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Abstract. In this paper we describe the structure of AutZN(G) for a group G = HK, where
K is a normal subgroup of G and N = H ∩K is AutZ(G)-invariant, in particular, if N = 1,
this amounts to a description of the central automorphism group of the semi-direct product
G = K o H. We also show that if N E G and CK(H/N) = N, then AutZN(G) is a split
extension. Particular if G is solvable, then AutZN(G) is an abelian by abelian split extension.
This description of the group of central automorphisms of semidirect products is of great
importance, because any solvable group has a splitting quotient.
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1. Introduction

Let G be a group and let M and N be normal subgroups of G. By AutN(G) we mean the
subgroup of Aut(G) consisting of all automorphisms centralizing G/N and by AutM(G) we
mean the subgroup of Aut(G) consisting of all automorphisms centralizing M. We denote
AutN(G)∩AutM(G) by AutNM(G). Clearly α ∈ AutN(G) if and only if g−1α(g) ∈ N for all
g in G.

Given a group G, the subgroup AutZ(G) is called the central automorphism group of G
when Z = Z(G). Hence if σ ∈ AutZ(G) then g−1σ(g) lies in the center Z(G) of G for all g
in G. It is easily seen that AutZ(G) = CAut(G)(Inn(G)). The group of central automorphisms
of a finite group G is of great importance in investigating of Aut(G), and has been studied
by several authors (see, for example, [1–7]).

A non-abelian group G that has no non-trivial abelian direct factor is said to be purely
non-abelian. In [1] Adney and Yen has shown that if G is a finite purely non-abelian group,
then |AutZ(G)| = |Hom(G/G′,Z(G))|. In [6] Jamali and Jafari introduced some special
subgroups of AutZ(G) in order to find the structure of AutZ(G) for a group G = K×H,
where K is purely non-abelian and H an abelian subgroup of G. Also in [5] they investigated
the nilpotency and solubility of the central automorphisms group of a finite group.

Let G = HK, where K is a normal subgroup of G and N = H ∩K is invariant under the
central automorphism of G. We shall show that if N CG and CK(H/N) = N then AutZN(G)
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is a split extension. The significance of this result is that every finite solvable group has a
splitting quotient. Let G be a group and let N be an AutZ(G)-invariant subgroup of G. Then
the natural action of AutZ(G) on N has AutZN(G) as its kernel and AutZ(G)/AutZN(G) can
be embedded in AutZ(N). Now according to the exact sequence

1−→ AutZN(G)−→ AutZ(G)−→ AutZ(G)/AutZN(G)−→ 1,

the study of structure of AutZN(G) becomes more important. Clearly if all central automor-
phisms of G fix N pointwise, then AutZN(G) = AutZ(G).

For an especial example, let

G = Z2×Z2×Z2×S3,

the group 48#51 as quoted in ”Small Group” library of GAP [10]. Then (by using GAP),

AutZ(G)∼= (Z2×Z2×Z2)o PSL(3,2).

Consider the maximal subgroup M = Z2×Z2×Z2×Z2 of G and set N = CoreG(M) ∼=
Z2×Z2×Z2. Then AutZN(G)∼= Z2×Z2×Z2 and

AutZ(G)/AutZN(G)∼= PSL(3,2)∼= AutZ(N).

Throughout the paper our notation is standard, and can be found in [9], for example.

2. Preliminaries

The aim of this section is to collect several facts and basic results that will be used in the rest
of the paper. Let σ be a central automorphism of G. Clearly the map fσ : x 7−→ x−1σ(x)
defines a homomorphism from G into Z(G). On the other hand, the map σ f : x 7−→ x f (x)
defines an endomorphism of G for all f in Hom(G,Z(G)). This endomorphism is a central
automorphism if and only if f (x) 6= x−1 for every x in G−{1}, because, x ∈Ker(σ f ) if and
only if x f (x) = 1 or f (x) = x−1, so x = 1. Also x f (x) = y f (y) implies the contradictory
equality f (x−1y) = (x−1y)−1, and so the set {x f (x) |x ∈ G} is G. As any homomorphism
f : G−→ Z(G) induces a homomorphism f : G/G′ −→ Z(G), and vice versa, we see that

|Hom(G,Z(G))|= |Hom(G/G′,Z(G))|.
Throughout the paper G is a finite group, and πH , πK are the projection maps from G =

K o H into H and K, respectively. Also σH , σK are corresponding restrictions of σ on H
and K, where σH : H −→ G and σK : K −→ G. Now we set

R = {σH |σ ∈ AutZ(G)}, S = {σK |σ ∈ AutZ(G)},
T = {πK σH |σ ∈ AutZ(G)}, U = {πH σK |σ ∈ AutZ(G)}.

Let N be a normal subgroup of G such that G/N = K/N o H/N for some subgroups K
and H of G, and let L 6 Z(G). If N 6 Ker f then every element f of Hom(H,L) induces an
element f̂ of Hom(G,L), where f̂ (kh) = f (h). Also if N[H,K] 6 Ker f , then every element
f of Hom(K,L) induces an element f̂ of Hom(G,L), in the case we have

f̂ (h1k1h2k2) = f̂ (h1h2[h2,k−1
1 ]k1k2) = f ([h2,k−1

1 ]k1k2) = f (k1) f (k2) = f̂ (k1h1) f̂ (k2h2).

Lemma 2.1. Let G be a finite group and N E G such that G/N = K/N o H/N. For any
subgroup L 6 Z(G) we set

A = { f ∈ Hom(H,L),N 6 Ker f},
B = { f ∈ Hom(K,L),N[H,K] 6 Ker f},
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A′ = {σ f̂ | f ∈ Hom(H,L),N 6 Ker f},
B′ = {σ f̂ | f ∈ Hom(K,L),N[H,K] 6 Ker f}.

Then we have
(i) if G is purely non-abelian then A′ and B′ are subgroups of AutZ(G) of order |A| and
|B| respectively,

(ii) if L 6 K∩Z(G) then A′ is a subgroup of AutZ(G) isomorphic to A,
(iii) if L 6 H ∩Z(G) then B′ is a subgroup of AutZ(G) isomorphic to B.

Proof. (i) Since G is a purely non-abelian, then σ f̂ ∈AutZ(G) in all cases. So we can easily
see that A′ and B′ are subgroups of AutZ(G) of order |A| and |B| respectively.

(ii) Let g = kh for some k ∈ K and h ∈ H. Then f̂ (g) = g−1 implies that f (h) = h−1k−1,
so h ∈ N and f (h) = 1, therefore g = 1. Hence we can assume that f̂ (g) 6= g−1 for all
1 6= g ∈ G, then σ f̂ ∈ AutZ(G). Also

σ f̂1
σ f̂2

(g) = σ f̂1
(g f̂2(g)) = g f̂2(g) f̂1(g) f̂1( f̂2(g))

= g f̂1(g) f̂2(g), ( f̂1(hk) = f1(h) & f̂2(g) ∈ L 6 K)

= g( f̂1. f̂2)(g),

hence σ f̂1
σ f̂2

= σ f̂1. f̂2
∈ A′ for all σ f̂1

,σ f̂2
∈ A′, therefore A′ is a subgroup of AutZ(G). Now

the mapping f 7−→ σ f̂ is an isomorphism from A into A′, and the result follows.
(iii) Follows similarly.
The following lemma is similar to that of [6, lemma 2.4]

Lemma 2.2. Let G be a finite group with a normal subgroup N such that G/N = K/N o
H/N. Suppose that A 6 H ∩Z(G) and B 6 K∩Z(G) with A∩B = 1. We set

R1 = {σ f̂ | f ∈ Hom(H,A),N 6 Ker f , f (x) 6= x−1, x ∈ H\{1}},

S1 = {σ f̂ | f ∈ Hom(K,B),N[H,K] 6 Ker f , f (x) 6= x−1, x ∈ K\{1}},
T1 = {σ f̂ | f ∈ Hom(H,B),N 6 Ker f },
U1 = {σ f̂ | f ∈ Hom(K,A),N[H,K] 6 Ker f }.

Then
(i) R1, S1, T1 and U1 are all subgroups of AutZ(G) having mutually trivial intersec-

tions,
(ii) T1 and U1 are abelian and [R1,S1] = 1,

(iii) R1∪S1 ⊆NAutZ(G)(T1)∩NAutZ(G)(U1).

Proof. (i) We only show that R1 6 AutZ(G), others are similar. At first, we prove that f̂ (g) 6=
g−1, which implies σ f̂ ∈AutZ(G). If f̂ (g) = g−1 for some 1 6= g = hk, then f (h) = k−1h−1

which implies h f (h) = k−1 ∈ N. Now, from f (h f (h)) = 1 we have f ( f (h)) = ( f (h))−1,
which contradicts 1 6= f (h)∈ A 6 H. Now we show that R1 is closed under composition. To
see that, let τ = σ f̂1

σ f̂2
. So τ(x) = x f̂1(x) f̂2(x) f̂1( f̂2(x)), hence x−1τ(x) ∈ A. Now, define

f̂ : G→ A with f̂ (x) = x−1τ(x) and let f be the restriction of f̂ to H. Since for all n ∈ N,
τ(n) = n, then f (n) = f̂ (n) = n−1τ(n) = 1, and so N 6 Ker( f ). Also, if h−1 = f (h) then
h−1 = f̂ (h) = h−1τ(h) hence h = 1. Therefore τ = σ f̂ ∈ R1.
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For the second part, let X ∈ {A,B} and f ∈ Hom(H,X), then σ f̂ (k) = k f (1) = k. Also
for any f ∈ Hom(K,X), σ f̂ (h) = h f (1) = h. So for all σ in R1 ∩ S1, R1 ∩U1 or S1 ∩ T1,
σ(hk) = σ(h)σ(k) = hk. Now, for σ f̂ ∈ R1 ∩T1, f (h) ∈ A∩B = 1. Thus, σ(h) = h and
σ f̂ (k) = k f (1) = k, hence σ f̂ is an identity map. Similarly, one can show that S1∩U1 = 1.

(ii) Let f1, f2 ∈ Hom(H,B). Since B 6 K then for all x ∈ G, f̂1( f̂2(x)) = f̂2( f̂1(x)) = 1.
Hence,

σ f̂1
σ f̂2

(x) = x f̂1(x) f̂2(x) = x f̂2(x) f̂1(x) = σ f̂2
σ f̂1

(x).

So T1 is abelian. Similarly one can see that U1 is abelian. Let f ∈ Hom(H,A) and g ∈
Hom(K,B). Then, f̂ (ĝ(hk))= f̂ (g(k))= 1 and ĝ( f̂ (hk))= ĝ( f (h))= 1. Therefore, σ f̂ σĝ(x)=
xĝ(x) f̂ (x) = σĝσ f̂ (x). Now, we have σ f̂ σĝ = σĝσ f̂ .

(iii) Let σ f̂ ∈ R1,σγ̂ ∈ T1, and set µ = σ
−1
f̂

σγ̂ σ f̂ . We have K 6 Ker f
µ
, because σ f̂

and σγ̂ fix K elementwise. Now µ(x) = σ
−1
f̂

(γ̂(σ f̂ (x)))x = γ̂(σ f̂ (x))x for all x ∈ G, and

f
µ
(x) = x−1µ(x) ∈ B. Thus f

µ
∈ Hom(H,B) and N 6 Ker f

µ
. Hence µ = σ f̂µ

∈ T1 and so

R1 normalizes T1. Next let σ f̂ ∈ R1,σγ̂ ∈U1, and set µ = σ f̂ σγ̂ σ
−1
f̂

. We find that µ(h) =
h for all h ∈ H because σγ̂ fixes H elementwise. Therefore H 6 Ker f

µ
. Now µ(x) =

f (γ(σ−1
f̂

(x)))γ(σ−1
f̂

(x))x for all x ∈ G, and f
µ
(x) = x−1µ(x) ∈ A. Thus f

µ
∈ Hom(K,A)

and N[H,K] 6 Ker f
µ
. Hence µ = σ f̂µ

∈U1 and so R1 normalizes U1, which completes the
proof.

Lemma 2.3. If G = K o H then Z(G) 6 CK(H)Z(H). Furthermore, if Z(H) acts trivially
on K then Z(H) 6 Z(G) and Z(G) = CZ(K)(H)×Z(H).

The proof of above Lemma is obvious. Note that since Z(H) acts trivially on K, we have
CZ(K)(H) = K∩Z(G) and Z(H) = H ∩Z(G).

3. Main results

In this section we give the order and the structure of AutZ(G), where G is a semidirect
product.

Theorem 3.1. Let G = K oH be a semidirect product of groups H and K, where (|H|, |K|) =
1. Then σH ∈ AutZ(H) and σK ∈ AutZ(K) for all σ in AutZ(G) and AutZ(G) ∼= R× S
(defined as in page 3). Furthermore, if Z(H) acts trivially on K then AutZ(G)∼= AutZ(H)×
S. In particular, if G = K×H then AutZ(G)∼= AutZ(H)×AutZ(K).

Proof. Let σ ∈ AutZ(G) and k ∈ K. Then σK ∈ Aut(K) and k−1σ(k) ∈ Z(G)∩K 6 Z(K).
Hence σK ∈AutZ(K). Let σ ∈AutZ(G) and h∈H. We may write σ(h) = h′k, where h′ ∈H
and k ∈ K. Then h−1h′ ∈ Z(H) and k ∈ CK(H). On letting |K|= t, we see that σ(ht) = h′

t

for some h′ ∈ H. Since for all h ∈ H there exists an element h1 ∈ H such that h = ht
1, we

have σ(h) ∈ H. Hence H is an invariant subgroup under the central automorphism σ of G.
Then σH ∈ Aut(H) and h−1σ(h) ∈ Z(G)∩H 6 Z(H), hence σH ∈ AutZ(H).

On taking A = Z(G)∩H, B = Z(G)∩K, N = 1 and using Lemma 2.2, we find that T1 = 1
and U1 = 1. Also the subgroups R1 and S1 of AutZ(G) have trivial intersection. Now we
show that R∼= R1 and S∼= S1. We define a map ϕ : R1→R by ϕ(σ f̂ ) = σ f̂ |H . Then ϕ is well-
defined and is a homomorphism. Also if ϕ(σ f̂ ) = 1 then σ f̂ (hk) = σ f̂ (h)σ f̂ (k) = hk and
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σ f̂ = 1. Furthermore, ϕ is surjective, because if σ ∈ AutZ(G), then on setting τ = σH ∈ R,
we have f

τ
∈Hom(H,Z(G)∩H) and f

τ
(h) 6= h−1 for every h∈H−{1}. Thus σ f̂τ

∈ R1 and
ϕ(σ f̂τ

) = σ f̂τ
|H = τ . It follows that ϕ is an isomorphism. Similarly we can see that S∼= S1.

Now it is easy to observe that the map θ : AutZ(G)→ R×S defined by θ(σ) = (σH ,σK ) is
a monomorphism. We show that θ is surjective. To do this, we consider δ ,τ ∈AutZ(G) for
which we have δH ∈ AutZ(H) and τK ∈ AutZ(K), since (|H|, |K|) = 1. Therefore δH ∈ R
and τK ∈ S. Now we define σ(hk) = δ (h)τ(k), we can easily see that σ ∈ AutZ(G) and
θ(σ) = (δ ,τ). So θ is an isomorphism.

If Z(H) acts trivially on K then Z(H)6 Z(G) and R = AutZ(H), so AutZ(G)∼= AutZ(H)×
S. In particular, if G = K×H then R = AutZ(H), S = AutZ(K) and AutZ(G)∼= AutZ(H)×
AutZ(K).

Theorem 3.2. Let G = K o H and CK(H) = 1. Then σH ∈ AutZ(H) and πH σK ∈ Hom(K,
Z(G)∩H) for all σ in AutZ(G). Moreover, AutZ(G)∼= U o R.

Proof. Let σ ∈ AutZ(G) and h ∈ H. Then σ(h) = h1k1 and h−1σ(h) = h−1h1k1 ∈ Z(G).
Therefore from Lemma 2.3, h−1h1 ∈ Z(H) and k1 ∈ CK(H) = 1, and hence σH ∈ AutZ(H).
Let k ∈ K, since CK(H) = 1, we have σ(k) = hk and πH σK ∈ Hom(K,Z(G)∩H), where
h ∈ H.

By taking A = Z(G)∩H, N = 1 and using Lemma 2.2, we find that T1 = 1 and S1 = 1.
Also the subgroups R1 and U1 of AutZ(G) have trivial intersection and R1 6 NAutZ(G)(U1).
By a similar argument given for Theorem 3.1, we have R∼= R1. It is now sufficient to show
U ∼= U1. We define the map ϕ : U1 →U by ϕ(σ f̂ ) = πH σ f̂ |K . Clearly ϕ is well-defined.
Furthermore, ϕ is a homomorphism because

ϕ(σ f̂1
σ f̂2

)(k) = πH (σ f̂1
σ f̂2

)(k) = πH (k f̂1(k) f̂2(k) f̂1( f̂2(k)))

= f̂1(k) f̂2(k) = (ϕ(σ f̂1
)ϕ(σ f̂2

))(k).

It is easy to check that ϕ is one-to-one. Also ϕ is surjective because if σ ∈ AutZ(G), on
setting g = πH σK ∈U , we have g ∈ Hom(K,Z(G)) and [H,K] 6 Kerg. Thus σĝ ∈U1 and
ϕ(σĝ) = πH σĝ|K = g. Therefore ϕ is an isomorphism.

Now the map ψ : U1 oR1→ AutZ(G) defined by (σγ̂ ,σ f̂ ) 7→ σ f̂ σγ̂ is one-to-one, and so
|R1||U1| ≤ |AutZ(G)|.

Next we consider the map φ : AutZ(G)→U oR defined by σ 7→ (πH σK ,σH ). If φ(σ) =
φ(τ) then πH σK = πH τK and σH = τH . Thus for any h ∈H and k ∈ K, we have σ(h) = τ(h)
and σ(k) = τ(k). Therefore φ is one-to-one and so |AutZ(G)| ≤ |R||U | = |R1||U1|. Hence
|AutZ(G)|= |R||U | and AutZ(G)∼= U o R.

Theorem 3.3. Let G = K oH, where K is purely non-abelian and Z(H) acts trivially on K.
Then AutZ(G)∼= RTUS.

Proof. We only show that πH σH ∈AutZ(H) and πK σK ∈AutZ(K), similarly we can see that
πH σK ∈ Hom(K,Z(H)) and πK σH ∈ Hom(H,Z(G)∩K).

Let σ ∈ AutZ(G) and k ∈ K. We may write σ(k) = k1h1, where k1 ∈ K and h1 ∈ H.
Hence k−1k1h1 ∈ Z(G). We have by Lemma 2.3, k−1k1 ∈ Z(K) and h1 ∈ Z(H). We have
πK σK ∈Hom(K,K) and k−1πK σ(k)∈ Z(G)∩K 6 Z(K). Now define f

σ
: K→ Z(G)∩K by
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f
σ
(k) = k−1πK σ(k). Clearly f

σ
is well-defined. Furthermore, f

σ
is a homomorphism since

f
σ
(kk′) = k′

−1
k−1

πK σ(kk′) = k′
−1

k−1
πK (σ(k)σ(k′))

= k′
−1

k−1
πK (h1k1h2k2), (where σ(k) = k1h1 and σ(k′) = k2h2),

= k′
−1

k−1
πK (h1h2kh2

1 k2) = k′
−1

k−1kh2
1 k2

= k′
−1

k−1k1k2, (by Lemma 2.3 and this fact h2 ∈ Z(H)),

= k−1k1k′
−1

k2 = k−1
πK σ(k)k′

−1
πK σ(k′) = f

σ
(k) f

σ
(k′).

Therefore, σ fσ
∈ AutZ(K) because K is purely non-abelian. Thus πK σK = σ fσ

∈ AutZ(K).
Next let σ ∈ AutZ(G) and h ∈ H. We may write σ(h) = h1k1, where k1 ∈ K and h1 ∈ H.
Then h−1h1 ∈ Z(H), and so h−1πH σ(h) ∈ Z(H). Suppose that KerπH σH 6= 1; so πH σ(h) =
1, for some h∈ H−{1}. Therefore, there is a non-trivial element k in K, such that σ(h) = k.
It follows that k belongs to the kernel of πK σ−1

K contrary to the first part of the proof. Hence
πH σH ∈ AutZ(H). Similarly πH σK ∈ Hom(K,Z(H)) and πK σH ∈ Hom(H,Z(G)∩K).

By taking A = Z(H), B = Z(G)∩K, N = 1 and using Lemma 2.2, we find that R1, S1,
T1 and U1 being subgroups of AutZ(G) have mutually trivial intersections. Also R1∪S1 ⊆
NAutZ(G)(T1)∩NAutZ(G)(U1). It is easy to see that R∼= R1, S∼= S1, T ∼= T1 and U ∼= U1.

We now consider the map φ : R1×T1×U1×S1 −→ AutZ(G) defined by

(σ f̂ ,σĝ,σu,σv) 7→ σ f̂ σĝσuσv.

Then φ is one-to-one. To see this, let h ∈ H and σ f̂ σĝσûσv̂(h) = σ f̂ ′σĝ′σû′σv̂′(h). Then we
have σ f̂ (hσĝ(h)) = σ f̂ ′(hσĝ′(h)), which implies that

f̂ ′
−1

(h) f̂ (h) = ĝ(h)ĝ′
−1

(h) ∈ H ∩K = 1.

Hence f̂ = f̂ ′ and ĝ = ĝ′. Therefore σ f̂ = σ f̂ ′ and σĝ = σĝ′ . Now let k∈K and σ f̂ σĝσûσv̂(k)=
σ f̂ ′σĝ′σû′σv̂′(k). It follows that σûσv̂(k) = σû′σv̂′(k). So

v̂(k)v̂′
−1

(k) = û′(k)û′(v̂′(k))û(v̂(k))−1û−1(k) ∈ H ∩K = 1.

Therefore, σû = σû′ and σv̂ = σv̂′ , so |R1||T1||U1||S1|6 |AutZ(G)|.
Now we define a map ϕ : AutZ(G)−→ R×T ×U×S by

σ 7→ (πH σH ,πK σH ,πH σK ,πK σK ).

Clearly ϕ is well-defined. Also if ϕ(σ) = ϕ(τ) then

(πH σH ,πK σH ,πH σK ,πK σK ) = (πH τH ,πK τH ,πH τK ,πK τK ).

Let h∈H, σ(h) = h1k1 and τ(h) = h2k2. Then h1 = h2, k1 = k2 and σ(h) = τ(h). Similarly,
we have σ(k) = τ(k) for all k ∈K. Thus σ = τ and ϕ is one-to-one, and hence |AutZ(G)| ≤
|R||T ||U ||S|. Therefore, |AutZ(G)|= |R||T ||U ||S| and AutZ(G)∼= RTUS.

Theorem 3.4. Let G = HK, where K is a normal subgroup of G and N = H∩K is invariant
under the central automorphisms of G. If N E G and CK(H/N) = N, then AutZN(G) ∼=
U ′o R′, where R′ = {σH |σ ∈ AutZN(G)} and U ′ = { fσK

| σ ∈ AutZN(G)}.
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Proof. Since σ(N) 6 N, every σ ∈ AutZ(G) induces an automorphism σ∗ ∈ AutZ(G/N).
Also we have CK/N(H/N) = N. Now by Theorem 3.2, σ∗|H/N

∈ AutZ(H/N), and we see

that σH ∈ AutZ(H) and σ∗(kN) = kNhN. So σ(k)N = khN and k−1σ(k) = hn ∈ H. The
map fσK

: K −→ Z(G)∩H defined by k 7−→ k−1σ(k) is a homomorphism.
On taking A = Z(G)∩H and using Lemma 2.2, R1 and U1 being subgroups of AutZ(G)

have trivial intersection. We have R′ ∼= R1 and U ′ ∼= U1. It is easy to see that the map

ψ : U1 o R1→ AutZN(G)

defined by (σ f̂ ,σγ̂) 7→ σ f̂ σγ̂ is one-to-one, so that |R1||U1| ≤ |AutZN(G)|. Next we consider
the map φ : AutZN(G)→U ′o R′ defined by σ 7→ ( fσK

,σH ). If φ(σ) = φ(τ), then fσK
=

fτK
and σH = τH . Thus for every h ∈ H and k ∈ K, we have σ(h) = τ(h) and σ(k) =

τ(k). Therefore, φ is one-to-one, and hence |AutZN(G)| ≤ |R′||U ′| = |R1||U1|. Therefore,
|AutZ(G)|= |R′||U ′| and AutZN(G)∼= U ′o R′.

Corollary 3.1. Let N be a normal subgroup of G such that G/N = K/N o H/N and
(|H/N|, |K/N|) = 1. If N is invariant under AutZ(G), then σH ∈ AutZ(H) and σK ∈
AutZ(K) for all σ in AutZ(G). Moreover, AutZN(G)∼= R′×S′, where R′= {σH |σ ∈AutZN(G)}
and S′ = {σK |σ ∈ AutZN(G)}.

Proof. Since N is invariant under AutZ(G), every σ ∈ AutZ(G) induces an automorphism
σ∗ ∈AutZ(G/N). We have (|H/N|, |K/N|) = 1, now by Theorem 3.1, σ∗|H/N

∈AutZ(H/N)

and σ∗|K/N
∈ AutZ(K/N), and we see that σH ∈ AutZ(H) and σK ∈ AutZ(K). By a similar

argument given for Theorem 3.1, we have AutZN(G)∼= R′×S′.

4. Applications

Let G be a finite solvable group and M be a non-normal maximal subgroup of G. Then
G/C = L/C o M/C, where C = CoreG(M) and L/C is an elementary abelian group. If
(|M/C|, |C|) = 1, then G = L o M1, where M1 6 M. Furthermore, if (|M/C|, |L/C|) = 1,
then (|L|, |M1|) = 1. Now by Theorem 3.1, we have AutZ(G)∼= R×S.

Let G be a finite solvable group. By [8, Proposition 4.9], we see that G has a maximal
subgroup M such that in all must all cases, M/C becomes abelian, and hence (|M/C|, |L/C|)=
1 holds.

Theorem 4.1. Let G be a finite solvable group and let M be a non-normal maximal sub-
group of G such that M/C is abelian, where C = CoreG(M). If (|L/C|, |C|) = 1, then
AutZ(G)∼= R, where R = {σM |σ ∈ AutZ(G)}.

Proof. We have G′ 6 L because G/L ∼= M/C is abelian, also L/C = [L/C,M/C] hence
L = [L,M]C 6 G′C 6 L, therefore L = CG′. Since G′∩M 6 G′∩C,

G/(G′∩C) = (G′M)/(G′∩C)∼= G′/(G′∩C)o M/(G′∩C).

Now since p does not divide |M/C| and |C|, so p - |M| also G′/(G′∩C)∼= L/C is of order of
a power of p, therefore (|G′/(G′∩C)|, |M/(G′∩C)|) = 1, and we see that AutZ(G)∼= R.

Theorem 4.2. Let G be a finite solvable group and let M be a non-normal maximal sub-
group of index pt . Then

(i) AutZC(G)∼= U ′o R′, where C = CoreG(M),
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(ii) if M/C is abelian, then AutZC(G)∼= R′×S′, where R′ is abelian and S′ is elementary
abelian of order |Ω1(P)|t , where P is a Sylow p-subgroup of Z(G).

Proof. (i) We have G/C = L/C o M/C, where C = CoreG(M) and L/C is elementary
abelian. Thus C is invariant under AutZ(G) and CL/C(M/C) = C. On taking M = H, L = K
and C = N, now Theorem 3.4 completes the proof.

(ii) Since M/C is abelian, (|M/C|, |L/C|) = 1. By taking

R1 = {σ f̂ | f ∈ Hom(M,Z(G)),C 6 Ker f , f (m) 6= m−1, m ∈M\{1}},

S1 = {σ f̂ | f ∈ Hom(L,Z(G)),C[M,L] 6 Ker f , f (l) 6= l−1, l ∈ L\{1}},

and using Corollary 3.1, we have R1 ∼= R′, S1 ∼= S′ and AutZC(G)∼= R′×S′. The subgroup R1
is abelian because for all σ f̂ ,σĥ ∈ R1 and g = ml ∈ G, where m ∈M and l ∈ L, we have

σ f̂ σĥ(g) = σ f̂ σĥ(ml) = σ f̂ (ml h(m)) = ml h(m) f (m) (since h(m) ∈ Z(G) 6 C)

= σĥσ f̂ (g).

Similarly the subgroup S1 is abelian. Also for all σ f̂ ∈ S1 and g = ml ∈ G, where m ∈ M
and l ∈ L, we have (σ f̂ )

p(ml) = ml( f̂ (ml))p = ml f (lp) = ml because L/C is elementary
abelian. Hence R′ is abelian and S′ is elementary abelian.

Example 4.1. Let G = ((Z2×Z2)oZ9)oZ3, consider the maximal subgroup M = Z9 oZ3
of G. Then (by using GAP),

C = CoreG(M) = Z3×Z3, Z(G) = Z3, M/C = Z3 and L/C = Z2×Z2.

Since (|L/C|, |Z(G)|) = 1, S′ ∼= S1 = {1}. Furthermore R′ ∼= R1 ∼= Z3 because,

Hom(M/C,Z(G)) = Hom(Z3,Z3)∼= Z3.

The group G satisfies the conditions of Theorem 4.2(ii). That is AutZ(G) ∼= Z3 × Z3,
AutZC(G)∼= Z3 and AutZ(G)/AutZC(G)∼= Z3.
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