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Abstract. In this paper we characterize Hopf hypersurfaces in the nearly Kaehler 6-Sphere
S6 using some restrictions on the characteristic vector field ξ =−JN, where J is the almost
complex structure on S6 and N is the unit normal to the hypersurface. It is shown that
if the characteristic vector field ξ of a compact and connected real hypersurface M of the
nearly Kaehler sphere S6 is harmonic and the Ricci curvature in the direction of ξ is non-
negative, then M is a Hopf hypersurface and therefore congruent to either a totally geodesic
hypersphere or a tube over almost complex curve on S6. It is also observed that similar result
holds if ξ is Jacobi-type vector field (a notion similar to Jacobi fields along geodesics). We
also show that if a connected real hypersurface M is a Ricci soliton with potential vector
field ξ , then M is congruent to an open piece of either a totally geodesic hypersphere or a
tube over an almost complex curve in S6.
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1. Introduction

It is known that the 6-dimensional unit sphere S6 has a nearly Kaehler structure (J,g),
where J is an almost complex structure defined on S6 using the vector cross product of
purely imaginary Cayley numbers R7 and g is the induced metric on S6 as a hypersurface of
R7. Regarding the submanifolds of the nearly Kaehler S6, Gray [17] has proved that it does
not have any complex hypersurface. However, there are 4-dimensional CR-submanifolds in
S6 and have been studied in [6, 19, 20]. Moreover, 2- and 3-dimensional totally real sub-
manifolds of S6 have been quite extensively studied (cf. [4–6, 8, 9, 11, 13–15]). However
hypersurfaces of the nearly Kaehler S6 have not been studied that extensively, as one comes
across only [1,10,12]. Almost complex curves (2-dimensional almost complex submani-
folds) in S6 have been studied in [3,18], and recently, Berndt et al. [1] have shown that
the geometry of almost complex curves in S6 is related to Hopf hypersurfaces ( Real hy-
persurfaces with the 1-dimensional foliation induced by the distribution which is obtained
by applying almost complex structure J to the normal bundle of the hypersurface is totally
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geodesic) of S6. This relationship between the almost complex curves and Hopf hypersur-
faces in S6 makes the study of Hopf hypersurfaces in S6 more interesting. In [1], the authors
proved that a connected Hopf hypersurface of the nearly Kaehler S6 is an open part of either
a geodesic hypersphere of S6 or a tube around an almost complex curve in S6. Therefore it
is an interesting question to obtain different characterizations of the Hopf hypersurface in
S6. Let J be the almost complex structure on the nearly Kaehler sphere S6 and M be an
orientable real hypersurface of S6 with unit normal vector field N. Then the unit vector field
ξ defined by ξ =−JN on M is called the characteristic vector field of the real hypersurface
M. In this paper, we use different restrictions on the characteristic vector field ξ to obtain
characterizations of the Hopf hypersurface in S6. It is observed that if the characteristic
vector field ξ of the compact real hypersurface M is harmonic and the Ricci curvature of
M in the direction of ξ is non-negative, then ξ is Killing and in particular the hypersurface
M is a Hopf hypersurface (cf. section-3). It is well known that a Killing vector field on a
Riemannian manifold is a Jacobi vector field along any geodesic, however a smooth vector
field that is a Jacobi vector field along each geodesic need not be a Killing vector field. We
define a Jacobi-type vector field on a Riemannian manifold (which in particular implies that
a Jacobi-type of vector field is Jacobi field along each geodesic). This leads to the question
of finding condition under which a Jacobi-type vector fields are Killing vector fields. We
use this notion for the characteristic vector field ξ of the compact real hypersurface M of S6

and show that if ξ is Jacobi-type vector field on M, then necessarily it is Killing vector field
and in particular the hypersurface M is a Hopf hypersurface (cf. section-4). Finally, in the
last section of this paper, we show that if the real hypersurface M of the nearly Kaehler S6

is a Ricci soliton (cf. [7]) with potential vector field ξ , then M is a Hopf hypersurface.

2. Preliminaries

Let S6 be the nearly Kaehler 6-sphere with nearly Kaehler structure (J,g), where J is the
almost complex structure and g is the almost Hermitian metric on S6. Then we have

(2.1)
(
∇X J

)
(X) = 0, g(JX ,JY ) = g(X ,Y ) , X ,Y ∈ X(S6),

where ∇ is the Riemannian connection with respect to the almost Hermitian metric g and
X(S6) is the Lie algebra of smooth vector fields on S6. The tensor field G of type (2,1)
defined on S6 by G(X ,Y ) =

(
∇X J

)
(Y ), X ,Y ∈ X(S6) has the properties as described in the

following:

Lemma 2.1. [15] (a) G(X ,JY ) =−JG(X ,Y ), (b) G(X ,Y ) =−G(Y,X)
(c)
(
∇X G

)
(Y,Z) = g(Y,JZ)X +g(X ,Z)JY −g(X ,Y )JZ, X ,Y,Z ∈ X(S6).

Let M be an orientable real hypersurface of S6, ∇ be the Riemannian connection with
respect to the induced metric on M which we denote by the same letter g and N be the unit
normal vector field. Then we have

(2.2) ∇XY = ∇XY +g(AX ,Y )N, ∇X N =−AX ,X ,Y ∈ X(M),

where A is the shape operator of the hypersurface M. The Gauss and Codazzi equations for
the hypersurface are

(2.3) R(X ,Y )Z = g(Y,Z)X−g(X ,Z)Y +g(AY,Z)AX−g(AX ,Z)AY

(2.4) (∇A)(X ,Y ) = (∇A)(Y,X)
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for X ,Y,Z ∈ X(M), where (∇A)(X ,Y ) = ∇X AY −A(∇XY ). The Ricci tensor Ric and the
scalar curvature S of the hypersurface M are given by

(2.5) Ric(X ,Y ) = 4g(X ,Y )+5αg(AX ,Y )−g(AX ,AY ),

(2.6) S = 20+25α
2−‖A‖2 ,

where α = 1/5trA is the mean curvature and ‖A‖2 = trA2 is the square of the length of the
shape operator of the hypersurface.

A real hypersurface M of the nearly Kaehler sphere S6 is said to be a Hopf hypersurface if
the characteristic vector field ξ of M is an eigenvector of the shape operator A. In particular
if M is a Hopf hypersurface, then the integral curves of the characteristic vector field ξ are
geodesics and it is known that a connected Hopf hypersurface in nearly Kaehler sphere S6

is congruent to open piece of either a totally geodesic hypersphere or a tube over an almost
complex curve in S6 (cf. [1]).

Using the almost complex structure J of S6, we define a unit vector field ξ ∈ X(M) by
ξ =−JN, with dual 1-form η(X) = g(X ,ξ ). For a X ∈X(M), we set JX = φ(X)+η(X)N,
where φ(X) is the tangential component of JX . Then it follows that φ is a (1,1) tensor field
on M. Using J2 = −I, it is easy to see that (φ ,ξ ,η ,g) defines an almost contact metric
structure on M, that is (cf. [2])

(2.7) φ
2 =−I +η⊗ξ , 5, η (ξ ) = 1, η ◦φ = 0, φ (ξ ) = 0

and g(φX ,φY ) = g(X ,Y )−η (X)η (Y ), X ,Y ∈ X(M). Using the fact G(X ,X) = 0, X ∈
X(M), we immediately obtain the following

(2.8) (∇X φ)(X) = η(X)AX−g(AX ,X)ξ , g(∇X ξ ,X) = g(φAX ,X), X ∈ X(M).

Note that as φ is skewsymmetric, on a real hypersurface M we can construct a local or-
thonormal frame {e1,φe1,e2,φe2,ξ} on M, called an adapted frame. Also using Jξ = N
and Lemma 2.1, we immediately arrive at

(2.9) ∇X ξ = φAX−G(X ,N), X ∈ X(M).

On an orientable hypersurface M of S6 we let D = Kerη = {X ∈ X(M) : η(X) = 0}. Then
D is a 4-dimensional smooth distribution on M, and that for each X ∈ D, JX ∈ D, that is D
is invariant under the almost complex structure J. We have the following

Lemma 2.2. [10] Let M be an orientable compact real hypersurface of S6. Then∫
M

{
Ric(ξ ,ξ )−4+Tr(φA)2}dv = 0.

3. Real hypersurfaces with harmonic characteristic vector field

Recall that the Laplacian operator ∆ acting on smooth vector fields on a Riemannian mani-
fold (M,g) is defined by

∆X =
n

∑
i=1

(
∇ei∇eiX−∇∇ei eiX

)
, X ∈ X(M),

where {e1, ...,en} is a local orthonormal frame on M and a vector field X is said to be
harmonic if ∆X = 0 (cf. [16]). It is known that the operator ∆ is negative semidefinite self
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adjoint with respect to the inner product 〈,〉 defined for compactly supported smooth vector
fields on M by

〈X ,Y 〉=
∫

g(X ,Y ).

In this section we study real hypersurfaces of the nearly Kaehler S6 that has harmonic char-
acteristic vector field. First, we prove the following:

Theorem 3.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler S6. If the characteristic vector field ξ satisfies

Ric
(
ξ ,ξ

)
≥−g

(
∆ξ ,ξ

)
then ξ is Killing and in particular M is a Hopf hypersurface which is therefore congruent
to either a totally geodesic hypersphere or a tube over an almost complex curve in S6.

Proof. Use equations (2.1), (2.2), (2.9) and Lemma 2.1, to compute

∇X ∇X ξ −∇∇X X ξ

= ∇X φAX−∇X G(X ,N)−φA(∇X X)+G(∇X X ,N)

= (∇X φ)(AX)+φ (∇X A)(X)−
(
∇X G

)
(X ,N)+G(X ,AX)+g(AX ,G(X ,N))N

= (∇X φ)(AX)+φ (∇X A)(X)+η(X)X−‖X‖2
ξ +G(X ,AX)−g(G(X ,AX),N))N,(3.1)

where we also used the fact that g(G(X ,Y ),Z) =−g(Y,G(X ,Z)), X ,Y,Z ∈ X(S6). Choos-
ing a local orthonormal frame {e1, ...,e5} on M that diagonalizes A as A(ei) = λiei, and
using equation (2.8), we compute

∑(∇eiφ)(Aei) = ∑λi (∇eiφ)(ei) = ∑λi (η(ei)Aei−g(Aei,ei)ξ )

= ∑(η(Aei)Aei−g(Aei,Aei)ξ ) = A2
ξ −‖A‖2

ξ .(3.2)

Note that using Codazzi equation for hypersurface and symmetry of the shape operator A,
it can be easily shown that the gradient ∇α of the mean curvature α satisfies

5∇α = ∑(∇eiA)(ei)

and consequently, we have

(3.3) ∑φ (∇eiA)(ei) = 5φ (∇α) .

It trivially follows that

(3.4) ∑G(ei,Aei) = 0.

Using equations (3.2)-(3.4) in the equation (3.1), we get the following expression for the
Laplacian ∆ξ

(3.5) ∆ξ = A2
ξ −‖A‖2

ξ +5φ (∇α)−4ξ .

Note that the operator φA−Aφ is a symmetric operator and consequently, we have

‖φA−Aφ‖2 = 2Tr(φA)2 +2‖A‖2−2‖Aξ‖2 ,

which together with equation (3.5) gives

1
2
‖φA−Aφ‖2 +g(∆ξ ,ξ ) = Tr(φA)2−4.
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Using above equation in Lemma 2.2, we arrive at

(3.6)
∫
M

{
1
2
‖φA−Aφ‖2 +Ric(ξ ,ξ )+g(∆ξ ,ξ )

}
dv = 0,

which together with the condition in the hypothesis of the theorem gives φA = Aφ , that is(
£ξ g
)
(X ,Y ) = g(∇X ξ ,Y )+g(∇Y ξ ,X)

= g((φA−Aφ)(X ,Y )−g(G(X ,N),Y )−g(G(Y,N),X) = 0

This proves that ξ is Killing and in particular M is a Hopf hypersurface and then the rest of
the result follows from the main theorem in [1] with complete and connected M.

As a particular case of above theorem we have the following:

Corollary 3.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler S6. If the characteristic vector field ξ is harmonic and the Ricci curvature
of M in the direction of ξ is non-negative, then ξ is Killing and in particular M is a Hopf
hypersurface which is therefore congruent to either a totally geodesic hypersphere or a tube
over an almost complex curve in S6.

4. Real hypersurfaces with Jacobi-type characteristic vector field

It is well known that a Killing vector field on a Riemannian manifold (M,g) is a Jacobi field
along each geodesic of M. However, the converse is not true as for example the position
vector field on the Euclidean space Rn is a Jacobi field along each geodesic of Rn which is
not a Killing vector field. Motivated by the definition of a Jacobi field along a geodesic, we
define a Jacobi-type vector field u on a Riemannian manifold (M,g) that satisfies

∇X ∇X u−∇∇X X u+R(u,X)X = 0, X ∈ X(M),

where ∇ is the Riemannian connection and R is the curvature tensor field of the Riemannian
manifold (M,g). Naturally a Jacobi-type vector field is a Jacobi field along each geodesic of
M. It is an interesting question to obtain condition under which a Jacobi-type vector field on
a Riemannian manifold is Killing. In this section, we study compact real hypersurfaces of
the nearly Kaehler sphere S6 whose characteristic vector field ξ is Jacobi-type vector field
and show that it is Killing. We prove the following:

Theorem 4.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler S6. If the characteristic vector field ξ is a Jacobi-type vector field on M,
then ξ is Killing and in particular M is a Hopf hypersurface which is therefore congruent
to either a totally geodesic hypersphere or a tube over an almost complex curve in S6.

Proof. Let the characteristic vector field ξ of the real hypersurface be Jacobi-type vector
field. Then we have

∇X ∇X ξ −∇∇X X ξ +R(ξ ,X)X = 0, X ∈ X(M)

replacing X by ei for a local orthonormal frame {e1, ...,e5} on M in the above equation and
summing these equations we arrive at

∆ξ +∑R(ξ ,ei)ei = 0.
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Taking inner product with ξ in the above equation we get

Ric
(
ξ ,ξ

)
+g
(
∆ξ ,ξ

)
= 0,

which together with equation (3.6) gives φA = Aφ . Then as in Theorem 3.1, we get the
result.

5. Real hypersurfaces as Ricci soliton

A Riemannian manifold (M,g) is said to be a Ricci soliton if there exist a vector field X
called potential field and a constant λ satisfying

(5.1) Ric+
1
2

£X g = λg

and the Ricci soliton is said to stable, shrinking or expanding according as the constant
λ = 0, λ > 0 or λ < 0 (cf. [7]). In this section we study connected real hypersurface M
of the nearly Kaehler S6 which acquires the status of a Ricci soliton with potential field the
characteristic vector field ξ of M and prove that in this case also M is a Hopf hypersurface.
We prove the following:

Theorem 5.1. Let M be an orientable connected real hypersurface of the nearly Kaehler
sphere S6 with characteristic vector field ξ . If M is a Ricci soliton with potential field ξ ,
then M is a Hopf hypersurface and therefore congruent to open piece of either a totally
geodesic hypersphere or a tube over almost complex curve in S6.

Proof. Since the real hypersurface M is a Ricci soliton with potential field ξ , by equations
(2.5) and (5.1), we have

(5.2) Ric(ξ ,ξ ) = λ = 4+5α f −‖Aξ‖2 ,

where f is the smooth function defined by f = g(Aξ ,ξ ). Moreover using equation (2.9)
together with Lemma 2.1, we have(

£ξ g
)
(X ,Y ) = g((φA−Aφ)(X),Y ), X ,Y ∈ X(M).

Thus using equations (2.5), (2.9) and the above equation together with Lemma 2.1 in equa-
tion (5.1), we arrive at

(5.3) −A2X +5αAX +(4−λ )X +
1
2

φAX− 1
2

AφX = 0, X ∈ X(M).

Define two vector fields u,v ∈D = Kerη by u = ∇ξ ξ and Aξ = v+ f ξ . Then as Jξ = N, it
follows by Lemma 2.1 and equation (2.9) that

(5.4) u = φ(v), v =−φ(u), ‖u‖2 = ‖v‖2 .

Taking X = ξ in equation (5.3) and using Aξ = v+ f ξ , and equations (5.2), (5.3), we arrive
at

(5.5) Av = ‖v‖2
ξ +(5α− f )v+

1
2

u,

where we used equation (5.2) in the form λ = 4+5α f − f 2−‖v‖2. Similarly taking X = v
in equation (5.3) and using equations (5.2), (5.4), (5.5) , we get

(5.6) Au =−1
4

v+
5
2

αu.
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Now taking inner product with u in equation (5.5) and with v in equation (5.6) and using
symmetry of shape operator A, we get

1
2
‖u‖2 =−1

4
‖v‖2 ,

which together with equation (5.4) gives u = v = 0, that is Aξ = f ξ , and hence M is a Hopf
hypersurface and this with the main result in [1] proves the theorem.
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