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Abstract. In this paper we characterize Hopf hypersurfaces in the nearly Kaehler 6-Sphere
5 using some restrictions on the characteristic vector field & = —JN, where J is the almost
complex structure on S® and N is the unit normal to the hypersurface. It is shown that
if the characteristic vector field & of a compact and connected real hypersurface M of the
nearly Kaehler sphere S® is harmonic and the Ricci curvature in the direction of & is non-
negative, then M is a Hopf hypersurface and therefore congruent to either a totally geodesic
hypersphere or a tube over almost complex curve on S°. It is also observed that similar result
holds if & is Jacobi-type vector field (a notion similar to Jacobi fields along geodesics). We
also show that if a connected real hypersurface M is a Ricci soliton with potential vector
field &, then M is congruent to an open piece of either a totally geodesic hypersphere or a
tube over an almost complex curve in S°.
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1. Introduction

It is known that the 6-dimensional unit sphere S® has a nearly Kaehler structure (J,g),
where J is an almost complex structure defined on S using the vector cross product of
purely imaginary Cayley numbers R’ and g is the induced metric on S° as a hypersurface of
R’. Regarding the submanifolds of the nearly Kaehler S, Gray [17] has proved that it does
not have any complex hypersurface. However, there are 4-dimensional CR-submanifolds in
S% and have been studied in [6, 19, 20]. Moreover, 2- and 3-dimensional totally real sub-
manifolds of S® have been quite extensively studied (cf. [4-6, 8, 9, 11, 13—15]). However
hypersurfaces of the nearly Kaehler S® have not been studied that extensively, as one comes
across only [1,10,12]. Almost complex curves (2-dimensional almost complex submani-
folds) in S% have been studied in [3,18], and recently, Berndt ef al. [1] have shown that
the geometry of almost complex curves in S° is related to Hopf hypersurfaces ( Real hy-
persurfaces with the 1-dimensional foliation induced by the distribution which is obtained
by applying almost complex structure J to the normal bundle of the hypersurface is totally
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geodesic) of S°. This relationship between the almost complex curves and Hopf hypersur-
faces in S® makes the study of Hopf hypersurfaces in S® more interesting. In [1], the authors
proved that a connected Hopf hypersurface of the nearly Kaehler S° is an open part of either
a geodesic hypersphere of S° or a tube around an almost complex curve in S®. Therefore it
is an interesting question to obtain different characterizations of the Hopf hypersurface in
S°. Let J be the almost complex structure on the nearly Kaehler sphere S° and M be an
orientable real hypersurface of S® with unit normal vector field N. Then the unit vector field
& defined by & = —JN on M is called the characteristic vector field of the real hypersurface
M. 1In this paper, we use different restrictions on the characteristic vector field £ to obtain
characterizations of the Hopf hypersurface in S. It is observed that if the characteristic
vector field & of the compact real hypersurface M is harmonic and the Ricci curvature of
M in the direction of £ is non-negative, then & is Killing and in particular the hypersurface
M is a Hopf hypersurface (cf. section-3). It is well known that a Killing vector field on a
Riemannian manifold is a Jacobi vector field along any geodesic, however a smooth vector
field that is a Jacobi vector field along each geodesic need not be a Killing vector field. We
define a Jacobi-type vector field on a Riemannian manifold (which in particular implies that
a Jacobi-type of vector field is Jacobi field along each geodesic). This leads to the question
of finding condition under which a Jacobi-type vector fields are Killing vector fields. We
use this notion for the characteristic vector field & of the compact real hypersurface M of S°
and show that if £ is Jacobi-type vector field on M, then necessarily it is Killing vector field
and in particular the hypersurface M is a Hopf hypersurface (cf. section-4). Finally, in the
last section of this paper, we show that if the real hypersurface M of the nearly Kaehler S°
is a Ricci soliton (cf. [7]) with potential vector field &, then M is a Hopf hypersurface.

2. Preliminaries

Let S® be the nearly Kaehler 6-sphere with nearly Kaehler structure (J,g), where J is the
almost complex structure and g is the almost Hermitian metric on S. Then we have

@1 (Vx/)(X)=0, gUX.JY)=g(X,Y), X.YeX(s°,

where V is the Riemannian connection with respect to the almost Hermitian metric g and
X(8%) is the Lie algebra of smooth vector fields on S°. The tensor field G of type (2,1)
defined on ¢ by G(X,Y) = (VxJ)(Y), X,Y € X(5°) has the properties as described in the
following:

Lemma 2.1. [15] (a) G(X,JY) = —JG(X,Y), (b)G(X,Y)=—G(Y,X)

(c) (VxG)(Y,Z) = g(Y,.JZ)X +g(X,Z)JY —g(X,Y)JZ, X,Y,Z € X(5°).

Let M be an orientable real hypersurface of S°, V be the Riemannian connection with
respect to the induced metric on M which we denote by the same letter g and N be the unit
normal vector field. Then we have
(2.2) VxY =VxY +g(AX,Y)N, VxN=—AX,X,Y € X(M),
where A is the shape operator of the hypersurface M. The Gauss and Codazzi equations for
the hypersurface are

(2.3) R(X,Y)Z =g(Y,Z)X — g(X,Z)Y + g(AY,Z)AX — g(AX,Z)AY

24) (VA)(X,Y) = (VA) (Y, X)
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for X,Y,Z € X(M), where (VA) (X,Y) = VxAY — A(VxY). The Ricci tensor Ric and the
scalar curvature S of the hypersurface M are given by

(2.5) Ric(X,Y)=4g(X,Y)+5ag(AX,Y) — g(AX,AY),

(2.6) S =20+250%—||A|%,

where o = 1/5trA is the mean curvature and ||A||? = trA? is the square of the length of the
shape operator of the hypersurface.

A real hypersurface M of the nearly Kaehler sphere S is said to be a Hopf hypersurface if
the characteristic vector field & of M is an eigenvector of the shape operator A. In particular
if M is a Hopf hypersurface, then the integral curves of the characteristic vector field £ are
geodesics and it is known that a connected Hopf hypersurface in nearly Kaehler sphere S°
is congruent to open piece of either a totally geodesic hypersphere or a tube over an almost
complex curve in SO (cf. [1]).

Using the almost complex structure J of S°, we define a unit vector field & € X(M) by
& = —JN, with dual 1-form n(X) = g(X,&). ForaX € X(M), we set JX = ¢(X) +n(X)N,
where @ (X) is the tangential component of JX. Then it follows that ¢ is a (1, 1) tensor field

on M. Using J> = —1, it is easy to see that (¢,&,7,g) defines an almost contact metric
structure on M, that is (cf. [2])
@7 9*=—1+n®g, 5mE) =1 Nno¢=0, ¢(§)=0

and g(¢X,9Y) =g(X,Y)—n(X)n(Y), X,Y € X(M). Using the fact G(X,X) =0, X €
X(M), we immediately obtain the following

2.8)  (Vx9)(X) =n(X)AX —g(AX,X)G, g(VxG,X) =g(pAX,X), X € X(M).

Note that as ¢ is skewsymmetric, on a real hypersurface M we can construct a local or-
thonormal frame {e1, ¢ej,ea, ez, E} on M, called an adapted frame. Also using JE =N
and Lemma 2.1, we immediately arrive at

2.9) VyE = 0AX —G(X,N), X € X(M).

On an orientable hypersurface M of S® we let D = Kern = {X € X(M) : n(X) = 0}. Then
D is a 4-dimensional smooth distribution on M, and that for each X € D, JX € D, that is D
is invariant under the almost complex structure J. We have the following

Lemma 2.2. [10] Let M be an orientable compact real hypersurface of S°. Then

/{Ric(g,g) —4+Tr(¢A)*}dv=0.
M

3. Real hypersurfaces with harmonic characteristic vector field

Recall that the Laplacian operator A acting on smooth vector fields on a Riemannian mani-
fold (M, g) is defined by

n
AX =Y (Vo VeX —Vy, X), X €X(M),
i=1

where {ey,...,e,} is a local orthonormal frame on M and a vector field X is said to be
harmonic if AX = 0 (cf. [16]). It is known that the operator A is negative semidefinite self
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adjoint with respect to the inner product (, ) defined for compactly supported smooth vector
fields on M by

X,Y) = /g(X,Y).

In this section we study real hypersurfaces of the nearly Kaehler S° that has harmonic char-
acteristic vector field. First, we prove the following:

Theorem 3.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler S°. If the characteristic vector field & satisfies

Ric(&,€) > —g(A&,§)

then & is Killing and in particular M is a Hopf hypersurface which is therefore congruent
to either a totally geodesic hypersphere or a tube over an almost complex curve in S°.

Proof. Use equations (2.1), (2.2), (2.9) and Lemma 2.1, to compute

VxVx& —Vy,x&

=Vx9AX —VxG(X,N) — 9A (VxX)+G(VxX,N)

= (Vx9) (AX)+ ¢ (VxA) (X) — (VxG)(X,N) + G(X,AX) + g (AX,G(X,N))N
(3.1) = (Vx9) (AX) + ¢ (VxA) (X) +1 (X)X — [|X|*& + G(X,AX) — g (G(X,AX),N))N,

where we also used the fact that g (G(X,Y),Z) = —g(Y,G(X,Z)), X,Y,Z € X(5°). Choos-
ing a local orthonormal frame {ey,...,es} on M that diagonalizes A as A(e;) = Ase;, and
using equation (2.8), we compute

Y (V) (Aer) =Y 4 (Ve 0) (er) = Y i (n(ei)Ae; — g(Aej, €)§)
(3.2) _): (Ae))Ae; — g(Aei, Ae)E) = AZE —||A|* €.

Note that using Codazzi equation for hypersurface and symmetry of the shape operator A,
it can be easily shown that the gradient Vo of the mean curvature o satisfies

5Va =) (VeA) (@)

and consequently, we have

3.3) Y 0 (VeA) (i) =50 (Var).
It trivially follows that
(3.4) Y G(ei,Aei) =0.

Using equations (3.2)-(3.4) in the equation (3.1), we get the following expression for the
Laplacian A&

(3.5) AL =A% —||A|*E +5¢ (Var) —4E.
Note that the operator ¢A —A¢ is a symmetric operator and consequently, we have
2
19A —AQ|* =2Tr(9A) +2|A|* —2|AS |7,

which together with equation (3.5) gives

% |0A —AQ|> + g(AE,E) = Tr(9A)? —
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Using above equation in Lemma 2.2, we arrive at
(1 .
66) [ {3104-a01P 4 Rietz. &)+ at02.8) v =0,
M

which together with the condition in the hypothesis of the theorem gives §A = A¢, that is

(£e8) (X.Y) = g(VxE,Y) +g(VrE.X)
=8((9A—A0)(X,Y) —¢(G(X,N),Y) —g(G(Y,N),X) =0

This proves that & is Killing and in particular M is a Hopf hypersurface and then the rest of
the result follows from the main theorem in [1] with complete and connected M. 1

As a particular case of above theorem we have the following:

Corollary 3.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler SS. If the characteristic vector field & is harmonic and the Ricci curvature
of M in the direction of & is non-negative, then & is Killing and in particular M is a Hopf
hypersurface which is therefore congruent to either a totally geodesic hypersphere or a tube
over an almost complex curve in S°.

4. Real hypersurfaces with Jacobi-type characteristic vector field

It is well known that a Killing vector field on a Riemannian manifold (M, g) is a Jacobi field
along each geodesic of M. However, the converse is not true as for example the position
vector field on the Euclidean space R" is a Jacobi field along each geodesic of R" which is
not a Killing vector field. Motivated by the definition of a Jacobi field along a geodesic, we
define a Jacobi-type vector field # on a Riemannian manifold (M, g) that satisfies

vaxu—VvXXu+R(u,X)X =0, XeX(Mm),

where V is the Riemannian connection and R is the curvature tensor field of the Riemannian
manifold (M, g). Naturally a Jacobi-type vector field is a Jacobi field along each geodesic of
M. It is an interesting question to obtain condition under which a Jacobi-type vector field on
a Riemannian manifold is Killing. In this section, we study compact real hypersurfaces of
the nearly Kaehler sphere S® whose characteristic vector field £ is Jacobi-type vector field
and show that it is Killing. We prove the following:

Theorem 4.1. Let M be an orientable compact and connected real hypersurface of the
nearly Kaehler S°. If the characteristic vector field & is a Jacobi-type vector field on M,
then & is Killing and in particular M is a Hopf hypersurface which is therefore congruent
to either a totally geodesic hypersphere or a tube over an almost complex curve in S°.

Proof. Let the characteristic vector field & of the real hypersurface be Jacobi-type vector
field. Then we have

VxVxé —Vy xE+R(E X)X =0, X e€X(M)

replacing X by e; for a local orthonormal frame {ej,...,es} on M in the above equation and
summing these equations we arrive at

Aé + ZR(é,ei)ei =0.
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Taking inner product with £ in the above equation we get

Ric(&,8) +g(AE,&) =0,

which together with equation (3.6) gives ¢A = A¢. Then as in Theorem 3.1, we get the
result. I

5. Real hypersurfaces as Ricci soliton

A Riemannian manifold (M, g) is said to be a Ricci soliton if there exist a vector field X
called potential field and a constant A satisfying

1
5.1 Ric+ Efxg:lg
and the Ricci soliton is said to stable, shrinking or expanding according as the constant
A=0,1>00rA <0 (cf. [7]). In this section we study connected real hypersurface M
of the nearly Kaehler S® which acquires the status of a Ricci soliton with potential field the
characteristic vector field £ of M and prove that in this case also M is a Hopf hypersurface.
We prove the following:

Theorem 5.1. Let M be an orientable connected real hypersurface of the nearly Kaehler
sphere S® with characteristic vector field &. If M is a Ricci soliton with potential field &,
then M is a Hopf hypersurface and therefore congruent to open piece of either a totally
geodesic hypersphere or a tube over almost complex curve in S°.

Proof. Since the real hypersurface M is a Ricci soliton with potential field &, by equations
(2.5) and (5.1), we have
(5.2) Ric(&,8) = =4+5af — ||AE|,

where f is the smooth function defined by f = g(A&,&). Moreover using equation (2.9)
together with Lemma 2.1, we have

(£e8) (X,Y) =g((pA—A9) (X),Y), XY € X(M).
Thus using equations (2.5), (2.9) and the above equation together with Lemma 2.1 in equa-
tion (5.1), we arrive at

1 1
(5.3) —A2X+5aAX+(4—7L)X+§¢AX—§A¢X =0, XcXM).

Define two vector fields u,v € D = Kern by u = V& and A = v+ f§. Thenas JE = N, it
follows by Lemma 2.1 and equation (2.9) that

(54) u=9), v=-0(, [ul®=]v>.
Taking X = & in equation (5.3) and using AE = v+ f&, and equations (5.2), (5.3), we arrive
at
1

(5.5 Av=||PE+ (Bo— fv+ St
where we used equation (5.2) in the form A =4 +5a.f — f> — ||v||*. Similarly taking X = v
in equation (5.3) and using equations (5.2), (5.4), (5.5) , we get

1 5

5.6) Au = —Zv+ i(xu.
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Now taking inner product with u in equation (5.5) and with v in equation (5.6) and using
symmetry of shape operator A, we get

1 1
>l == P,

which together with equation (5.4) gives u = v =0, that is A = f&, and hence M is a Hopf
hypersurface and this with the main result in [1] proves the theorem. 1
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