 = 22,

I . 1
f(t,xl,ylszl)_f(tsXZ,YLZZ) = _2(-x1 _-x2)+ E(Slnx%_sulx%)(yl _)72)_ I_O(Zl _Zz)

1 1
> -2(x1 —x2) - E(Yl -y2)- E(Zl -22),

1%d1%d_1% d>1% .
Efo x(s) s_ifo y(s“‘ifo x(s)—y(s)s_—zﬁ (8) = y(s)ds,

where x > y. And

(x(0) = 2x(1) = ¥ (1) + 1) = ((0) = 2y(1) = y* (1) + 1) < (x(0) = y(0)) - (x(1) = y(1)),

where y(0) < x(0) and y(1) < x(1). Thus the conditions (H2),(H3) and (H4) hold. Direct
computation shows that

1
1 1 1 11 1 7 7
—(e2-1)= —e*+-el+—e =< —<1.
f(;q(s)ds+4(e ) 20@ +4e +4Oe 8<20<

T X} T
supf G(t,s)[N(s)f k(s,r)dr+N1(s)f h(s,r)dr]ds
reJ Jo 0 0
¢ 11
+M;Lk(a—(0'k_1 +10) = H)(1—6»—2)—1 <1.

Therefore, the condition (H5) holds. It is easy to verify that (3.1) admits lower solution a()
and upper solution S(f) given by

-1, rel0,1], L, tel0,1],
a(r) = [1 2l - v [1 d

-2, IE(i,l], 55 fE(z,l].
Obviously, a(f) < B(). And thus the conclusion of Theorem 3.1 holds for (3.1).
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