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Abstract. In this paper we describe the structure of Aut,zv(G) for a group G = HK, where
K is a normal subgroup of G and N = HNK is Aut? (G)-invariant, in particular, if N =1,
this amounts to a description of the central automorphism group of the semi-direct product
G = K xH. We also show that if N < G and 6x(H/N) = N, then Aut%(G) is a split
extension. Particular if G is solvable, then Aut% (G) is an abelian by abelian split extension.
This description of the group of central automorphisms of semidirect products is of great
importance, because any solvable group has a splitting quotient.
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1. Introduction

Let G be a group and let M and N be normal subgroups of G. By Aut"(G) we mean the
subgroup of Aut(G) consisting of all automorphisms centralizing G/N and by Auty (G) we
mean the subgroup of Aut(G) consisting of all automorphisms centralizing M. We denote
Aut’ (G) N Auty (G) by Aut))(G). Clearly o € Aut"(G) if and only if g~'at(g) € N for all
gin G.

Given a group G, the subgroup Aut?(G) is called the central automorphism group of G
when Z = Z(G). Hence if 6 € Aut?(G) then g~'o(g) lies in the center Z(G) of G for all g
in G. It is easily seen that Aut?(G) = % w6, (Inn(G)). The group of central automorphisms
of a finite group G is of great importance in investigating of Aut(G), and has been studied
by several authors (see, for example, [1-7]).

A non-abelian group G that has no non-trivial abelian direct factor is said to be purely
non-abelian. In [1] Adney and Yen has shown that if G is a finite purely non-abelian group,
then | Aut?(G)| = |Hom(G/G',Z(G))|. In [6] Jamali and Jafari introduced some special
subgroups of Aut?(G) in order to find the structure of Aut?(G) for a group G = K x H,
where K is purely non-abelian and H an abelian subgroup of G. Also in [5] they investigated
the nilpotency and solubility of the central automorphisms group of a finite group.

Let G = HK, where K is a normal subgroup of G and N = HNK is invariant under the
central automorphism of G. We shall show that if N <G and €k (H /N) = N then Aut%(G)
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is a split extension. The significance of this result is that every finite solvable group has a
splitting quotient. Let G be a group and let N be an Aut? (G)-invariant subgroup of G. Then
the natural action of Aut?(G) on N has Aut%(G) as its kernel and Aut?(G)/ Aut%(G) can
be embedded in Aut?(N). Now according to the exact sequence

1 — Auti(G) — Aut?(G) — Aut?(G)/ Aut (G) — 1,

the study of structure of Autﬁ(G) becomes more important. Clearly if all central automor-
phisms of G fix N pointwise, then Aut (G) = Aut?(G).
For an especial example, let
G:ZZXZ2XZ2XS3,
the group 48#51 as quoted in ”Small Group” library of GAP [10]. Then (by using GAP),
Aut?(G) =2 (Zy x Zy x Zy) x PSL(3,2).
Consider the maximal subgroup M = Zj X Zy X Zy X Z of G and set N = Coreg(M) =
Zy x 7 x 7. Then Autk(G) = Zy x Zy x Z, and
Aut?(G)/ Autf(G) = PSL(3,2) = Aut?(N).

Throughout the paper our notation is standard, and can be found in [9], for example.

2. Preliminaries

The aim of this section is to collect several facts and basic results that will be used in the rest
of the paper. Let ¢ be a central automorphism of G. Clearly the map fs : x — x~ ' & ()
defines a homomorphism from G into Z(G). On the other hand, the map oy : x — xf(x)
defines an endomorphism of G for all f in Hom(G,Z(G)). This endomorphism is a central
automorphism if and only if f(x) # x~! for every x in G — {1}, because, x € Ker(oy) if and
only if xf(x) =1 or f(x) =x7!, so x = 1. Also xf(x) = yf(y) implies the contradictory
equality f(x~'y) = (x~!y)~!, and so the set {xf(x)|x € G} is G. As any homomorphism
f: G — Z(G) induces a homomorphism f : G/G' — Z(G), and vice versa, we see that

|Hom(G,Z(G))| = [Hom(G/G',Z(G))|.

Throughout the paper G is a finite group, and 7, 7, are the projection maps from G =
K x H into H and K, respectively. Also o,,, 0, are corresponding restrictions of o on H
and K, where 6, : H — G and o} : K — G. Now we set

R={o,lc € Au*(G)},  S={o|o € Aut’(G)},
T ={n,0,|c € Aut?(G)}, U={m,0.|c € Aut?(G)}.

Let N be a normal subgroup of G such that G/N = K/N x H/N for some subgroups K
and H of G, and let L < Z(G). If N < Ker f then every element f of Hom(H, L) induces an
element f of Hom(G, L), where f(kh) = f(h). Also if N[H,K] < Ker f, then every element
f of Hom(K, L) induces an element f of Hom(G, L), in the case we have

Flhikihoko) = f(hihalho, ky 'Tkika) = f([ha ky Tkika) = f (ki) f (k) = f (ki) f(kaho).
Lemma 2.1. Let G be a finite group and N < G such that G/N = K/N x H/N. For any
subgroup L < Z(G) we set

A={f €Hom(H,L),N < Kerf},
B={f €Hom(K,L),N[H,K] < Kerf},
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A= {o;| f € Hom(H,L),N < Ker f},
(K.L),N[H,K] < Ker f}.

Then we have
() if G is purely non-abelian then A’ and B are subgroups of Aut? (G) of order |A| and
|B| respectively,
(i) if L < KNZ(G) then A’ is a subgroup of Aut?(G) isomorphic to A,
(iii) if L < HNZ(G) then B' is a subgroup of Aut?(G) isomorphic to B.
Proof. (i) Since G is a purely non-abelian, then O € Aut?(G) in all cases. So we can easily

see that A’ and B are subgroups of Aut?(G) of order |A| and |B]| respectively.

(ii) Let g = kh for some k € K and h € H. Then f(g) = g~ ' implies that f(h) =h~ 'k~ !,
so h € N and f(h) = 1, therefore g = 1. Hence we can assume that f(g) # g‘l for all
1#g€G, thenoy € Aut?(G). Also

Qfl(?fz(g):Qfl(gfz(g)) gh (@) fi(e)fi(f2(g))
=gfi(8)/2(g), (filhk) = fi(h) & fo(g) € L<K)
:g(flfz)(g)a

hence 6,07 =0} ; €A'forall 67,07 €A, therefore A’ is a subgroup of Aut?(G). Now
the mapping f — oF is an isomorphism from A into A’, and the result follows.
(iii) Follows similarly. 1
The following lemma is similar to that of [6, lemma 2.4]

Lemma 2.2. Let G be a finite group with a normal subgroup N such that G/N = K /N x
H/N. Suppose that A < HNZ(G) and B < KNZ(G) with ANB = 1. We set

m(H,A),N <Kerf, f(x) #x ", xe H\{1}},
m(K,B),N[H,K] <Ker f, f(x) #x~', xe K\{1}},
Ty = {of| f € Hom(H,B),N < Ker f },
Ui = (K,A),N[H,K] <Kerf }.
Then
(1) Ry, S1, T1 and U, are all subgroups of AutZ(G) having mutually trivial intersec-
tions,

(ii) Ty and U are abelian and [Ry,S,] =1,
(i) RfuUS; C f/‘(Amz(G)(T]) m%utZ(G)(UO‘

Proof. (i) We only show that R; < Aut?(G), others are similar. At first, we prove that f(g) #
¢!, which implies 6; € Aut?(G). If f(g) = g~ for some 1 # g = hk, then f(h) =k 'h~!
which implies 2f(h) = k~' € N. Now, from f(hf(h)) = 1 we have f(f(h)) = (f(h))~",
which contradicts 1 # f(h) € A < H. Now we show that R, is closed under composition. To
see that, let T = 6 07 . So T(x) = xf1(x) f2(x) f1(f2(x)), hence x~'7(x) € A. Now, define
f:G— A with f(x) =x"'7(x) and let f be the restriction of f to H. Since for all n € N,
t(n) = n, then f(n) = f(n) =n~'t(n) = 1, and so N < Ker(f). Also, if ~! = f(h) then
h=' = f(h) = h~'t(h) hence h = 1. Therefore T = O; €R;.
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For the second part, let X € {A,B} and f € Hom(H,X), then 6;(k) = kf(1) = k. Also
for any f € Hom(K,X), 03(h) = hf(1) = h. Soforall ¢ in Ry NSy, RiNU; or i N7,
o(hk) = o(h)o (k) = hk. Now for o; € RiNTy, f(h) €ANB=1. Thus, 6(h) = h and
o;(k) = kf(1) =k, hence Ojisan identity map. Similarly, one can show that S; "U; = 1.
(i) Let fi, f» € Hom(H,B). Since B < K then for all x € G, fi(/(x)) = A (fi(x)) =1
Hence,
0,07,(x) = xfi(x0)/2(x) = x2(x) /1 (x) = 0}, 07, (x).
So T; is abelian. Slmllarly one can see that U; is abelian. Let f € Hom(H,A) and g €
Hom(K,B). Then, f(g(hk)) = f(g(k)) =1and g(f(hk)) = g(f(h)) = 1. Therefore, & 703 (x) =
x8(x)f(x) = 0;0(x). Now, we have 0705 = 0;0;.
1

(iii) Let cp € Ry,05 € T, and set 4 = Gf_

and oy fix K elementwise. Now u(x) = G];I (7(op(x)))x = $(o4(x))x for all x € G, and

fu () =x"'u(x) € B. Thus f, € Hom(H,B) and N < Ker f,. Hence u = 6; € T and so
Ju
R1 normalizes 7. Next let o; € Ry,04 € Uy, and set 4 = o; O'yGf We find that u(h) =

0y0;- We have K < Ker f,, because oF

h for all h € H because 0y ﬁxes H elementwise. Therefore H < Kerf,. Now ulx) =

f(y(cj;l(x)))y(cjgl(x))x for all x € G, and f, (x) = x'u(x) € A. Thus f, € Hom(K,A)

and N[H,K] < Ker f,. Hence = of, € Uj and so Ry normalizes U;, which completes the
proof. 1

Lemma 2.3. If G =K x H then Z(G) < éx(H)Z(H). Furthermore, if Z(H) acts trivially
on K then Z(H) < Z(G) and Z(G) = €y (x)(H) X Z(H).

The proof of above Lemma is obvious. Note that since Z(H) acts trivially on K, we have
Czx)(H) =KNZ(G) and Z(H) = HN Z(G).

3. Main results

In this section we give the order and the structure of Aut?(G), where G is a semidirect
product.

Theorem 3.1. Let G =K X H be a semidirect product of groups H and K, where (|H|, |K|) =
1. Then o, € Aut?(H) and o, € Aut?(K) for all o in Aut?(G) and Aut?(G) 2R x S
(defined as in page 3). Furthermore, if Z(H) acts trivially on K then Aut?(G) = Aut? (H) x
S. In particular, if G = K x H then Aut?(G) = Aut? (H) x Aut?(K).

Proof. Let o € Aut?(G) and k € K. Then o, € Aut(K) and k~'o(k) € Z(G) NK < Z(K).
Hence 6, € Aut?(K). Let 6 € Aut?(G) and h € H. We may write 6 (h) = I'k, where i’ € H
and k € K. Then h™'#' € Z(H) and k € Gx(H). On letting |K| = 1, we see that &(h') = h"
for some 4’ € H. Since for all 4 € H there exists an element 4, € H such that h = K, we
have 6(h) € H. Hence H is an invariant subgroup under the central automorphism ¢ of G.
Then o,, € Aut(H) and h~'o(h) € Z(G) NH < Z(H), hence o, € Aut?(H).

OntakingA =Z(G)NH,B=Z(G)NK, N =1 and using Lemma 2.2, we find that 7} =1
and U; = 1. Also the subgroups R; and S| of Aut?(G) have trivial intersection. Now we
show that R~ Ry and § = §;. We define amap ¢ : R; — Rby ¢(07) = 6;|,,. Then ¢ is well-
defined and is a homomorphism. Also if ¢(c ) =1 then o (hk) (h)O' (k) = hk and
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o; = 1. Furthermore, ¢ is surjective, because if 0 € Aut?(G), then on setting T = 0, € R,
we have f, € Hom(H,Z(G)NH) and f, (h) # h~! for every h € H—{1}. Thus o7 €R;and
(P(Gf}) =0 |, = 7. It follows that ¢ is an isomorphism. Similarly we can see that S = §;.

Now it is easy to observe that the map 6 : Aut?(G) — R x S defined by 8(c) = (0,0, ) is
a monomorphism. We show that 6 is surjective. To do this, we consider 8,7 € Aut?(G) for
which we have &y € Aut?(H) and tx € Aut?(K), since (|H|,|K|) = 1. Therefore 8y € R
and 7x € S. Now we define o (hk) = §(h)7(k), we can easily see that o € Aut?(G) and
0(o) = (0,7). So 6 is an isomorphism.

If Z(H) acts trivially on K then Z(H) < Z(G) and R = Aut? (H), so Aut? (G) = Aut? (H) x
S. In particular, if G = K x H then R = Aut?(H), S = Aut?(K) and Aut?(G) = Aut? (H) x
Aut?(K). 1

Theorem 3.2. Let G = K x H and 6x(H) = 1. Then o,, € Aut*(H) and 7, 6, € Hom(K,
Z(G)NH) for all 6 in Aut?(G). Moreover, Aut?(G) = U x R.

Proof. Let 6 € Aut?(G) and h € H. Then o(h) = ik, and h~'o(h) = h~'hk; € Z(G).
Therefore from Lemma 2.3, h~'h; € Z(H) and k; € x(H) = 1, and hence o, € Aut?(H).
Let k € K, since 6x(H) = 1, we have o(k) = hk and 7,0, € Hom(K,Z(G) NH), where
heH.

By taking A =Z(G)NH, N =1 and using Lemma 2.2, we find that 7; = 1 and S = 1.
Also the subgroups R; and U of Aut?(G) have trivial intersection and R; < L/I@utz(G) (Uy).
By a similar argument given for Theorem 3.1, we have R = R;. It is now sufficient to show
U = U;. We define the map ¢ : Uy — U by ¢(0;) = m,0|,. Clearly ¢ is well-defined.
Furthermore, ¢ is a homomorphism because

~ A

(0}, 04,) (k) = m, (07, 0p,) (k) = m, (ki (k) 2 (k) f1 (F2(K)))
= Ak falk) = (¢(07)9(57)) (k).

It is easy to check that ¢ is one-to-one. Also ¢ is surjective because if o € Aut?(G), on
setting g = m, 0, € U, we have g € Hom(K,Z(G)) and [H,K] < Kerg. Thus 63 € U; and
¢(0;) = m, 03|, = g. Therefore ¢ is an isomorphism.

Now the map y : U; x R; — Aut?(G) defined by (03, 0j) — 070y is one-to-one, and so
[Ri||Ui| < |Aut*(G)].

Next we consider the map ¢ : Aut?(G) — U x R defined by 6 — (7, 0,,0,). If ¢(0) =
¢(t) then 7, 6, = 7, T, and 6, = 7,,. Thus for any 4 € H and k € K, we have o(h) = t(h)
and o (k) = 7(k). Therefore ¢ is one-to-one and so | Aut?(G)| < |R||U| = |R;||U|. Hence
| Aut?(G)| = |R||U| and Aut?(G) = U x R. |

Theorem 3.3. Let G = K x H, where K is purely non-abelian and Z(H) acts trivially on K.
Then Aut?(G) = RTUS.

Proof. We only show that 7, 6,, € Aut”(H) and 7, 6, € Aut?(K), similarly we can see that
7,0, € Hom(K,Z(H)) and 7, 6, € Hom(H,Z(G) N K).

Let 6 € Aut?(G) and k € K. We may write o(k) = kjhy, where k; € K and hy € H.
Hence k 'k € Z(G). We have by Lemma 2.3, k~'k; € Z(K) and hy € Z(H). We have
n,0, € Hom(K,K) and k™', o (k) € Z(G)NK < Z(K). Now define f, : K — Z(G)NK by



714 H. Mousavi and A. Shomali

£, (k) =k 'm o (k). Clearly f, is well-defined. Furthermore, f, is a homomorphism since
k) =Kk 'm o o(kk) =K 'k 'x (c(k)o(K))
=K'k ' (hkihaky),  (where 6(k) = kihy and 6(K') = kaha),
=Kk (oK) = K kK2,
=¥ k~'kiky, (by Lemma 2.3 and this fact h, € Z(H)),
— kK =k oK T oK) = f, (k)f, (K).

Therefore, 6, € Aut?(K) because K is purely non-abelian. Thus 7, 6, = o, € Aut?(K).

Next let ¢ € Aut?(G) and h € H. We may write 6 (h) = hik;, where k; € K and hy € H.
Then h~'hy € Z(H), and so h~ ', 0(h) € Z(H). Suppose that Ker 7, 6, # 1; so m,0(h) =
1, for some h € H —{1}. Therefore, there is a non-trivial element  in K, such that o (k) = k.
It follows that k belongs to the kernel of 7, o!  contrary to the first part of the proof. Hence
m,0, € Aut’(H). Similarly 7, 6, € Hom(K,Z(H)) and 7, 0, € Hom(H,Z(G)NK).

By taking A = Z(H), B=Z(G)NK, N =1 and using Lemma 2.2, we find that Ry, S|,
T; and U, being subgroups of AutZ(G) have mutually trivial intersections. Also Rj US; C
%utz(m(ﬂ) m‘/’/AutZ(G)(Ul)' Itiseasytoseethat R Ry, S=S|, T =Ty and U 2 Uj.

We now consider the map ¢ : Ry x T x Uy x S| — Aut?(G) defined by

(Gf,Gg, Oy, 0y) — 0703040y
Then ¢ is one-to-one. To see this, let h € H and 6;0;30;07(h) = © #/040,,0, (h). Then we
have o(hoy(h)) = o (hoy (h)), which implies that

a1, | 4 JU
fro(m)f(h) =g(h)g
Hence f = f" and § = g'. Therefore 0; =0 and 63 = 6. Now letk € K and 0;030;09(k) =

Gf" Gé’ O";, GVA, (k) It follows that O'L;Go(k) = G';, GVA, (k) So

(h)eHNK =1.

~A—1 ~A A

PV (k) = ' (k) (V' (k))a(p(k)) 'a~" (k) e HNK = 1.

Therefore, 6; = 6, and 6; = 0, so [R1||Th||U1[|S1] < | Aut?(G)|.

v

Now we define a map ¢ : Aut?(G) — Rx T x U x S by
0+ (7, Gy, Wy Oy, Ty O, Ty O ).
Clearly ¢ is well-defined. Also if ¢(c) = @(7) then
(nH6H7nKO-H7ﬂHGK77TKGK) = (EHTH’EKTH7EHTK77TKTK)'

Leth € H, 6(h) = hik; and ©(h) = hoks. Then hy = hy, ki = ky and o (h) = ©(h). Similarly,
we have (k) = 7(k) for all k € K. Thus 6 = 7 and ¢ is one-to-one, and hence | Aut?(G)| <
IR||T||U||S]. Therefore, | Aut?(G)| = |R||T||U||S| and Aut?(G) = RTUS. |

Theorem 3.4. Let G = HK, where K is a normal subgroup of G and N = HNK is invariant
under the central automorphisms of G. If N 1 G and 6x(H/N) = N, then Aut4(G) =
U' xR, where R' = {0, |0 € Aut§(G)} and U' = {f5 | 0 € Aut§(G)}.
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Proof. Since 6(N) < N, every ¢ € Aut?(G) induces an automorphism ¢* € Aut?(G/N).
Also we have 6 /y(H/N) = N. Now by Theorem 3.2, 0'*|H/N € Aut?(H/N), and we see

that 6,, € Aut?(H) and 6*(kN) = kNhN. So o (k)N = khN and k~'o (k) = hn € H. The
map f, : K — Z(G) NH defined by k — k™' (k) is a homomorphism.

On taking A = Z(G) N H and using Lemma 2.2, R| and U; being subgroups of Aut?(G)
have trivial intersection. We have R’ =2 Ry and U’ = U;. It is easy to see that the map

v :Up xR — Autf(G)
defined by (0, 03) — 00y is one-to-one, so that |R; ||U;| < | Aut% (G)|. Next we consider
the map ¢ : Aut{(G) — U’ x R’ defined by 6 — (f5,,0,). If ¢(0) = ¢(7), then f5 =
fz, and o, = 7,. Thus for every h € H and k € K, we have o(h) = t(h) and o(k) =

7(k). Therefore, ¢ is one-to-one, and hence |Aut (G)| < |R'||U’| = |R1||U;|. Therefore,
| Aut?(G)| = |R'||U’| and Aut(G) = U’ x R |

Corollary 3.1. Let N be a normal subgroup of G such that G/N = K/N x H/N and
(|H/N|,|K/N|) = 1. If N is invariant under Aut?(G), then o, € Aut?(H) and o, €
Aut?(K) for all & in Aut? (G). Moreover, Aut4 (G) =R’ xS, where R' = {0, |0 € Aut§(G)}
and §' = {0, |0 € Aut%(G)}.

Proof. Since N is invariant under Aut?(G), every ¢ € Aut?(G) induces an automorphism
o* € Aut?(G/N). We have ([H/N|,|K/N|) = 1, now by Theorem 3.1, G*|H/N € Aut?(H/N)

and G*‘K/N € Aut?(K/N), and we see that 6, € Aut?(H) and 6, € Aut?(K). By a similar

argument given for Theorem 3.1, we have Aut{ (G) = R’ x 5. 1

4. Applications

Let G be a finite solvable group and M be a non-normal maximal subgroup of G. Then
G/C =L/CxM/C, where C = Coreg(M) and L/C is an elementary abelian group. If
(IM/C|,|C|) =1, then G = L x M;, where M; < M. Furthermore, if (|M/C|,|L/C|) =1,
then (|L|,|M;|) = 1. Now by Theorem 3.1, we have Aut?(G) =R x S.

Let G be a finite solvable group. By [8, Proposition 4.9], we see that G has a maximal
subgroup M such that in all must all cases, M /C becomes abelian, and hence (|M/C|,|L/C|) =
1 holds.

Theorem 4.1. Let G be a finite solvable group and let M be a non-normal maximal sub-
group of G such that M/C is abelian, where C = Coreg(M). If (|L/C|,|C|) =1, then
Aut?(G) = R, where R = {0,,|c € Aut?(G)}.

Proof. We have G’ < L because G/L = M/C is abelian, also L/C = [L/C,M/C] hence
L =[L,M]C < G'C < L, therefore L = CG'. Since G "M < G'NC,
G/(G'NC)=(GM)/(GNC) =G /(GNC)xM/(GNC).

Now since p does not divide [M/C| and |C|, so p1 [M| also G'/(G'NC) = L/C is of order of
a power of p, therefore (|G'/(G'NC)|,|M/(G'NC)|) = 1, and we see that Aut?(G) =R. 1

Theorem 4.2. Let G be a finite solvable group and let M be a non-normal maximal sub-
group of index p'. Then
(i) Auti(G) =2 U’ xR, where C = Coreg(M),
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(i) if M/C is abelian, then Aut’(G) = R’ x S', where R is abelian and S' is elementary
abelian of order |Q(P)|', where P is a Sylow p-subgroup of Z(G).

Proof. (i) We have G/C = L/C x M/C, where C = Coreg(M) and L/C is elementary
abelian. Thus C is invariant under Aut?(G) and %}, /c(M/C)=C. OntakingM =H,L=K
and C = N, now Theorem 3.4 completes the proof.
(ii) Since M /C is abelian, (|M/C|,|L/C|) = 1. By taking
f € Hom(M,Z(G)),C < Kerf, f(m) #m™", me M\{1}},
f € Hom(L,Z(G)),C[M,L] < Ker f, f(I)# 17", 1 € L\{1}},
and using Corollary 3.1, we have Ry = R’, §1 & §' and Autg(G) =~ R’ x §'. The subgroup R,
is abelian because for all G},0} € Ry and g =ml € G, where m € M and [ € L, we have
0;0;,(8) = 070 (ml) = 63(ml h(m)) = ml h(m)f(m) (since h(m) € Z(G) < C)
= 0,07(8)-
Similarly the subgroup Sy is abelian. Also for all 6; € §) and g = ml € G, where m € M

and [ € L, we have (O'f)p(ml) = ml(f(ml))? = mlf(IP) = ml because L/C is elementary
abelian. Hence R’ is abelian and S’ is elementary abelian. 1

R, = {Gf

Si={o;

Example 4.1. Let G = ((Zy x Zy) % Zg) X Z3, consider the maximal subgroup M = Zg X Z3
of G. Then (by using GAP),

C =Coreg(M) =73 xZ3, Z(G) =Z3, M/C =73 and L/C =7y X L.
Since (|L/C|,|Z(G)]) =1, §' = S} = {1}. Furthermore R’ = Ry = Z3 because,
Hom(M/C,Z(G)) = Hom(Z3,Z3) = Z3.

The group G satisfies the conditions of Theorem 4.2(ii). That is Aut?(G) = Z3 x Z3,
Auté(G) = Zs and Aut?(G)/ Auts(G) = Zs.
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