BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

G-Frames and Direct Sums

¹AMIR KHOSRAVI AND ²M. MIRZAEE AZANDARYANI

^{1,2}Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15618, Iran.
¹khosravi_amir@yahoo.com, khosravi@tmu.ac.ir, ²morteza_ma62@yahoo.com

Abstract. In this paper we study g-frames on the direct sum of Hilbert spaces. We generalize some of the results about g-frames on super Hilbert spaces to the direct sum of a countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz bases and g-orthonormal bases for these spaces. Moreover we consider perturbations, duals and equivalences for the direct sum of g-frames.

2010 Mathematics Subject Classification: 41A58, 42C15, 42C40

Keywords and phrases: Direct sums, g-frames, g-orthonormal bases, g-Riesz bases.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in 1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossmann and Meyer (see [9]). Frames are very useful in characterization of function spaces and other fields of applications such as filter bank theory (see [4]), sigma-delta quantization (see [3]), signal and image processing (see [5]) and wireless communications (see [11]). First we recall the definition of frames.

Let *H* be a Hilbert space and let *I* be a finite or countable subset of \mathbb{Z} . A family $\{f_i\}_{i \in I} \subseteq H$ is a *frame* for *H*, if there exist $0 < A \leq B < \infty$, such that for each $f \in H$,

$$A||f||^2 \leq \sum_{i \in I} \left| \left\langle f, f_i \right\rangle \right|^2 \leq B||f||^2.$$

In this case we say that $\{f_i\}_{i \in I}$ is an (A, B) frame. *A* and *B* are the lower and upper frame bounds, respectively. If only the right-hand side inequality is required, it is called a *Bessel* sequence. A frame is *tight*, if A = B. If A = B = 1, it is called a *Parseval* frame. A family $\{f_i\}_{i \in I} \subseteq H$ is *complete* if the span of $\{f_i\}_{i \in I}$ is dense in H. We say that $\{f_i\}_{i \in I}$ is a *Riesz basis* for H, if it is complete in H and there exist two constants $0 < A \le B < \infty$, such that for each sequence of scalars $\{c_i\}_{i \in I} \in \ell^2(I)$,

$$A\sum_{i\in I} |c_i|^2 \leq \left\|\sum_{i\in I} c_i f_i\right\|^2 \leq B\sum_{i\in I} |c_i|^2,$$

Communicated by Rosihan M. Ali, Dato'.

Received: March 22, 2011; Revised: July 21, 2011.

or equivalently

$$A\sum_{i\in F} |c_i|^2 \le \left\|\sum_{i\in F} c_i f_i\right\|^2 \le B\sum_{i\in F} |c_i|^2,$$

for each sequence of scalars $\{c_i\}_{i \in F}$, where *F* is a finite subset of I. In this case we say that $\{f_i\}_{i \in I}$ is an (A, B) Riesz basis. For more results about frames see [8].

Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique frames, pseudo frames and fusion frames [2, 7] are special cases of g-frames. Let *I* be a finite or countable subset of \mathbb{Z} and *H* be a Hilbert space. For each $i \in I$, let H_i be a Hilbert space and $L(H, H_i)$ be the set of all bounded, linear operators from *H* to H_i . We call $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ a *g-frame* for *H* with respect to $\{H_i : i \in I\}$ if there exist two positive constants *A* and *B* such that

$$A \|f\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B \|f\|^2$$

for each $f \in H$. In this case we say that Λ is an (A, B) g-frame. A and B are the lower and upper g-frame bounds, respectively. We call Λ an A-tight g-frame if A = B and we call it a *Parseval* g-frame if A = B = 1. If only the second inequality is required, we call it a *g*-*Bessel sequence*. If Λ is an (A, B) g-frame, then the *g*-frame operator S_{Λ} is defined by $S_{\Lambda}f = \sum_{i \in I} \Lambda_i^* \Lambda_i f$, which is a bounded, positive and invertible operator such that $A.I \leq S_{\Lambda} \leq B.I$. The *canonical dual* g-frame for Λ is defined by $\{\tilde{\Lambda}_i \in L(H, H_i) : i \in I\}$, where $\tilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$, which is an (1/B, 1/A) g-frame for H and for each $f \in H$, we have

$$f = \sum_{i \in I} \Lambda_i^* \tilde{\Lambda}_i f = \sum_{i \in I} \tilde{\Lambda}_i^* \Lambda_i f.$$

If Λ is a g-Bessel sequence, then the g-Bessel sequence $\{\Gamma_i \in L(H, H_i) : i \in I\}$ is called an alternate dual or a dual of Λ if

$$f = \sum_{i \in I} \Gamma_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Gamma_i f,$$

for each $f \in H$. Now define

$$\oplus_{i \in I} H_i = \left\{ \{f_i\}_{i \in I} | f_i \in H_i, \left\| \{f_i\}_{i \in I} \right\|_2^2 = \sum_{i \in I} \|f_i\|^2 < \infty \right\}.$$

 $\bigoplus_{i \in I} H_i$ with pointwise operations and inner product as

$$\left\langle \{f_i\}_{i\in I}, \{g_i\}_{i\in I}\right\rangle = \sum_{i\in I} \left\langle f_i, g_i\right\rangle$$

is a Hilbert space.

Let $\{H_i\}_{i \in I}$ be a sequence of Hilbert spaces. Then by considering $K = \bigoplus_{i \in I} H_i$, we can assume that each H_i is a closed subspace of K, therefore if $f_{i_1} \in H_{i_1}$ and $f_{i_2} \in H_{i_2}$, for $i_1, i_2 \in I$, then $\langle f_{i_1}, f_{i_2} \rangle$ is well-defined.

We say that $\{\Lambda_i \in L(H, H_i) : i \in I\}$ is *g*-complete if $\{f : \Lambda_i f = 0, \forall i \in I\} = \{0\}$, and we call it a *g*-orthonormal basis for H, if

$$\langle \Lambda_{i_1}^* f_{i_1}, \Lambda_{i_2}^* f_{i_2} \rangle = \delta_{i_1, i_2} \langle f_{i_1}, f_{i_2} \rangle, \quad i_1, i_2 \in I, f_{i_1} \in H_{i_1}, f_{i_2} \in H_{i_2},$$

and

$$\sum_{i\in I} \left\| \Lambda_i f \right\|^2 = \|f\|^2, \quad \forall f \in H.$$

 $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ is a *g*-*Riesz basis* for H, if it is g-complete and there exist two constants $0 < A \le B < \infty$, such that for each finite subset $F \subseteq I$ and $f_i \in H_i, i \in F$,

$$A\sum_{i\in F} \|f_i\|^2 \le \left\|\sum_{i\in F} \Lambda_i^* f_i\right\|^2 \le B\sum_{i\in F} \|f_i\|^2.$$

In this case we say that Λ is an (A, B) g-Riesz basis.

Let H_i and H'_i be Hilbert spaces, for each $i \in I$ and let $H = \bigoplus_{i \in I} H_i$ and $H' = \bigoplus_{i \in I} H'_i$. Recall that if $T_i \in L(H_i, H'_i)$, then $T = \bigoplus_{i \in I} T_i$ which is defined by $T(\{h_i\}_{i \in I}) = \{T_i(h_i)\}_{i \in I}$ is a bounded operator from H to H' if and only if $\sup\{||T_i|| : i \in I\} < \infty$. In this case $||T|| = \sup\{||T_i|| : i \in I\}$ and $T^* = \bigoplus_{i \in I} T_i^*$. If H and K are Hilbert spaces, then $H \oplus K$ is called a *super Hilbert space*.

Recently some authors were interested in g-frames on super Hilbert spaces, see [12, Proposition 2.16], [17] and [1]. In this paper we consider g-frames on the direct sum of a finite or countable number of Hilbert spaces.

In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct sum of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases, g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases, g-orthonormal bases). In Section 3 we consider perturbations, duals and equivalences for the direct sum of g-frames.

2. The direct sum of g-frames

Throughout this note all of the Hilbert spaces are separable. *I*, *J*, K_i 's, K_{ij} 's are finite or countable subsets of \mathbb{Z} and H, H_i 's, H_{ij} 's are Hilbert spaces. We start with the following proposition which is a generalization of [1, Proposition 2.3]:

Proposition 2.1. Let $\{\Lambda_{ij} \in L(H, H_{ij}) : i \in I\}$ be a sequence for each $j \in J$ and $\{e_{ij,k} : k \in K_{ij}\}$ be an orthonormal basis for H_{ij} . Suppose that $\Theta_i : H \longrightarrow \bigoplus_{j \in J} H_{ij}$ which is defined by $\Theta_i(f) = \{\Lambda_{ij}f\}_{j \in J}$ is a bounded operator for each $i \in I$, and suppose that $\psi_{ij,k} = \Lambda_{ij}^*(e_{ij,k})$. Then $\{\psi_{ij,k} : j \in J, i \in I, k \in K_{ij}\}$ is a frame (resp. tight frame, Bessel sequence, Riesz basis, orthonormal basis) for H if and only if $\{\Theta_i \in L(H, \bigoplus_{j \in J} H_{ij}) : i \in I\}$ is a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each $f \in H$, we have

(2.1)
$$\sum_{i\in I} \|\Theta_i f\|^2 = \sum_{i\in I} \sum_{j\in J} \left\|\Lambda_{ij} f\right\|^2 = \sum_{j\in J} \sum_{i\in I} \sum_{k\in K_{ij}} \left|\left\langle f, \psi_{ij,k}\right\rangle\right|^2.$$

This shows that $\{\psi_{ij,k} : j \in J, i \in I, k \in K_{ij}\}$ is a frame (resp. tight frame, Bessel sequence, complete set) if and only if $\{\Theta_i\}_{i \in I}$ is a g-frame (resp. tight g-frame, g-Bessel sequence, g-complete set).

Let $\{\psi_{ij,k} : j \in J, i \in I, k \in K_{ij}\}$ be an (A,B) Riesz basis and F be a finite subset of I. Suppose that $f \in H$ and $\{f_{ij}\}_{j \in J} \in \bigoplus_{j \in J} H_{ij}$ for each $i \in F$. We have

$$\left\langle \Theta_{i}^{*}(\{f_{ij}\}_{j\in J}),f\right\rangle = \left\langle \{f_{ij}\}_{j\in J},\{\Lambda_{ij}f\}_{j\in J}\right\rangle = \sum_{j\in J}\left\langle f_{ij},\Lambda_{ij}f\right\rangle = \left\langle \sum_{j\in J}\Lambda_{ij}^{*}f_{ij},f\right\rangle,$$

therefore $\Theta_i^*(\{f_{ij}\}_{j\in J}) = \sum_{j\in J} \Lambda_{ij}^* f_{ij}$, so

$$\left\|\sum_{i\in F}\Theta_i^*(\{f_{ij}\}_{j\in J})\right\|^2 = \left\|\sum_{i\in F}\sum_{j\in J}\Lambda_{ij}^*f_{ij}\right\|^2.$$

Suppose that $f_{ij} = \sum_{k \in K_{ij}} c_{ij,k} e_{ij,k}$, thus $\Lambda_{ij}^*(f_{ij}) = \sum_{k \in K_{ij}} c_{ij,k} \psi_{ij,k}$. Hence

(2.2)
$$\left\|\sum_{i\in F} \Theta_i^*\left(\{f_{ij}\}_{j\in J}\right)\right\|^2 = \left\|\sum_{j\in J}\sum_{i\in F}\sum_{k\in K_{ij}} c_{ij,k}\psi_{ij,k}\right\|^2.$$

Since $f_{ij} = \sum_{k \in K_{ij}} c_{ij,k} e_{ij,k}$, then

$$\left\|\{f_{ij}\}_{j\in J}\right\|^{2} = \sum_{j\in J} \|f_{ij}\|^{2} = \sum_{j\in J} \sum_{k\in K_{ij}} |c_{ij,k}|^{2}$$

for each $i \in F$, therefore

(2.3)
$$\sum_{i\in F} \left\| \{f_{ij}\}_{j\in J} \right\|^2 = \sum_{i\in F} \sum_{j\in J} \sum_{k\in K_{ij}} \left| c_{ij,k} \right|^2 = \sum_{j\in J} \sum_{i\in F} \sum_{k\in K_{ij}} |c_{ij,k}|^2.$$

Now by using (2.2) and (2.3), we have

$$A\sum_{i\in F} \left\| \{f_{ij}\}_{j\in J} \right\|^2 = A\sum_{j\in J} \sum_{i\in F} \sum_{k\in K_{ij}} |c_{ij,k}|^2 \le \left\| \sum_{j\in J} \sum_{i\in F} \sum_{k\in K_{ij}} c_{ij,k} \psi_{ij,k} \right\|^2 = \left\| \sum_{i\in F} \Theta_i^*(\{f_{ij}\}_{j\in J}) \right\|^2,$$

similarly

$$\left\|\sum_{i\in F} \Theta_i^*\left(\{f_{ij}\}_{j\in J}\right)\right\|^2 \leq B\sum_{i\in F} \left\|\{f_{ij}\}_{j\in J}\right\|^2.$$

This means that $\{\Theta_i\}_{i \in I}$ is an (A, B) g-Riesz basis. The converse is obtained similarly by choosing a finite sequence of scalars $\{c_{ij,k}\}$, using (2.2), (2.3) and the fact that $\{\Theta_i\}_{i \in I}$ is a g-Riesz basis.

Now let $\{\psi_{ij,k} : j \in J, i \in I, k \in K_{ij}\}$ be an orthonormal basis. Suppose that $i, \ell \in I$, $\{f_{ij}\}_{j\in J} \in \bigoplus_{j\in J} H_{ij}$ and $\{g_{\ell j}\}_{j\in J} \in \bigoplus_{j\in J} H_{\ell j}$. We have $f_{ij} = \sum_{k\in K_{ij}} \langle f_{ij}, e_{ij,k} \rangle e_{ij,k}$, $g_{\ell j} = \sum_{k\in K_{\ell j}} \langle g_{\ell j}, e_{\ell j,k} \rangle e_{\ell j,k}$. Then

$$\begin{split} \left\langle \Theta_{i}^{*}(\{f_{ij}\}_{j\in J}), \Theta_{\ell}^{*}(\{g_{\ell j}\}_{j\in J})\right\rangle &= \left\langle \sum_{j\in J} \Lambda_{ij}^{*}(f_{ij}), \sum_{j\in J} \Lambda_{\ell j}^{*}(g_{\ell j})\right\rangle \\ &= \sum_{j\in J} \sum_{r\in J} \sum_{k\in K_{ij}} \sum_{d\in K_{\ell r}} \left\langle \left\langle f_{ij}, e_{ij,k} \right\rangle \psi_{ij,k}, \left\langle g_{\ell r}, e_{\ell r,d} \right\rangle \psi_{\ell r,d} \right\rangle \\ &= \sum_{j\in J} \sum_{r\in J} \sum_{k\in K_{ij}} \sum_{d\in K_{\ell r}} \left\langle f_{ij}, e_{ij,k} \right\rangle \left\langle e_{\ell r,d}, g_{\ell r} \right\rangle \left\langle \psi_{ij,k}, \psi_{\ell r,d} \right\rangle. \end{split}$$

Now if $i = \ell$, then

$$\begin{split} \sum_{j \in J} \sum_{r \in J} \sum_{k \in K_{ij}} \sum_{d \in K_{\ell r}} \left\langle f_{ij}, e_{ij,k} \right\rangle \left\langle e_{\ell r,d}, g_{\ell r} \right\rangle \left\langle \psi_{ij,k}, \psi_{\ell r,d} \right\rangle = \sum_{j \in J} \sum_{k \in K_{ij}} \left\langle f_{ij}, e_{ij,k} \right\rangle \left\langle e_{ij,k}, g_{ij} \right\rangle \\ = \sum_{j \in J} \left\langle f_{ij}, g_{ij} \right\rangle = \left\langle \{f_{ij}\}_{j \in J}, \{g_{ij}\}_{j \in J} \right\rangle, \end{split}$$

so $\langle \Theta_i^*(\{f_{ij}\}_{j\in J}), \Theta_i^*(\{g_{ij}\}_{j\in J}) \rangle = \langle \{f_{ij}\}_{j\in J}, \{g_{ij}\}_{j\in J} \rangle$. If $i \neq \ell$, then $\langle \psi_{ij,k}, \psi_{\ell r,d} \rangle = 0$. Therefore $\langle \Theta_i^*(\{f_{ij}\}_{j\in J}), \Theta_\ell^*(\{g_{\ell j}\}) \rangle = 0$. The second condition of g-orthonormal basis

follows from (2.1). Conversely let $\{\Theta_i\}_{i \in I}$ be a g-orthonormal basis. Let $i_1, i_2 \in I$, $j_1, j_2 \in J$, $k_1 \in K_{i_1j_1}$ and $k_2 \in K_{i_2j_2}$. Then

$$\left\langle \Psi_{i_{1}j_{1},k_{1}}, \Psi_{i_{2}j_{2},k_{2}} \right\rangle = \left\langle \Lambda_{i_{1}j_{1}}^{*}(e_{i_{1}j_{1},k_{1}}), \Lambda_{i_{2}j_{2}}^{*}(e_{i_{2}j_{2},k_{2}}) \right\rangle = \left\langle \Theta_{i_{1}}^{*}(f_{i_{1}j_{1},k_{1}}), \Theta_{i_{2}}^{*}(f_{i_{2}j_{2},k_{2}}) \right\rangle,$$
where $f_{i_{1}j_{1},k_{1}} = \left\{ \delta_{j_{1},j}e_{i_{1}j_{1},k_{1}} \right\}_{j \in J}$ and $f_{i_{2}j_{2},k_{2}} = \left\{ \delta_{j_{2,j}}e_{i_{2}j_{2},k_{2}} \right\}_{j \in J}$. Hence
$$\left\langle \Psi_{i_{1}j_{1},k_{1}}, \Psi_{i_{2}j_{2},k_{2}} \right\rangle = \delta_{i_{1},i_{2}}\left\langle f_{i_{1}j_{1},k_{1}}, f_{i_{2}j_{2},k_{2}} \right\rangle = \delta_{i_{1},i_{2}}\delta_{j_{1},j_{2}}\delta_{k_{1},k_{2}},$$

which shows that $\{\psi_{ij,k} : j \in J, i \in I, k \in K_{ij}\}$ is an orthonormal basis.

Proposition 2.2. Let $\{\Theta_i \in L(H, \bigoplus_{j \in J} H_{ij}) : i \in I\}$ be a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis). Then there exists a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis) $\{\Lambda_{ij} \in L(H, H_{ij}) : i \in I, j \in J\}$ such that $\Theta_i(f) = \{\Lambda_{ij}f\}_{j \in J}$, for each $i \in I$ and $f \in H$.

Proof. Define $\pi_{ij} : \bigoplus_{\ell \in J} H_{i\ell} \longrightarrow H_{ij}$ by $\pi_{ij}(\{f_{i\ell}\}_{\ell \in J}) = f_{ij}$ and $\Lambda_{ij} = \pi_{ij} \circ \Theta_i$, for each $i \in I$ and $j \in J$. It is clear that $\Theta_i(f) = \{\Lambda_{ij}f\}_{j \in J}$, for each $i \in I$ and $f \in H$, so by Proposition 2.1, $\{\psi_{ij,k} = \Lambda_{ij}^*(e_{ij,k}) : j \in J, i \in I, k \in K_{ij}\}$ is a frame (resp. tight frame, Bessel sequence, Riesz basis, orthonormal basis) for H, where $\{e_{ij,k}\}_{k \in K_{ij}}$ is an orthonormal basis for H_{ij} . Now the result follows from [16, Theorem 3.1].

In the rest of this note, Φ_j and Ψ_j are $\{\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I\}$ and $\{\Gamma_{ij} \in L(H_j, H_{ij}) : i \in I\}$, respectively, for each $j \in J$. We say that $\{\Phi_j\}_{j \in J}$ is an (A, B)-bounded family of g-frames (resp. g-Riesz bases), if Φ_j is an (A_j, B_j) g-frame (resp. g-Riesz basis) such that $A = inf\{A_j : j \in J\} > 0$ and $B = sup\{B_j : j \in J\} < \infty$. Also we call $\{\Phi_j\}_{j \in J}$ a B-bounded family of g-Bessel sequences, if Φ_j is a g-Bessel sequence for each $j \in J$ with upper bound B_j such that $B = sup\{B_j : j \in J\} < \infty$.

Theorem 2.1. $\{\Phi_j\}_{j\in J}$ is an (A, B)-bounded (resp. a B-bounded) family of g-frames (resp. g-Bessel sequences) if and only if $\bigoplus_{j\in J} \Phi_j = \{\bigoplus_{j\in J} \Lambda_{ij} \in L(\bigoplus_{j\in J} H_j, \bigoplus_{j\in J} H_{ij}) : i \in I\}$ is an (A, B) g-frame (resp. a g-Bessel sequence with upper bound B) for $\bigoplus_{j\in J} H_j$. In this case the g-frame operator of $\bigoplus_{j\in J} \Phi_j$ is $\bigoplus_{j\in J} S_{\Phi_j}$, where S_{Φ_j} is the g-frame operator of Φ_j , for each $j \in J$.

Proof. First suppose that $\{\Phi_j\}_{j \in J}$ is a B-bounded family of g-Bessel sequences. For each $j \in J, i \in I$ and $f_j \in H_j$, we have

$$\|\Lambda_{ij}f_j\|^2 \leq \sum_{k \in I} \|\Lambda_{kj}f_j\|^2 \leq B_j \|f_j\|^2 \leq B \|f_j\|^2 \Longrightarrow \|\Lambda_{ij}\| \leq \sqrt{B}.$$

Thus for each $i \in I$, we have $\sup\{\|\Lambda_{ij}\| : j \in J\} < \infty$. This means that for each $i \in I$, $\bigoplus_{j \in J} \Lambda_{ij}$ is a bounded operator from $\bigoplus_{j \in J} H_j$ to $\bigoplus_{j \in J} H_{ij}$. Now for each $f = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$, we have

$$\sum_{i\in I} \|(\oplus_{j\in J}\Lambda_{ij})f\|^2 = \sum_{i\in I} \sum_{j\in J} \|\Lambda_{ij}(f_j)\|^2.$$

Hence

$$\sum_{i \in I} \sum_{j \in J} \|\Lambda_{ij}(f_j)\|^2 = \sum_{j \in J} \sum_{i \in I} \|\Lambda_{ij}(f_j)\|^2 \le \sum_{j \in J} B_j \|f_j\|^2 \le B \sum_{j \in J} \|f_j\|^2 = B \|f\|^2,$$

so $\bigoplus_{j \in J} \Phi_j$ is a g-Bessel sequence for $\bigoplus_{j \in J} H_j$ with upper bound B. Conversely suppose that $\bigoplus_{j \in J} \Phi_j$ is a g-Bessel sequence with upper bound B. Let $j_0 \in J$ and $f_{j_0} \in H_{j_0}$. Then

$$\sum_{i\in I} \|\Lambda_{ij_0} f_{j_0}\|^2 = \sum_{i\in I} \|(\oplus_{j\in J} \Lambda_{ij})(\{\delta_{j_0,j} f_{j_0}\}_{j\in J})\|^2 \le B \|\{\delta_{j_0,j} f_{j_0}\}_{j\in J}\|^2 = B \|f_{j_0}\|^2.$$

This means that Φ_{i_0} is a g-Bessel sequence with upper bound B. Now suppose that $\{\Phi_i\}_{i \in J}$ is an (A, B)-bounded family of g-frames. For each $f = \{f_i\}_{i \in J} \in \bigoplus_{i \in J} H_i$, we have

$$\sum_{i \in I} \|(\bigoplus_{j \in J} \Lambda_{ij})f\|^2 = \sum_{i \in I} \sum_{j \in J} \|\Lambda_{ij}(f_j)\|^2 = \sum_{j \in J} \sum_{i \in I} \|\Lambda_{ij}(f_j)\|^2 \ge \sum_{j \in J} A_j \|f_j\|^2 \ge A \|f\|^2$$

so $\bigoplus_{i \in J} \Phi_i$ is an (A, B) g-frame. The converse is also easy to verify.

Note that since $S_{\Phi_i} \leq B.I$, then by Theorem 2.2.5 in [14], $||S_{\Phi_i}|| \leq B$, for each $j \in J$, so $\bigoplus_{j \in J} S_{\Phi_j}$ is a bounded operator. For each $f = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$, we have

$$\begin{split} \left\langle S_{\oplus_{j\in J}\Phi_{j}}(f), f \right\rangle &= \left\langle \sum_{i\in I} (\oplus_{j\in J}\Lambda_{ij}^{*})(\oplus_{j\in J}\Lambda_{ij})(\{f_{j}\}_{j\in J}), \{f_{j}\}_{j\in J} \right\rangle = \sum_{i\in I} \sum_{j\in J} \left\langle \Lambda_{ij}^{*}\Lambda_{ij}(f_{j}), f_{j} \right\rangle \\ &= \sum_{i\in I} \sum_{j\in J} \|\Lambda_{ij}(f_{j})\|^{2} = \sum_{j\in J} \sum_{i\in I} \|\Lambda_{ij}(f_{j})\|^{2} = \sum_{j\in J} \left\langle \sum_{i\in I} \Lambda_{ij}^{*}\Lambda_{ij}(f_{j}), f_{j} \right\rangle \\ &= \sum_{j\in J} \left\langle S_{\Phi_{j}}(f_{j}), f_{j} \right\rangle = \left\langle (\oplus_{j\in J}S_{\Phi_{j}})f, f \right\rangle, \end{split}$$

therefore $S_{\bigoplus_{i \in J} \Phi_i} = \bigoplus_{j \in J} S_{\Phi_i}$.

Recall that a g-frame is called exact if it ceases to be a g-frame whenever any of its elements is removed. For more results about exact g-frames, see [13]. Now we have the following result:

Corollary 2.1. Let $\{\Phi_i\}_{i \in J}$ be a bounded family of g-frames. If Φ_{i_0} is an exact g-frame, for some $j_0 \in J$, then $\bigoplus_{i \in J} \Phi_i$ is exact.

Proof. Suppose that $i_0 \in I$ such that $\{\bigoplus_{j \in J} \Lambda_{ij}\}_{i \in I - \{i_0\}}$ is a g-frame. Then by Theorem 2.1, $\{\Lambda_{ij_0}\}_{i\in I-\{i_0\}}$ is a g-frame, which is a contradiction with the fact that Φ_{j_0} is exact.

Theorem 2.2.

- (a) $\{\Phi_i\}_{i \in J}$ is an (A, B)-bounded family of g-Riesz bases if and only if $\bigoplus_{i \in J} \Phi_i$ is an (A,B) g-Riesz basis.
- (b) Φ_i is a g-orthonormal basis, for each $j \in J$ if and only if $\bigoplus_{i \in J} \Phi_i$ is a g-orthonormal basis.

Proof. (a) First let $\{\Phi_i\}_{i \in J}$ be an (A, B)-bounded family of g-Riesz bases. By [16, Corollary 3.2], each Φ_i is a g-Bessel sequence with upper bound B and therefore by Theorem 2.1, $\oplus_{i \in J} \Phi_i$ is a g-Bessel sequence and it is easy to see that $\oplus_{i \in J} \Phi_i$ is g-complete. Let F be a finite subset of I and let $\{g_{ij}\}_{j\in J} \in \bigoplus_{i\in J} H_{ij}$, for each $i \in F$. For proving that $\bigoplus_{i\in J} \Phi_i$ is an (A, B) g-Riesz basis, we must show that

$$A\sum_{i\in F} \left\|\{g_{ij}\}_{j\in J}\right\|^{2} \leq \left\|\sum_{i\in F} (\oplus_{j\in J}\Lambda_{ij}^{*})(\{g_{ij}\}_{j\in J})\right\|^{2} \leq B\sum_{i\in F} \left\|\{g_{ij}\}_{j\in J}\right\|^{2},$$

or equivalently

$$A\sum_{i\in F}\sum_{j\in J}\|g_{ij}\|^2 \leq \sum_{j\in J}\left\|\sum_{i\in F}\Lambda^*_{ij}(g_{ij})\right\|^2 \leq B\sum_{i\in F}\sum_{j\in J}\|g_{ij}\|^2.$$

Now since each Φ_i is an (A, B) g-Riesz basis, then we have

$$A\sum_{i\in F}\sum_{j\in J} \|g_{ij}\|^{2} = \sum_{j\in J}A\sum_{i\in F} \|g_{ij}\|^{2} \le \sum_{j\in J} \left\|\sum_{i\in F}\Lambda_{ij}^{*}(g_{ij})\right\|^{2},$$

and

$$B\sum_{i\in F}\sum_{j\in J} \|g_{ij}\|^2 = \sum_{j\in J} B\sum_{i\in F} \|g_{ij}\|^2 \ge \sum_{j\in J} \left\|\sum_{i\in F} \Lambda_{ij}^*(g_{ij})\right\|^2.$$

Conversely suppose that $\bigoplus_{i \in J} \Phi_i$ is an (A, B) g-Riesz basis and $j_0 \in J$. It is easy to see that Φ_{j_0} is g-complete. Now let F be a finite subset of I and $f_{ij_0} \in H_{ij_0}$, for each $i \in F$. Then

$$\begin{split} A \sum_{i \in F} \|f_{ij_0}\|^2 &= A \sum_{i \in F} \|\{\delta_{j_0, j} f_{ij_0}\}_{j \in J}\|^2 \\ &\leq \left\|\sum_{i \in F} (\oplus_{j \in J} \Lambda^*_{ij})(\{\delta_{j_0, j} f_{ij_0}\}_{j \in J})\right\|^2 = \left\|\sum_{i \in F} \Lambda^*_{ij_0}(f_{ij_0})\right\|^2, \end{split}$$

and

$$\left\|\sum_{i\in F} \Lambda_{ij_0}^*(f_{ij_0})\right\|^2 = \left\|\sum_{i\in F} (\oplus_{j\in J} \Lambda_{ij}^*)(\{\delta_{j_0,j}f_{ij_0}\}_{j\in J})\right\|^2$$
$$\leq B\sum_{i\in F} \left\|\{\delta_{j_0,j}f_{ij_0}\}_{j\in J}\right\|^2 = B\sum_{i\in F} \left\|f_{ij_0}\right\|^2.$$

This means that Φ_{j_0} is an (A, B) g-Riesz basis.

(b) It follows from Theorem 2.1 that Φ_j is a Parseval g-frame for each $j \in J$ if and only if $\bigoplus_{i \in J} \Phi_i$ is a Parseval g-frame. Now suppose that Φ_i is a g-orthonormal basis, for each $j \in J$. Let $i, \ell \in I$, $\{f_{ij}\}_{j \in J} \in \bigoplus_{j \in J} H_{ij}$ and $\{g_{\ell j}\}_{j \in J} \in \bigoplus_{j \in J} H_{\ell j}$. Then

$$\left\langle (\oplus_{j\in J}\Lambda_{ij}^*)(\{f_{ij}\}_{j\in J}), (\oplus_{j\in J}\Lambda_{\ell j}^*)(\{g_{\ell j}\}_{j\in J})\right\rangle = \sum_{j\in J} \left\langle \Lambda_{ij}^*(f_{ij}), \Lambda_{\ell j}^*(g_{\ell j})\right\rangle.$$

If $i \neq \ell$, then $\sum_{j \in J} \langle \Lambda_{\ell j}^*(f_{ij}), \Lambda_{\ell j}^*(g_{\ell j}) \rangle = 0$, and therefore $\langle (\oplus_{j \in J} \Lambda_{\ell j}^*)(\{f_{ij}\}_{j \in J}), (\oplus_{j \in J} \Lambda_{\ell j}^*)(\{g_{\ell j}\}_{j \in J}), (\oplus_{j \in J} \Lambda_{\ell j}^*)$

$$(\bigoplus_{j\in J}\Lambda_{ij}^*)(\{f_{ij}\}_{j\in J}),(\bigoplus_{j\in J}\Lambda_{\ell j}^*)(\{g_{\ell j}\}_{j\in J})\rangle=0.$$

If $i = \ell$, then

$$\left\langle (\oplus_{j\in J}\Lambda_{ij}^*)(\{f_{ij}\}_{j\in J}), (\oplus_{j\in J}\Lambda_{\ell j}^*)(\{g_{\ell j}\}_{j\in J})\right\rangle = \sum_{j\in J}\left\langle f_{ij}, g_{ij}\right\rangle = \left\langle \{f_{ij}\}_{j\in J}, \{g_{ij}\}_{j\in J}\right\rangle,$$

so $\bigoplus_{i \in J} \Phi_i$ is a g-orthonormal basis. The converse is easy to verify.

Note that [12, Proposition 2.16] and [1, Proposition 2.6] are special cases of Theorems 2.1 and 2.2.

3. Perturbations, duals and equivalences

we recall the following definitions from [6] and [12]:

Definition 3.1. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ be two sequences and $0 \leq \lambda_1, \lambda_2 < 1$.

(i) Let $\varepsilon > 0$. We say that Γ is a $(\lambda_1, \lambda_2, \varepsilon)$ -perturbation of Λ if for each $i \in I$ and $f \in H$, we have

$$\|\Lambda_i f - \Gamma_i f\| \leq \lambda_1 \|\Lambda_i f\| + \lambda_2 \|\Gamma_i f\| + \varepsilon \|f\|.$$

(ii) Let $\{c_i\}_{i \in I}$ be a sequence of positive numbers such that $\sum_{i \in I} c_i^2 < \infty$. We say that Γ is a $(\lambda_1, \lambda_2, \{c_i\}_{i \in I})$ -perturbation of Λ if for each $i \in I$ and $f \in H$, we have

$$\|\Lambda_i f - \Gamma_i f\| \leq \lambda_1 \|\Lambda_i f\| + \lambda_2 \|\Gamma_i f\| + c_i \|f\|.$$

Proposition 3.1. Let $\{\Phi_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be bounded families of g-Bessel sequences. Then Ψ_j is a $(\lambda_1, \lambda_2, \varepsilon)$ -perturbation of Φ_j , for each $j \in J$ if and only if $\bigoplus_{j\in J} \Psi_j$ is a $(\lambda_1, \lambda_2, \varepsilon)$ -perturbation of $\bigoplus_{j\in J} \Phi_j$.

Proof. First suppose that Ψ_j is a $(\lambda_1, \lambda_2, \varepsilon)$ -perturbation of Φ_j , for each $j \in J$ and suppose that $f = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$. Let *F* be a finite subset of *J*. Then for each $i \in I$, we have

$$\begin{aligned} \left\| \{ (\Lambda_{ij} - \Gamma_{ij})f_j \}_{j \in F} \right\|_2 &\leq \left\| \{ \lambda_1 \| \Lambda_{ij}f_j \| + \lambda_2 \| \Gamma_{ij}f_j \| + \varepsilon \| f_j \| \}_{j \in F} \right\|_2 \\ &\leq \left\| \{ \lambda_1 \| \Lambda_{ij}f_j \| \}_{j \in F} \right\|_2 + \left\| \{ \lambda_2 \| \Gamma_{ij}f_j \| \}_{j \in F} \right\|_2 + \left\| \{ \varepsilon \| f_j \| \}_{j \in F} \right\|_2 \\ &\leq \lambda_1 \left(\sum_{j \in J} \| \Lambda_{ij}f_j \|^2 \right)^{\frac{1}{2}} + \lambda_2 \left(\sum_{j \in J} \| \Gamma_{ij}f_j \|^2 \right)^{\frac{1}{2}} + \varepsilon \left(\sum_{j \in J} \| f_j \|^2 \right)^{\frac{1}{2}} \\ &= \lambda_1 \left\| \oplus_{j \in J} \Lambda_{ij}f \right\| + \lambda_2 \left\| \oplus_{j \in J} \Gamma_{ij}f \right\| + \varepsilon \| f \|. \end{aligned}$$

Since the above inequality holds for each finite subset of J, then we have

$$\begin{split} \left\| \oplus_{j \in J} \Lambda_{ij} f - \oplus_{j \in J} \Gamma_{ij} f \right\| &= \left\| \{ (\Lambda_{ij} - \Gamma_{ij}) f_j \}_{j \in J} \right\|_2 \\ &\leq \lambda_1 \left\| \oplus_{j \in J} \Lambda_{ij} f \right\| + \lambda_2 \left\| \oplus_{j \in J} \Gamma_{ij} f \right\| + \varepsilon \|f\|. \end{split}$$

This means that $\bigoplus_{i \in J} \Psi_i$ is a $(\lambda_1, \lambda_2, \varepsilon)$ -perturbation of $\bigoplus_{i \in J} \Phi_i$.

For the converse it is enough to note that for each $i \in I$, $j_0 \in J$ and $f_{j_0} \in H_{j_0}$ we can write

$$\begin{split} \|\Lambda_{ij_0}f_{j_0} - \Gamma_{ij_0}f_{j_0}\| \\ &= \|(\oplus_{j\in J}\Lambda_{ij})(\{\delta_{j_0,j}f_{j_0}\}_{j\in J}) - (\oplus_{j\in J}\Gamma_{ij})(\{\delta_{j_0,j}f_{j_0}\}_{j\in J})\| \\ &\leq \lambda_1 \|\oplus_{j\in J}\Lambda_{ij}(\{\delta_{j_0,j}f_{j_0}\}_{j\in J})\| + \lambda_2 \|\oplus_{j\in J}\Gamma_{ij}(\{\delta_{j_0,j}f_{j_0}\}_{j\in J})\| + \varepsilon \|\{\delta_{j_0,j}f_{j_0}\}_{j\in J}\| \\ &= \lambda_1 \|\Lambda_{ij_0}f_{j_0}\| + \lambda_2 \|\Gamma_{ij_0}f_{j_0}\| + \varepsilon \|f_{j_0}\|, \end{split}$$

and the result follows.

Corollary 3.1. Let $\{\Phi_j\}_{j\in J}$ be a *B*-bounded (resp. an (A,B)-bounded, with $(1-\lambda_1)\sqrt{A} > (\sum_{i\in I} c_i^2)^{1/2})$ family of *g*-Bessel sequences (resp. *g*-frames) and Ψ_j be a $(\lambda_1, \lambda_2, \{c_i\}_{i\in I})$ -perturbation of $\Phi_{j,i}$ for each $j \in J$. Then $\oplus_{j\in J}\Psi_j$ and Ψ_j , for each $j \in J$, are *g*-Bessel sequences (resp. *g*-frames) and $\oplus_{j\in J}\Psi_j$ is a $(\lambda_1, \lambda_2, \{c_i\}_{i\in I})$ -perturbation of $\oplus_{j\in J}\Phi_j$.

Conversely if $\bigoplus_{j \in J} \Psi_j$ is a g-Bessel sequence and a $(\lambda_1, \lambda_2, \{c_i\}_{i \in I})$ -perturbation of $\bigoplus_{j \in J} \Phi_j$, then Ψ_j is a $(\lambda_1, \lambda_2, \{c_i\}_{i \in I})$ -perturbation of Φ_j , for each $j \in J$.

Proof. First let Ψ_j be a $(\lambda_1, \lambda_2, \{c_i\}_{i \in I})$ -perturbation of Φ_j , for each $j \in J$. Then by [12, Proposition 4.3], Ψ_j is a g-Bessel sequence with upper bound $(((1+\lambda_1)\sqrt{B}+(\sum_{i \in I} c_i^2)^{1/2})/((1-\lambda_2))^2$, for each $j \in J$. Therefore by Theorem 2.1, $\bigoplus_{j \in J} \Psi_j$ is a g-Bessel sequence. If $\{\Phi_j\}_{j \in J}$ is an (A,B)-bounded family of g-frames with $(1-\lambda_1)\sqrt{A} > (\sum_{i \in I} c_i^2)^{1/2}$, then by [12, Proposition 4.3], $(((1-\lambda_1)\sqrt{A}-(\sum_{i \in I} c_i^2)^{1/2})/((1+\lambda_2))^2)$ is a lower bound for Ψ_j , for each $j \in J$. Hence by Theorem 2.1, $\bigoplus_{j \in J} \Psi_j$ is a g-frame. Now the rest of the proof can be obtained similar to the proof of Proposition 3.1 by using c_i instead of ε , for each $i \in I$.

It was shown in [12, Definition 2.10] that if $\{\Lambda_i \in L(H, H_i) : i \in I\}$ and $\{\Gamma_i \in L(H, H_i) : i \in I\}$ are g-Bessel sequences with upper bounds B and D, respectively, then $\sum_{i \in I} \Gamma_i^* \Lambda_i(f)$ converges and $\|\sum_{i \in I} \Gamma_i^* \Lambda_i(f)\| \le \sqrt{BD} \|f\|$, for each $f \in H$. Therefore if $\{\Phi_j\}_{j \in J}$ and $\{\Psi_j\}_{j \in J}$ are bounded families of g-Bessel sequences, then the operator $\sum_{i \in I} (\bigoplus_{j \in J} \Gamma_{ij}^*) (\bigoplus_{j \in J} \Lambda_{ij})$ is bounded on $\bigoplus_{j \in J} H_j$.

Proposition 3.2. Let $\{\Phi_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be *B* and *D*-bounded families of g-Bessel sequences, respectively. Then Ψ_j is a dual of Φ_j , for each $j \in J$ if and only if $\bigoplus_{j\in J} \Psi_j$ is a dual of $\bigoplus_{j\in J} \Phi_j$.

Proof. Let Ψ_j be a dual of Φ_j for each $j \in J$, $f = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$ and $j \in J$. Then

$$\sum_{i\in I} \left| \left\langle \Lambda_{ij}f_j, \Gamma_{ij}f_j \right\rangle \right| \le \left(\sum_{i\in I} \left\| \Lambda_{ij}f_j \right\|^2 \right)^{\frac{1}{2}} \left(\sum_{i\in I} \left\| \Gamma_{ij}f_j \right\|^2 \right)^{\frac{1}{2}} \le \sqrt{BD} \|f_j\|^2,$$

so $\sum_{i \in I} |\langle \Lambda_{ij} f_j, \Gamma_{ij} f_j \rangle|$ converges, for each $j \in J$. Also

$$\sum_{j\in J}\sum_{i\in I} \left| \left\langle \Lambda_{ij}f_j, \Gamma_{ij}f_j \right\rangle \right| \le \sqrt{BD} \sum_{j\in J} \|f_j\|^2 = \sqrt{BD} \|f\|^2,$$

therefore $\sum_{j \in J} \sum_{i \in I} |\langle \Lambda_{ij} f_j, \Gamma_{ij} f_j \rangle|$ converges. Hence

$$\sum_{i\in J}\sum_{i\in I}\left\langle \Lambda_{ij}f_j, \Gamma_{ij}f_j \right\rangle = \sum_{i\in I}\sum_{j\in J}\left\langle \Lambda_{ij}f_j, \Gamma_{ij}f_j \right\rangle.$$

Now we have

$$\begin{split} &\left\langle \sum_{i\in I} (\oplus_{j\in J} \Gamma_{ij}^*) (\oplus_{j\in J} \Lambda_{ij}) (\{f_j\}_{j\in J}), \{f_j\}_{j\in J} \right\rangle \\ &= \sum_{i\in I} \left\langle \{\Gamma_{ij}^* \Lambda_{ij} f_j\}_{j\in J}, \{f_j\}_{j\in J} \right\rangle = \sum_{i\in I} \sum_{j\in J} \left\langle \Lambda_{ij} f_j, \Gamma_{ij} f_j \right\rangle = \sum_{j\in J} \sum_{i\in I} \left\langle \Lambda_{ij} f_j, \Gamma_{ij} f_j \right\rangle \\ &= \sum_{j\in J} \left\langle \sum_{i\in I} \Gamma_{ij}^* \Lambda_{ij} f_j, f_j \right\rangle = \sum_{j\in J} \left\langle f_j, f_j \right\rangle = \left\langle \{f_j\}_{j\in J}, \{f_j\}_{j\in J} \right\rangle, \end{split}$$

therefore $\sum_{i \in I} (\bigoplus_{j \in J} \Gamma_{ij}^*) (\bigoplus_{j \in J} \Lambda_{ij}) f = f$, for each $f \in \bigoplus_{j \in J} H_j$, and this means that $\bigoplus_{j \in J} \Psi_j$ is a dual of $\bigoplus_{j \in J} \Phi_j$. Conversely suppose that $\bigoplus_{j \in J} \Psi_j$ is a dual of $\bigoplus_{j \in J} \Phi_j$. Let $j_0 \in J$ and $f_{j_0} \in H_{j_0}$. Now we have

$$\left\langle \sum_{i\in I} \Gamma_{ij_0}^* \Lambda_{ij_0} f_{j_0}, f_{j_0} \right\rangle = \left\langle \sum_{i\in I} \left(\bigoplus_{j\in J} \Gamma_{ij}^* \right) \left(\bigoplus_{j\in J} \Lambda_{ij} \right) \left(\{\delta_{j_0,j} f_{j_0}\}_{j\in J} \right), \{\delta_{j_0,j} f_{j_0}\}_{j\in J} \right\rangle$$
$$= \left\langle \{\delta_{j_0,j} f_{j_0}\}_{j\in J}, \{\delta_{j_0,j} f_{j_0}\}_{j\in J} \right\rangle = \left\langle f_{j_0}, f_{j_0} \right\rangle,$$

therefore $\sum_{i \in I} \Gamma_{ij_0}^* \Lambda_{ij_0} f_{j_0} = f_{j_0}$. This means that Ψ_{j_0} is a dual of Φ_{j_0} .

Now we have the following result for canonical duals.

Proposition 3.3. Let $\{\Phi_j\}_{j\in J}$ be an (A,B)-bounded family of g-frames. Then $\bigoplus_{j\in J}\widetilde{\Phi_j}$ is a g-frame and $\widetilde{\bigoplus_{j\in J}\Phi_j} = \bigoplus_{j\in J}\widetilde{\Phi_j}$.

Proof. Since $\widetilde{\Phi_j}$ is an $(1/B_j, 1/A_j)$ g-frame, for each $j \in J$ and $\inf\{1/B_j : j \in J\} = 1/B > 0$, sup $\{1/A_j : j \in J\} = 1/A < \infty$, then $\bigoplus_{j \in J} \widetilde{\Phi_j}$ is an (1/B, 1/A) g-frame, by Theorem 2.1. Moreover as a consequence of Theorem 2.1, we can see that $\widetilde{\bigoplus_{j \in J} \Phi_j} = \{\bigoplus_{j \in J} \Lambda_{ij} (\bigoplus_{j \in J} S_{\Phi_j})^{-1} : i \in I\}$. Now by using the definition of canonical duals, it is clear that $\bigoplus_{j \in J} \widetilde{\Phi_j} = \{\bigoplus_{j \in J} \Lambda_{ij} S_{\Phi_j}^{-1} \in L(\bigoplus_{j \in J} H_j, \bigoplus_{j \in J} H_{ij}) : i \in I\}$. Thus it is enough to show that $\bigoplus_{j \in J} \Lambda_{ij} (\bigoplus_{j \in J} S_{\Phi_j})^{-1} = \bigoplus_{j \in J} \Lambda_{ij} S_{\Phi_j}^{-1}$, for each $i \in I$. Since $A \cdot Id_{H_j} \leq S_{\Phi_j} \leq B \cdot Id_{H_j}$, for each $j \in J$, then by [14, Theorem 2.2.5], we have $(1/B) \cdot Id_{H_j} \leq S_{\Phi_j}^{-1} \leq (1/A) \cdot Id_{H_j}$ and therefore $||S_{\Phi_i}^{-1}|| \leq S_{\Phi_i}^{-1}|| \leq S_{\Phi_i}^{-1}$.

1/A, for each $j \in J$. Thus $\bigoplus_{j \in J} S_{\Phi_j}^{-1}$ is a bounded operator. Now it is easy to see that $(\bigoplus_{j \in J} S_{\Phi_j})^{-1} = \bigoplus_{j \in J} S_{\Phi_i}^{-1}$, so for each $\{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$, we have

I

which completes the proof.

Now we recall some definitions for *g*-frames from [15].

Definition 3.2. Let $\Lambda = {\Lambda_i \in L(H, H_i) : i \in I}$ and $\Gamma = {\Gamma_i \in L(H, H_i) : i \in I}$ be two *g*-frames.

- (i) We say that Λ and Γ are unitarily equivalent if there is a unitary linear operator $T: H \longrightarrow H$ such that $\Gamma_i = \Lambda_i T$, for each $i \in I$.
- (ii) We say that Λ is isometrically related to Γ if there is an isometric linear operator $T: H \longrightarrow H$ such that $\Gamma_i = \Lambda_i T$, for each $i \in I$.

Proposition 3.4. Let $\{\Phi_i\}_{i \in J}$ and $\{\Psi_i\}_{i \in J}$ be bounded families of g-frames. Then

- (i) If Φ_j and Ψ_j are unitarily equivalent, for each $j \in J$, then $\bigoplus_{j \in J} \Phi_j$ and $\bigoplus_{j \in J} \Psi_j$ are unitarily equivalent.
- (ii) If Φ_j is isometrically related to Ψ_j , for each $j \in J$, then $\bigoplus_{j \in J} \Phi_j$ is isometrically related to $\bigoplus_{j \in J} \Psi_j$.

Proof. (i) Suppose that Φ_j and Ψ_j are unitarily equivalent, for each $j \in J$ and $T_j : H_j \longrightarrow H_j$ is a unitary operator such that $\Gamma_{ij} = \Lambda_{ij}T_j$, for each $i \in I$. Define $T : \bigoplus_{j \in J} H_j \longrightarrow \bigoplus_{j \in J} H_j$ by $T = \bigoplus_{j \in J} T_j$. Since $||T|| = sup\{||T_j|| : j \in J\} = 1$, then *T* is bounded. Now it is easy to see that *T* is unitary and $\bigoplus_{j \in J} \Gamma_{ij} = (\bigoplus_{j \in J} \Lambda_{ij})T$, for each $i \in I$.

(ii) Suppose that Φ_j is isometrically related to Ψ_j , for each $j \in J$ and $T_j : H_j \longrightarrow H_j$ is an isometric operator such that $\Gamma_{ij} = \Lambda_{ij}T_j$, for each $i \in I$. Define $T : \bigoplus_{j \in J} H_j \longrightarrow \bigoplus_{j \in J} H_j$ by $T = \bigoplus_{j \in J} T_j$. Since $||T|| = sup\{||T_j|| : j \in J\} = 1$, then *T* is bounded. Now for each $f = \{f_i\}_{i \in J} \in \bigoplus_{j \in J} H_j$, we have

$$||Tf|| = \left(\sum_{j \in J} ||T_jf_j||^2\right)^{\frac{1}{2}} = \left(\sum_{j \in J} ||f_j||^2\right)^{\frac{1}{2}} = ||f||,$$

so *T* is an isometry. It is also easy to see that $\bigoplus_{j \in J} \Gamma_{ij} = (\bigoplus_{j \in J} \Lambda_{ij})T$, for each $i \in I$.

References

- A. Abdollahi and E. Rahimi, Generalized frames on super Hilbert spaces, *Bull. Malays. Math. Sci. Soc.* (2) 35 (2012), no. 3, 807-818.
- [2] M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005), no. 2, 541–553.
- [3] J. J. Benedetto, A. M. Powell and Ö. Yılmaz, Sigma-Delta (ΣΔ) quantization and finite frames, *IEEE Trans. Inform. Theory* **52** (2006), no. 5, 1990–2005.
- [4] H. Bölcskel, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, *IEEE Trans. Signal Processing.* 46 (1998), 3256–3268.
- [5] E. J. Candès and D. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C² singularities, *Comm. Pure and Appl. Math.* 56 (2004), 216–266.
- [6] P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543–557.
- [7] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames and Operator Theory, 87–113, Contemp. Math., 345 Amer. Math. Soc., Providence, RI.

- [8] O. Christensen, *Frames and Bases*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 2008.
- [9] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271–1283.
- [10] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* 72 (1952), 341–366.
- [11] R. W. Heath and A. J. Paulraj, Linear dispersion codes for MIMO systems based on frame theory, *IEEE Trans. Signal Processing*, **50** (2002), 2429–2441.
- [12] A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), no. 2, 1068– 1083.
- [13] J.-Z. Li and Y.-C. Zhu, Exact g-frames in Hilbert spaces, J. Math. Anal. Appl. 374 (2011), no. 1, 201–209.
- [14] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston, MA, 1990.
- [15] A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 35 (2009), no. 1, 97–109.
- [16] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452.
- [17] L. Zang, W. Sun and D. Chen, Excess of a class of g-frames, J. Math. Anal. Appl. 352 (2009), no. 2, 711–717.