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Abstract. Parametric robustness of a statistic in a class of distributions implies that the
distribution of the statistic is the same for any member of the class of distributions. The bi-
variate Wishart distribution, based on the class of bivariate elliptical distributions, involves
three essential statistics, namely, two sample variances and the product moment correlation
coefficient. The distribution of the product moment correlation coefficient is known to be
robust in the class of bivariate elliptical distributions. In this paper, we prove that the distri-
bution of the variance ratio is also robust in the class of bivariate elliptical distributions.
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1. Introduction

Consider a two component column random variable X
∼

, where X ′
∼

= (X1,X2), follows the
class of bivariate elliptical distributions with mean θ

∼
(column vector order 2 components)

and scale matrix Σ (a 2× 2 matrix) where θ ′
∼

= (θ1,θ2) and Σ = (σik), i = 1,2;k = 1,2.

Let σ11 = σ2
1 ,σ22 = σ2

2 , σ12 = ρσ1σ2 with σ1 > 0,σ2 > 0 and the quantity ρ(−1 <
ρ < 1) is the product moment correlation coefficient between X1 and X2. Let each of
the sample observation X

∼ j,( j = 1,2, · · · ,N), where X ′
∼ j,= (X1 j,X2 j), j = 1,2, · · · ,N, fol-

low the class of bivariate elliptical distributions. The sample mean vector is X
∼

where

X ′
∼

= (X1,X2),X∼ i = N−1
∑

N
j=1 Xi j, i = 1,2 so that the sums of squares and cross product

matrix is given by A = (aik), where aik = ∑
N
j=1 (Xi j− X̄i.)(Xk j− X̄k.), i = 1,2;k = 1,2. Obvi-

ously, aii = ∑
N
j=1 (Xi j− X̄i)

2
, (i = 1,2), and a12 = ∑

N
j=1 (X1 j− X̄1)(X2 j− X̄2). The sample

correlation coefficient is then given by r = a12/(ms1s2), where m = N−1 and s2
i = aii/m(i =

1,2).
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Fisher [10] derived the distribution of the matrix A to study the distribution of correlation
coefficient for a bivariate normal sample. The distribution of A is also known for the class
of elliptical distributions (see, for example, Sutradhar and Ali [28]).

A recent interest among the applied scientists is the use of fat tailed distribution for
modeling business data such as stock returns. Since the bivariate t-distribution has fatter
tails, it has been increasingly applied for modeling business data. Interested readers may go
through Sutradhar and Ali [27], Lange et al. [21], Billah and Saleh [4] and Kibria and Saleh
[20] among others. A wider class of distributions accommodating bivariate t-distribution
or bivariate normal distribution is the class of Compound Normal Distributions. Bivariate
elliptical distributions accommodates all these distributions. We assume that in the case
of bivariate elliptical distribution, the observations in the sample are uncorrelated but not
necessarily independent. There have been a number of publications in the recent years but
for interested readers, we refer to Fang and Anderson [7] and Fang and Zhang [8].

It is proved by Ali and Joarder [1] that the distribution of R is robust in the class of bivari-
ate elliptical distributions. Thus the null (H0 : ρ = 0) or non-null (H1 : ρ 6= 0) distribution
of the test statistic R is robust. However, if the parent population is bivariate normal, the test
statistic (m−1)1/2(R−ρ)(1−R2)−1/2 is known to have a t-distribution with m−1 degrees
of freedom under the null hypothesis. In view of Fang and Anderson [7], Fang and Zhang
[8] or Ali and Joarder [1], the test statistic is also robust in the class of bivariate elliptical
distributions.

Consider the scaled variances U = mS2
1/σ2

1 and V = mS2
2/σ2

2 . Assuming that the ob-
servations are from a bivariate normal population, Bose [5] and Finney [9] proved that the
distribution of variance ratio H = U/V has a correlated F(m,m;ρ) distribution (see equa-
tion 5.1) which specializes to usual F-distribution F(m,m) for ρ = 0. The random variables
U and V have a bivariate chi-square distribution [12] with correlation coefficient ρ2 and
found application in signal processing [11].

Can we relax the assumption of bivariate normality to a broader class of distributions
and study the behaviour of the variance ratio? In this paper, we prove that if the sample
observations are governed by the class of bivariate elliptical distributions, the distribution
of the variance ratio remains the same for any member of the class.

The organization of the paper is as follows: Some mathematical preliminaries are given
in Section 2. Section 3 introduces the class of bivariate elliptical distributions. Robustness
of the distribution of correlation coefficient and tests on correlation coefficient is presented
in Section 4. In Section 5, we prove that the distribution of variance ratio (H = U/V ) has
a correlated F(m,m;ρ)distribution if the observations are governed by the class of bivariate
elliptical distributions. Thus we say that the distribution of the variance ratio is robust or the
distribution of the variance ratio is invariant in the class of bivariate elliptical distributions.

2. Some mathematical preliminaries

The duplication formula of gamma function is given by

(2.1) Γ(2z) =
22z−1
√

π
Γ(z)Γ(z+(1/2)) .

Multiplying both sides of (2.1) by 2z we have

(2.2) (2z)!
√

π = 22zz!Γ
(
z+ 1

2

)
.
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The beta function is defined by

(2.3) B(a,b) =
∫ 1

0
xa−1(1− x)b−1dx,

which can be expressed as Γ(a)Γ(b)/Γ(a+b).

Lemma 2.1. Let the non-negative random variables Xand Y have the joint density function
f (x,y). Further let H = X/Y . Then the density function of H is given by

(2.4) gH(h) =
∫

∞

0
f (yh,y)ydy.

3. The class of bivariate elliptical distributions

In this section, we will present the class of bivariate elliptical distributions which includes
the class of compound bivariate normal distribution. The latter includes bivariate t and
bivariate normal distributions as special cases.

The probability density function of a bivariate elliptical random variable X
∼
, where X

∼
=

(X1,X2), is given by

(3.1) f1(x)
∼

∞ | Σ |
−1
2 gN,2((X∼−θ

∼
)′Σ−1(X

∼
−θ
∼
)),

where Σ > 0 and the normalizing constant is determined by the form of g [28]. Johnson [17]
describes the generation of random samples from the class of bivariate elliptical distribu-
tions. The density function (3.1) is also called bivariate elliptically contoured distributions
[7]. A bivariate random variable is said to have elliptical symmetry if its density function is
given by (3.1).

Now consider a sample X
∼1,X∼2, · · ·X∼N(N > 2) having the joint probability density func-

tion

(3.2) f2(x
∼

1, x
∼2, · · ·X∼N)∞ | Σ |

−N
2 gN,2

(
Σ

N
j=1(x

∼ j
−θ
∼
)′Σ−1( x

_
j−θ
∼
)
)

,

where Σ > 0 and the normalizing constant is determined by the form of g. Each observa-
tion X

∼ j( j = 1,2, · · · ,N) in (3.2) follows (3.1). Since the observations are uncorrelated but
not necessarily independent, (3.2) is called Uncorrelated and Identical Bivariate Elliptical
(UIBE) model for the sample. It can be checked that the coefficient of correlation between
components X1 j and X2 j of X j( j = 1,2, · · · ,N) is ρ [1]. Note that if gN,2(u) = e−u/2 in (3.2),
then it defines the joint density function of N independent observations from a bivariate nor-
mal distribution.

The model in (3.2) is a bivariate version of the multivariate sampling model considered
by Anderson, Fang and Hsu [3], Fang and Anderson [7], Fang and Zhang [8], Kibria and
Haq [19] and Kibria [18] among others.

It is worth mentioning that if the sample observations are independent and identical bi-
variate elliptical distributions, then f2(x

∼1
, x
∼2

, · · · , x
∼N

) = ∏
N
j=1 f1(x

∼ j
), which will be called

an Independent and Identical Bivariate.

Theorem 3.1. [28, p. 158] Let A be the mean centered sum of squares and product matrix
based on UIBE model (3.2). Then the density function of the A is given by

(3.3) f (A) ∝ |Σ|−m/2|A|(m−3)/2gm,2(trΣ
−1A), A > 0
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where m > 2 and Σ > 0. The above can be written in terms of the elements of the matrix A
as
(3.4)

f (a11,a22,a12) ∝
1

(σ1σ2)m

(
a11a22−a2

12
)(m−3)/2 gm,2

(
a11

(1−ρ2)σ2
1

+ a22
(1−ρ2)σ2

2
− 2ρa12

(1−ρ2)σ1σ2

)
,

where a11 > 0,a22 > 0,−√a11a22 < a12 <
√

a11a22,m > 2,−1 < ρ < 1 .

Some other examples of bivariate elliptical distributions are Pearson Type II Distribu-
tion, [17, p. 111], Laplace and generalized Laplace Distributions [22] and [16], Pearson
Type VII Distribution, Symmetric Kotz Type Distribution, Uniform distribution, Logistic
Distribution, Stable Distribution etc. [6, p. 69].

4. Robustness of some tests on correlation coefficient

In the following theorem, we derive the joint density function of scaled variances and cor-
relation coefficient.

Theorem 4.1. Let S2
1,S

2
2 and R be variances and correlation coefficient based on UIBE

model (3.2). Then the joint density function of U = mS2
1/σ2

1 ,V = mS2
2/σ2

2 and R is given by

(4.1) fU,V,R(u,v,r) ∝ (uv)(m/2)−1(1− r2)(m−3)/2gm,2

(
u+ v

1−ρ2 −
2ρr
√

uv
1−ρ2

)
,

where m > 2 and −1 < ρ < 1.

Proof. Consider the transformation a11 = ms2
1,a22 = ms2

2,a12 = mrs1s2 in (3.4) with Jaco-
bian J((a11,a22,a12)→ (s2

1,s
2
2,r)) = m3s1s2. Then the density function of S2

1,S
2
2 and R is

given by

fS2
1,S2

2,R ∝ (s1s2)m−2(1− r2)(m−3)/2gm,2

(
ms2

1

(1−ρ2)σ2
1

+
ms2

2

(1−ρ2)σ2
2
− 2ρrms1s2

σ1σ2(1−ρ2)

)
.

By making the transformation ms2
1 = σ2

1 u, ms2
2 = σ2

2 v, keeping r intact, with
Jacobian J(s2

1,s
2
2→ uv) = (σ1σ2/m)2, the density of U,V and R is given by (4.1).

The density function in (4.1) depends on the particular form of gm,2(.) implying that the
joint distribution of scaled variances and correlation coefficient is not robust. Note that in
case of sampling from a bivariate normal population, the joint density function of scaled
variances and correlation coefficient is given by

(4.2) fU,V,R(u,v,r) = (1−ρ2)−m/2(uv)
(m−2)/2

(1−r2)(m−3)/2

2m√π Γ(m/2)Γ((m−1)/2) exp
(
− u+v

2(1−ρ2) + ρr
√

uv
1−ρ2

)
,

where m > 2 and −1 < ρ < 1, [15].
The density function of R was derived originally by Fisher [10] assuming that the sample

is from a bivariate normal distribution. In case ρ = 0, the distribution of R based on a sample
governed by UIBE model (3.2) is given by Theorem 4.2.4 of Fang and Zhang [8, p. 137]).
For any ρ(−1 < ρ < 1), the distribution of R based on a sample governed by UIBE model
(3.2) follows from Theorem 4 of Fang and Anderson [7, p. 10]. The following theorem is
due to Ali and Joarder [1] who independently proved that if the sample observations follow
UIBE model (3.2), the distribution of R remains the same, for any value of ρ (−1 < ρ < 1),
as that obtained by Fisher [10] for the bivariate normal case. We sketch an outline of the
proof just for the self containment of the paper.
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Theorem 4.2. The density function of sample correlation coefficient R based on a sample
following Uncorrelated and Identical Bivariate Elliptical model (3.2) is given by

(4.3) fR(r) =
2m−2

(
1−ρ2

)m/2

πΓ(m−1)
(
1− r2)(m−3)/2

∞

∑
k=0

(2ρr)k

k!
Γ

2
(

m+ k
2

)
,−1 < r < 1,

where m > 2 and −1 < ρ < 1.

Proof. Integrating out u and v from the density function (4.1) of U,V and R, the density
function of R is given by

(4.4) fR(r) ∝ (1− r2)
(m−3)/2

I(r;ρ,m),

where

I(r;ρ,m) = 4
∞∫

0

∞∫
0

(y1y2)m/2−1gm,2
(
y2

1 + y2
2−2ρr

√
y1y2

)
dy1dy2.

Then the transformation y1 = wcosθ , y2 = wsinθ yields

I(r;ρ,m) = 2−m+3

π/2∫
θ=0

∞∫
w=0

(sin2θ)m−1w2m−1gm,2
(
w2−ρrw2 sin2θ

)−ν−m
dwdθ .

By substituting w2 = u, 2θ = α , the above integral can be evaluated to be

I(r;ρ,m) =
∞

∑
k=0

(2ρr)k

k!
Γ2((m+ k)/2)

Γ(m)

∞∫
w=0

wm−1gm,2(w)dw.

Since the last integral does not involve r, from (4.4), we have (4.3).
Theorem 4.2 indicates robustness of the correlation coefficient in the class of bivariate

elliptical populations. Thus the assumption of bivariate normality under which tests on
correlation coefficient are developed can be relaxed to a broader class of bivariate elliptical
distributions.

If ρ = 0, R2 ∼Beta(1/2,(m−1)/2), and
√

m−1R
(
1−R2

)−1/2 has a student t- distri-
bution with (m−1) degrees of freedom. The likelihood ratio test of the hypothesis H0 : ρ = 0
against the alternative H1 : ρ 6= 0 is accomplished by the above statistic. Acceptance of the
null hypothesis does not mean independence unless the sample is from bivariate normal dis-
tribution. In view of Ali and Joarder [1], the test is robust in the class of bivariate elliptical
distributions though in this case the acceptance of H0 : ρ = 0 implies uncorrelation but not
necessarily independence.

The most popular test is based on Z = tanh−1 R = ln
√

(1+R)/(1−R) has an approxi-
mate normal distribution with mean ln

√
(1+ρ)/(1−ρ) and variance 1/(m−2). In view

of Ali and Joarder [1], tests developed for correlation coefficient based on bivariate normal
distribution by Muddapur [24], Samiuddin [26] and Anderson [2] are all robust. See e.g.
Joarder [14].

We warn that the distribution of R is not necessarily robust for independent observa-
tions from elliptical population. The model for samples considered in (3.2) implies that the
observations X

∼ j
( j = 1,2, · · · ,N) are uncorrelated but not necessarily independent. The as-

ymptotic distribution of R for independent observations from bivariate elliptical population
was obtained by Muirhead [25, p. 157].
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5. The distribution of variance ratio

In this section we will prove that the distribution of H = U/V is robust in the class of bivari-
ate elliptical distributions.

Theorem 5.1. Let S2
1,S

2
2 and R be variances and correlation coefficient based on Uncorre-

lated and Identical Bivariate Elliptical model (3.2). Also let U = mS2
1/σ2

1 and V = mS2
2/σ2

2
be scaled sample variances. Then the density function of H = U/V is given by

(5.1) fH(h) =
(1−ρ2)m/2

B(m/2,m/2)
h(m−2)/2

(1+h)m

(
1− 4ρ2h

(1+h)2

)−(m+1)/2

,h > 0,

where m > 2 and −1 < ρ < 1.

Proof. It follows from (4.1) that the joint density function of U and V is given by

(5.2) fU,V (u,v) ∝ (uv)
(m−2)/2 1∫

−1

(
1− r2

)(m−3)/2 gm,2

(
u+v

1−ρ2 −
2ρr
√

uv
1−ρ2

)
dr.

Applying Lemma 2.1 in (5.2), the density function of H = U/V is given by

fH(h) ∝ h(m−2)/2
1∫

r=−1

(
1− r2)(m−3)/2

∞∫
v=0

vm−1gm,2

(
v(1+h)
1−ρ2 −

2ρrv
√

h
1−ρ2

)
dvdr.

Substituting v(1+h)
1−ρ2 −

2ρrv
√

h
1−ρ2 = y, with the Jacobian J(v→ y) = 1−ρ2

(1+h)−2ρr
√

h
,

we have

(5.3) fH(h) ∝
h(m−2)/2

(1+h)m

1∫
r=−1

(
1− 2ρr

√
h

1+h

)−m (
1− r2)(m−3)/2

dr
∞∫

y=0

ym−1gm,2 (y)dy.

Since the integral in y gets absorbed into the normalizing constant [14] and 2|ρr|
√

h≤ 1+h,
expanding the binomial term (

1− 2ρr
√

h
1+h

)−m

in (5.3), we have

(5.4) fH(h) ∝
h(m−2)/2

(1+h)m ∑
∞

k=0
Γ(m+ k)
Γ(m)k!

(
2ρ
√

h
1+h

)k

I(k),

where I(k) =
∫ 1

r=−1 rk
(
1− r2

)(m−3)/2dr. The integral I(k)can be simplified to be

I(k) =
[(−1)k +1]

2

∫ 1

r=0
u(k−1)/2 (1−u)(m−3)/2du,

which , by beta integral (2.3), simplifies to

(5.5) I(k) =
[(−1)k +1]

2
Γ((k +1)/2)Γ((m−1)/2)

Γ((k +m)/2)
.
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By using (5.5) in (5.4), and simplifying, we have

(5.6) fH(h) ∝
h(m−2)/2

(1+h)m ∑
∞

k=0
Γ((m+ k +1)/2)

k!

(
4ρ
√

h
1+h

)k
[(−1)k +1]

2
Γ((k +1)/2).

Since each odd k provide zero measure for the summand in the right hand side of (5.6) , we
replace k in the summand by 2k and use (2.2) so that (5.6) simplifies to

fH(h) ∝
h(m−2)/2

(1+h)m ∑
∞

k=0
Γ((m+2k +1)/2)

k!

(
4ρ2h

(1+h)2

)k

,

which simplifies to (5.1).
Equation (5.1) is well known for bivariate normal distribution [5, 9]. This proves the

robustness of the distribution of the variance ratio in the class of bivariate elliptical dis-
tributions. The distribution of test statistic H = U/V given by (5.1) will be denoted by
F(m,m;ρ).

6. Conclusion

The testing of equality of variances in presence of correlation with a bivariate normal pop-
ulation has a long history. Under the null hypothesis, the test statistic H = U/V has a
F(m,m;ρ) distribution [5, 9] and can be used for testing H0 : σ2

1 = σ2
2 , ρ 6= 0 against

H0 : σ2
1 6= σ2

2 , ρ 6= 0 if ρ is known. A test would be to reject the null hypothesis if H < c or
H > k such that P(H > c) = 1− (α/2) and P(H > k) = α/2 where the density function of
H is given by (5.1).

Finney [9] compared the variability of the measurements of standing height and stem
length for different age group of school boys by his method with the help of Hirschfeld
[13]. Wilks [29] developed the likelihood ratio test for testing the equality of variances
in presence of correlation if the parent population is bivariate or multivariate normal. An
excellent review is available in Modarres [23] who also performed Monte Carlo simulation
to determine the behaviour of the likelihood ratio test.

In this paper, we proved that the assumption of bivariate normality can be relaxed to the
class of bivariate elliptical distributions for testing equality of variances in presence of corre-
lation. However, the acceptance of the null hypothesis would generally mean uncorrelation;
it would mean independence in the special case of bivariate normality. The robustness of
the distribution of the variance ratio or of the test of equivariance will stimulate statisti-
cians, econometricians and business experts to embark on further investigations in the area,
let alone the use of classical results with confidence.
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