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Abstract. A generalization of the G′/G-expansion method combined with Liu’s theorem
is proposed to construct exact solutions of the (3+1)-dimensional Jimbo–Miwa equation.
As a result, more general travelling wave solutions with parameters are obtained including
hyperbolic function solutions, trigonometric function solutions and rational solutions. Some
of the obtained hyperbolic function solutions and trigonometric function solutions contain
an explicit external linear function of {x,y,z, t}. It is shown that the G′/G-expansion method
with the help of symbolic computation may provide us with a straightforward, effective
and alternative mathematical tool for solving nonlinear evolution equations in mathematical
physics.
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1. Introduction

The investigation of exact solutions of nonlinear evolution equations (NLEEs) plays an
important role in the study of nonlinear physical phenomena and gradually becomes one
of the most important and significant tasks. In the past several decades, both mathemati-
cians and physicists have made many significant work in this direction and presented some
effective methods for obtaining exact solutions of NLEEs, such as the inverse scattering
method [1], Hirota’s bilinear method [2], Darboux transformation [3], Painlevé expansion
[4], sine-cosine method [5], homogeneous balance method [6], tanh-function method [7–9],
Jacobi elliptic function expansion method [10–12], F -expansion method [13–15], auxiliary
equation method [16–18], rational function expansion method [19–21], variational iteration
method [22–24], and exp-function method [25–27].

With the development of computer science, recently, directly searching for exact travel-
ling wave solutions of NLEEs has attracted much attention. This is due to the availability
of symbolic computation systems like Mathematica or Maple which enable us to perform
the complex and tedious computation on computers. Wang et al. [28] introduced a new
direct method called the G′/G-expansion method to look for travelling wave solutions of
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NLEEs. The G′/G-expansion method is a special case of the idea using integrable ODEs in
[8], which is based on the assumptions that the travelling wave solutions can be expressed
by a polynomial in (G′/G), and that G = G(ξ ) satisfies a second order linear ordinary dif-
ferential equation (ODE):

(1.1) G′′+λG′+ µG = 0,

where G′ = (dG(ξ ))/(dξ ), G′′ = (d2G(ξ ))/(dξ 2), ξ = x−Vt, V is a constant. The degree
of the polynomial can be determined by considering the homogeneous balance between the
highest order derivative and nonlinear terms appearing in the given NLEE. The coefficients
of the polynomial can be obtained by solving a set of algebraic equations resulted from the
process of using the method. It was shown that the method present a wider applicability
for handling many kinds of NLEEs [28–36], such as, high-dimensional equations, variable-
coefficient equations, differential-difference equations.

The present paper is motivated by the desire to propose a generalization of the G′/G-
expansion method, combined with Liu’s theorem [37], for constructing more general solu-
tions of the following (3+1)-dimensional Jimbo–Miwa equation [21,38–41]:

(1.2) uxxxy +3uyuxx +3uxuxy +2uyt −3uxz = 0,

which passes the Painlevé test only for a subclass of solutions and its symmetry algebra
does not have a Kac–Moody–Virasoro structure.

The rest of this paper is organized as follows. In Section 2, we propose a generalization
of the G′/G-expansion method for more general solutions. In Section 3, we use the method
to solve the (3+1)-dimensional Jimbo–Miwa equation (1.2). In Section 4, some conclusions
and discussions are given.

2. Description of a generalization of the G′/G-expansion method

For a given NLEE, say, in four variables x, y, z and t:

(2.1) P(x,y,z, t,u,ux,uy,uz,ut , . . . ,) = 0,

where u = u(x,y,z, t), P is a polynomial about u and its derivatives. We use the following
transformation:

(2.2) u = u(ξ ), ξ = ax+by+ cz−ωt,

where a, b, c and ω are constants, then equation (2.1) is reduced into an ODE [21]:

(2.3) Q(x,y,z, t,u(r),u(r+1), . . .) = 0,

where u(r) = (dru)/(dξ r), u(r+1) = (dr+1u)/(dξ r+1), r≥ 1, and r is the least order of deriva-
tives in the equation. To keep the solution process as simple as possible, the function Q
should not be a total ξ -derivative of another function. Otherwise, taking integration with
respect to ξ further reduces the transformed equation.

We next further introduce

(2.4) u(r)(ξ ) = v(ξ ) =
m

∑
i=1

αi

(
G′

G

)i

+α0, αm 6= 0,
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where G = G(ξ ) satisfies equation (1.1), while α0, αi (i = 1,2, · · · ,m) are constants to be
determined later, a direct computation gives

(2.5) u(r+1)(ξ ) = v′(ξ ) =−
m

∑
i=1

iαi

[(
G′

G

)i+1

+λ

(
G′

G

)i

+ µ

(
G′

G

)i−1
]
,

u(r+2)(ξ ) = v′′(ξ )

=
m

∑
i=1

iαi

[
(i+1)

(
G′

G

)i+2

+(2i+1)λ
(

G′

G

)i+1

+ i(λ 2 +2µ)
(

G′

G

)i

+(2i−1)λ µ

(
G′

G

)i−1

+(i−1)µ
2
(

G′

G

)i−2
]
,

(2.6)

and so on, here the prime denotes the derivative with respective to ξ .
To determine u explicitly, we take the following four steps:
Step 1. Determine the integer m by substituting equation (2.4) along with equation (1.1)

into equation (2.3), and balancing the highest order nonlinear term(s) and the highest order
partial derivative.

Step 2. Substitute equation (2.4) given the value of m determined in Step 1 along with
equation (1.1) into equation (2.3) and collect all terms with the same order of (G′/G) to-
gether, the left-hand side of equation (2.3) is converted into a polynomial in (G′/G). Then
set each coefficient of this polynomial to zero to derive a set of algebraic equations for a, b,
c, ω , α0 and αi.

Step 3. Solve the system of algebraic equations obtained in Step 2 for a, b, c, ω , α0 and
αi by use of Mathematica.

Step 4. Use the results obtained in above steps to derive a series of fundamental solutions
v(ξ ) of equation (2.3) depending on (G′/G), since the solutions of equation (1.1) have been
well known for us, then we can obtain exact solutions of equation (2.1) by integrating each
of the obtained fundamental solutions v(ξ ) with respect to ξ , r times:

(2.7) u = u(ξ ) =
∫

ξ
∫

ξr
· · ·
∫

ξ2
v(ξ1)dξ1 · · ·dξr−1dξr +

r

∑
j=1

d jξ
r− j,

where d j are arbitrary constants. Based on these obtained exact solutions, we can get some
other solutions by using the following Liu’s theorem.

Theorem 2.1. [37] If equation (2.1) has a kink-type solution

(2.8) u = Pk (tanh[A(ξ +ξ0)]) ,

then it has certain the kink-bell-type solution

(2.9) u = Pk (tanh[2A(ξ +ξ0)]± isech[2A(ξ +ξ0)]) ,

where Pk is polynomial of degree k, i is the imaginary number unit.

3. Application to the Jimbo–Miwa equation

Let us consider in this section the (3+1)-dimensional Jimbo–Miwa equation (1.2). Using
the transformation (2.2), we reduce equation (1.2) into an ODE of the form:

(3.1) a3bu(4) +6a2bu′u′′− (3ac+2bω)u′′ = 0.
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Integrating equation (3.1) once with respect to ξ and setting the integration constant as zero
yields

(3.2) a3bu′′′+3a2b(u′)2− (3ac+2bω)u′ = 0,

further letting r = 1 and u′ = v, we have:

(3.3) a3bv′′+3a2bv2− (3ac+2bω)v = 0.

According to Step 1, we get m + 2 = 2m, hence m = 2. We then suppose that equation
(3.3) has the following formal solution:

(3.4) v = α2

(
G′

G

)2

+α1

(
G′

G

)
+α0, α2 6= 0.

Substituting equation (3.4) along with equation (1.1) into equation (3.3) and collecting
all terms with the same order of (G′/G) together, the left-hand side of equation (3.3) is
converted into a polynomial in (G′/G). Setting each coefficient of each polynomial to zero,
we derive a set of algebraic equations for a, b, c, ω , α0, α1 and α2 as follows:(

G′

G

)0

:−3acα0−2bωα0 +3a2bα
2
0 +a3bα1λ µ +2a3bα2µ

2 = 0,(
G′

G

)1

:−3acα1−2bωα1 +6a2bα0α1 +a3bα1λ
2 +2a3bα1µ +6a3bα2λ µ = 0,(

G′

G

)2

: 3a2bα
2
1 −3acα2−2bωα2 +6a2bα0α2 +3a3bα1λ +4a3bα2λ

2 +8a3bα2µ = 0,(
G′

G

)3

: 2a3bα1 +6a2bα1α2 +10a3bα2λ = 0,(
G′

G

)4

: 6a3bα2 +3a2bα
2
2 = 0.

Solving the set of algebraic equations by use of Mathematica, we have

(3.5) α2 =−2a, α1 =−2aλ , α0 =−1
3

a(λ 2 +2µ), ω =−a3b(λ 2−4µ)+3ac
2b

,

and

(3.6) α2 =−2a, α1 =−2aλ , α0 =−2aµ, ω =
a3b(λ 2−4µ)−3ac

2b
.

We, therefore, have

(3.7) v =−2a(
G′

G
)2−2aλ (

G′

G
)− 1

3
a(λ 2 +2µ), ω =−a3b(λ 2−4µ)+3ac

2b
,

and

(3.8) v =−2a(
G′

G
)2−2aλ (

G′

G
)−2aµ, ω =

a3b(λ 2−4µ)−3ac
2b

.

Substituting the general solutions of equation (1.1) into equation (3.7), we obtain three
cases of travelling wave solutions of equation (1.1) as follows:
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Case 3.1(1): When λ 2−4µ > 0, we obtain a hyperbolic function solution:

u =−1
2

a(λ 2−4µ)
∫

ξ

C1sinh
(√

λ 2−4µ

2 ξ

)
+C2cosh

(√
λ 2−4µ

2 ξ

)
C1cosh

(√
λ 2−4µ

2 ξ

)
+C2sinh

(√
λ 2−4µ

2 ξ

)


2

dξ1

+
1
6

a(λ 2−4µ)ξ +d1,

(3.9)

where ξ = ax+by+cz+(a3b(λ 2−4µ)+3ac)/(2b)t, C1, C2 and d1 are arbitrary constants.
If C1C2 > 0, then solution (3.9) can be simplified as:

(3.10) u = a
√

λ 2−4µtanh
[√

λ 2−4µ

2
ξ +

1
2

ln
(

C2

C1

)]
− 1

3
a(λ 2−4µ)ξ + d̃1,

and therefore from Theorem 2.1 we also have

u = a
√

λ 2−4µ

{
tanh

[√
λ 2−4µξ + ln

(
C2

C1

)]
± isech

[√
λ 2−4µξ + ln

(
C2

C1

)]}
− 1

3
a(λ 2−4µ)ξ + d̃1,

(3.11)

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, d̃1 is arbitrary constant.
If C1C2 < 0, solution (3.9) can be simplified as:

(3.12) u = a
√

λ 2−4µcoth
[√

λ 2−4µ

2
ξ +

1
2

ln
(
− C2

C1

)]
− 1

3
a(λ 2−4µ)ξ + d̃1,

and therefore from Theorem 2.1 we also have

u = a
√

λ 2−4µ

{
tanh

[√
λ 2−4µξ + ln

(
− C2

C1

)]
± isech

[√
λ 2−4µξ + ln

(
− C2

C1

)]}−1

− 1
3

a(λ 2−4µ)ξ + d̃1,

(3.13)

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, d̃1 is arbitrary constant.
If C1 = 0, then solution (3.9) gives

(3.14) u = a
√

λ 2−4µcoth
(√

λ 2−4µ

2
ξ

)
− 1

3
a(λ 2−4µ)ξ + d̃1,

and therefore from Theorem 2.1 we also have

u = a
√

λ 2−4µ{tanh[
√

λ 2−4µξ ]± isech[
√

λ 2−4µξ ]}−1

− 1
3

a(λ 2−4µ)ξ + d̃1,
(3.15)

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, d̃1 is arbitrary constant.
If C2 = 0, then solution (3.9) becomes

(3.16) u = a
√

λ 2−4µtanh
(√

λ 2−4µ

2
ξ

)
− 1

3
a(λ 2−4µ)ξ + d̃1,
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and therefore from Theorem 2.1 we also have

(3.17) u = a
√

λ 2−4µ{tanh[
√

λ 2−4µξ ]± isech[
√

λ 2−4µξ ]}− 1
3

a(λ 2−4µ)ξ + d̃1,

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, d̃1 is arbitrary constant.

Case 3.1(2): When λ 2−4µ < 0, we obtain a trigonometric function solution:

u =−1
2

a(4µ−λ
2)
∫

ξ

−C1sin
(√

4µ−λ 2

2 ξ

)
+C2cos

(√
4µ−λ 2

2 ξ

)
C1cos

(√
4µ−λ 2

2 ξ

)
+C2sin

(√
4µ−λ 2

2 ξ

)


2

dξ1

+
1
6

a(λ 2−4µ)ξ1 +d1,

(3.18)

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, C1, C2 and d1 are constants.
If C1 6= 0, then solution (3.18) can be simplifies as:

(3.19) u =−a
√

4µ−λ 2tan
[√

4µ−λ 2

2
ξ − arctan

(
C2

C1

)]
− 1

3
a(λ 2−4µ)ξ + d̃1,

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, C2 and d̃1 are arbitrary constants.
If C2 6= 0, then solution (3.18) can be simplifies as:

(3.20) u = a
√

4µ−λ 2cot
[√

4µ−λ 2

2
ξ + arctan

(
C1

C2

)]
− 1

3
a(λ 2−4µ)ξ + d̃1,

where ξ = ax+by+ cz+(a3b(λ 2−4µ)+3ac)/(2b)t, C1 and d̃1 are arbitrary constants.

Case 3.1(3): When λ 2−4µ = 0, we obtain a rational solution:

(3.21) u =
2aC2

C1 +C2ξ
+d1,

where ξ = ax+by+ cz+(3ac)/(2b)t, C1, C2 and d1 are arbitrary constants.
Substituting the general solutions of equation (1.1) into equation (3.8), we obtain another

three cases of travelling wave solutions of equation (1.1) as follows:

Case 3.2(1): When λ 2−4µ > 0, we obtain a hyperbolic function solution:

u =−1
2

a(λ 2−4µ)
∫

ξ

C1sinh
(√

λ 2−4µ

2 ξ

)
+C2cosh

(√
λ 2−4µ

2 ξ

)
C1cosh

(√
λ 2−4µ

2 ξ

)
+C2sinh

(√
λ 2−4µ

2 ξ

)


2

dξ1

+
1
2

a(λ 2−4µ)ξ +d1,

(3.22)

where ξ = ax+by+cz−(a3b(λ 2−4µ)−3ac)/(2b)t, C1, C2 and d1 are arbitrary constants.
If C1C2 > 0, then solution (3.22) can be simplified as:

(3.23) u = a
√

λ 2−4µtanh
[√

λ 2−4µ

2
ξ +

1
2

ln
(

C2

C1

)]
+ d̃1,
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and therefore from Theorem 2.1 we also get

u = a
√

λ 2−4µ

{
tanh

[√
λ 2−4µξ + ln

(
C2

C1

)]
± isech

[√
λ 2−4µξ + ln

(
C2

C1

)]}
+ d̃1,

(3.24)

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, d̃1 is arbitrary constant.
If C1C2 < 0, solution (3.22) can be simplified as:

(3.25) u = a
√

λ 2−4µcoth
[√

λ 2−4µ

2
ξ +

1
2

ln
(
− C2

C1

)]
+ d̃1,

and therefore from Theorem 2.1 we also get

u = a
√

λ 2−4µ

{
tanh

[√
λ 2−4µξ + ln

(
− C2

C1

)]
± isech

[√
λ 2−4µξ + ln

(
− C2

C1

)]}−1

+ d̃1,

(3.26)

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, d̃1 is arbitrary constant.
If C1 = 0, then solution (3.22) gives

(3.27) u = a
√

λ 2−4µcoth
(√

λ 2−4µ

2
ξ

)
+ d̃1,

and therefore from Theorem 2.1 we also get

(3.28) u = a
√

λ 2−4µ{tanh[
√

λ 2−4µξ ]± isech[
√

λ 2−4µξ ]}−1 + d̃1,

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, d̃1 is arbitrary constant.
If C2 = 0, then solution (3.22) becomes

(3.29) u = a
√

λ 2−4µtanh
(√

λ 2−4µ

2
ξ

)
+ d̃1,

and therefore from Theorem 2.1 we also have

(3.30) u = a
√

λ 2−4µ{tanh[
√

λ 2−4µξ ]± isech[
√

λ 2−4µξ ]}+ d̃1,

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, d̃1 is arbitrary constant.

Case 3.2(2): When λ 2−4µ < 0, we obtain a trigonometric function solution:

u =−1
2

a(4µ−λ
2)
∫

ξ

−C1sin
(√

4µ−λ 2

2 ξ

)
+C2cos

(√
4µ−λ 2

2 ξ

)
C1cos

(√
4µ−λ 2

2 ξ

)
+C2sin

(√
4µ−λ 2

2 ξ

)


2

dξ1

+
1
2

a(λ 2−4µ)ξ1 +d1,

(3.31)

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, C1, C2 and d1 are constants.
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If C1 6= 0, then solution (3.31) can be simplifies as:

(3.32) u =−a
√

4µ−λ 2tan
[√

4µ−λ 2

2
ξ − arctan

(
C2

C1

)]
+ d̃1,

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, C2 and d̃1 are arbitrary constants.
If C2 6= 0, then solution (3.31) can be simplifies as:

(3.33) u = a
√

4µ−λ 2cot
[√

4µ−λ 2

2
ξ + arctan

(
C1

C2

)]
+ d̃1,

where ξ = ax+by+ cz− (a3b(λ 2−4µ)−3ac)/(2b)t, C1 and d̃1 are arbitrary constants.

Case 3.2(3): When λ 2−4µ = 0, we obtain a rational solution which is same as the solution
(3.21) and is omitted here for simplicity.

It should be noted that if directly using the original version of the G′/G-expansion
method [28] to solve equation (3.2) we can obtain only solutions (3.21), (3.23), (3.25),
(3.27), (3.29), (3.32) and (3.33). If we set λ 2−4µ =−4 and d̃1 = d, then solutions (3.19)
and (43) with C2 = 0 and solutions (3.20) and (44) with C1 = 0 become Ma and Lee’s so-
lutions (3.12) and (3.13) in [21]. If we set C1 = 0 and C2 = 1, then solution (3.21) gives
the solution (3.14) in [21]. If we set a = b = c = 1, d̃1 = α and λ 2−4µ =−(2c+3), then
solution (40) is equivalent to Wazwaz’s solution u1 [39]. Similarly, we can easily see that
the other solutions, namely u2–u8 obtained in [39], can be respectively recovered from so-
lutions (3.14)–(3.20) on the condition of choosing some appropriate values of the constant
parameters involved. Dai et al. [40, 41] obtained some two-wave solutions, none of which
has an explicit external linear function of {x,y,z, t} as solution (3.10) does. To the best of
our knowledge, solutions (3.11), (3.13), (3.15), (3.17), (3.24), (3.26), (3.28) and (3.30) have
not been reported in literatures.

Remark 3.1. All solutions obtained above have been checked with Mathematica by putting
them back into the original equation (1.2).

4. Conclusions and discussions

In summary, more general travelling wave solutions of the (3+1)-dimensional Jimbo–Miwa
equation have been obtained owing to the effective combination of a generalized G′/G-
expansion method and Liu’s theorem. The G′/G-expansion method [28] can be used to
construct hyperbolic function solutions, trigonometric function solutions and rational so-
lutions of NLEEs. It is easy to see that such types of hyperbolic function solutions and
trigonometric function solutions can be reconstructed by means of the exp-function method
[25]. We would like to conclude that the G′/G-expansion method and its improvements may
provide alternative mathematical tools for solving NLEEs. One of the most general method
to generating exact solutions especially multiple-wave solutions is Ma and Lee’s multiple
exp-function method [42], based on Fourier theory. The existence of N-soliton solutions
often implies the integrability of the considered equations. There is a new solution structure
following linear superposition principle for soliton equations with Hirota bilinear form in
[43], which is helpful in constructing N-wave solutions. Some of the hyperbolic function
solutions and trigonometric function solutions obtained in the present paper contain an ex-
plicit external linear function of {x,y,z, t}. It may be important to explain some physical
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phenomena. Employing the G′/G-expansion method and its generalized version to study
other NLEEs is our task in the future.
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