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Abstract. A bounded linear operator T ∈ L(X) acting on a Banach space satisfies a local
growth condition of order m for some positive integer m, T ∈ loc(Gm), if for every closed
subset F of the set of complex numbers and every x in the glocal spectral subspace XT (F)
there exists an analytic function f : C \F → X such that (T −λ I) f (λ ) ≡ x and ‖ f (λ )‖ ≤
M [dist(λ ,F)]−m ‖x‖ for some M > 0 (independent of F and x). In this paper, we study the
stability of generalized Browder-Weyl theorems under perturbations by finite rank operators,
by nilpotent operators and, more generally, by algebraic and Riesz operators commuting
with T .
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1. Introduction

Throughout this paper, L(X) denote the algebra of all bounded linear operators acting on
a Banach space X. For T ∈ L(X), let T ∗, ker(T ), ℜ(T ), σ(T ), σp(T ) and σa(T ) denote
respectively the adjoint, the null space, the range, the spectrum, the point spectrum and the
approximate point spectrum of T . Let α(T ) and β (T ) be the nullity and the deficiency of T
defined by

α(T ) := dimker(T ) and β (T ) := codimℜ(T ).

If the range ℜ(T ) of T is closed and α(T ) < ∞ (respectively β (T ) < ∞), then T is called an
upper semi-Fredholm (respectively a lower semi-Fredholm) operator. In the sequel SF+(X)
(respectively SF−(X)) will denote the set of all upper (respectively lower) semi-Fredholm
operators. If T ∈ L(X) is either upper or lower semi-Fredholm, then T is called a semi-
Fredholm operator, and the index of T is defined by

ind(T ) = α(T )−β (T ).

If both α(T ) and β (T ) are finite, then T is a Fredholm operator. An operator T is called
Weyl if it is Fredholm of index zero.
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Let a := a(T ) be the ascent of an operator T ; i.e., the smallest nonnegative integer p such
that ker(T p) = ker(T p+1). If such integer does not exist we put a(T ) = ∞. Analogously,
let d := d(T ) be descent of an operator T ; i.e., the smallest nonnegative integer s such that
ℜ(T s) = ℜ(T s+1), and if such integer does not exist we put d(T ) = ∞. It is well known
that if a(T ) and d(T ) are both finite then a(T ) = d(T ) [26, Proposition 38.3]. Moreover,
0 < a(T − λ I) = d(T − λ I) < ∞ precisely when λ is a pole of the resolvent of T , see
Heuser [26, Proposition 50.2].

An operator T ∈ L(X) is called Browder if it is Fredholm ”of finite ascent and descent”.
The Weyl spectrum of T is defined by σW (T ) := {λ ∈ C : T −λ I is not Weyl}. For T ∈
L(X), let SF−+ (X) := {T ∈ SF+(X) : ind(T )≤ 0}. Then the upper Weyl spectrum of T is de-
fined by σSF−+

(T ) :=
{

λ ∈ C : T −λ I /∈ SF−+ (X)
}

. Let ∆(T ) = σ(T )\σW (T ) and ∆a(T ) =
σa(T )\σSF−+

(T ). Following Coburn [18], we say that Weyls theorem holds for T ∈L(X) (in

symbols, T ∈ W ) if ∆(T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T −λ I) < ∞}
and that Browder’s theorem holds for T (in symbols, T ∈B) if σb(T ) = σW (T ), where

σb(T ) = {λ ∈ C : T −λ I is not Browder} .

Here and elsewhere in this paper, for K ⊂ C, isoK is the set of isolated points of K.
According to Rakočević [29], an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem

(in symbols, T ∈ aW ) if ∆a(T ) = E0
a (T ), where

E0
a (T ) = {λ ∈ isoσa(T ) : 0 < α(T −λ I) < ∞} .

It is known [29] that an operator satisfying a- Weyl’s theorem satisfies Weyl’s theorem, but
the converse does not hold in general.

For T ∈ L(X) and a nonnegative integer n define Tn to be the restriction of T to ℜ(T n)
viewed as a map from ℜ(T n) into ℜ(T n) ( in particular T0 = T ). If for some integer n
the range space ℜ(T n) is closed and Tn is an upper (respectively a lower) semi-Fredholm
operator, then T is called an upper (respectively a lower) semi-B-Fredholm operator. In this
case the index of T is defined as the index of the semi-B-Fredholm operator Tn, see [10].
Moreover, if Tn is a Fredholm operator, then T is called a B-Fredholm operator. A semi-B-
Fredholm operator is an upper or a lower semi-B-Fredholm operator. An operator T ∈L(X)
is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl
spectrum σBW (T ) of T is defined by

σBW (T ) := {λ ∈ C : T −λ I is not a B-Weyl operator} .

Given T ∈ L(X), we say that the generalized Weyl’s theorem holds for T (and we write
T ∈ gW ) if

σ(T )\σBW (T ) = E(T ),

where E(T ) is the set of all isolated eigenvalues of T , and that the generalized Browder’s
theorem holds for T (in symbols, T ∈ gB) if

σ(T )\σBW (T ) = π(T ),

where π(T ) is the set of all poles of T , see [13, Definition 2.13]. It is known [13, 25] that

gW ⊆ gB∩W and that gB∪W ⊆B.

Moreover, given T ∈ gB, it is clear that T ∈ gW if and only if E(T ) = π(T ). Generalized
Weyl’s theorem has been studied in [7, 11–14, 22, 30, 31] and the references therein.
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Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−+ (X) = {T ∈ SBF+(X) : ind(T )≤ 0} .
The upper B-Weyl spectrum of T

σSBF−+
(T ) :=

{
λ ∈ C : T −λ I /∈ SBF−+ (X)

}
.

We say that T obeys generalized a-Weyls theorem (in symbols, T ∈ gaW ), if

σSBF−+
(T ) = σa(T )\Ea(T );

where Ea(T ) is the set of all eigenvalues of T which are isolated in σa(T ) [13, Definition
2.13]. Generalized a-Weyls theorem has been studied in [13, 15, 17, 30, 31].

Definition 1.1. [12] Let T ∈ L(X) and let s ∈ N. Then T has a uniform descent for n ≥ s
if ℜ(T )+ker(T n) = ℜ(T )+ker(T s) for all n≥ s. If, in addition, ℜ(T )+ker(T s) is closed
then T is said to have a topological uniform descent for n≥ s.

Recall from [12] that an operator T is Drazin invertible if it has a finite ascent and de-
scent. The Drazin spectrum

σD(T ) = {λ ∈ C : T −λ I is not Drazin invertible} .
We observe that σD(T ) = σ(T )\π(T ).

Define the set LD(X) by

LD(X) =
{

T ∈ L(X) : a(T ) < ∞ and ℜ(T a(T )+1) is closed
}

.

Definition 1.2. [13] Let X be a Banach space. Then T ∈L(X) is called left Drazin invertible
if T ∈ LD(X). The left Drazin spectrum is defined by

σLD(T ) = {λ ∈ C : T −λ I /∈ LD(X)} .

Definition 1.3. [13] We will say that λ ∈ σa(T ) is a left pole of T if T −λ I is left Drazin
invertible and that λ ∈ σa(T ) is a left pole of T of finite rank if λ is a left pole of T and
α(T −λ I) < ∞. We will denote by πa(T ) the set of all left poles of T , and by πa

0 (T ) the set
of all left poles of T of finite rank.

It follows from the preceding description that

σLD(T ) = σa(T )\π
a(T ).

Remark 1.1. If λ ∈ πa(T ), then it’s easily seen that T −λ I is an operator of topological
uniform descent. Therefore, from [15, Remark 2.6] that λ is isolated in σa(T ).

Following [8], we say that T obeys generalized a-Browder’s theorem (in symbol, T ∈
gaB) if

σa(T )\σSBF−+
(T ) = π

a(T ).

This article also deals with the single-valued extension property. This property has a
basic role in the local spectral theory, see the recent monograph of Laursen and Neumann
[28] or Aiena [3]. In this article consider a localized version of this property, recently studied
by several authors [1, 4, 6, 9], and previously by Finch [24].

Let Hol(σ(T )) be the space of all functions that analytic in an open neighborhoods
of σ(T ). Following [24] we say that T ∈ L(X) has the single-valued extension property
(SVEP) at point λ ∈ C if for every open neighborhood Uλ of λ , the only analytic function
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f : Uλ −→H which satisfies the equation (T −µ) f (µ) = 0 is the constant function f ≡ 0.
An operator T ∈ B(H ) is said to have the SVEP if T has the SVEP at every point λ ∈ C.

An operator T ∈ L(X) has the SVEP at every point of the resolvent ρ(T ) := C \σ(T ).
The identity theorem for analytic functions ensures that for every T ∈ L(X), both T and T ∗

have the SVEP at the points of the boundary ∂σ(T ) of the spectrum σ(T ). In particular,
that both T and T ∗ have the SVEP at every isolated point of σ(T ) = σ(T ∗). The SVEP is
inherited by the restrictions to closed invariant subspaces, i.e., if T ∈ L(X) has the SVEP at
λ0 and M is closed T -invariant subspace then T |M has SVEP at λ0.

The quasinilpotent part H0(T −λ I) and the analytic core K(T −λ I) of T −λ I are de-
fined by

H0(T −λ I) :=
{

x ∈ X : lim
n−→∞

‖(T −λ I)nx‖
1
n = 0

}
.

and

K(T −λ I) =
{

x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0 for which

x = x0,(T −λ I)xn+1 = xn and ‖xn‖ ≤ δ
n‖x‖for all n = 1,2, · · ·

}
.

We note that H0(T −λ I) and K(T −λ I) are generally non-closed hyper-invariant sub-
spaces of T − λ I such that (T − λ I)−p(0) ⊆ H0(T − λ I) for all p = 0,1, · · · and (T −
λ I)K(T − λ I) = K(T − λ I). Recall that if λ ∈ iso(σ(T )), then H0(T − λ I) = χT ({λ}),
where χT ({λ}) is the glocal spectral subspace consisting of all x∈H for which there exists
an analytic function f : C\{λ}−→X that satisfies (T−µI) f (µ) = x for all µ ∈C\{λ}(see
[22]). From [2], the following implication holds for every T ∈ L(X),

H0(T −λ I) is closed =⇒ T has SVEP atλ .

2. Local growth condition

An operator T is said to satisfy a growth condition of order m, or to be a (Gm)-operator, if
there exists a constant M > 0 such that∥∥(T −λ I)−1∥∥≤ M

[dist(λ ,σ(T ))]m

for all λ /∈ σ(T ). Hyponormal operators are (G1)-operators [33] and spectral operators of
type m− 1 are (Gm)-operators [23, Theorem XV.6.7]. Not every T ∈ (Gm) has SVEP. To
see this, start by observing that T ∈ (Gm)⇒ T ∗ ∈ (Gm). Hence, if every T ∈ (Gm) has
SVEP, then both T and T ∗ have SVEP. But this is false, as follows from a consideration of
the forward and backward unilateral shifts on a Hilbert space.

Let m be a positive integer. Following [21] we say that T ∈ loc(Gm) (or, T satisfies a
local growth condition of order m) if for every closed set F ⊂ C and every x ∈ XT (F) there
exists an analytic function f : C\F → X such that (T −λ I) f (λ )≡ x and

‖ f (λ )‖ ≤M[dist(λ ,F)]−m ‖x‖ for some M > 0

(independent of F and x). Hyponormal operators are loc(G1) [33] and spectral operators
of type m− 1 are loc(Gm) [23, Theorem XV.6.7]. Evidently, T ∈ loc(Gm)⇒ T ∈ (Gm).
It is known, [27, Proposition 2], that if the Banach space X is reflexive (in particular, a
Hilbert space), then operators T ∈ loc(Gm) satisfy Dunford’s condition (C). Hence loc(Gm)
operators T ∈ L(X) such that X is reflexive have SVEP, which implies that both T and T ∗

satisfy a-Browder’s theorem. If T ∈ loc(Gm)∩L(X) , X is reflexive. Duggal [21] proved
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that f (T ) satisfies Weyl’s theorem and f (T ∗) satisfies a-Weyl’s theorem for every function
f ∈ Hol(σ(T )).

An operator T ∈ L(X) is isoloid (respectively a-isoloid) if every isolated point of σ(T )
is an eigenvalue of T (respectively every isolated point of σa(T ) is an eigenvalue of T ).
Evidently, polaroid operators are isoloid and a-polaroid operators are a-isoloid. Recall from
[19, Theorem 3.8] that a (necessary and) sufficient condition for T ∈ gW is that T ∈ gB and
H0(T −λ I) = ker(T −λ )n, for some n ∈ N, at points λ ∈ E(T ), and that if T is a-isoloid
and T ∈ gaW , then f (T ) ∈ gaW for every f ∈ Hol(σ(T )) [19, Theorem 3.14].

The following (essentially known) lemma proves that operators T ∈ loc(Gm) are isoloid,
i.e., points λ ∈ isoσ(T ) are eigenvalues of T . Recall [20] that T is polaroid if every λ ∈
isoσ(T ) is a pole (no restriction on rank) of the resolvent of T . Polaroid operators are
isoloid. In the sequel we assume that X is a reflexive Banach space.

Lemma 2.1. [21] Operators T ∈ loc(Gm) are polaroid.

The fact that operators T ∈ loc(Gm) have SVEP (recall that our Banach space X is re-
flexive) implies that T and T ∗ satisfy a-Browder’s [20, Lemma 2.18], hence also Browder’s
theorem. More is true.

Theorem 2.1. If T ∈ loc(Gm), then f (T ) satisfies generalized Weyl’s theorem and f (T ∗)
satisfies generalized a-Weyl’s theorem for every f ∈ Hol(σ(T )).

Proof. First, we prove that generalized Weyl’s theorem holds for T . Since T has SVEP,
from [9, Proposition 2.3] it suffices to show that E(T ) = π(T ). But this follows from the
fact that operators in loc(Gm) are polaroid. Hence T ∈ gW .

Let f ∈ Hol(σ(T )). Under the hypotheses and from [9, Theorem 2.1] and the first part
of proof, we conclude that

σBW ( f (T )) = f (σBW (T )) and σ(T )\E(T ) = σBW (T ).

Hence
σBW ( f (T )) = f (σBW (T )) = f (σ(T )\E(T )).

Since T is isoloid, then by [34, Theorem 2.2] we have

σBW ( f (T )) = f (σBW (T )) = f (σ(T )\E(T )) = σ( f (T ))\E( f (T )).

Thus generalized Weyl’s theorem holds for f (T ).
Obverse that SVEP implies

σ(T ) = σ(T ∗) = σa(T ∗),Ea(T ∗) = E(T ∗)

and the polaroid property of T , and therefore of T ∗, implies that

E(T ∗) = π(T ∗) = π(T ) = E(T ).

Recall from proof of [21, Proposition 3.2] that

σSBF−+
(T ∗) = σBW (T ∗) = σBW (T ).

Hence
σ(T )\E(T ) = σBW (T )⇒ σa(T ∗)\Ea(T ∗) = σSBF−+

(T ∗).

That is, T ∗ satisfies generalized a-Weyl’s theorem. Since T ∗ is a-isoloid, f (T ∗) satisfies
generalized a-Weyl’s theorem for every f ∈ Hol(σ(T )).
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An operator R∈L(X) is a Riesz operator if R−λ I is Fredholm for every non-zero λ ∈C;
equivalently, R is Riesz if and only if the essential spectral radius

re(R) = lim
n→∞
‖φ(Rn)‖

1
n = 0,

where φ : L(X)→ L(X)/K(X) is the Calkin map and K(X)⊂ L(X) is the ideal of compact
operators. Note that every quasinilpotent operator is a Riesz operator.

Lemma 2.2. Let T ∈ L(X) be such that ℜ(T n) is closed for some n and let Q be a
quasinilpotent operator commuting with T . Then σSBF−+

(T +Q) = σSBF−+
(T ).

Proof. Let λ /∈ σSBF−+
(T ). Then T −λ I ∈ SBF−+ (X)), so there exists an n ∈N such that the

induced operator Tn is upper semi-Fredholm, ℜ(Tn) is closed and ind(Tn) = ind(T −λ I)≤
0. We shall use the following well-known fact from [32]: if S ∈ SF−+ (X), R is a Riesz
operator and RS = SR, then S + tR ∈ SF−+ (X) for all t ∈ C. Since every quasinilpotent
operator is a Riesze operator, TnQn = QnTn, and the semi-Fredholm index is continuous
function, so it follows from the proof of [21, Theorem 4.1] that ind(Tn +Qn) = ind(Tn) and

Tn−λ I ∈ SF−+ (X)⇔ Tn +Qn−λ I ∈ SF−+ (X),

this proves σSBF−+
(T +Q) = σSBF−+

(T ).

Theorem 2.2. Let T ∈ L(X) and let N be a nilpotent operator commuting with T. If gener-
alized a-Weyls theorem holds for T then it also holds for T +N.

Proof. By assumptions and [16, Lemma 3.1], and the fact that σa(T + N) = σa(T ), we
conclude that

Ea(T ) = σa(T )\σSBF−+
(T ) = Ea(T +N) = σa(T +N)\σSBF−+

(T +N).

That is, generalized a-Weyls theorem holds for T +N.

Theorem 2.3. Suppose that T ∈ loc(Gm), N ∈ L(X) a nilpotent operator commuting with
T . Then f (T ∗+N∗) satisfies generalized a-Weyl’s theorem for every f ∈ Hol(σ(T )).

Proof. By hypothesis T has SVEP and hence T +N has SVEP, see [3, Corollary 2.45]. The
SVEP implies that

σ(T +N) = σ(T ) = σ(T ∗+N∗) = σ(T ∗) = σa(T ∗+N∗) = σa(T ∗)

and by [16, Lemma 3.1] that

Ea(T ∗+N∗) = Ea(T ∗) = E(T ∗+N∗) = E(T ∗)

and the polaroid property of T +N, see [5, Theorem 2.10], and therefore of T ∗+N∗, implies
that

E(T ∗+N∗) = E(T ∗) = π(T ∗+N∗) = π(T +N) = π(T ) = E(T +N) = E(T ),

and hence
Ea(T ∗+N∗) = π

a(T ∗+N∗) = π
a(T ∗).

Since T ∗+N∗ satisfies generalized a-Browder’s theorem, then

σa(T ∗+N∗)\π
a(T ∗+N∗) = σSBF−+

(T ∗+N∗).

Therefore,
σa(T ∗+N∗)\σSBF−+

(T ∗+N∗) = Ea(T ∗+N∗).
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That is, T ∗+N∗ satisfies generalized a-Weyl’s theorem. Since T ∗+N∗ is a-isoloid, f (T ∗+
N∗) satisfies generalized a-Weyl’s theorem for every f ∈ Hol(σ(T )).

Example 2.1. The SVEP itself generally is not enough to guarantee that an operator satisfy
either the generalized Weyl’s theorem or generalized a-Weyl’s theorem. Let T defined on
`2 by

T (x1,x2, · · ·) =
(

1
2

x2,
1
3

x3, · · ·
)

.

Then T has the SVEP and σ(T ) = σBW (T ) = E(T ) = {0} . Thus T does not obey general-
ized Weyl’s theorem (and nor generalized a-Weyl’s theorem).

Lemma 2.3. If T ∈ loc(Gm) and if F ∈ L(X) is a finite rank operator commuting with T ,
then T +F is polaroid operator.

Proof. It follows from [15, Lemma 3.9] that λ ∈ accσ(T )⇔ λ ∈ accσ(T + F), where
accσ(T ) is the set of the accumulation points of σ(T ). Since operators in loc(Gm) being
polaroid, then σD(T ) = accσ(T ) = accσ(T + F). Since F commutes with T , from [13,
Theorem 2.7], we have σD(T ) = σD(T + F). So σD(T + F) = accσ(T + F) and T + F is
polaroid.

Theorem 2.4. If T ∈ loc(Gm) and if F ∈ L(X) is a finite rank operator commuting with T ,
then T +F satisfies generalized Weyl’s theorem.

Proof. From Lemma 2.3 T +F is polaroid. Then E(T +F) = π(T +F). Since T satisfies
generalized Weyl’s theorem then σBW (T ) = σD(T ). Since F is a finite rank operator, then
from [11, Theorem 4.3] we have σBW (T ) = σBW (T +F). As F commutes with T , from [12,
Theorem 2.7] we have σD(T ) = σD(T + F). So σBW (T + F) = σD(T + F). Since E(T +
F) = π(T +F), then from [15, Theorem 2.9] T +F satisfies generalized Weyl’s theorem.

In general generalized a-Weyl’s theorem and generalized Weyl’s theorem are not trans-
mitted from an operator to a commuting finite rank perturbation as the following example
shows.

Example 2.2. Let A : `2 → `2 be an injective quasinilpotent operator which is not nilpo-
tent. We define T on the Banach space X = `2(N)⊕ `2(N) by T = I⊕A where I is the
identity operator on `2(N). Then σ(T ) = σa(T ) = {0,1} and Ea(T ) = {1}. It follows
from [14, Example 2] that σBW (T ) = {0}. This implies that σSBF−+

(T ) = {0}. Hence
σa(T )\σSBF−+

(T ) = Ea(T ) = {1} and T satisfies generalized a-Weyls theorem, so it satis-
fies generalized Weyls theorem.

We define V on `2(N) by V (x1,x2, · · ·) = (−x1,0,0, · · ·) and F = V ⊕ 0 on the Banach
space X = `2(N)⊕ `2(N). Then F is a finite rank operator commuting with T. On the
other hand, σ(T +F) = σa(T +F) = {0,1} and Ea(T +F) = {0,1}. As σSBF−+

(T +F) =
σSBF−+

(T ) = {0}, then σa(T + F)\σSBF−+
(T + F) = {1} 6= Ea(T + F) = {0,1} and T + F

does not satisfy generalized a-Weyl’s theorem. Not that Ea(T +F)∩σa(T ) * Ea(T ). More-
over, E(T + F) = {0,1} , and as by [11, Theorem 4.3] we have σBW (T + F) = σBW (T ) =
{0}, then T +F does not satisfy generalized Weyls theorem.

Proposition 2.1. If T ∈ loc(Gm) and R ∈ L(X) is a Riesz operator which commutes with
T , then f (T +R) satisfies generalized a-Browder’s theorem for every f ∈Holc(σ(T +R)),
where Holc(σ(T )) denote the class of functions f ∈Hol(σ(T )) such that f is non-constant
on each connected component of U of σ(T ).
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Proof. Since operators in loc(Gm) have SVEP then the result follows now from [21, Propo-
sition 3.1].

More can be said in the case in which the Riesz operator R is a quasi-nilpotent.

Proposition 2.2. If an operator T ∈ loc(Gm) and commutes with a quasi-nilpotent Q ∈
L(X), then f (T + Q) ∈ gaB for all f ∈ Hol(σ(T + Q)) and f (T ∗ + Q∗) ∈ gaB for all
f ∈ Holc(σ(T +Q).

Proof. Evidently, T + Q and T are quasi-nilpotent equivalent. Since T has SVEP, T +
Q has SVEP [28, Proposition 3.4.11]. This implies that f (T + Q) has SVEP for all f ∈
Hol(σ(T + Q)) [3, Theorem 2.40]; hence f (T + Q) ∈ gaB for all f ∈ Hol(σ(T + Q)) and
f (T ∗+ Q∗) ∈ gaB for all f ∈ Holc(σ(T + Q). Hence the result. (It is known that if an
operator S has SVEP, then both S and S∗ satisfy gaB.)

Recall that T ∈ L(X) is called finite a-isoloid (respectively, finite isoloid) operator if an
isolated point of σa(T ) is an eigenvalue of finite multiplicity (respectively an isolated point
of σ(T ) is an eigenvalue of finite multiplicity). Clearly, finite a-isoloid implies a-isoloid
and finite isoloid, but the converse is not true in general.

Theorem 2.5. Let T ∈L(X). If T ∈ loc(Gm) which is finitely isoloid and commutes with an
injective quasi-nilpotent operator Q ∈ L(X) and, then T +Q ∈ gW and T ∗+Q∗ ∈ gaW .

Proof. Since T is finitely isoloid. Then it follows from the proof of [20, Proposition 3.3]
that isoσ(T ) = isoσ(T + Q) = /0. Since T + Q ∈ gaB by Proposition 2.2; hence T + Q ∈
gB. That is, σ(T + Q) \ σBW (T + Q) = /0. Since π(T + Q) ⊆ E(T + Q) and since λ ∈
E(T + Q) implies λ ∈ isoσ(T + Q) = /0, it follows that σ(T + Q)\σBW (T + Q) = E(T +
Q). That is, T + Q ∈ gW . Since T ∗+ Q∗ ∈ gaB by Proposition 2.2 implies that σa(T ∗+
Q∗)\σSBF−+

(T ∗+Q∗) = πa(T ∗+Q∗)⊆ Ea(T ∗+Q∗) = E(T ∗+Q∗). Since λ ∈ E(T ∗+Q∗)
implies λ ∈ isoσ(T +Q) = /0, it follows that

σa(T ∗+Q∗)\σSBF−+
(T ∗+Q∗) = Ea(T ∗+Q∗),

thus T ∗+Q∗ ∈ gaW .

T + Q may fail to satisfy generalized Weyl’s theorem, and T ∗+ Q∗ may fail to satisfy
generalized a-Weyl’s theorem , in the absence of the hypothesis that T is finitely isoloid.

Example 2.3. Let S ∈ `2(N) be the weighted unilateral shift with the weight sequence
1

n+1 . Then S is an injective quasi-nilpotent such that range of Qn is not closed for every
n ∈ N. Define Q ∈ `2(N)⊕ `2(N) by Q = S⊕ S. Let T ∈ `2(N)⊕ `2(N) be defined by
T = (I− S)⊕ 0. Then T has SVEP and commutes with Q. It is seen that σ(T + Q) =
σBW (T +Q) = {0,1} and E(T +Q) = {1} . Evidently, T is not finitely isoloid, T +Q does
not satisfy generalized Weyl’s theorem. Again, since σa(T ∗+ Q∗) = σSBF−+

(T ∗+ Q∗) =
{0,1} and Ea(T ∗+Q∗) = {1}, T ∗+Q∗ does not satisfy generalized a-Weyl’s theorem.

Example 2.4. This example shows that the commutativity hypothesis in Theorem 2.5 is
essential. Let S be the injective quasi-nilpotent of Example 2.3, and let T ∈ `2(N) be the
nilpotent defined by

T (x1,x2, · · ·) =
(

0,−1
2

x1,0, · · ·
)

.

Then T and S do not commute, σ(T +S) = σBW (T +S) = E(T +S) = {0}, and T +S does
not satisfy generalized Weyl’s theorem.
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Example 2.5. Generally, generalized a-Weyl’s theorem does not extend to a quasinilpotent
perturbation: Define on the Banach space `2(N) the operator T = 0 and the quasinilpotent
operator Q defined by

Q(x1,x2, · · ·) =
(

1
2

x2,
1
3

x3, · · ·
)

.

Then σa(T ) = {0} and σSBF−+
(T ) = /0. Moreover we have Ea(T ) = {0}. Hence T satisfies

generalized a-Weyl’s theorem. But generalized a-Weyl’s theorem does not hold for T +Q =
Q, since σSBF−+

(T +Q) = σa(T +Q) = {0} and Ea(T +Q) = {0} .

Definition 2.1. A bounded linear operator T is said to be algebraic if there exists a non-
trivial polynomial h such that h(T ) = 0.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic
operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator.
Also finite rank operators K are algebraic; more generally, if Kn is a finite rank operator for
some n ∈ N then K is algebraic. Clearly, if T is algebraic then its dual T ∗ is algebraic, as
well as T ′ in the case of Hilbert space operators.

Theorem 2.6. Let T ∈ L(X) be such that p(T ) ∈ loc(Gm), for some non-constant poly-
nomial p(.) and let K ∈ L(X) be an algebraic operator which commutes with T . Then
f (T + K) ∈ gW for every f ∈ Hol(σ(T + K)) and f (T ∗ + K∗) ∈ gaW for every f ∈
Holc(σ(T +K)).

Proof. If p(T ) ∈ loc(Gm) and K is an algebraic, then T + K has SVEP and polaroid [21,
Theorem 4.10]. Then it follows from Theorem 2.1 that f (T + K) ∈ gW for every f ∈
Hol(σ(T +K)) and f (T ∗+K∗) ∈ gaW for every f ∈Holc(σ(T +K)), see also [20, Corol-
lary 3.7].

Acknowledgement. The author thanks the referee for the useful comments and suggestions
that help improved the quality of this paper.
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[22] B. P. Duggal and S. V. Djordjević, Generalised Weyl’s theorem for a class of operators satisfying a norm

condition. II, Math. Proc. R. Ir. Acad. 106A (2006), no. 1, 1–9.
[23] N. Dunford and J. T. Schwartz, Linear Operators, Parts I and III, Inter- science, New York, 1964, 1971.
[24] J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), no. 1, 61–69.
[25] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Monographs and Textbooks in Pure

and Applied Mathematics, 109, Dekker, New York, 1988.
[26] H. Heuser, Functional Analysis, Dekker, New York, 1982.
[27] A. A. Jafarian and M. Radjabalipour, Transitive algebra problem and local resolvent techniques, J. Operator

Theory 1 (1979), no. 2, 273–285.
[28] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society

Monographs. New Series, 20, Oxford Univ. Press, New York, 2000.
[29] V. Rakočević, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), no. 10,

915–919.
[30] M. H. M. Rashid, M. S. M Noorani and A. Saari, Generalized Weyl’s theorem for log-hyponormal, Malaysian

J. Math. Sci. 2 (2008), 73–82.
[31] M. H. M. Rashid and M. S. M. Noorani, Weyl’s type theorems for algebraically w-hyponormal operators,

Arab. J. Sci. Eng. AJSE. Math. 35 (2010), no. 1D, 103–116.
[32] M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Studia Math. 90 (1988), no. 3, 175–190.
[33] J. G. Stampfli, A local spectral theory for operators. V. Spectral subspaces for hyponormal operators, Trans

Amer. Math. Soc. 217 (1976), 285–296.
[34] H. Zguitti, A note on generalized Weyl’s theorem, J. Math. Anal. Appl. 316 (2006), no. 1, 373–381.


