G-Frames and Direct Sums

${ }^{1}$ Amir Khosravi and ${ }^{2}$ M. Mirzaee Azandaryani
${ }^{1,2}$ Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15618, Iran.
${ }^{1}$ khosravi_amir@yahoo.com, khosravi@tmu.ac.ir, ${ }^{2}$ morteza_ma62@yahoo.com

Abstract

In this paper we study g-frames on the direct sum of Hilbert spaces. We generalize some of the results about g-frames on super Hilbert spaces to the direct sum of a countable number of Hilbert spaces. Also we study the direct sum of g-frames, g-Riesz bases and g-orthonormal bases for these spaces. Moreover we consider perturbations, duals and equivalences for the direct sum of g-frames.

2010 Mathematics Subject Classification: 41A58, 42C15, 42C40
Keywords and phrases: Direct sums, g-frames, g-orthonormal bases, g-Riesz bases.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer (see [10]) in 1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossmann and Meyer (see [9]). Frames are very useful in characterization of function spaces and other fields of applications such as filter bank theory (see [4]), sigma-delta quantization (see [3]), signal and image processing (see [5]) and wireless communications (see [11]). First we recall the definition of frames.

Let H be a Hilbert space and let I be a finite or countable subset of \mathbb{Z}. A family $\left\{f_{i}\right\}_{i \in I} \subseteq$ H is a frame for H, if there exist $0<A \leq B<\infty$, such that for each $f \in H$,

$$
A\|f\|^{2} \leq \sum_{i \in I}\left|\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2}
$$

In this case we say that $\left\{f_{i}\right\}_{i \in I}$ is an (A, B) frame. A and B are the lower and upper frame bounds, respectively. If only the right-hand side inequality is required, it is called a Bessel sequence. A frame is tight, if $A=B$. If $A=B=1$, it is called a Parseval frame. A family $\left\{f_{i}\right\}_{i \in I} \subseteq H$ is complete if the span of $\left\{f_{i}\right\}_{i \in I}$ is dense in H. We say that $\left\{f_{i}\right\}_{i \in I}$ is a Riesz basis for H , if it is complete in H and there exist two constants $0<A \leq B<\infty$, such that for each sequence of scalars $\left\{c_{i}\right\}_{i \in I} \in \ell^{2}(I)$,

$$
A \sum_{i \in I}\left|c_{i}\right|^{2} \leq\left\|\sum_{i \in I} c_{i} f_{i}\right\|^{2} \leq B \sum_{i \in I}\left|c_{i}\right|^{2}
$$

[^0]or equivalently
$$
A \sum_{i \in F}\left|c_{i}\right|^{2} \leq\left\|\sum_{i \in F} c_{i} f_{i}\right\|^{2} \leq B \sum_{i \in F}\left|c_{i}\right|^{2}
$$
for each sequence of scalars $\left\{c_{i}\right\}_{i \in F}$, where F is a finite subset of I. In this case we say that $\left\{f_{i}\right\}_{i \in I}$ is an (A, B) Riesz basis. For more results about frames see [8].

Sun in [16] introduced g-frames as a generalization of frames. He showed that oblique frames, pseudo frames and fusion frames $[2,7]$ are special cases of g -frames. Let I be a finite or countable subset of \mathbb{Z} and H be a Hilbert space. For each $i \in I$, let H_{i} be a Hilbert space and $L\left(H, H_{i}\right)$ be the set of all bounded, linear operators from H to H_{i}. We call $\Lambda=\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ a g-frame for H with respect to $\left\{H_{i}: i \in I\right\}$ if there exist two positive constants A and B such that

$$
A\|f\|^{2} \leq \sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2},
$$

for each $f \in H$. In this case we say that Λ is an $(A, B) \mathrm{g}$-frame. A and B are the lower and upper g -frame bounds, respectively. We call Λ an A-tight g -frame if $A=B$ and we call it a Parseval g -frame if $A=B=1$. If only the second inequality is required, we call it a g-Bessel sequence. If Λ is an $(A, B) \mathrm{g}$-frame, then the g-frame operator S_{Λ} is defined by $S_{\Lambda} f=\sum_{i \in I} \Lambda_{i}^{*} \Lambda_{i} f$, which is a bounded, positive and invertible operator such that $A . I \leq$ $S_{\Lambda} \leq$ B.I. The canonical dual g -frame for Λ is defined by $\left\{\tilde{\Lambda}_{i} \in L\left(H, H_{i}\right): i \in I\right\}$, where $\tilde{\Lambda}_{i}=\Lambda_{i} S_{\Lambda}^{-1}$, which is an $(1 / B, 1 / A) \mathrm{g}$-frame for H and for each $f \in H$, we have

$$
f=\sum_{i \in I} \Lambda_{i}^{*} \tilde{\Lambda}_{i} f=\sum_{i \in I} \tilde{\Lambda}_{i}^{*} \Lambda_{i} f
$$

If Λ is a g-Bessel sequence, then the g -Bessel sequence $\left\{\Gamma_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ is called an alternate dual or a dual of Λ if

$$
f=\sum_{i \in I} \Gamma_{i}^{*} \Lambda_{i} f=\sum_{i \in I} \Lambda_{i}^{*} \Gamma_{i} f,
$$

for each $f \in H$. Now define

$$
\oplus_{i \in I} H_{i}=\left\{\left\{f_{i}\right\}_{i \in I} \mid f_{i} \in H_{i},\left\|\left\{f_{i}\right\}_{i \in I}\right\|_{2}^{2}=\sum_{i \in I}\left\|f_{i}\right\|^{2}<\infty\right\} .
$$

$\oplus_{i \in I} H_{i}$ with pointwise operations and inner product as

$$
\left\langle\left\{f_{i}\right\}_{i \in I},\left\{g_{i}\right\}_{i \in I}\right\rangle=\sum_{i \in I}\left\langle f_{i}, g_{i}\right\rangle
$$

is a Hilbert space.
Let $\left\{H_{i}\right\}_{i \in I}$ be a sequence of Hilbert spaces. Then by considering $K=\oplus_{i \in I} H_{i}$, we can assume that each H_{i} is a closed subspace of K , therefore if $f_{i_{1}} \in H_{i_{1}}$ and $f_{i_{2}} \in H_{i_{2}}$, for $i_{1}, i_{2} \in I$, then $\left\langle f_{i_{1}}, f_{i_{2}}\right\rangle$ is well-defined.

We say that $\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ is g-complete if $\left\{f: \Lambda_{i} f=0, \forall i \in I\right\}=\{0\}$, and we call it a g-orthonormal basis for H , if

$$
\left\langle\Lambda_{i_{1}}^{*} f_{i_{1}}, \Lambda_{i_{2}}^{*} f_{i_{2}}\right\rangle=\delta_{i_{1}, i_{2}}\left\langle f_{i_{1}}, f_{i_{2}}\right\rangle, \quad i_{1}, i_{2} \in I, f_{i_{1}} \in H_{i_{1}}, f_{i_{2}} \in H_{i_{2}},
$$

and

$$
\sum_{i \in I}\left\|\Lambda_{i} f\right\|^{2}=\|f\|^{2}, \quad \forall f \in H
$$

$\Lambda=\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ is a g-Riesz basis for H , if it is g-complete and there exist two constants $0<A \leq B<\infty$, such that for each finite subset $F \subseteq I$ and $f_{i} \in H_{i}, i \in F$,

$$
A \sum_{i \in F}\left\|f_{i}\right\|^{2} \leq\left\|\sum_{i \in F} \Lambda_{i}^{*} f_{i}\right\|^{2} \leq B \sum_{i \in F}\left\|f_{i}\right\|^{2}
$$

In this case we say that Λ is an (A, B) g-Riesz basis.
Let H_{i} and H_{i}^{\prime} be Hilbert spaces, for each $i \in I$ and let $H=\oplus_{i \in I} H_{i}$ and $H^{\prime}=\oplus_{i \in I} H_{i}^{\prime}$. Recall that if $T_{i} \in L\left(H_{i}, H_{i}^{\prime}\right)$, then $T=\oplus_{i \in I} T_{i}$ which is defined by $T\left(\left\{h_{i}\right\}_{i \in I}\right)=\left\{T_{i}\left(h_{i}\right)\right\}_{i \in I}$ is a bounded operator from H to H^{\prime} if and only if $\sup \left\{\left\|T_{i}\right\|: i \in I\right\}<\infty$. In this case $\|T\|=\sup \left\{\left\|T_{i}\right\|: i \in I\right\}$ and $T^{*}=\oplus_{i \in I} T_{i}^{*}$. If H and K are Hilbert spaces, then $H \oplus K$ is called a super Hilbert space.

Recently some authors were interested in g-frames on super Hilbert spaces, see [12, Proposition 2.16], [17] and [1]. In this paper we consider g-frames on the direct sum of a finite or countable number of Hilbert spaces.

In Section 2 we study g-frames, g-Riesz bases and g-orthonormal bases for the direct sum of Hilbert spaces. We also construct the direct sum of g-frames (resp. g-Riesz bases, g-orthonormal bases) for a finite or countable number of g-frames (resp. g-Riesz bases, g-orthonormal bases). In Section 3 we consider perturbations, duals and equivalences for the direct sum of g-frames.

2. The direct sum of g-frames

Throughout this note all of the Hilbert spaces are separable. I, J, K_{i} 's, $K_{i j}$'s are finite or countable subsets of \mathbb{Z} and H, H_{i} 's, $H_{i j}$'s are Hilbert spaces. We start with the following proposition which is a generalization of [1, Proposition 2.3]:

Proposition 2.1. Let $\left\{\Lambda_{i j} \in L\left(H, H_{i j}\right): i \in I\right\}$ be a sequence for each $j \in J$ and $\left\{e_{i j, k}: k \in\right.$ $\left.K_{i j}\right\}$ be an orthonormal basis for $H_{i j}$. Suppose that $\Theta_{i}: H \longrightarrow \oplus_{j \in J} H_{i j}$ which is defined by $\Theta_{i}(f)=\left\{\Lambda_{i j} f\right\}_{j \in J}$ is a bounded operator for each $i \in I$, and suppose that $\psi_{i j, k}=\Lambda_{i j}^{*}\left(e_{i j, k}\right)$. Then $\left\{\psi_{i j, k}: j \in J, i \in I, k \in K_{i j}\right\}$ is a frame (resp. tight frame, Bessel sequence, Riesz basis, orthonormal basis) for H if and only if $\left\{\Theta_{i} \in L\left(H, \oplus_{j \in J} H_{i j}\right): i \in I\right\}$ is a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis).

Proof. For each $f \in H$, we have

$$
\begin{equation*}
\sum_{i \in I}\left\|\Theta_{i} f\right\|^{2}=\sum_{i \in I} \sum_{j \in J}\left\|\Lambda_{i j} f\right\|^{2}=\sum_{j \in J} \sum_{i \in I} \sum_{k \in K_{i j}}\left|\left\langle f, \psi_{i j, k}\right\rangle\right|^{2} \tag{2.1}
\end{equation*}
$$

This shows that $\left\{\psi_{i j, k}: j \in J, i \in I, k \in K_{i j}\right\}$ is a frame (resp. tight frame, Bessel sequence, complete set) if and only if $\left\{\Theta_{i}\right\}_{i \in I}$ is a g-frame (resp. tight g-frame, g-Bessel sequence, g-complete set).

Let $\left\{\psi_{i j, k}: j \in J, i \in I, k \in K_{i j}\right\}$ be an (A, B) Riesz basis and F be a finite subset of I. Suppose that $f \in H$ and $\left\{f_{i j}\right\}_{j \in J} \in \oplus_{j \in J} H_{i j}$ for each $i \in F$. We have

$$
\left\langle\Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right), f\right\rangle=\left\langle\left\{f_{i j}\right\}_{j \in J},\left\{\Lambda_{i j} f\right\}_{j \in J}\right\rangle=\sum_{j \in J}\left\langle f_{i j}, \Lambda_{i j} f\right\rangle=\left\langle\sum_{j \in J} \Lambda_{i j}^{*} f_{i j}, f\right\rangle
$$

therefore $\Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right)=\sum_{j \in J} \Lambda_{i j}^{*} f_{i j}$, so

$$
\left\|\sum_{i \in F} \Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right)\right\|^{2}=\left\|\sum_{i \in F} \sum_{j \in J} \Lambda_{i j}^{*} f_{i j}\right\|^{2}
$$

Suppose that $f_{i j}=\sum_{k \in K_{i j}} c_{i j, k} e_{i j, k}$, thus $\Lambda_{i j}^{*}\left(f_{i j}\right)=\sum_{k \in K_{i j}} c_{i j, k} \psi_{i j, k}$. Hence

$$
\begin{equation*}
\left\|\sum_{i \in F} \Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right)\right\|^{2}=\left\|\sum_{j \in J} \sum_{i \in F} \sum_{k \in K_{i j}} c_{i j, k} \psi_{i j, k}\right\|^{2} . \tag{2.2}
\end{equation*}
$$

Since $f_{i j}=\sum_{k \in K_{i j}} c_{i j, k} e_{i j, k}$, then

$$
\left\|\left\{f_{i j}\right\}_{j \in J}\right\|^{2}=\sum_{j \in J}\left\|f_{i j}\right\|^{2}=\sum_{j \in J} \sum_{k \in K_{i j}}\left|c_{i j, k}\right|^{2},
$$

for each $i \in F$, therefore

$$
\begin{equation*}
\sum_{i \in F}\left\|\left\{f_{i j}\right\}_{j \in J}\right\|^{2}=\sum_{i \in F} \sum_{j \in J} \sum_{k \in K_{i j}}\left|c_{i j, k}\right|^{2}=\sum_{j \in J} \sum_{i \in F} \sum_{k \in K_{i j}}\left|c_{i j, k}\right|^{2} \tag{2.3}
\end{equation*}
$$

Now by using (2.2) and (2.3), we have
$A \sum_{i \in F}\left\|\left\{f_{i j}\right\}_{j \in J}\right\|^{2}=A \sum_{j \in J} \sum_{i \in F} \sum_{k \in K_{i j}}\left|c_{i j, k}\right|^{2} \leq\left\|\sum_{j \in J} \sum_{i \in F} \sum_{k \in K_{i j}} c_{i j, k} \psi_{i j, k}\right\|^{2}=\left\|\sum_{i \in F} \Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right)\right\|^{2}$, similarly

$$
\left\|\sum_{i \in F} \Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right)\right\|^{2} \leq B \sum_{i \in F}\left\|\left\{f_{i j}\right\}_{j \in J}\right\|^{2}
$$

This means that $\left\{\Theta_{i}\right\}_{i \in I}$ is an $(A, B) \mathrm{g}$-Riesz basis. The converse is obtained similarly by choosing a finite sequence of scalars $\left\{c_{i j, k}\right\}$, using (2.2), (2.3) and the fact that $\left\{\Theta_{i}\right\}_{i \in I}$ is a g-Riesz basis.

Now let $\left\{\psi_{i j, k}: j \in J, i \in I, k \in K_{i j}\right\}$ be an orthonormal basis. Suppose that $i, \ell \in I$, $\left\{f_{i j}\right\}_{j \in J} \in \oplus_{j \in J} H_{i j}$ and $\left\{g_{\ell j}\right\}_{j \in J} \in \oplus_{j \in J} H_{\ell j}$. We have $f_{i j}=\sum_{k \in K_{i j}}\left\langle f_{i j}, e_{i j, k}\right\rangle e_{i j, k}, g_{\ell j}=$ $\sum_{k \in K_{\ell j}}\left\langle g_{\ell j}, e_{\ell j, k}\right\rangle e_{\ell j, k}$. Then

$$
\begin{aligned}
\left\langle\Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right), \Theta_{\ell}^{*}\left(\left\{g_{\ell j}\right\}_{j \in J}\right)\right\rangle & =\left\langle\sum_{j \in J} \Lambda_{i j}^{*}\left(f_{i j}\right), \sum_{j \in J} \Lambda_{\ell j}^{*}\left(g_{\ell j}\right)\right\rangle \\
& =\sum_{j \in J} \sum_{r \in J} \sum_{k \in K_{i j}} \sum_{d \in K_{\ell r}}\left\langle\left\langle f_{i j}, e_{i j, k}\right\rangle \psi_{i j, k},\left\langle g_{\ell r}, e_{\ell r, d}\right\rangle \psi_{\ell r, d}\right\rangle \\
& =\sum_{j \in J} \sum_{r \in J} \sum_{k \in K_{i j}} \sum_{d \in K_{\ell r}}\left\langle f_{i j}, e_{i j, k}\right\rangle\left\langle e_{\ell r, d}, g_{\ell r}\right\rangle\left\langle\psi_{i j, k}, \psi_{\ell r, d}\right\rangle .
\end{aligned}
$$

Now if $i=\ell$, then

$$
\begin{aligned}
\sum_{j \in J} \sum_{r \in J} \sum_{k \in K_{i j}} \sum_{d \in K_{\ell r}}\left\langle f_{i j}, e_{i j, k}\right\rangle\left\langle e_{\ell r, d}, g_{\ell r}\right\rangle\left\langle\psi_{i j, k}, \psi_{\ell r, d}\right\rangle & =\sum_{j \in J} \sum_{k \in K_{i j}}\left\langle f_{i j}, e_{i j, k}\right\rangle\left\langle e_{i j, k}, g_{i j}\right\rangle \\
& =\sum_{j \in J}\left\langle f_{i j}, g_{i j}\right\rangle=\left\langle\left\{f_{i j}\right\}_{j \in J},\left\{g_{i j}\right\}_{j \in J}\right\rangle
\end{aligned}
$$

so $\left\langle\Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right), \Theta_{i}^{*}\left(\left\{g_{i j}\right\}_{j \in J}\right)\right\rangle=\left\langle\left\{f_{i j}\right\}_{j \in J},\left\{g_{i j}\right\}_{j \in J}\right\rangle$. If $i \neq \ell$, then $\left\langle\boldsymbol{\psi}_{i j, k}, \boldsymbol{\psi}_{\ell r, d}\right\rangle=0$. Therefore $\left\langle\Theta_{i}^{*}\left(\left\{f_{i j}\right\}_{j \in J}\right), \Theta_{\ell}^{*}\left(\left\{g_{\ell j}\right\}\right)\right\rangle=0$. The second condition of g -orthonormal basis
follows from (2.1). Conversely let $\left\{\Theta_{i}\right\}_{i \in I}$ be a g-orthonormal basis. Let $i_{1}, i_{2} \in I, j_{1}, j_{2} \in J$, $k_{1} \in K_{i_{1} j_{1}}$ and $k_{2} \in K_{i_{2} j_{2}}$. Then

$$
\left\langle\psi_{i_{1} j_{1}, k_{1}}, \psi_{i_{2} j_{2}, k_{2}}\right\rangle=\left\langle\Lambda_{i_{1} j_{1}}^{*}\left(e_{i_{1} j_{1}, k_{1}}\right), \Lambda_{i_{2} j_{2}}^{*}\left(e_{i_{2} j_{2}, k_{2}}\right)\right\rangle=\left\langle\Theta_{i_{1}}^{*}\left(f_{i_{1} j_{1}, k_{1}}\right), \Theta_{i_{2}}^{*}\left(f_{i_{2} j_{2}, k_{2}}\right)\right\rangle,
$$

where $f_{i_{1} j_{1}, k_{1}}=\left\{\delta_{j_{1}, j} e_{i_{1} j_{1}, k_{1}}\right\}_{j \in J}$ and $f_{i_{2} j_{2}, k_{2}}=\left\{\delta_{j_{2}, j} e_{i_{2} j_{2}, k_{2}}\right\}_{j \in J}$. Hence

$$
\left\langle\psi_{i_{1} j_{1}, k_{1}}, \psi_{i_{2}, j_{2}, k_{2}}\right\rangle=\delta_{i_{1}, i_{2}}\left\langle f_{i_{1} j_{1}, k_{1}}, f_{i_{2} j_{2}, k_{2}}\right\rangle=\delta_{i_{1}, i_{2}} \delta_{j_{1}, j_{2}} \delta_{k_{1}, k_{2}},
$$

which shows that $\left\{\psi_{i j, k}: j \in J, i \in I, k \in K_{i j}\right\}$ is an orthonormal basis.
Proposition 2.2. Let $\left\{\Theta_{i} \in L\left(H, \oplus_{j \in J} H_{i j}\right): i \in I\right\}$ be a g-frame (resp. tight g-frame, g Bessel sequence, g-Riesz basis, g-orthonormal basis). Then there exists a g-frame (resp. tight g-frame, g-Bessel sequence, g-Riesz basis, g-orthonormal basis) $\left\{\Lambda_{i j} \in L\left(H, H_{i j}\right): i \in\right.$ $I, j \in J\}$ such that $\Theta_{i}(f)=\left\{\Lambda_{i j} f\right\}_{j \in J}$, for each $i \in I$ and $f \in H$.
Proof. Define $\pi_{i j}: \oplus_{\ell \in J} H_{i \ell} \longrightarrow H_{i j}$ by $\pi_{i j}\left(\left\{f_{i \ell}\right\}_{\ell \in J}\right)=f_{i j}$ and $\Lambda_{i j}=\pi_{i j} \circ \Theta_{i}$, for each $i \in I$ and $j \in J$. It is clear that $\Theta_{i}(f)=\left\{\Lambda_{i j} f\right\}_{j \in J}$, for each $i \in I$ and $f \in H$, so by Proposition 2.1, $\left\{\psi_{i j, k}=\Lambda_{i j}^{*}\left(e_{i j, k}\right): j \in J, i \in I, k \in K_{i j}\right\}$ is a frame (resp. tight frame, Bessel sequence, Riesz basis, orthonormal basis) for H, where $\left\{e_{i j, k}\right\}_{k \in K_{i j}}$ is an orthonormal basis for $H_{i j}$. Now the result follows from [16, Theorem 3.1].

In the rest of this note, Φ_{j} and Ψ_{j} are $\left\{\Lambda_{i j} \in L\left(H_{j}, H_{i j}\right): i \in I\right\}$ and $\left\{\Gamma_{i j} \in L\left(H_{j}, H_{i j}\right)\right.$: $i \in I\}$, respectively, for each $j \in J$. We say that $\left\{\Phi_{j}\right\}_{j \in J}$ is an (A, B)-bounded family of g -frames (resp. g -Riesz bases), if Φ_{j} is an $\left(A_{j}, B_{j}\right) \mathrm{g}$-frame (resp. g -Riesz basis) such that $A=\inf \left\{A_{j}: j \in J\right\}>0$ and $B=\sup \left\{B_{j}: j \in J\right\}<\infty$. Also we call $\left\{\Phi_{j}\right\}_{j \in J}$ a B-bounded family of g -Bessel sequences, if Φ_{j} is a g -Bessel sequence for each $j \in J$ with upper bound B_{j} such that $B=\sup \left\{B_{j}: j \in J\right\}<\infty$.
Theorem 2.1. $\left\{\Phi_{j}\right\}_{j \in J}$ is an (A, B)-bounded (resp. a B-bounded) family of g-frames (resp. g-Bessel sequences) if and only if $\oplus_{j \in J} \Phi_{j}=\left\{\oplus_{j \in J} \Lambda_{i j} \in L\left(\oplus_{j \in J} H_{j}, \oplus_{j \in J} H_{i j}\right): i \in I\right\}$ is an (A, B) g-frame (resp. a g-Bessel sequence with upper bound B) for $\oplus_{j \in J} H_{j}$. In this case the g-frame operator of $\oplus_{j \in J} \Phi_{j}$ is $\oplus_{j \in J} S_{\Phi_{j}}$, where $S_{\Phi_{j}}$ is the g-frame operator of Φ_{j}, for each $j \in J$.

Proof. First suppose that $\left\{\Phi_{j}\right\}_{j \in J}$ is a B-bounded family of g-Bessel sequences. For each $j \in J, i \in I$ and $f_{j} \in H_{j}$, we have

$$
\left\|\Lambda_{i j} f_{j}\right\|^{2} \leq \sum_{k \in I}\left\|\Lambda_{k j} f_{j}\right\|^{2} \leq B_{j}\left\|f_{j}\right\|^{2} \leq B\left\|f_{j}\right\|^{2} \Longrightarrow\left\|\Lambda_{i j}\right\| \leq \sqrt{B} .
$$

Thus for each $i \in I$, we have $\sup \left\{\left\|\Lambda_{i j}\right\|: j \in J\right\}<\infty$. This means that for each $i \in I, \oplus_{j \in J} \Lambda_{i j}$ is a bounded operator from $\oplus_{j \in J} H_{j}$ to $\oplus_{j \in J} H_{i j}$. Now for each $f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$, we have

$$
\sum_{i \in I}\left\|\left(\oplus_{j \in J} \Lambda_{i j}\right) f\right\|^{2}=\sum_{i \in I} \sum_{j \in J}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2}
$$

Hence

$$
\sum_{i \in I} \sum_{j \in J}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2}=\sum_{j \in J} \sum_{i \in I}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2} \leq \sum_{j \in J} B_{j}\left\|f_{j}\right\|^{2} \leq B \sum_{j \in J}\left\|f_{j}\right\|^{2}=B\|f\|^{2},
$$

so $\oplus_{j \in J} \Phi_{j}$ is a g-Bessel sequence for $\oplus_{j \in J} H_{j}$ with upper bound B. Conversely suppose that $\oplus_{j \in J} \Phi_{j}$ is a g-Bessel sequence with upper bound B. Let $j_{0} \in J$ and $f_{j_{0}} \in H_{j_{0}}$. Then

$$
\sum_{i \in I}\left\|\Lambda_{i j_{0}} f_{j_{0}}\right\|^{2}=\sum_{i \in I}\left\|\left(\oplus_{j \in J} \Lambda_{i j}\right)\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right)\right\|^{2} \leq B\left\|\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right\|^{2}=B\left\|f_{j_{0}}\right\|^{2}
$$

This means that $\Phi_{j_{0}}$ is a g -Bessel sequence with upper bound B. Now suppose that $\left\{\Phi_{j}\right\}_{j \in J}$ is an (A, B)-bounded family of g -frames. For each $f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$, we have

$$
\sum_{i \in I}\left\|\left(\oplus_{j \in J} \Lambda_{i j}\right) f\right\|^{2}=\sum_{i \in I} \sum_{j \in J}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2}=\sum_{j \in J} \sum_{i \in I}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2} \geq \sum_{j \in J} A_{j}\left\|f_{j}\right\|^{2} \geq A\|f\|^{2},
$$

so $\oplus_{j \in J} \Phi_{j}$ is an (A, B) g-frame. The converse is also easy to verify.
Note that since $S_{\Phi_{j}} \leq B . I$, then by Theorem 2.2.5 in [14], $\left\|S_{\Phi_{j}}\right\| \leq B$, for each $j \in J$, so $\oplus_{j \in J} S_{\Phi_{j}}$ is a bounded operator. For each $f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$, we have

$$
\begin{aligned}
\left\langle S_{\oplus \in J} \Phi_{j}(f), f\right\rangle & =\left\langle\sum_{i \in I}\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\oplus_{j \in J} \Lambda_{i j}\right)\left(\left\{f_{j}\right\}_{j \in J}\right),\left\{f_{j}\right\}_{j \in J}\right\rangle=\sum_{i \in I} \sum_{j \in J}\left\langle\Lambda_{i j}^{*} \Lambda_{i j}\left(f_{j}\right), f_{j}\right\rangle \\
& =\sum_{i \in I} \sum_{j \in J}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2}=\sum_{j \in J} \sum_{i \in I}\left\|\Lambda_{i j}\left(f_{j}\right)\right\|^{2}=\sum_{j \in J}\left\langle\sum_{i \in I} \Lambda_{i j}^{*} \Lambda_{i j}\left(f_{j}\right), f_{j}\right\rangle \\
& =\sum_{j \in J}\left\langle S_{\Phi_{j}}\left(f_{j}\right), f_{j}\right\rangle=\left\langle\left(\oplus_{j \in J} S_{\Phi_{j}}\right) f, f\right\rangle,
\end{aligned}
$$

therefore $S_{\oplus_{j \in J} \Phi_{j}}=\oplus_{j \in J} S_{\Phi_{j}}$.
Recall that a g -frame is called exact if it ceases to be a g -frame whenever any of its elements is removed. For more results about exact g-frames, see [13]. Now we have the following result:
Corollary 2.1. Let $\left\{\Phi_{j}\right\}_{j \in J}$ be a bounded family of g-frames. If $\Phi_{j_{0}}$ is an exact g-frame, for some $j_{0} \in J$, then $\oplus_{j \in J} \Phi_{j}$ is exact.
Proof. Suppose that $i_{0} \in I$ such that $\left\{\oplus_{j \in J} \Lambda_{i j}\right\}_{i \in I-\left\{i_{0}\right\}}$ is a g-frame. Then by Theorem 2.1, $\left\{\Lambda_{i j_{0}}\right\}_{i \in I-\left\{i_{0}\right\}}$ is a g-frame, which is a contradiction with the fact that $\Phi_{j_{0}}$ is exact.

Theorem 2.2.

(a) $\left\{\Phi_{j}\right\}_{j \in J}$ is an (A, B)-bounded family of g-Riesz bases if and only if $\oplus_{j \in J} \Phi_{j}$ is an $(A, B) \mathrm{g}$-Riesz basis.
(b) Φ_{j} is a g-orthonormal basis, for each $j \in J$ if and only if $\oplus_{j \in J} \Phi_{j}$ is a g-orthonormal basis.

Proof. (a) First let $\left\{\Phi_{j}\right\}_{j \in J}$ be an (A,B)-bounded family of g -Riesz bases. By [16, Corollary 3.2], each Φ_{j} is a g-Bessel sequence with upper bound B and therefore by Theorem 2.1, $\oplus_{j \in J} \Phi_{j}$ is a g-Bessel sequence and it is easy to see that $\oplus_{j \in J} \Phi_{j}$ is g-complete. Let F be a finite subset of I and let $\left\{g_{i j}\right\}_{j \in J} \in \oplus_{j \in J} H_{i j}$, for each $i \in F$. For proving that $\oplus_{j \in J} \Phi_{j}$ is an $(A, B) \mathrm{g}$-Riesz basis, we must show that

$$
A \sum_{i \in F}\left\|\left\{g_{i j}\right\}_{j \in J}\right\|^{2} \leq\left\|\sum_{i \in F}\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{g_{i j}\right\}_{j \in J}\right)\right\|^{2} \leq B \sum_{i \in F}\left\|\left\{g_{i j}\right\}_{j \in J}\right\|^{2},
$$

or equivalently

$$
A \sum_{i \in F} \sum_{j \in J}\left\|g_{i j}\right\|^{2} \leq \sum_{j \in J}\left\|\sum_{i \in F} \Lambda_{i j}^{*}\left(g_{i j}\right)\right\|^{2} \leq B \sum_{i \in F} \sum_{j \in J}\left\|g_{i j}\right\|^{2} .
$$

Now since each Φ_{j} is an $(A, B) \mathrm{g}$-Riesz basis, then we have

$$
A \sum_{i \in F} \sum_{j \in J}\left\|g_{i j}\right\|^{2}=\sum_{j \in J} A \sum_{i \in F}\left\|g_{i j}\right\|^{2} \leq \sum_{j \in J}\left\|\sum_{i \in F} \Lambda_{i j}^{*}\left(g_{i j}\right)\right\|^{2},
$$

and

$$
B \sum_{i \in F} \sum_{j \in J}\left\|g_{i j}\right\|^{2}=\sum_{j \in J} B \sum_{i \in F}\left\|g_{i j}\right\|^{2} \geq \sum_{j \in J}\left\|\sum_{i \in F} \Lambda_{i j}^{*}\left(g_{i j}\right)\right\|^{2}
$$

Conversely suppose that $\oplus_{j \in J} \Phi_{j}$ is an (A, B) g-Riesz basis and $j_{0} \in J$. It is easy to see that $\Phi_{j_{0}}$ is g-complete. Now let F be a finite subset of I and $f_{i j_{0}} \in H_{i j_{0}}$, for each $i \in F$. Then

$$
\begin{aligned}
A \sum_{i \in F}\left\|f_{i j_{0}}\right\|^{2} & =A \sum_{i \in F}\left\|\left\{\delta_{j_{0}, j} f_{i j_{0}}\right\}_{j \in J}\right\|^{2} \\
& \leq\left\|\sum_{i \in F}\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{\delta_{j_{0}, j} f_{i j_{0}}\right\}_{j \in J}\right)\right\|^{2}=\left\|\sum_{i \in F} \Lambda_{i j_{0}}^{*}\left(f_{i j_{0}}\right)\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|\sum_{i \in F} \Lambda_{i j_{0}}^{*}\left(f_{i j_{0}}\right)\right\|^{2} & =\left\|\sum_{i \in F}\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{\delta_{j_{0}, j} f_{i j_{0}}\right\}_{j \in J}\right)\right\|^{2} \\
& \leq B \sum_{i \in F}\left\|\left\{\delta_{j_{0}, j} f_{i j_{0}}\right\}_{j \in J}\right\|^{2}=B \sum_{i \in F}\left\|f_{i j_{0}}\right\|^{2}
\end{aligned}
$$

This means that $\Phi_{j_{0}}$ is an $(A, B) \mathrm{g}$-Riesz basis.
(b) It follows from Theorem 2.1 that Φ_{j} is a Parseval g -frame for each $j \in J$ if and only if $\oplus_{j \in J} \Phi_{j}$ is a Parseval g-frame. Now suppose that Φ_{j} is a g-orthonormal basis, for each $j \in J$. Let $i, \ell \in I,\left\{f_{i j}\right\}_{j \in J} \in \oplus_{j \in J} H_{i j}$ and $\left\{g_{\ell j}\right\}_{j \in J} \in \oplus_{j \in J} H_{\ell j}$. Then

$$
\left\langle\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{f_{i j}\right\}_{j \in J}\right),\left(\oplus_{j \in J} \Lambda_{\ell j}^{*}\right)\left(\left\{g_{\ell j}\right\}_{j \in J}\right)\right\rangle=\sum_{j \in J}\left\langle\Lambda_{i j}^{*}\left(f_{i j}\right), \Lambda_{\ell j}^{*}\left(g_{\ell j}\right)\right\rangle
$$

If $i \neq \ell$, then $\sum_{j \in J}\left\langle\Lambda_{i j}^{*}\left(f_{i j}\right), \Lambda_{\ell j}^{*}\left(g_{\ell j}\right)\right\rangle=0$, and therefore

$$
\left\langle\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{f_{i j}\right\}_{j \in J}\right),\left(\oplus_{j \in J} \Lambda_{\ell j}^{*}\right)\left(\left\{g_{\ell j}\right\}_{j \in J}\right)\right\rangle=0
$$

If $i=\ell$, then

$$
\left\langle\left(\oplus_{j \in J} \Lambda_{i j}^{*}\right)\left(\left\{f_{i j}\right\}_{j \in J}\right),\left(\oplus_{j \in J} \Lambda_{\ell j}^{*}\right)\left(\left\{g_{\ell j}\right\}_{j \in J}\right)\right\rangle=\sum_{j \in J}\left\langle f_{i j}, g_{i j}\right\rangle=\left\langle\left\{f_{i j}\right\}_{j \in J},\left\{g_{i j}\right\}_{j \in J}\right\rangle
$$

so $\oplus_{j \in J} \Phi_{j}$ is a g-orthonormal basis. The converse is easy to verify.
Note that [12, Proposition 2.16] and [1, Proposition 2.6] are special cases of Theorems 2.1 and 2.2.

3. Perturbations, duals and equivalences

we recall the following definitions from [6] and [12]:
Definition 3.1. Let $\Lambda=\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ and $\Gamma=\left\{\Gamma_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ be two sequences and $0 \leq \lambda_{1}, \lambda_{2}<1$.
(i) Let $\varepsilon>0$. We say that Γ is $a\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of Λ if for each $i \in I$ and $f \in H$, we have

$$
\left\|\Lambda_{i} f-\Gamma_{i} f\right\| \leq \lambda_{1}\left\|\Lambda_{i} f\right\|+\lambda_{2}\left\|\Gamma_{i} f\right\|+\varepsilon\|f\|
$$

(ii) Let $\left\{c_{i}\right\}_{i \in I}$ be a sequence of positive numbers such that $\sum_{i \in I} c_{i}^{2}<\infty$. We say that Γ is a $\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$-perturbation of Λ if for each $i \in I$ and $f \in H$, we have

$$
\left\|\Lambda_{i} f-\Gamma_{i} f\right\| \leq \lambda_{1}\left\|\Lambda_{i} f\right\|+\lambda_{2}\left\|\Gamma_{i} f\right\|+c_{i}\|f\|
$$

Proposition 3.1. Let $\left\{\Phi_{j}\right\}_{j \in J}$ and $\left\{\Psi_{j}\right\}_{j \in J}$ be bounded families of g-Bessel sequences. Then Ψ_{j} is a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of Φ_{j}, for each $j \in J$ if and only if $\oplus_{j \in J} \Psi_{j}$ is a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of $\oplus_{j \in J} \Phi_{j}$.
Proof. First suppose that Ψ_{j} is a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of Φ_{j}, for each $j \in J$ and suppose that $f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$. Let F be a finite subset of J. Then for each $i \in I$, we have

$$
\begin{aligned}
\left\|\left\{\left(\Lambda_{i j}-\Gamma_{i j}\right) f_{j}\right\}_{j \in F}\right\|_{2} & \leq\left\|\left\{\lambda_{1}\left\|\Lambda_{i j} f_{j}\right\|+\lambda_{2}\left\|\Gamma_{i j} f_{j}\right\|+\varepsilon\left\|f_{j}\right\|\right\}_{j \in F}\right\|_{2} \\
& \leq\left\|\left\{\lambda_{1}\left\|\Lambda_{i j} f_{j}\right\|\right\}_{j \in F}\right\|_{2}+\left\|\left\{\lambda_{2}\left\|\Gamma_{i j} f_{j}\right\|\right\}_{j \in F}\right\|_{2}+\left\|\left\{\varepsilon\left\|f_{j}\right\|\right\}_{j \in F}\right\|_{2} \\
& \leq \lambda_{1}\left(\sum_{j \in J}\left\|\Lambda_{i j} f_{j}\right\|^{2}\right)^{\frac{1}{2}}+\lambda_{2}\left(\sum_{j \in J}\left\|\Gamma_{i j} f_{j}\right\|^{2}\right)^{\frac{1}{2}}+\varepsilon\left(\sum_{j \in J}\left\|f_{j}\right\|^{2}\right)^{\frac{1}{2}} \\
& =\lambda_{1}\left\|\oplus_{j \in J} \Lambda_{i j} f\right\|+\lambda_{2}\left\|\oplus_{j \in J} \Gamma_{i j} f\right\|+\varepsilon\|f\| .
\end{aligned}
$$

Since the above inequality holds for each finite subset of J, then we have

$$
\begin{aligned}
\left\|\oplus_{j \in J} \Lambda_{i j} f-\oplus_{j \in J} \Gamma_{i j} f\right\| & =\left\|\left\{\left(\Lambda_{i j}-\Gamma_{i j}\right) f_{j}\right\}_{j \in J}\right\|_{2} \\
& \leq \lambda_{1}\left\|\oplus_{j \in J} \Lambda_{i j} f\right\|+\lambda_{2}\left\|\oplus_{j \in J} \Gamma_{i j} f\right\|+\varepsilon\|f\| .
\end{aligned}
$$

This means that $\oplus_{j \in J} \Psi_{j}$ is a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of $\oplus_{j \in J} \Phi_{j}$.
For the converse it is enough to note that for each $i \in I, j_{0} \in J$ and $f_{j_{0}} \in H_{j_{0}}$ we can write

$$
\begin{aligned}
& \left\|\Lambda_{i j_{0}} f_{j_{0}}-\Gamma_{i j_{0}} f_{j_{0}}\right\| \\
& =\left\|\left(\oplus_{j \in J} \Lambda_{i j}\right)\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right)-\left(\oplus_{j \in J} \Gamma_{i j}\right)\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right)\right\| \\
& \leq \lambda_{1}\left\|\oplus_{j \in J} \Lambda_{i j}\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right)\right\|+\lambda_{2}\left\|\oplus_{j \in J} \Gamma_{i j}\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right)\right\|+\varepsilon\left\|\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right\| \\
& =\lambda_{1}\left\|\Lambda_{i j_{0}} f_{j_{0}}\right\|+\lambda_{2}\left\|\Gamma_{i j_{0}} f_{j_{0}}\right\|+\varepsilon\left\|f_{j_{0}}\right\|,
\end{aligned}
$$

and the result follows.
Corollary 3.1. Let $\left\{\Phi_{j}\right\}_{j \in J}$ be a B-bounded (resp. an (A, B)-bounded, with $\left(1-\lambda_{1}\right) \sqrt{A}>$ $\left(\sum_{i \in I} c_{i}^{2}\right)^{1 / 2}$) family of g-Bessel sequences (resp. g-frames) and Ψ_{j} be a $\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$ perturbation of Φ_{j},for each $j \in J$. Then $\oplus_{j \in J} \Psi_{j}$ and Ψ_{j}, for each $j \in J$, are g-Bessel sequences (resp. g-frames) and $\oplus_{j \in J} \Psi_{j}$ is a $\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$-perturbation of $\oplus_{j \in J} \Phi_{j}$.

Conversely if $\oplus_{j \in J} \Psi_{j}$ is a g-Bessel sequence and $a\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$-perturbation of $\oplus_{j \in J}$ Φ_{j}, then Ψ_{j} is a $\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$-perturbation of Φ_{j}, for each $j \in J$.
Proof. First let Ψ_{j} be a $\left(\lambda_{1}, \lambda_{2},\left\{c_{i}\right\}_{i \in I}\right)$-perturbation of Φ_{j}, for each $j \in J$. Then by [12, Proposition 4.3], Ψ_{j} is a g -Bessel sequence with upper bound $\left(\left(\left(1+\lambda_{1}\right) \sqrt{B}+\left(\sum_{i \in I} c_{i}^{2}\right)^{1 / 2}\right) /\right.$ $\left.\left(1-\lambda_{2}\right)\right)^{2}$, for each $j \in J$. Therefore by Theorem 2.1, $\oplus_{j \in J} \Psi_{j}$ is a g-Bessel sequence. If $\left\{\Phi_{j}\right\}_{j \in J}$ is an (A,B)-bounded family of g-frames with $\left(1-\lambda_{1}\right) \sqrt{A}>\left(\sum_{i \in I} c_{i}^{2}\right)^{1 / 2}$, then by [12, Proposition 4.3], $\left(\left(\left(1-\lambda_{1}\right) \sqrt{A}-\left(\sum_{i \in I} c_{i}^{2}\right)^{1 / 2}\right) /\left(1+\lambda_{2}\right)\right)^{2}$ is a lower bound for Ψ_{j}, for each $j \in J$. Hence by Theorem 2.1, $\oplus_{j \in J} \Psi_{j}$ is a g -frame. Now the rest of the proof can be obtained similar to the proof of Proposition 3.1 by using c_{i} instead of ε, for each $i \in I$.

It was shown in [12, Definition 2.10] that if $\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ and $\left\{\Gamma_{i} \in L\left(H, H_{i}\right): i \in\right.$ $I\}$ are g -Bessel sequences with upper bounds B and D , respectively, then $\sum_{i \in I} \Gamma_{i}^{*} \Lambda_{i}(f)$ converges and $\left\|\sum_{i \in I} \Gamma_{i}^{*} \Lambda_{i}(f)\right\| \leq \sqrt{B D}\|f\|$, for each $f \in H$. Therefore if $\left\{\Phi_{j}\right\}_{j \in J}$ and $\left\{\Psi_{j}\right\}_{j \in J}$ are bounded families of g -Bessel sequences, then the operator $\sum_{i \in I}\left(\oplus_{j \in J} \Gamma_{i j}^{*}\right)\left(\oplus_{j \in J} \Lambda_{i j}\right)$ is bounded on $\oplus_{j \in J} H_{j}$.

Proposition 3.2. Let $\left\{\Phi_{j}\right\}_{j \in J}$ and $\left\{\Psi_{j}\right\}_{j \in J}$ be B and D-bounded families of g-Bessel sequences, respectively. Then Ψ_{j} is a dual of Φ_{j}, for each $j \in J$ if and only if $\oplus_{j \in J} \Psi_{j}$ is a dual of $\oplus_{j \in J} \Phi_{j}$.

Proof. Let Ψ_{j} be a dual of Φ_{j} for each $j \in J, f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$ and $j \in J$. Then

$$
\sum_{i \in I}\left|\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle\right| \leq\left(\sum_{i \in I}\left\|\Lambda_{i j} f_{j}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{i \in I}\left\|\Gamma_{i j} f_{j}\right\|^{2}\right)^{\frac{1}{2}} \leq \sqrt{B D}\left\|f_{j}\right\|^{2}
$$

so $\sum_{i \in I}\left|\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle\right|$ converges, for each $j \in J$. Also

$$
\sum_{j \in J} \sum_{i \in I}\left|\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle\right| \leq \sqrt{B D} \sum_{j \in J}\left\|f_{j}\right\|^{2}=\sqrt{B D}\|f\|^{2}
$$

therefore $\sum_{j \in J} \sum_{i \in I}\left|\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle\right|$ converges. Hence

$$
\sum_{j \in J} \sum_{i \in I}\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle=\sum_{i \in I} \sum_{j \in J}\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle .
$$

Now we have

$$
\begin{aligned}
& \left\langle\sum_{i \in I}\left(\oplus_{j \in J} \Gamma_{i j}^{*}\right)\left(\oplus_{j \in J} \Lambda_{i j}\right)\left(\left\{f_{j}\right\}_{j \in J}\right),\left\{f_{j}\right\}_{j \in J}\right\rangle \\
& =\sum_{i \in I}\left\langle\left\{\Gamma_{i j}^{*} \Lambda_{i j} f_{j}\right\}_{j \in J},\left\{f_{j}\right\}_{j \in J}\right\rangle=\sum_{i \in I} \sum_{j \in J}\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle=\sum_{j \in J} \sum_{i \in I}\left\langle\Lambda_{i j} f_{j}, \Gamma_{i j} f_{j}\right\rangle \\
& =\sum_{j \in J}\left\langle\sum_{i \in I} \Gamma_{i j}^{*} \Lambda_{i j} f_{j}, f_{j}\right\rangle=\sum_{j \in J}\left\langle f_{j}, f_{j}\right\rangle=\left\langle\left\{f_{j}\right\}_{j \in J},\left\{f_{j}\right\}_{j \in J}\right\rangle,
\end{aligned}
$$

therefore $\sum_{i \in I}\left(\oplus_{j \in J} \Gamma_{i j}^{*}\right)\left(\oplus_{j \in J} \Lambda_{i j}\right) f=f$, for each $f \in \oplus_{j \in J} H_{j}$, and this means that $\oplus_{j \in J} \Psi_{j}$ is a dual of $\oplus_{j \in J} \Phi_{j}$. Conversely suppose that $\oplus_{j \in J} \Psi_{j}$ is a dual of $\oplus_{j \in J} \Phi_{j}$. Let $j_{0} \in J$ and $f_{j_{0}} \in H_{j_{0}}$. Now we have

$$
\begin{aligned}
\left\langle\sum_{i \in I} \Gamma_{i j_{0}}^{*} \Lambda_{i j_{0}} f_{j_{0}}, f_{j_{0}}\right\rangle & =\left\langle\sum_{i \in I}\left(\oplus_{j \in J} \Gamma_{i j}^{*}\right)\left(\oplus_{j \in J} \Lambda_{i j}\right)\left(\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right),\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right\rangle \\
& =\left\langle\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J},\left\{\delta_{j_{0}, j} f_{j_{0}}\right\}_{j \in J}\right\rangle=\left\langle f_{j_{0}}, f_{j_{0}}\right\rangle,
\end{aligned}
$$

therefore $\sum_{i \in I} \Gamma_{i j_{0}}^{*} \Lambda_{i j_{0}} f_{j_{0}}=f_{j_{0}}$. This means that $\Psi_{j_{0}}$ is a dual of $\Phi_{j_{0}}$.
Now we have the following result for canonical duals.
Proposition 3.3. Let $\left\{\Phi_{j}\right\}_{j \in J}$ be an (A, B)-bounded family of g-frames. Then $\oplus_{j \in J} \widetilde{\Phi_{j}}$ is a g-frame and $\widetilde{\oplus_{j \in J} \Phi_{j}}=\oplus_{j \in J} \widetilde{\Phi_{j}}$.
Proof. Since $\widetilde{\Phi_{j}}$ is an $\left(1 / B_{j}, 1 / A_{j}\right)$ g-frame, for each $j \in J$ and $\inf \left\{1 / B_{j}: j \in J\right\}=1 / B>0$, $\sup \left\{1 / A_{j}: j \in J\right\}=1 / A<\infty$, then $\oplus_{j \in J} \widetilde{\Phi_{j}}$ is an $(1 / B, 1 / A)$ g-frame, by Theorem 2.1. Moreover as a consequence of Theorem 2.1, we can see that $\widetilde{\oplus_{j \in J} \Phi_{j}}=\left\{\oplus_{j \in J} \Lambda_{i j}\left(\oplus_{j \in J}\right.\right.$ $\left.\left.S_{\Phi_{j}}\right)^{-1}: i \in I\right\}$. Now by using the definition of canonical duals, it is clear that $\oplus_{j \in J} \widetilde{\Phi_{j}}=$ $\left\{\oplus_{j \in J} \Lambda_{i j} S_{\Phi_{j}}^{-1} \in L\left(\oplus_{j \in J} H_{j}, \oplus_{j \in J} H_{i j}\right): i \in I\right\}$. Thus it is enough to show that $\oplus_{j \in J} \Lambda_{i j}\left(\oplus_{j \in J}\right.$ $\left.S_{\Phi_{j}}\right)^{-1}=\oplus_{j \in J} \Lambda_{i j} S_{\Phi_{j}}^{-1}$, for each $i \in I$. Since $A \cdot I d_{H_{j}} \leq S_{\Phi_{j}} \leq B \cdot I d_{H_{j}}$, for each $j \in J$, then by [14, Theorem 2.2.5], we have $(1 / B) \cdot I d_{H_{j}} \leq S_{\Phi_{j}}^{-1} \leq(1 / A) \cdot I d_{H_{j}}$ and therefore $\left\|S_{\Phi_{j}}^{-1}\right\| \leq$
$1 / A$, for each $j \in J$. Thus $\oplus_{j \in J} S_{\Phi_{j}}^{-1}$ is a bounded operator. Now it is easy to see that $\left(\oplus_{j \in J} S_{\Phi_{j}}\right)^{-1}=\oplus_{j \in J} S_{\Phi_{j}}^{-1}$, so for each $\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$, we have

$$
\oplus_{j \in J} \Lambda_{i j}\left(\oplus_{j \in J} S_{\Phi_{j}}\right)^{-1}\left(\left\{f_{j}\right\}_{j \in J}\right)=\left\{\Lambda_{i j} S_{\Phi_{j}}^{-1}\left(f_{j}\right)\right\}_{j \in J}=\oplus_{j \in J} \Lambda_{i j} S_{\Phi_{j}}^{-1}\left(\left\{f_{j}\right\}_{j \in J}\right)
$$

which completes the proof.
Now we recall some definitions for g-frames from [15].
Definition 3.2. Let $\Lambda=\left\{\Lambda_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ and $\Gamma=\left\{\Gamma_{i} \in L\left(H, H_{i}\right): i \in I\right\}$ be two g-frames.
(i) We say that Λ and Γ are unitarily equivalent if there is a unitary linear operator $T: H \longrightarrow H$ such that $\Gamma_{i}=\Lambda_{i} T$, for each $i \in I$.
(ii) We say that Λ is isometrically related to Γ if there is an isometric linear operator $T: H \longrightarrow H$ such that $\Gamma_{i}=\Lambda_{i} T$, for each $i \in I$.

Proposition 3.4. Let $\left\{\Phi_{j}\right\}_{j \in J}$ and $\left\{\Psi_{j}\right\}_{j \in J}$ be bounded families of g-frames. Then
(i) If Φ_{j} and Ψ_{j} are unitarily equivalent, for each $j \in J$, then $\oplus_{j \in J} \Phi_{j}$ and $\oplus_{j \in J} \Psi_{j}$ are unitarily equivalent.
(ii) If Φ_{j} is isometrically related to Ψ_{j}, for each $j \in J$, then $\oplus_{j \in J} \Phi_{j}$ is isometrically related to $\oplus_{j \in J} \Psi_{j}$.
Proof. (i) Suppose that Φ_{j} and Ψ_{j} are unitarily equivalent, for each $j \in J$ and $T_{j}: H_{j} \longrightarrow H_{j}$ is a unitary operator such that $\Gamma_{i j}=\Lambda_{i j} T_{j}$, for each $i \in I$. Define $T: \oplus_{j \in J} H_{j} \longrightarrow \oplus_{j \in J} H_{j}$ by $T=\oplus_{j \in J} T_{j}$. Since $\|T\|=\sup \left\{\left\|T_{j}\right\|: j \in J\right\}=1$, then T is bounded. Now it is easy to see that T is unitary and $\oplus_{j \in J} \Gamma_{i j}=\left(\oplus_{j \in J} \Lambda_{i j}\right) T$, for each $i \in I$.
(ii) Suppose that Φ_{j} is isometrically related to Ψ_{j}, for each $j \in J$ and $T_{j}: H_{j} \longrightarrow H_{j}$ is an isometric operator such that $\Gamma_{i j}=\Lambda_{i j} T_{j}$, for each $i \in I$. Define $T: \oplus_{j \in J} H_{j} \longrightarrow \oplus_{j \in J} H_{j}$ by $T=\oplus_{j \in J} T_{j}$. Since $\|T\|=\sup \left\{\left\|T_{j}\right\|: j \in J\right\}=1$, then T is bounded. Now for each $f=\left\{f_{j}\right\}_{j \in J} \in \oplus_{j \in J} H_{j}$, we have

$$
\|T f\|=\left(\sum_{j \in J}\left\|T_{j} f_{j}\right\|^{2}\right)^{\frac{1}{2}}=\left(\sum_{j \in J}\left\|f_{j}\right\|^{2}\right)^{\frac{1}{2}}=\|f\|
$$

so T is an isometry. It is also easy to see that $\oplus_{j \in J} \Gamma_{i j}=\left(\oplus_{j \in J} \Lambda_{i j}\right) T$, for each $i \in I$.

References

[1] A. Abdollahi and E. Rahimi, Generalized frames on super Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 807-818.
[2] M. S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005), no. 2, 541-553.
[3] J. J. Benedetto, A. M. Powell and Ö. Yılmaz, Sigma-Delta ($\Sigma \Delta$) quantization and finite frames, IEEE Trans. Inform. Theory 52 (2006), no. 5, 1990-2005.
[4] H. Bölcskel, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Processing. 46 (1998), 3256-3268.
[5] E. J. Candès and D. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise C^{2} singularities, Comm. Pure and Appl. Math. 56 (2004), 216-266.
[6] P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543-557.
[7] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames and Operator Theory, 87-113, Contemp. Math., 345 Amer. Math. Soc., Providence, RI.
[8] O. Christensen, Frames and Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Boston, MA, 2008.
[9] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271-1283.
[10] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
[11] R. W. Heath and A. J. Paulraj, Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans. Signal Processing. 50 (2002), 2429-2441.
[12] A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), no. 2, 10681083.
[13] J.-Z. Li and Y.-C. Zhu, Exact g-frames in Hilbert spaces, J. Math. Anal. Appl. 374 (2011), no. 1, $201-209$.
[14] G. J. Murphy, C^{*}-Algebras and Operator Theory, Academic Press, Boston, MA, 1990.
[15] A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 35 (2009), no. 1, 97-109.
[16] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437-452.
[17] L. Zang, W. Sun and D. Chen, Excess of a class of g-frames, J. Math. Anal. Appl. 352 (2009), no. 2, 711-717.

[^0]: Communicated by Rosihan M. Ali, Dato'.
 Received: March 22, 2011; Revised: July 21, 2011.

