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Abstract. A path in an edge-colored graph, where adjacent edges may be colored the same,
is a rainbow path if no two edges of it are colored the same. For any two vertices u and v
of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u,v), where d(u,v)
is the distance between u and v. The graph G is strongly rainbow connected if there exists
a rainbow u− v geodesic for any two vertices u and v in G. The strong rainbow connection
number of G, denoted by src(G), is the minimum number of colors that are needed in order
to make G strongly rainbow connected. In this paper, we first give a sharp upper bound for
src(G) in terms of the number of edge-disjoint triangles in a graph G, and give a necessary
and sufficient condition for the equality. We next investigate the graphs with large strong
rainbow connection numbers. Chartrand et al. obtained that src(G) = m if and only if G is a
tree, we will show that src(G) 6= m−1, and characterize the graphs G with src(G) = m−2
where m is the number of edges of G.
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1. Introduction

All graphs in this paper are finite, undirected and simple. Let G be a nontrivial connected
graph on which there is a coloring c : E(G) → {1,2, · · · ,n}, n ∈ N, of the edges of G,
where adjacent edges may be colored the same. A path is a rainbow path if no two
edges of it are colored the same. An edge-colored graph G is rainbow connected if any
two vertices are connected by a rainbow path. Clearly, if a graph is rainbow connected,
it must be connected. Conversely, any connected graph has a trivial edge-coloring that
makes it rainbow connected; just color each edge with a distinct color. Thus, we define
the rainbow connection number of a connected graph G, denoted by rc(G), as the smallest
number of colors that are needed in order to make G rainbow connected. Let c be a rainbow
coloring of a connected graph G. For any two vertices u and v of G, a rainbow u−v geodesic
in G is a rainbow u−v path of length d(u,v), where d(u,v) is the distance between u and v.
The graph G is strongly rainbow connected if there exists a rainbow u− v geodesic for any
pair of vertices u and v in G. In this case, the coloring c is called a strong rainbow coloring
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of G. Similarly, we define the strong rainbow connection number of a connected graph G,
denoted by src(G), as the smallest number of colors that are needed in order to make G
strongly rainbow connected. A strong rainbow coloring of G using src(G) colors is called a
minimum strong rainbow coloring of G. Clearly, we have diam(G)≤ rc(G)≤ src(G)≤ m
where diam(G) denotes the diameter of G and m is the number of edges of G.

The topic of rainbow connection number is fairly interesting and recently a series of pa-
pers have been written about it. The reader can see [7] for a monograph and [8] for a survey
on this topic. The strong rainbow connection number is also interesting and, by definition,
the investigation of it is more challenging than that of rainbow connection number. How-
ever, there are very few papers that have been written about it. In this paper, we do research
on it. In [3], Chartrand et al. determined the precise strong rainbow connection numbers
for some special graph classes including trees, complete graphs, wheels, complete bipartite
(multipartite) graphs.

Recently, Ananth and Nasre [1] derived the following hardness result about the strong
rainbow connection number.

Theorem 1.1. [1] For every integer k ≥ 3, deciding whether src(G) ≤ k, is NP-hard even
when G is bipartite.

So, for a general graph G, it is almost impossible to give the precise value for src(G).
And we aim to give upper bounds for it according to some graph parameters. In this paper,
we will derive a sharp upper bound for src(G) in terms of the number of edge-disjoint
triangles (if exist) in a graph G, and give a necessary and sufficient condition for the equality
(Theorem 3.1).

In [4], the authors investigated the graphs with small rainbow connection numbers, they
showed a sufficient condition that guarantees rc(G) = 2 and gave a threshold function for a
random graph G = G(n, p) to have rc(G(n, p))≤ 2.

Theorem 1.2. [4] Any non-complete graph with δ (G)≥ n/2+ logn has rc(G) = 2.

Theorem 1.3. [4] p =
√

logn/n is a sharp threshold function for the property rc(G(n, p))≤
2.

In [3], the authors derived that the problem of considering graphs with rc(G) = 2 is
equivalent to that of considering graphs with src(G) = 2.

Proposition 1.1. [3] rc(G) = 2 if and only if src(G) = 2.

In Section 4.2 of [7], Li and Sun did research on graphs with large rainbow connection
numbers, and showed that rc(G) 6= m− 1 and characterized the graphs with rc(G) = m−
2. In this paper, we aim to investigate the graphs with large strong rainbow connection
numbers. In [3], Chartrand et al. obtained that src(G) = m if and only if G is a tree. We will
show that src(G) 6= m−1 and characterize the graphs with src(G) = m−2 by showing that
src(G) = m−2 if and only if G is a 5-cycle or belongs to one of two graph classes (Theorem
4.1).

We use V (G), E(G) for the set of vertices and edges of G, respectively. For any subset
X of V (G), let G[X ] denote the subgraph induced by X , and E[X ] the edge set of G[X ];
similarly, for any subset E1 of E(G), let G[E1] denote the subgraph induced by E1. Let G
be a set of graphs, then V (G ) =

⋃
G∈G V (G), E(G ) =

⋃
G∈G E(G). A rooted tree T (x) is

a tree T with a specified vertex x, called the root of T . The path xT v is the unique x− v
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path in T , each vertex on the path xT v, including the vertex v itself, is called an ancestor
of v, an ancestor of a vertex is proper if it is not the vertex itself, the immediate proper
ancestor of a vertex v other than the root is its parent and the vertices with parent v are its
children or sons. We let Pn and Cn denote the path and cycle with n vertices, respectively.
If P : u1,u2, · · · ,ut is a path, then the ui − u j section of P, denoted by uiPu j, is the path
ui,ui+1, · · · ,u j. Similarly, for a cycle C : v1, · · · ,vt ,v1, we define the vi−v j section, denoted
by viCv j, of C, and C contains two vi − v j sections. Note the fact that if P is a u1 − ut
geodesic, then uiPu j is also a ui−u j geodesic where 1≤ i, j ≤ t. We use l(P) to denote the
length of a path P. For a set S, |S| denotes the cardinality of S. In a graph G with at least one
cycle, the length of a shortest cycle is called its girth, denoted by g(G). In an edge-colored
graph G, we use c(e) to denote the color of an edge e, and for a subgraph G1 of G, we use
c(G1) to denote the set of colors of the edges in G1. We follow the notation and terminology
of [2].

2. Basic results

We first give a necessary condition for an edge-colored graph to be strongly rainbow con-
nected. If G contains at least two cut edges, then for any two cut edges e1 = u1u2, e1 = v1v2,
there must exist some 1 ≤ i0, j0 ≤ 2, such that any ui0 − v j0 path must contain the edges
e1,e2. So we have:

Observation 2.1. If G is strongly rainbow connected under some edge-coloring, and e1,e2
are two cut edges, then c(e1) 6= c(e2).

The following lemma will be useful in our discussion.

Lemma 2.1. If src(G) = m−1 or m−2, then 3≤ g(G)≤ 5.

Proof. Let C : v1, · · · ,vk,vk+1 = v1 be a minimum cycle of G with k = g(G), and ei = vivi+1
for each 1≤ i≤ k, we suppose k≥ 6. We give the cycle C the same strong rainbow coloring
as in [3]: If k is even, let k = 2` for some integer `≥ 3, c(ei) = i for 1≤ i≤ ` and c(ei) = i−`
for `+1≤ i≤ k; If k is odd, let k = 2`+1 for some integer `≥ 3, c(ei) = i for 1≤ i≤ `+1
and c(ei) = i− `− 1 for `+ 2 ≤ i ≤ k. We color each other edge with a fresh color. This
procedure costs d k

2e+(m− k) = m− (k−d k
2e)≤ m−3 colors totally.

We only consider the case k = 2`(`≥ 3), since the case for k = 2`+1(`≥ 3) can be done
similarly. Let P : u = u1, · · · ,v = ut be a u−v geodesic of G. If there are two edges of P, say
e′1, e′2, with the same color, then they must be in C. Without loss of generality, let e′1 = v1v2.
We first consider the case that e′1 = v1v2, and v1 = ui1 ,v2 = ui1+1 for some 1≤ i1 ≤ t. Then
we must have e′2 = v`+1v`+2 where v`+1 = u j1 , v`+2 = u j1+1 for some i1 + 1 ≤ j1 ≤ t or
v`+2 = u j2 , v`+1 = u j2+1 for some i1 +1≤ j2 ≤ t. If v`+1 = u j1 , v`+2 = u j1+1 for some i1 +
1≤ j1 ≤ t, then the section v2Pv`+1 of P is a v2−v`+1 geodesic, and so it is not longer than
the section C′ : v2,v3, · · · ,v`+1 of C, then the length of v2Pv`+1, l(v2Pv`+1)≤ `−1, is smaller
than the length of the section C′′ : v2,v1,vk, · · · ,v`+1 of C. So the sections v2Pv`+1 and C′
will produce a smaller cycle than C (this produces a contradiction), or v2Pv`+1 is the same as
C′ (but in this case, the section C′′′ : v1,vk, · · · ,v`+2 of C is shorter than v1Pv`+2 which now
is a v1− v`+2 geodesic, this also produces a contradiction). If v`+2 = u j2 , v`+1 = u j2+1 for
some i1 +1≤ j2 ≤ t, then the section v1Pv`+2 of P is a v1−v`+2 geodesic, so it is not longer
than the length of the section C′ : v1,vk,vk−1, · · · ,v`+2 of C and its length, l(v1Pv`+2)≤ `−1,
is smaller than that of the section C′′ : v1,v2, · · · ,v`+2 of C. So the sections v1Pv`+2 and C′
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will produce a smaller cycle than C, this also produces a contradiction. So P is strongly
rainbow. The remaining two subcases correspond to the case that v1 = ui1+1, v2 = ui1 , and
with a similar argument, a contradiction will be produced. Then the conclusion holds.

Note that we have proved the above lemma by contradiction: we first chose a smallest
cycle C of a graph G, then gave it a strong rainbow coloring the same as in [3], and gave
a fresh color to any other edge. Then for any u− v geodesic P, we derived that either
one section of P was the same as one section of C and then found a shorter path than the
geodesic, or one section of P and one section of C produced a smaller cycle than C, each of
these two cases would produce a contradiction. This technique will be useful in the sequel.

u2u1

u3u4u5

C1

C2

g(G) = 3g(G) = 5

u1
u2

u3
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C2

g(G) = 4

u1 u2

u3

u4u5

C2

C1

C2

C1
C1

C2

C1

C2

u1 u2

u3u4

u1
u2

u3
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u1 u2

u3

u4

v4

v2

Figure 1. The graphs for Observation 2.2.

The following observation is obvious and we omit its proof.

Observation 2.2. Let G be a connected graph with at least one cycle, and 3 ≤ g(G) ≤ 5.
Let C1 be the smallest cycle of G, and C2 be the second smallest cycle (if exists) of G. If C1
and C2 have at least two common vertices, then we have:

(1) if g(G) = 3, then C1 and C2 have one common edge as shown in Figure 1;
(2) if g(G) = 4, then C1 and C2 have one common edge, or two common adjacent

edges, or C1 and C2 are two edge-disjoint 4-cycles, as shown in Figure 1;
(3) if g(G) = 5, then C1 and C2 have one common edge, or two common adjacent

edges, as shown in Figure 1.

The following observation is easy and very useful in the sequel.

Observation 2.3. For any two vertices u, v ∈ G, we have the following:
(1) if T is a triangle in a graph G, then any u− v geodesic P contains at most one edge

of T ;
(2) if g(G) = 4 and C1 is the smallest cycle of G, then any u−v geodesic P contains at

most one edge or two adjacent edges of C1;
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(3) if g(G) = 5 and C1 is the smallest cycle of G, then any u−v geodesic P contains at
most one edge or two adjacent edges of C1.

3. A sharp upper bound for src(G) in terms of edge-disjoint triangles

In this section, we give an upper bound for src(G) in terms of their edge-disjoint triangles
(if exist) in a graph G, and give a necessary and sufficient condition for the equality.

Recall that a block of a connected graph G is a maximal connected subgraph without any
cut vertex. Thus, every block of a graph G is either a maximal 2-connected subgraph or a
bridge (cut edge). We now introduce a new graph class. For a connected graph G, we say
G ∈ G t , if it satisfies the following conditions: C1: each block of G is a bridge or a triangle;
C2: G contains exactly t triangles; C3: each triangle contains at least one vertex of degree
two in G.

By definition, each graph G ∈ G t is formed by (edge-disjoint) triangles and paths (may
be trivial), these triangles and paths fit together in a treelike structure, and G contains no
cycles but the t (edge-disjoint) triangles. For example, see Figure 2, here t = 2, u1, u2, u6
are vertices of degree 2 in G. If a tree is obtained from a graph G ∈ G t by deleting one
vertex of degree 2 for each triangle, then we call this tree a D2-tree, denoted by TG, of G.
For example, in Figure 2, TG is a D2-tree of G. Clearly, the D2-tree is not unique, since in
this example, we can obtain another D2-tree by deleting u1 instead of u2. On the other hand,
we can say that any element of G t can be obtained from a tree by adding t new vertices of
degree 2. It is easy to show that the number of edges of TG is m−2t where m is the number
of edges of G.

u2

u1

u3

T1

T2

u4

u5 u6

u7

u8

G TG

u1

u3

u4

u5

u7

u8

Figure 2. An example of G ∈ G t with t = 2.

Theorem 3.1. If G is a graph with m edges and t edge-disjoint triangles, then

src(G)≤ m−2t,

the equality holds if and only if G ∈ G t .

Proof. Let T = {Ti : 1 ≤ i ≤ t} be a set of t edge-disjoint triangles in G. We color each
triangle with a fresh color, that is, the three edges of each triangle receive the same color,
then we give each other edge a fresh color. For any two vertices u,v of G, let P be any u−v
geodesic, then P contains at most one edge from each triangle by Observation 2.3, and so P
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is strongly rainbow under the above coloring. As this procedure costs m−2t colors totally,
we have src(G)≤ m−2t.
Claim 1. If the equality holds, then for any set T of edge-disjoint triangles of G, we have
|T | ≤ t.
Proof. We suppose that there is a set T ′ of t ′ edge-disjoint triangles in G with t ′ > t. Then,
with a similar procedure, we have src(G)≤ m−2t ′ < m−2t, a contradiction.
Claim 2. If the equality holds, then G contains no cycle but the above t (edge-disjoint)
triangles.
Proof. We suppose that there is at least one cycle distinct with the above t triangles. Let
C be the set of these cycles and C1 be the smallest element of C with |C1| = k. We will
consider two cases:
Case 1. E(C1)∩E(T ) = /0, that is, C1 is edge-disjoint from each of the above t triangles.
Clearly, C1 has at most one common vertex with each of them. In this case k ≥ 4 by Claim
1, and we give G an edge-coloring as follows: we first color the edges of C1 the same
as in [3] (this was shown in the proof of Lemma 2.1); then we color each triangle with a
fresh color; for the remaining edges, we give each one a fresh color. Recall the fact that
any geodesic contains at most one edge from each triangle and with a similar procedure
to the proof of Lemma 2.1, we know that the above coloring is strongly rainbow, as this
procedure costs d k

2e+ t +(m− k− 3t) = (m− 2t)+ (d k
2e− k) < m− 2t colors totally, we

have src(G) < m−2t, this produces a contradiction.
Case 2. E(C1)∩E(T ) 6= /0, that is, C1 has common edges with the above t triangles, in this
case k ≥ 3. By the choice of C1, we know that |E(C1)∩E(Ti)| ≤ 1 for each 1 ≤ i ≤ t. We
will consider two subcases according to the parity of k.
Subcase 2.1. k = 2` for some `≥ 2. For example, see the graph (α) of Figure 3, here T =
{T1,T2,T3}, V (C1) = {ui : 1 ≤ i ≤ 6}, E(C1)∩E(T1) = {u1u2}, E(C1)∩E(T2) = {u4u5}.
Without loss of generality, we assume that there exists a triangle, say T1, which contains the
edge u1u2, and let V (T1) = {u1,u2,w1}, G′ = G\E(T1). If there exists some triangle, say
T2, which contains the edge u`+1u`+2, we let V (T2) = {u`+1,u`+2,w2}.

C1

T1

T2

T3

T1

T2

u1 u1

u2
u2

u3u3

u5

u4

u5

u6

u4
C1

(α) (β)

w1
w1

w2

w2

Figure 3. The graphs for the two examples in Theorem 3.1.

We first consider the case for ` = 2, see Figure 4. We first give each triangle of G′ a fresh
color; for the remaining edges of G′, we give each of them a fresh color; for the edges of
T1, let c(u1w1) = c(u2u3), c(u2w1) = c(u1u4), c(u1u2) = c(u3u4). Then it is easy to show
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that there is a u− v geodesic which contains at most one edge from any two edges with the
same color for u,v ∈ G, and so the above coloring is strongly rainbow. As this procedure
costs m−2t−1 < m−2t colors totally, we have src(G) < m−2t, a contradiction.

We next consider the case for ` ≥ 3. Let G′′ = G\(E(T1)∪E(T2)). We give G an edge-
coloring as follows: We first give each triangle of G′′ a fresh color; then give a fresh color
to each of the remaining edges of G′′; for the edges of T1 and T2, let c(u1w1) = c(u2u3),
c(u2w1) = c(u1uk), c(u1u2) = c(u`+1u`+2) = c, c(w2u`+1) = c(u`+2u`+3), c(w2u`+2) =
c(u`u`+1) where c is a new color. Then it is easy to show that there is a u− v geodesic
which contains at most one edge from any two edges with the same color for u,v ∈ G, and
so the above coloring is strongly rainbow. As this procedure costs m−2t−1 < m−2t colors
totally, we have src(G) < m−2t, a contradiction.
Subcase 2.2. k = 2`+1 for some `≥ 1.

We first consider the case for ` ≥ 2. For example, see the graph (β ) of Figure 3, here
T = {T1,T2}, V (C1) = {ui : 1≤ i≤ 5}, E(C1)∩E(T1) = {u1u2}, E(C1)∩E(T2) = {u3u4}.
Without loss of generality, we assume that there exists a triangle, say T1, which contains the
edge u1u2, and let V (T1) = {u1,u2,w1}. If there exists some triangle, say T2, which contains
the edge u`+1u`+2, we let V (T2) = {u`+1,u`+2,w2} and G′ = G\(E(T1)∪E(T2)).

We give G an edge-coloring as follows: We first give each triangle of G′ a fresh color;
then give a fresh color to each of the remaining edges of G′; for the edges of T1 and T2,
let c(u1w1) = c(u2u3), c(u2w1) = c(u1uk), c(u`+1w2) = c(u`+2u`+3) and let c(u1u2) =
c(u`+1u`+2) = c(w2u`+2) be a fresh color. With a similar procedure to the proof of Lemma
2.1, we can show that G is strongly rainbow connected, and so src(G)≤ (t−1)+(m−3t) =
(m−2t)−1 < m−2t, this produces a contradiction.

For the case for ` = 1, that is, C1 is a triangle, see Figure 4, we color the three edges
(if exist) with color 1, these edges are shown in the figure; the remaining edges of these
three triangles (if exist) all receive color 2; each other triangle receives a fresh color; for the
remaining edges, we give each one a fresh color. It is easy to show that the above coloring
is strongly rainbow, and so we have src(G) < m− 2t in this case, a contradiction. So the
claim holds.

u2u1
T1

1

u3

C1

T2 T3

1

1

w1
w1

T1
1

1

2

2

3

u1 u2

u3u4

C1

3

Figure 4. The edge-colorings for the case that C1 is a triangle and the case that C1 a 4-cycle
in Theorem 3.1.

Claim 3. If the equality holds, then G ∈ G t .

Proof. To show G ∈ G t , it suffices to show that each triangle contains at least one vertex
of degree 2 in G. Suppose that this does not hold, without loss of generality, let T1 be the
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triangle with degG(vi)≥ 3, where V (T1) = {vi : 1 ≤ i≤ 3}. By Claim 2, it is easy to show
that E(T1) is an edge-cut of G. Let Hi be the subgraph of G\E(T1) containing the vertex vi
(1 ≤ i ≤ 3). By the assumption of T1, we know that each Hi is nontrivial. We now give G
an edge-coloring: for the t− 1 (edge-disjoint) triangles of G\E(T1), we give each of them
a fresh color; for the remaining edges of G\E(T1) (by Claim 2, each of them must be a
cut edge), we give each of them a fresh color; for the edges of E(T1), let c(v1v3) ∈ c(H2),
c(v1v2) ∈ c(H3), c(v2v3) ∈ c(H1). It is easy to show that, with the above coloring, G is
strongly rainbow connected, and we have src(G) < m−2t, a contradiction, and so the claim
holds.

Claim 4. If G ∈ G t , then the equality holds.

Proof. Let TG be a D2-tree of G. The result clearly holds for the case |E(TG)| = 1. So
now we assume that |E(TG)| ≥ 2. We will show that, for any strong rainbow coloring of G,
c(e1) 6= c(e2) where e1,e2 ∈ TG, that is, each edge of TG receives a distinct color, and so the
edges of TG cost m−2t colors totally. Recall that |E(TG)|= m−2t, then src(G)≥ m−2t,
by the above claim, Claim 4 holds.

For any two edges, say e1,e2, of TG, let e1 = u1u2, e2 = v1v2. Without loss of generality,
we assume that dTG(u1,v2) = max{dTG(ui,v j) : 1 ≤ i, j ≤ 2} where dTG(u,v) denotes the
distance between u and v in TG. As TG is a tree, the (unique) u1− v2 geodesic, say P, in TG
must contain the edges e1,e2. Moreover, it is easy to show that P is also a unique u1− v2
geodesic in G, and so c(e1) 6= c(e2) under any strong rainbow coloring.

By Claims 3 and 4, the equality holds if and only if G ∈ G t . Then our result holds.

In [5, 6], Li and Sun investigated the rainbow connection numbers of line graphs. As
an application to Theorem 3.1, we consider the strong rainbow connection numbers of line
graphs of connected cubic graphs. Recall that the line graph of a graph G is the graph L(G)
whose vertex set is V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if and only
if they are adjacent in G. The star, denoted by S(v), at a vertex v of graph G, is the set of
all the edges incident to v. Let 〈S(v)〉 be the subgraph of L(G) induced by S(v), clearly, it is
a clique of L(G). A clique decomposition of G is a collection C of cliques such that each
edge of G occurs in exactly one clique in C . An inner vertex of a graph is a vertex with
degree at least 2. For a graph G, we use V2 to denote the set of all the inner vertices of G.
Let K0 = {〈S(v)〉 : v ∈V (G)}, K = {〈S(v)〉 : v ∈V2}. It is easy to show that K0 is a clique
decomposition of L(G) and each vertex of the line graph belongs to at most two elements of
K0. We know that each element 〈S(v)〉 of K0 \K , a single vertex of L(G), is contained in
the clique induced by u that is adjacent to v in G. So K is a clique decomposition of L(G).

Corollary 3.1. Let L(G) be the line graph of a connected cubic graph G with n vertices.
Then src(L(G))≤ n.

Proof. Since G is a connected cubic graph, each vertex of G is an inner vertex and the clique
〈S(v)〉 in L(G) corresponding to each vertex v is a triangle. We know that K = {〈S(v)〉 :
v ∈ V2} = {〈S(v)〉 : v ∈ V} is a clique decomposition of L(G). Let T = K . Then T is a
set of n edge-disjoint triangles that cover all the edges of L(G). As there are 3n edges in
L(G), by Theorem 3.1 we have src(L(G))≤ 3n−2n = n.
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4. Graphs with large strong rainbow connection numbers

In this section, we will give our result on graphs with large strong rainbow connection num-
bers. We first introduce two graph classes. Let C be the unique cycle of a unicyclic graph
G, V (C) = {v1, · · · ,vk} and TG = {Ti : 1≤ i≤ k} where Ti is the unique tree containing the
vertex vi in subgraph G\E(C). We say that Ti and Tj are adjacent (nonadjacent) if vi and v j
are adjacent (nonadjacent) in C. Then let
G1 = {G : G is a unicyclic graph, k = 3, TG contains at most two nontrivial elements},
G2 = {G : G is a unicyclic graph, k = 4, TG contains two nonadjacent trivial elements and
the other two (nonadjacent) elements are paths.}.

Theorem 4.1. Let G be a connected graph with m edges. Then we have:
(i) src(G) 6= m−1,

(ii) src(G) = m−2 if and only if G is a 5-cycle or belongs to G1 or G2.

Proof. In [3], the authors obtained that src(G) = m if and only if G is a tree. So src(G) ≤
m−1 if and only if G is not a tree. In order to derive our conclusion, we need the following
claim:
Claim 5. If src(G) = m−1 or m−2, then G is a unicyclic graph.

Proof. Suppose that G contains at least two cycles. Let C1 be the smallest cycle of G and
C2 be the second smallest one. Let |Ci| = ki(i = 1,2). By Lemma 2.1, we have 3 ≤ k1 ≤ 5
and k2 ≥ k1. We will consider two cases according to the value of |E(C1)∩E(C2)|.
Case 1. |E(C1)∩E(C2)| = 0, that is, C1 and C2 have no common edge. There are three
subcases:
Subcase 1.1. k1 = 3, that is, C1 is a triangle.

By Observation 2.2, we must have |V (C1)∩V (C2)| ≤ 1. We first give C2 a strong rainbow
coloring using d k2

2 e colors the same as in [3]; then give a fresh color to C1, that is, the edges
of C1 receive a same color; for the remaining edges, we give each of them a fresh color.
With a similar procedure to that of Lemma 2.1 and by Observation 2.3, we can show that
the above coloring is strongly rainbow. As this costs 1+ d k2

2 e+(m− k2−3) colors totally,
we have src(G)≤ 1+d k2

2 e+(m−k2−3) = (m−2)− (k2−d k2
2 e)≤m−3, a contradiction.

Subcase 1.2. k1 = 4, that is, C1 is a 4-cycle.
If |V (C1)∩V (C2)| ≤ 1, we first give C2 a strong rainbow coloring using d k2

2 e colors the
same as in [3]; then we give two fresh colors to C1 in the same way; for the remaining
edges, we give each of them a fresh color. With a similar procedure to that of Lemma 2.1
and by Observation 2.3, we can show that the above coloring is strongly rainbow. As this
costs 2 + d k2

2 e+(m− k2− 4) colors totally, we have src(G) ≤ 2 + d k2
2 e+(m− k2− 4) =

(m−2)− (k2−d k2
2 e)≤ m−3, a contradiction.

Otherwise, by Observation 2.2, it must be the graph of the three graphs with g(G) = 4
on the right-hand side in Figure 1. We let c(u1u2) = c(u3u4) = a,c(u2u3) = c(u1u4) =
b,c(u1v2) = c(u3v4) = c,c(v2u3) = c(u1v4) = d, where a,b,c,d are four distinct colors;
for the remaining edges, we give each of them a fresh color. This procedure costs m− 4
colors totally. As now both C1 and C2 are the smallest cycle of G, by Observation 2.3, any
geodesic contains at most one of the two edges with the same color, and so src(G)≤m−4,
a contradiction.
Subcase 1.3. k1 = 5, that is, C1 is a 5-cycle.
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By Observation 2.2, we must have |V (C1)∩V (C2)| ≤ 1. We first give C2 a strong rainbow
coloring using d k2

2 e colors the same as in [3]; then we give three fresh colors to C1 in the
same way; for the remaining edges, we give each of them a fresh color. With a similar
procedure to that of Lemma 2.1 and by Observation 2.3, we can show that the above coloring
is strongly rainbow. As this procedure costs 3+ d k2

2 e+(m− k2−5) colors totally, we have
src(G)≤ 3+ d k2

2 e+(m− k2−5) = (m−2)− (k2−d k2
2 e)≤ m−3, a contradiction.

Note that for each above subcase, by Observation 2.3, the cycle produced during the
procedure while we use the similar technique to that of Lemma 2.1 cannot be the cycle C1
and must be smaller than C2, then a contradiction will be produced.
Case 2. |E(C1)∩E(C2)| ≥ 1, that is, C1 and C2 have at least one common edge, and so C1
and C2 have at least two common vertices. There are also three subcases:

C1

1
1

1

2

2
P ′ P ′

C1

1
1

1

2

2

3

C1

P ′

1

1

2

2 3
3

C1

P ′

1 2

2 31

3
4

(a′) (b′)

(c′) (d′)

Figure 5. The graphs for Case 2 of the claim.

Subcase 2.1. k1 = 3, that is, C1 is a triangle. By Observation 2.2, C1 and C2 have one
common edge as shown in Figure 1. Let V (C1) = {ui : 1 ≤ i ≤ 3} and V (C2) = {vi : 1 ≤
i ≤ k2} and vk2+1 = v1, where v1 = u1,v2 = u2. Let P′ be the subpath of C2 that does not
contain the edge v1v2. We now give G an edge-coloring as follows:

For the cases l(P′) = 2,3, we first color the edges of C1∪C2 as shown in Figure 5 (graphs
a′ and b′); then we give each other edge of G a fresh color. This procedure costs m−3 colors
totally. Then it is easy to show that any geodesic cannot contain two edges with the same
color, and so src(G)≤ m−3, which produces a contradiction.

For the remaining case, that is, l(P′) ≥ 4 and k2 ≥ 5, we first give the cycle C1 a color,
say a, that is, the three edges of C1 receive the same color. Then in C2, if k2 = 2` for some
` ≥ 2, then let c(v2v3) = c(v`+2v`+3) be a new color, say b; if k2 = 2`+ 1 for some ` ≥ 2,
then let c(v2v3) = c(v`+3v`+4) be a new color, say b. For the remaining edges, we give each
of them a fresh color. This procedure costs m−3 colors totally. For any two vertices u,v, if
P is a u− v geodesic, by Observation 2.3, P cannot contain two edges with color a; for the
two edges with color b, with a similar argument to that of Lemma 2.1 (Note that now, by
Observation 2.3, the cycle produced during the procedure cannot be C1 and must be shorter
than C2, then a contradiction will be produced), we can show that P contains at most one of
them. So P is strongly rainbow and src(G)≤ m−3, which produces a contradiction.
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Subcase 2.2. k1 = 4, that is, C1 is a 4-cycle. By Observation 2.2, C1 and C2 have one
common edge, or two common adjacent edges, as shown in Figure 1.

If C1 and C2 have one common edge, say u1u2 (see the graph of the three graphs with
g(G) = 4 on the left-hand side in Figure 1), we let V (C2) = {vi : 1 ≤ i ≤ k2}, where v1 =
u1,v2 = u2. We let c(v2v3) = c(u4v1) = a, c(v2u3) = c(v1vk2) = b, c(v1v2) = c(u3u4) = c.
For the remaining edges, we give each of them a fresh color. This procedure costs m− 3
colors totally. For any two vertices u,v, P is a u− v geodesic, then by Observation 2.3, P
contains at most one of the two edges with color c; for the two edges with color a (b), it is
easy to show that there exists one u− v geodesic which contains at most one of them. So
we have src(G)≤ m−3, which produces a contradiction.

Otherwise, then C1 and C2 have two common adjacent edges, say u1u2,u2u3 (see the
graph of the three graphs with g(G) = 4 in the middle of Figure 1). We let V (C2) = {vi :
1 ≤ i ≤ k2}, where v1 = u1,v2 = u2,v3 = u3. Let P′ be the subpath of C2 which does not
contain the edges u1u2,u2u3.

For the cases l(P′) = 2,3, we first color the edges of C1∪C2 as shown in Figure 5 (graphs
c′ and d′); then we give each other edge of G a fresh color. This procedure costs m−3 colors
totally. Then it is easy to show that any geodesic cannot contain two edges with the same
color, and so we have src(G)≤ m−3, which produces a contradiction.

For the case l(P′)≥ 4, that is k2 ≥ 6, we let c(u4v1) = c(v3v4) = a, c(v1v2) = c(v3u4) = b;
for the edge v2v3, we give a similar treatment to that of Subcase 2.1 and let c(v2v3) = c; we
then give each other edge of G a fresh color. This procedure costs m−3 colors totally. For
any two vertices u,v, let P be a u− v geodesic, then by Observation 2.3, P contains at most
one of the two edges with color b. For the two edges with color a, it is easy to show that there
exists a u− v geodesic which contains at most one of them. With a similar argument to that
of Lemma 2.1 (Note that now, by Observation 2.3, the cycle produced during the procedure
cannot be C1 and must be shorter than C2, then a contradiction will be produced), we can
show that any geodesic contains at most one edge with color c. So we have src(G)≤m−3,
which produces a contradiction.
Subcase 2.3. k1 = 5, that is, C1 is a 5-cycle. By Observation 2.2, C1 and C2 have one com-
mon edge, or two common adjacent edges, as shown in Figure 1. The following discussion
will use Observation 2.3.

If C1 and C2 have one common edge, say u1u2 (see the graph of the two graphs with
g(G) = 5 on the left-hand side in Figure 1), we let V (C2) = {vi : 1 ≤ i ≤ k2}, where v1 =
u1,v2 = u2, and let c(u4u5) = c(v2v3) = a, c(v1u5) = c(v2u3) = b, and c(v1v2) = c(u3u4) =
c; for the remaining edges, we give each of them a fresh color. This procedure costs m−3
colors totally. With a similar argument to the above, we can show that src(G) ≤ m− 3,
which produces a contradiction.

Otherwise, then C1 and C2 have two common adjacent edges, say u1u2,u2u3 (see the
graph of the two graphs with g(G) = 5 on the right-hand side in Figure 1). We let c(v1u5) =
c(v3v4) = a, c(v1v2) = c(v3u4) = b, and c(v2v3) = c(u4u5) = c; for the remaining edges, we
give each of them a fresh color. This procedure costs m− 3 colors totally. With a similar
argument to above, we can show that src(G)≤ m−3, which produces a contradiction.

With the above discussion, Claim 5 holds.
Let G be a unicyclic graph and C be its unique cycle, |C|= k where 3≤ k ≤ 5. We now

investigate the strong rainbow connection number of G.
Case 1. k = 3.
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Subcase 1.1. All Tis are nontrivial. We first give each edge of G\E(C) a fresh color, then let
c(v1v2) ∈ c(T3), c(v2v3) ∈ c(T1), c(v1v3) ∈ c(T2). It is easy to show that, with this coloring,
G is strongly rainbow connected, and so src(G)≤ m−3.
Subcase 1.2. At most two Tis are nontrivial, that is, G ∈ G1. At first we consider the case
that there are exactly two Tis which are nontrivial, say T1 and T2. We first give each edge
of G\E(C) a fresh color, then let c(v1v2) = c(v2v3) = c(v1v3). It is easy to show that, with
this coloring, G is strongly rainbow connected, and now src(G) ≤ m− 2. On the other
hand, by Observation 2.1 and the definition of a rainbow geodesic, we know that in a strong
rainbow coloring, c(T1)∩ c(T2) = /0 and c(v1v2) does not belong to c(T1)∪ c(T2). So we
have src(G) = m− 2. With a similar argument, we can derive that src(G) = m− 2 for the
case that at most one Ti is nontrivial. So src(G) = m−2 if G ∈ G1.
Case 2. k = 4.
Subcase 2.1. There are at least three nontrivial Tis, say T1,T3,T4. We first give each edge of
G\E(C) a fresh color, then let c(v1v2)∈ c(T4), c(v3v4)∈ c(T1), c(v1v4)∈ c(T3) and we give
the edge v2v3 a fresh color. It is easy to show that, with this coloring, G is strongly rainbow
connected, and so src(G)≤ m−3.
Subcase 2.2. There are exactly two nontrivial Tis, say Ti1 and Ti2 .
Subsubcase 2.2.1. Ti1 and Ti2 are adjacent, say T1 and T2. We first give each edge of G\E(C)
a fresh color, then let c(v2v3) ∈ c(T1), c(v1v4) ∈ c(T2) and we color the edges v1v2 and v3v4
with the same new color. It is easy to show that, with this coloring, G is strongly rainbow
connected, and so src(G)≤ m−3.

v1

v2

v4
v3

T3 u1

u′

1
u′′

1

Figure 6. The graph for Subsubcase 2.2.2.

Subsubcase 2.2.2. Ti1 and Ti2 are nonadjacent, say T1 and T3. We can consider Ti as a
rooted tree with root vi (i = 1,3). If there exists some Ti, say T1, that contains a vertex, say
u1, with at least two sons, say u′1,u

′′
1 (see Figure 6). We first color each edge of

⋃
i=1,3 Ti∪

{v1v2} with a distinct color, this costs m−3 colors, then we let c(v1v4) = c(v1v2),c(v2v3) =
c(u1u′1),c(v3v4) = c(u1u′′1). It is easy to show that this coloring is strongly rainbow and we
have src(G) ≤ m− 3. If G also belongs to G2, we first give each edge of G\E(C) a fresh
color, then let c(v1v2) = c(v3v4) = a and c(v2v3) = c(v1v4) = b where a and b are two new
colors. It is easy to show that, with this coloring, G is strongly rainbow connected, and so
src(G)≤ m−2. On the other hand, src(G)≥ m−2 = diam(G), and so src(G) = m−2.
Subcase 2.3. There is at most one nontrivial Ti. Then with a similar argument to Subsubcase
2.2.2, we can derive that src(G) = m−2 if G also belongs to G2.

By the discussions of Subsubcase 2.2.2 and Subcase 2.3, we can derive that src(G) =
m−2 if G ∈ G2.
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Case 3. k = 5.
If there is at least one nontrivial Ti, say T1, then we give each edge of G\E(C) a fresh

color, and let v3v4 ∈ c(T1), c(v1v2) = c(v4v5) = a and c(v2v3) = c(v1v5) = b where a and
b are two new colors. It is easy to show that, with this coloring, G is strongly rainbow
connected, and now we have src(G)≤m−3. On the other hand, we know src(G) = m−2 =
3 if G∼= C5 from [3].

By Lemma 2.1 and Claim 5, we derive that if src(G) = m− 1 or m− 2, then G is a
unicyclic graph with a unique cycle of length at most 5. By the discussion from the above
Case 1 to Case 3, we know that if G is a unicyclic graph with a unique cycle of length at
most 5, then src(G) 6= m− 1. So src(G) 6= m− 1 for any graph G. Furthermore, we have
src(G) = m− 2 if and only if G is a 5-cycle or belongs to one of Gis (1 ≤ i ≤ 2). So the
theorem holds.
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