
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(2) (2013), 465–479

Some Results for the Apostol-Genocchi Polynomials of Higher Order

1HASSAN JOLANY, 2HESAM SHARIFI AND 3R. EIZADI ALIKELAYE
1School of Mathematics, Statistics and Computer Science, University of Tehran, Iran
2Department of Mathematics, Faculty of Science, University of Shahed, Tehran, Iran

3Faculty of Management and Accounting, Qazvin Islamic Azad University, Qazvin, Iran
1hassan.jolany@khayam.ut.ac.ir, 2hsharifi@shahed.ac.ir, 3re.eizadi@gmail.com

Abstract. The present paper deals with multiplication formulas for the Apostol-Genocchi
polynomials of higher order and deduces some explicit recursive formulas. Some earlier
results of Carlitz and Howard in terms of Genocchi numbers can be deduced. We introduce
the 2-variable Apostol-Genocchi polynomials and then we consider the multiplication theo-
rem for 2-variable Genocchi polynomials. Also we introduce generalized Apostol-Genocchi
polynomials with a,b,c parameters and we obtain several identities on generalized Apostol-
Genocchi polynomials with a,b,c parameters .
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1. Preliminaries and motivation

The classical Genocchi numbers can be defined in a number of ways. The way in which it
is defined is often determined by which sorts of applications they are intended to be used
for. The Genocchi numbers have wide-ranging applications from number theory and Com-
binatorics to numerical analysis and other fields of applied mathematics. There exist two
important definitions of the Genocchi numbers: the generating function definition, which
is the most commonly used definition, and a Pascal-type triangle definition, first given by
Philip Ludwig von Seidel, and discussed in [38]. As such, it makes it very appealing for use
in combinatorial applications. The idea behind this definition, as in Pascal’s triangle, is to
utilize a recursive relationship giving some initial conditions to generate the Genocchi num-
bers. The combinatorics of the Genocchi numbers were developed by Dumont in [8] and
various co-authors in the 70s and 80s. Dumont and Foata introduced in 1976 a three-variable
symmetric refinement of Genocchi numbers, which satisfies a simple recurrence relation. A
six-variable generalization with many similar properties was later considered by Dumont.
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In [13], Jang et al. defined a new generalization of Genocchi numbers, poly Genocchi num-
bers. Kim in [14] gave a new concept for the q-extension of Genocchi numbers and gave
some relations between q-Genocchi polynomials and q-Euler numbers. In [36], Simsek et
al. investigated the q-Genocchi zeta function and L-function by using generating functions
and Mellin transformation. Genocchi numbers are known to count a large variety of com-
binatorial objects, among which numerous sets of permutations. One of the applications
of Genocchi numbers that was investigated by Jeff Remmel in [29] is counting the num-
ber of up-down ascent sequences. Another application of Genocchi numbers is in Graph
Theory. For instance, Boolean numbers of the associated Ferrers Graphs are the Genocchi
numbers of the second kind [5]. A third application of Genocchi numbers is in Automata
Theory. One of the generalizations of Genocchi numbers that was first proposed by Han
in [7] proves useful in enumerating the class of deterministic finite automata (DFA) that
accept a finite language and in enumerating a generalization of permutations counted by
Dumont. Recently S. Herrmann in [10], presented a relation between the f -vector of the
boundary and the interior of a simplicial ball directly in terms of the f -vectors. The most
interesting point about this equation is the occurrence of the Genocchi numbers G2n. In
the last decade, a surprising number of papers appeared proposing new generalizations of
the classical Genocchi polynomials to real and complex variables or treating other topics
related to Genocchi polynomials. Qiu-Ming Luo in [25] introduced new generalizations of
Genocchi polynomials, he defined the Apostol-Genocchi polynomials of higher order and q-
Apostol-Genocchi polynomials and he obtained a relationship between Apostol-Genocchi
polynomials of higher order and Goyal-Laddha-Hurwitz-Lerch Zeta function. Next Qiu-
Ming Luo and H. M. Srivastava in [27] by Apostol-Genocchi polynomials of higher order
derived various explicit series representations in terms of the Gaussian hypergeometric func-
tion and the Hurwitz (or generalized) zeta function which yields a deeper insight into the
effectiveness of this type of generalization. Also it is clear that Apostol-Genocchi poly-
nomials of higher order are in a class of orthogonal polynomials and we know that most
such special functions that are orthogonal are satisfied in multiplication theorem, so in this
present paper we show this property is true for Apostol-Genocchi polynomials of higher
order.

The study of Genocchi numbers and their combinatorial relations has received much
attention [2, 8, 10, 14, 17, 19, 25, 30, 31, 34, 35, 38]. In this paper we consider some com-
binatorial relationships of the Apostol-Genocchi numbers of higher order. The unsigned
Genocchi numbers {G2n}n>1 can be defined through their generating function:

∞

∑
n=1

G2n
x2n

(2n)!
= x. tan

( x
2

)
and also

∑
n>1

(−1)nG2n
t2n
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=−t tanh
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= ∑
n>1

n−1

∑
m=0

(
2n−1

2m

)
(−1)mE2mt2n−1

22n−1(2n−1)!
,

we obtain for n > 1,

G2n =
n−1

∑
k=0

(−1)n−k−1(n− k)
(

2n
2k

)
E2k

22n−2

where Ek are Euler numbers. Also the Genocchi numbers Gn are defined by the generating
function

G(t) =
2t

et +1
=

∞

∑
n=0

Gn
tn

n!
, (|t|< π).

In general, it satisfies G0 = 0,G1 = 1,G3 = G5 = G7 = ...G2n+1 = 0, and even coefficients
are given G2n = 2(1−22n)B2n = 2nE2n−1, where Bn are Bernoulli numbers and En are Euler
numbers. The first few Genocchi numbers for even integers are -1, 1, -3, 17, -155, 2073,
. . . . The first few prime Genocchi numbers are -3 and 17, which occur at n = 6 and 8. There
are no others with n < 105. For x ∈ R, we consider the Genocchi polynomials as follows

G(x, t) = G(t)ext =
2t

et +1
ext =

∞

∑
n=0

Gn(x)
tn

n!
.

In special case x = 0, we define Gn(0) = Gn. Because we have

Gn(x) =
n

∑
k=0

(
n
k

)
Gkxn−k,

It is easy to deduce that Gk(x) are polynomials of degree k. Here, we present some of the
first Genocchi’s polynomials:

G1(x) = 1, G2(x) = 2x−1, G3(x) = 3x2−3x, G4(x) = 4x3−6x2 +1,

G5(x) = 5x4−10x3 +5x, G6(x) = 6x5−15x4 +15x2−3, . . .

The classical Bernoulli polynomials (of higher order) B(α)
n (x) and Euler polynomials (of

higher order) E(α)
n (x),(α ∈ C), are usually defined by means of the following generating

functions [15, 16, 19, 21, 28, 32, 33]( z
ez−1

)α

exz =
∞

∑
n=0

B(α)
n (x)

zn

n!
, (|z|< 2π)

and ( 2
ez +1

)α

exz =
∞

∑
n=0

E(α)
n (x)

zn

n!
, (|z|< π)

So that, obviously,
Bn(x) := B1

n(x) and En(x) := E(1)
n (x).

In 2002, Q. M. Luo et al. (see [9,23,24]) defined the generalization of Bernoulli polynomials
and Euler numbers, as follows

tcxt

bt −at =
∞

∑
n=0

Bn(x;a,b,c)
n!

tn, (|t ln
b
a
|< 2π)

2
bt +at =

∞

∑
n=0

En(a,b)
tn

n!
, (|t ln

b
a
|< π).
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Here, we give an analogous definition for generalized Apostol-Genocchi polynomials.
Let a,b > 0, The Generalized Apostol-Genocchi Numbers and Apostol-Genocchi poly-

nomials with a,b,c parameters are defined by

2t
λbt +at =

∞

∑
n=0

Gn(a,b;λ )
tn

n!

2t
λbt +at ext =

∞

∑
n=0

Gn(x,a,b;λ )
tn

n!

2t
λbt +at cxt =

∞

∑
n=0

Gn(x,a,b,c;λ )
tn

n!

respectively.
For a real or complex parameter α , The Apostol-Genocchi polynomials with a,b,c pa-

rameters of order α , G(α)
n (x;a,b;λ ), each of degree n is x as well as in α , are defined by the

following generating functions( 2t
λbt +at

)α

exz =
∞

∑
n=0

G(α)
n (x,a,b;λ )

tn

n!
,

Clearly, we have G(1)
n (x,a,b;λ ) = Gn(x;a,b;λ ).

Now, we introduce the 2-variable Apostol-Genocchi polynomials and then we consider
the multiplication theorem for 2-variable Apostol-Genocchi Polynomials. We start with the
definition of Apostol-Genocchi polynomials Gn(x;λ ). The Apostol-Genocchi Polynomials
Gn(x;λ ) in variable x are defined by means of the generating function

2zexz

λez +1
=

∞

∑
n=0

Gn(x;λ )
zn

n!
(|z|< 2π when λ = 1, |z|< | logλ | when λ 6= 1),

with, of course,
Gn(λ ) := Gn(0;λ ),

Where Gn(λ ) denotes the so-called Apostol-Genocchi numbers.
Also (see [1,16,20,22,25,26,32]) Apostol-Genocchi Polynomials G(α)

n (x;λ ) of order α

in variable x are defined by means of the generating function:(
2z

λez +1

)α

exz =
∞

∑
n=0

G(α)
n (x;λ )

zn

n!

with, of course, G(α)
n (λ ) := Gα

n (0;λ ). Where Gα
n (λ ) denotes the so-called Apostol-Genocchi

numbers of higher order. If we set,

φ(x, t;α) =
(

2t
et +1

)α

ext ,

then,
∂φ

∂x
= tφ ,

and,

t
∂φ

∂ t
−
{

α + tx
t
− αet

et +1

}
∂φ

∂x
= 0.
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Next, we introduce the class of Apostol-Genocchi numbers as follows (for more infor-
mation see [38]).

HGn(λ ) =
[ n

2 ]

∑
s=0

n!Gn−2s(λ )Gs(λ )
s!(n−2s)!

The generating function of HGn(λ ) is provided by

4t3

(λet +1)(λet2 +1)
=

∞

∑
n=0

HGn(λ )
tn

n!

and the generalization of HGn(λ ) for (a,b) 6= 0, is

4t3

(λeat +1)(λebt2 +1)
=

∞

∑
n=0

HGn(a,b;λ )
tn

n!

where

HGn(a,b;λ ) =
1
ab

[ n
2 ]

∑
n=0

n!an−2sbsGn−2s(λ )Gs(λ )
s!(n−2s)!

The main object of the present paper is to investigate the multiplication formulas for the
Apostol-type polynomials.

Luo in [22] defined the multiple alternating sums as

Z(l)
k (m;λ ) = (−1)l

∑
0≤v1 ,v2 ,...,vm≤l
v1+v2+...+vm=`

(
l

v1,v2, ...,vm

)
(−λ )v1+2v2+...+mvm

Zk(m;λ ) =
m

∑
j=1

(−1) j+1
λ

j jk = λ −λ
22k + ...+(−1)m+1

λ
mmk

Zk(m) =
m

∑
j=1

(−1) j+1 jk = 1−2k + ...+(−1)m+1mk, (m,k, l ∈ N0;λ ∈ C)

where N0 := N∪{0}, (N := {1,2,3, ...}).

2. The multiplication formulas for the Apostol-Genocchi polynomials of higher order

In this Section, we obtain some interesting new relations and properties associated with
Apostol-Genocchi polynomials of higher order and then derive several elementary proper-
ties including recurrence relations for Genocchi numbers. First of all we prove the multipli-
cation theorem of these polynomials.

Theorem 2.1. For m ∈ N, n ∈ N0, α,λ ∈ C, the following multiplication formula of the
Apostol-Genocchi polynomials of higher order holds true:

(2.1) G(α)
n (mx;λ ) = mn−α

∑
v1,v2,...,vm−1≥0

(
α

v1,v2, ...,vm−1

)
(−λ )rG(α)

n

(
x+

r
m

;λ
m
)

where r = v1 +2v2 + ...+(m−1)vm−1, (m is odd)

Proof. It is easy to observe that

(2.2)
1

λet +1
=−1−λet +λ 2e2t + ...+(−λ )m−1e(m−1)t

(−λ )memt −1
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But we have, if xi ∈ C

(2.3) (x1 + x2 + ...+ xm)n = ∑
a1 ,a2 ,...,am>0
a1+a2+...am=n

(
n

a1,a2, ...,am

)
xa1

1 xa2
2 ...xam

m

The last summation takes place over all positive or zero integers ai > 0 such that a1 +a2 +
...+am = n, where (

n
a1,a2, ...,am

)
:=

n!
a1!a2!...am!

So by applying (2.2) on the following first equality sign and setting (x1 = 1,xk =(−λ )kekt

for k ≥ 2) and n = α in (2.3) on the following second equality sign, we obtain

∞

∑
n=0

G(α)
n (mx;λ )

tn

n!
=
(

2t
λet +1

)α

emxt =
(

2t
λ memt +1

)α
(

m−1

∑
k=0

(−λ )kekt

)α

emxt

= ∑
v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−λ )r

(
2t

λ memt +1

)α

e(x+ r
m )mt

=
∞

∑
n=0

(
mn−α

∑
v1,v2,...,vm>0

(
α

v1,v2, ...,vm

)
(−λ )rG(α)

n

(
x+

r
m

;λ
m
)) tn

n!

By comparing the coefficient of tn/(n!) on both sides of last equation, proof is complete.

In terms of the generalized Apostol-Genocchi polynomials, by setting λ = 1 in Theo-
rem 2.1, we obtain the following explicit formula that is called multiplication theorem for
Genocchi polynomials of higher order.

Corollary 2.1. For m ∈ N, n ∈ N0, α,∈ C, we have

G(α)
n (mx) = mn−α

∑
v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−1)rG(α)

n

(
x+

r
m

)
(m is odd).

And using Corollary 2.1, (by setting α = 1), we get Corollary 2.2 that is the main result
of [37] and is called multiplication Theorem for Genocchi polynomials.

Corollary 2.2. For m ∈ N, n ∈ N0, we have

Gn(mx) = mn−1
m−1

∑
k=0

(−1)kGn

(
x+

k
m

)
(m is odd).

Now, we consider the multiplication formula for the Apostol-Genocchi numbers when m
is even.

Theorem 2.2. For m ∈ N (m even), n ∈ N, α,λ ∈ C, the following multiplication formula
of the Apostol-Genocchi polynomials of higher order holds true:

G(α)
n (mx;λ ) = (−2)α mn−α

∑
v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−λ )rB(α)

n

(
x+

r
m

,λ m
)

,

where r = v1 +2v2 + ...+(m−1)vm−1.
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Proof. It is easy to observe that

1
λet +1

=−1−λet +λ 2e2t + ...+(−λ )m−1e(m−1)t

(−λ )memt −1

So, we obtain
∞

∑
n=0

G(α)
n (mx;λ )

tn

n!

=
(

2t
λet +1

)α

emxt = 2α

(
t

λet +1

)α

emxt = (−2)α

(
t

λ memt −1

)α
(

m−1

∑
k=0

(−λet)k

)α

emxt

= (−2)α
∑

v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−λ )r

(
t

λ mem−1

)α

e(x+ r
m )mt

=
∞

∑
n=0

(
(−2)α mn−α

∑
v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−λ )r×B(α)

n

(
x+

r
m

;λ
m
)) tn

n!

By comparing the coefficients of tn/(n!) on both sides proof will be complete.

Next, using Theorem 2.2, (with λ = 1), we obtain the Genocchi polynomials of higher
order can be expressed by the Bernoulli polynomials of higher order when m is even

Corollary 2.3. For m ∈ N (m even), n ∈ N0, α ∈ C, we get

G(α)
n (mx) = (−2)α mn−α

∑
v1,v2,...,vm−1>0

(
α

v1,v2, ...,vm−1

)
(−1)rBα

n

(
x+

r
m

)
.

Also by applying α = 1, in Corollary 2.3 we obtain the following assertion that is one of
the most remarkable identities in area of Genocchi polynomials.

Corollary 2.4. For m ∈ N, n ∈ N0, we obtain

Gn(mx) =−2mn−1
m−1

∑
k=0

(−1)kBn

(
x+

k
m

)
m is even.

Obviously, the result of Corollary 2.4 is analogous with the well-known Raabe’s mul-
tiplication formula. Now, we present explicit evaluations of Z(l)

n (m;λ ), Z(l)
n (λ ), Zn(m) by

Apostol-Genocchi polynomials.

Theorem 2.3. For m,n, l ∈ N0,λ ∈ C, we have

Z(l)
n (m;λ ) = 2−l

l

∑
j=0

(
l
j

)
(−1) j(m+1)λ m j+l

(n+1)l

n+l

∑
k=0

(
n+ l

k

)
G( j)

k (m j + l;λ )G(l− j)
n+l−k(λ )

where (n)0 = 1,(n)k = n(n+1)...(n+ k−1).

Proof. By definition of Z(l)
n (m;λ ), we calculate the following sum

∞

∑
n=0

Z(l)
n (m;λ )

tn

n!
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=
∞

∑
n=0

(−1)l
∑

06v1 ,v2 ,...,vm6l
v1+v2+...+vm=l

(
l

v1,v2, ...,vm

)
(−λ )λ1+2λ2+...+mλm(v1 +2v2 + ...+mvm)n

 tn

n!

= (−1)l
∑

06v1 ,v2 ,...,vm6l
v1+v2+...+vm=l

(
l

v1,v2, ...,vm

)
(−λet)λ1+2λ2+...+mλm

=
(
λet −λ

2e2t + ...+(−1)m+1
λ

memt)l
=

(
(−1)m+1λ m+1e(m+1)t

λet +1
+

λet

λet +1

)l

= (2t)−l
l

∑
j=0

(
l
j

)[
2t(−1)m+1λ m+1e(m+1)t

λet +1

] j [
2tλet

λet +1

]l− j

= (2t)−l
l

∑
j=0

(
l
j

)
(−1) j(m+1)

λ
m j+l

∞

∑
n=0

G( j)
n (m j + l;λ )

tn

n!

∞

∑
n=0

G(l− j)
n (λ )

tn

n!

= 2−l
∞

∑
n=0

[
l

∑
j=0

(
j
l

)
(−1) j(m+1)λ m j+l

(n+1)l

n+l

∑
k=0

(
n+ l

k

)
G( j)

k (m j + l;λ )G(l− j)
n+l−k(λ )

]
tn

n!

by comparing the coefficients of tn/(n!) on both sides, proof will be complete.
As a direct result, using λ = 1 in Theorem 2.3, we derive an explicit representation of

multiple alternating sums Z(l)
n (m), in terms of the Genocchi polynomials of higher order.

We also deduce their special cases and applications which lead to the corresponding results
for the Genocchi polynomials.

Corollary 2.5. For m,n, l ∈ N0, the following formula holds true in terms of the Genocchi
polynimials

Z(l)
n (m) = 2−l

l

∑
j=0

(
l
j

)
(−1) j(m+1)

(n+1)l

n+l

∑
k=0

(
n+ l

k

)
G( j)

k (m j + l)Gl− j
n+l−k

where (n)0 = 1,(n)k = n(n+1)...(n+ k−1).

Next we investigate some of the recursive formulas for the Apostol-Genocchi numbers
of higher order that are analogous to the results of Howard [3, 11, 12] and we deduce that
they constitute a useful special case.

Theorem 2.4. Let m be odd, n, l ∈ N0 ,λ ∈ C, then we have

mnG(l)
n (λ m)−mlG(l)

n (λ ) = (−1)l−1
n

∑
k=0

(
n
k

)
mkG(l)

k (λ m)Z(l)
n−k(m−1;λ ).

Proof. By taking x = 0,α = l in (2.1), where r = v1 +2v2 + ...+(m−1)vm−1 we obtain

mlG(l)
n (λ ) = mn

∑
v1,v2,...,vm−1>0

(
l

v1,v2, ...,vm−1

)
(−λ )rG(l)

n

( r
m

,λ m
)

But we know

G(l)
n (x;λ ) =

n

∑
k=0

(
n
k

)
G(l)

k (λ )xn−k
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So, we obtain

mlG(l)
n (λ ) = mn

∑
v1,v2,...,vm−1>0

(
l

v1,v2, ...,vm−1

)
(−λ )r

n

∑
k=0

(
n
k

)
G(l)

k (λ m)
( r

m

)n−k

=
n

∑
k=0

(
n
k

)
mkG(l)

k (λ m) ∑
06v1,v2,...,vm−16l

(
l

v1,v2, ...,vm−1

)
(−λ )rrn−k

=
n

∑
k=0

(
n
k

)
mkG(l)

k (λ m) ∑
06v1 ,v2 ,...,vm−16l
v1+v2+...vm−1=l

(
l

v1,v2, ...,vm−1

)
(−λ )rrn−k +mnG(l)

n (λ m)

= (−1)l
n

∑
k=0

(
n
k

)
mkG(l)

k (λ m)Z(l)
n−k(m−1;λ )+mnG(l)

n (λ m)

So proof is complete.
Furthermore, we derive some well-known results (see [14]) involving Genocchi polyno-

mials of higher order and Genocchi polynomials which we state here. By setting λ = 1,
l = 1 in Theorem 2.4, we get Corollaries 2.6, 2.7, respectively.

Corollary 2.6. Let m be odd, n, l ∈ N0, then we have

(mn−ml)G(l)
n = (−1)l−1

n

∑
k=0

(
n
k

)
G(l)

k Z(l)
n−k(m−1).

Corollary 2.7. Let m be odd, n ∈ N0,λ ∈ C, then we have

mnGn(λ m)−mGn(λ ) =
n

∑
k=0

(
n
k

)
mkGk(λ m)Zn−k(m−1;λ ).

Also by setting λ = 1 in Corollary 2.7, we get the following assertion that is analogous
to the formula of Howard in terms of Genocchi numbers. See [11, 12] for more information.

Corollary 2.8. For m be odd, n, l ∈ N0,λ ∈ C, we obtain

(mn−m)Gn =
n

∑
k=0

(
n
k

)
mkGkZn−k(m−1).

Next, we investigate the generalization of Howard’s formula in terms of Apostol-Genocchi
numbers, when m is even.

Theorem 2.5. Let m be even, n, l ∈ N0,λ ∈ C, the following formula

mlG(l)
n (λ )− (−2)lmnB(l)

n (λ m) = 2l
n

∑
k=0

(
n
k

)
mkB(l)

k (λ m)Z(l)
n−k(m−1;λ )

holds true, where r = v1 +2v2 + ...+(m−1)vm−1.

Proof. We have

G(l)
n (λ ) = (−2)lmn−l

∑
v1,v2,...,vm−1>0

(
l

v1,v2, ...,vm−1

)
(−λ )rB(l)

n

( r
m

,λ m
)

But we know

B(l)
n (x;λ ) =

n

∑
k=0

(
n
k

)
B(l)

k (λ )xn−k
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So we get

mlG(l)
n (λ ) = (−2)lmn

∑
v1,v2,...,vm−1>0

(
l

v1,v2, ...,vm−1

)
(−λ )r

n

∑
k=0

(
n
k

)
B(l)

k (λ m)
( r

m

)n−k

= (−2)l
n

∑
k=0

(
n
k

)
mkB(l)

k (λ m) ∑
v1,v2,...,vm−1>0

(
l

v1,v2, ...,vm−1

)
(−λ )rrn−k

= 2l
n

∑
k=0

(
n
k

)
mkB(l)

k (λ m)Z(l)
n−k(m−1;λ )+(−2)lmnB(l)

n (λ m)

So we obtain

mlG(l)
n (λ )− (−2)lmnB(l)

n (λ m) = 2l
n

∑
k=0

(
n
k

)
mkB(l)

k (λ m)Z(l)
n−k(m−1;λ )

So the proof is complete.

Also by letting λ = 1 in Theorem 2.5, we obtain the following assertion.

Corollary 2.9. Let m be even, n, l ∈ N0, then we get

mlG(l)
n − (−2)lmnB(l)

n = 2l
n

∑
k=0

(
n
k

)
mkB(l)

n Z(l)
n−k(m−1)

Here we present a recurrence relation for Apostol-Genocchi numbers of higher order.

Theorem 2.6. Let n,k > 1, then we have

G(n+1)
k (λ ) = 2kG(n)

k−1(λ )−
(

2− 2k
n

)
G(n)

k (λ )

Proof. Let us put Gn(t;λ ) = (2t/(λet + 1))n. Then Gn(t;λ ) is the generating function of
higher order Apostol-Genocchi numbers. The derivative G

′
(t;λ ) = (d/dt)Gn(t;λ ) is equal

to

n
(

1
t
− λet

λet +1

)
Gn(t;λ ) =

n
t

Gn(t;λ )−nGn(t;λ )+
n

λet +1
Gn(t;λ )

and

tG
′
n(t;λ ) = nGn(t;λ )−ntGn(t;λ )+

n
2

Gn+1(t)

so we obtain

G(n)
k (λ )

(k−1)!
= n

G(n)
k (λ )
k!

−n
G(n)

k−1(λ )
(k−1)!

+
n
2

G(n+1)
k (λ )

k!

for k > 1. This formula can written as

G(n+1)
k (λ ) = 2kG(n)

k−1(λ )−
(

2− 2k
n

)
G(n)

k (λ )

so proof is complete.
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3. Generalized Apostol Genocchi polynomials with a,b,c parameters

In this section we investigate some recurrence formulas for generalized Apostol-Genocchi
polynomials with a,b,c parameters. In 2003, Cheon [4] rederived several known properties
and relations involving the classical Bernoulli polynomials Bn(x) and the classical Euler
polynomials En(x) by making use of some standard techniques based upon series rearrange-
ment as well as matrix representation. Srivastava and Pinter [37] followed Cheon’s work [4]
and established two relations involving the generalized Bernoulli polynomials B(α)

n (x) and
the generalized Euler polynomials E(α)

n (x). So, we will study further the relations between
generalized Bernoulli polynomials with a,b parameters and Genocchi polynomials with the
methods of generating function and series rearrangement.

Theorem 3.1. Let x ∈ R and n > 0. For every positive real number a,b and c such that
a 6= b and b > 0, we have

G(α)
n (a,b;λ ) = G(α)

n

(
α lna

lna− lnb
;λ

)
(lnb− lna)n−α

Proof. We know(
2t

λbt +at

)α

=
∞

∑
n=0

G(α)
n (a,b;λ )

tn

n!
=

1
aαt

(
2t

λet(lnb−lna) +1

)α

= e−tα lna
(

2t(lnb− lna)
λet(lnb−lna) +1

)α

× 1
(lnb− lna)α

=
1

(lnb− lna)α

∞

∑
n=0

G(α)
n

(
α lna

lna− lnb
;λ

)
(lnb− lna)n tn

n!

So by comparing the coefficients of tn/(n!) on both sides, we get

G(α)
n (a,b;λ ) = G(α)

n

(
α lna

lna− lnb
;λ

)
(lnb− lna)n−α .

Theorem 3.2. Let x ∈ R and n > 0. For every positive real number a,b and c such that
a 6= b and b > 0, we have

G(α)
n (x;a,b,c;λ ) = G(α)

n

(
−α lna+ x lnc

lnb− lna
,λ

)
(lnb− lna)n−α

Proof. We have
∞

∑
n=0

G(α)
n (x;a,b,c;λ ) =

(
2t

λbt +at

)α

cxt =
1

αat

(
2t

λet(lnb−lna) +1

)α

cxt

= et(−α lna+x lnc)
(

2t
λet(lnb−lna) +1

)α

=
1

(lnb− lna)α

∞

∑
n=0

G(α)
n

(
−α lna+ x lnc

lnb− lna
,λ

)
(lnb− lna)n tn

n!
.

So by comparing the coefficient of tn/(n!) on both sides, we get

G(α)
n (x;a,b,c;λ ) = G(α)

n

(
−α lna+ x lnc

lnb− lna
,λ

)
(lnb− lna)n−α

Therefore proof is complete.
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The generalized Apostal-Genocchi polynomials of higher order G(α)
n (x;a,b,c;λ ) possess

a number of interesting properties which we state here.

Theorem 3.3. Let a,b,c ∈ R+ (a 6= b) and x ∈ R, then

(3.1) G(α)
n (x+1;a,b,c;λ ) =

n

∑
k=0

(
n
k

)
(lnc)n−kG(α)

k (x;a,b,c;λ )

(3.2) G(α)
n (x+α;a,b,c;λ ) = G(α)

n

(
x;

a
c
,

b
c
,c;λ

)

(3.3) G(α)
n (α− x;a,b,c;λ ) = G(α)

n

(
−x;

a
c
,

b
c
,c;λ

)

(3.4) G(α+β )
n (x+ y;a,b,c;λ ) =

k

∑
r=0

(
k
r

)
G(α)

k−r(x;a,b,c;λ )G(β )
r (y;a,b,c;λ )

(3.5)
∂ l

∂xl

{
G(α)

n (x;a,b,c;λ )
}

=
n!

(n− `)!
(lnc)`G(α)

n−`(x;a,b,c;λ )

(3.6)
∫ t

s
G(α)

n (x;a,b,c;λ )dx =
1

(n+1) lnc

[
G(α)

n+1(t;a,b,c;λ )−G(α)
n+1(s;a,b,c;λ )

]
Proof. We know

∞

∑
n=0

G(α)
n (x+1;a,b,c;λ )

tn

n!
=
(

t
λbt +at

)α

.c(x+1)t =
∞

∑
n=0

∞

∑
k=0

G(α)
k (x;a,b,c;λ )(lnc)n tn+k

n!k!

=
∞

∑
n=0

∞

∑
k=0

G(α)
k (x;a,b,c;λ )(lnc)n−k tn+k

(n− k)!k!

So comparing the coefficients of tn on both sides, we arrive at the result (3.1) asserted by
Theorem 3.3. Similary, by simple manipulations, leads us to the result (3.2), (3.3) and
(3.4) of Theorem 3.3 and by successive differentiation with respect to x and then using the
principle of mathematical induction on ` ∈N0, we obtain the formula (3.5). Also, by taking
` = 1 in (3.5) and integrating both sides with respect to x, we get the formula (3.6).

Remark 3.1. Let a,b,c ∈ R+ (a 6= −b) and x ∈ R, by differentiating both sides of the
following generating function

∞

∑
n=0

Gα
n (x;a,b,c;λ )

tn

n!
=

tα(
λet ln( b

a ) +1
)α et(x lnc−x lna),

We get,

αλ ln
(

b
a

) n

∑
k=0

(
n
k

)
(lnb)kG(α+1)

n−k (x;a,b,c;λ )

= (α−n)G(α)
n (x;a,b,c;λ )+n(x lnc−α lna)G(α)

n−1(x;a,b,c;λ ).
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Remark 3.2. Gi-Sang Cheon and H. M. Srivastava in [4,26] investigated the classical rela-
tionship between Bernoulli and Euler polynomials as follows

Bn(x) =
n

∑
k=0
k 6=1

(
n
k

)
BkEn−k(x)

by applying a similar Srivastava’s method in [26] we obtain the following result for gener-
alized Bernoulli polynomials and Genocchi numbers

Bn(x+ y,a,b) =
1
2

n

∑
k=0

1
n− k +1

(
n
k

)
[Bk(y,a,b)+Bk(y+1,a,b)]Gn−k(x),

Gn(x+ y) =
1
2

n

∑
k=0

(
n
k

)
[Gk(y)+Gk(y+1)]En−k(x),

so, because we have
Gn(y+1)+Gn(y) = 2nyn−1,

we obtain

Gn(x+ y) =
n

∑
k=0

k
(

n
k

)
yk−1En−k(x) (y 6= 0).

4. Multiplication theorem for 2-variable Genocchi polynomial

We apply the method of generating function, which are exploited to derive further classes
of partial sums involving generalized many index many variable polynomials. In introduc-
tion we introduced 2-variable Genocchi polynomial. An application of 2-variable Genocchi
polynomials is relevant to the multiplication theorems. In this section we develop the mul-
tiplication theorem for 2-variable Genocchi polynomial which yields a deeper insight into
the effectiveness of this type of generalizations.

Theorem 4.1. Let x,y ∈ R+ and m be odd, we obtain

Gn(mx, py,λ ) = mn−1
m−1

∑
k=0

λ
k(−1)k

HGn

(
x+

k
m

,
py
m2 ,λ m

)
Proof. We know

∞

∑
n=0

Gn(mx, py,λ )
tn

n!
=

2temxt+pyt2

λet +1
and handing the R. H. S of the above equations, we defined

∞

∑
n=0

Gn(mx, py,λ )
tn

n!
=

2temxt

λ memt +1
λ memt +1

λet +1
epyt2

By noting that

2temxt

λ memt +1
λ memt +1

λet +1
epyt2

=
m−1

∑
k=0

1
m

(−1)k
λ

k
∞

∑
q=0

tqmq

q!
Gq

(
x+

k
m

,λ m
)

∞

∑
r=0

t2r pr

r!
yr

We get

∞

∑
n=0

Gn(mx, py,λ )
tn

n!
=

∞

∑
n=0

trmn−1
m−1

∑
k=0

(−1)k
λ

k
[ n

2 ]
∑
r=0

Gn−2r(x+ k
m ,λ m)

(n−2r)!r!

( py
m2

)r
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Also, by simple computation we realize that

HGn(x,y,λ ) =
[ n

2 ]
∑
s=0

ysGn−2s(x,λ )
s!(n−2s)!

So, we obtain

Gn(mx, py,λ ) = mn−1
m−1

∑
k=0

(−1)k
λ

k
HGn

(
x+

k
m

,
py
m2 ,λ m

)
Therefore proof is complete.

Also, by a similar method, we get the following remark.

Remark 4.1. Let m be odd and x,y ∈ R+, we get

HGn(mx,m2y,λ ) = mn−1
m−1

∑
`=0

(−1)`λ `
HGn

(
x+

`

m
,y,λ m

)
.
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