BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Central Automorphisms of Semidirect Products

¹HAMID MOUSAVI AND ²AMIR SHOMALI

^{1,2}Department of Mathematics, University of Tabriz, P. O. Box 51666-17766, Tabriz, Iran ¹hmousavi@tabrizu.ac.ir, ²a_shomali@tabrizu.ac.ir

Abstract. In this paper we describe the structure of $\operatorname{Aut}_N^Z(G)$ for a group G = HK, where K is a normal subgroup of G and $N = H \cap K$ is $\operatorname{Aut}^Z(G)$ -invariant, in particular, if N = 1, this amounts to a description of the central automorphism group of the semi-direct product $G = K \rtimes H$. We also show that if $N \trianglelefteq G$ and $\mathscr{C}_K(H/N) = N$, then $\operatorname{Aut}_N^Z(G)$ is a split extension. Particular if G is solvable, then $\operatorname{Aut}_N^Z(G)$ is an abelian by abelian split extension. This description of the group of central automorphisms of semidirect products is of great importance, because any solvable group has a splitting quotient.

2010 Mathematics Subject Classification: 20D15, 20D45

Keywords and phrases: Central automorphism, solvable group, semidirect.

1. Introduction

Let *G* be a group and let *M* and *N* be normal subgroups of *G*. By $\operatorname{Aut}^N(G)$ we mean the subgroup of $\operatorname{Aut}(G)$ consisting of all automorphisms centralizing G/N and by $\operatorname{Aut}_M(G)$ we mean the subgroup of $\operatorname{Aut}(G)$ consisting of all automorphisms centralizing *M*. We denote $\operatorname{Aut}^N(G) \cap \operatorname{Aut}_M(G)$ by $\operatorname{Aut}^N_M(G)$. Clearly $\alpha \in \operatorname{Aut}^N(G)$ if and only if $g^{-1}\alpha(g) \in N$ for all *g* in *G*.

Given a group *G*, the subgroup $\operatorname{Aut}^{Z}(G)$ is called the central automorphism group of *G* when Z = Z(G). Hence if $\sigma \in \operatorname{Aut}^{Z}(G)$ then $g^{-1}\sigma(g)$ lies in the center Z(G) of *G* for all *g* in *G*. It is easily seen that $\operatorname{Aut}^{Z}(G) = \mathscr{C}_{\operatorname{Aut}(G)}(\operatorname{Inn}(G))$. The group of central automorphisms of a finite group *G* is of great importance in investigating of $\operatorname{Aut}(G)$, and has been studied by several authors (see, for example, [1–7]).

A non-abelian group *G* that has no non-trivial abelian direct factor is said to be purely non-abelian. In [1] Adney and Yen has shown that if *G* is a finite purely non-abelian group, then $|\operatorname{Aut}^Z(G)| = |\operatorname{Hom}(G/G', Z(G))|$. In [6] Jamali and Jafari introduced some special subgroups of $\operatorname{Aut}^Z(G)$ in order to find the structure of $\operatorname{Aut}^Z(G)$ for a group $G = K \times H$, where *K* is purely non-abelian and *H* an abelian subgroup of *G*. Also in [5] they investigated the nilpotency and solubility of the central automorphisms group of a finite group.

Let G = HK, where K is a normal subgroup of G and $N = H \cap K$ is invariant under the central automorphism of G. We shall show that if $N \triangleleft G$ and $\mathscr{C}_K(H/N) = N$ then $\operatorname{Aut}_N^Z(G)$

Communicated by Shum Kar Ping.

Received: July 7, 2011; Revised: October 13, 2011.

is a split extension. The significance of this result is that every finite solvable group has a splitting quotient. Let G be a group and let N be an $\operatorname{Aut}^Z(G)$ -invariant subgroup of G. Then the natural action of $\operatorname{Aut}^Z(G)$ on N has $\operatorname{Aut}^Z_N(G)$ as its kernel and $\operatorname{Aut}^Z(G)/\operatorname{Aut}^Z_N(G)$ can be embedded in $\operatorname{Aut}^Z(N)$. Now according to the exact sequence

$$1 \longrightarrow \operatorname{Aut}_{N}^{Z}(G) \longrightarrow \operatorname{Aut}^{Z}(G) \longrightarrow \operatorname{Aut}^{Z}(G) / \operatorname{Aut}_{N}^{Z}(G) \longrightarrow 1,$$

the study of structure of $\operatorname{Aut}_{N}^{Z}(G)$ becomes more important. Clearly if all central automorphisms of G fix N pointwise, then $\operatorname{Aut}_{N}^{Z}(G) = \operatorname{Aut}^{Z}(G)$.

For an especial example, let

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times S_3,$$

the group 48#51 as quoted in "Small Group" library of GAP [10]. Then (by using GAP),

$$\operatorname{Aut}^{\mathbb{Z}}(G) \cong (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes PSL(3,2).$$

Consider the maximal subgroup $M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ of G and set $N = \operatorname{Core}_G(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. Then $\operatorname{Aut}_N^Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and

$$\operatorname{Aut}^{\mathbb{Z}}(G) / \operatorname{Aut}^{\mathbb{Z}}_{\mathbb{N}}(G) \cong PSL(3,2) \cong \operatorname{Aut}^{\mathbb{Z}}(\mathbb{N}).$$

Throughout the paper our notation is standard, and can be found in [9], for example.

2. Preliminaries

The aim of this section is to collect several facts and basic results that will be used in the rest of the paper. Let σ be a central automorphism of G. Clearly the map $f_{\sigma} : x \mapsto x^{-1}\sigma(x)$ defines a homomorphism from G into Z(G). On the other hand, the map $\sigma_f : x \mapsto xf(x)$ defines an endomorphism of G for all f in Hom(G, Z(G)). This endomorphism is a central automorphism if and only if $f(x) \neq x^{-1}$ for every x in $G - \{1\}$, because, $x \in \text{Ker}(\sigma_f)$ if and only if xf(x) = 1 or $f(x) = x^{-1}$, so x = 1. Also xf(x) = yf(y) implies the contradictory equality $f(x^{-1}y) = (x^{-1}y)^{-1}$, and so the set $\{xf(x) | x \in G\}$ is G. As any homomorphism $f : G \longrightarrow Z(G)$ induces a homomorphism $f : G/G' \longrightarrow Z(G)$, and vice versa, we see that

$$|\operatorname{Hom}(G, Z(G))| = |\operatorname{Hom}(G/G', Z(G))|$$

Throughout the paper *G* is a finite group, and π_H , π_K are the projection maps from $G = K \rtimes H$ into *H* and *K*, respectively. Also σ_H , σ_K are corresponding restrictions of σ on *H* and *K*, where $\sigma_H : H \longrightarrow G$ and $\sigma_K : K \longrightarrow G$. Now we set

$$R = \{\sigma_{H} | \sigma \in \operatorname{Aut}^{Z}(G)\}, \qquad S = \{\sigma_{K} | \sigma \in \operatorname{Aut}^{Z}(G)\}, T = \{\pi_{K}\sigma_{H} | \sigma \in \operatorname{Aut}^{Z}(G)\}, \qquad U = \{\pi_{H}\sigma_{K} | \sigma \in \operatorname{Aut}^{Z}(G)\}$$

Let *N* be a normal subgroup of *G* such that $G/N = K/N \rtimes H/N$ for some subgroups *K* and *H* of *G*, and let $L \leq Z(G)$. If $N \leq \text{Ker } f$ then every element *f* of Hom(H,L) induces an element \hat{f} of Hom(G,L), where $\hat{f}(kh) = f(h)$. Also if $N[H,K] \leq \text{Ker } f$, then every element *f* of Hom(K,L) induces an element \hat{f} of Hom(G,L), in the case we have

$$\hat{f}(h_1k_1h_2k_2) = \hat{f}(h_1h_2[h_2,k_1^{-1}]k_1k_2) = f([h_2,k_1^{-1}]k_1k_2) = f(k_1)f(k_2) = \hat{f}(k_1h_1)\hat{f}(k_2h_2).$$

Lemma 2.1. Let G be a finite group and $N \leq G$ such that $G/N = K/N \rtimes H/N$. For any subgroup $L \leq Z(G)$ we set

$$A = \{ f \in \operatorname{Hom}(H,L), N \leq \operatorname{Ker} f \},\$$

$$B = \{ f \in \operatorname{Hom}(K,L), N[H,K] \leq \operatorname{Ker} f \},\$$

$$\begin{aligned} A' &= \{ \sigma_{\hat{f}} | f \in \operatorname{Hom}(H,L), N \leqslant \operatorname{Ker} f \}, \\ B' &= \{ \sigma_{\hat{f}} | f \in \operatorname{Hom}(K,L), N[H,K] \leqslant \operatorname{Ker} f \}. \end{aligned}$$

Then we have

- (i) if G is purely non-abelian then A' and B' are subgroups of Aut^Z(G) of order |A| and |B| respectively,
- (ii) if $L \leq K \cap Z(G)$ then A' is a subgroup of $\operatorname{Aut}^{Z}(G)$ isomorphic to A,
- (iii) if $L \leq H \cap Z(G)$ then B' is a subgroup of $Aut^{Z}(G)$ isomorphic to B.

Proof. (i) Since G is a purely non-abelian, then $\sigma_{\hat{f}} \in \operatorname{Aut}^Z(G)$ in all cases. So we can easily see that A' and B' are subgroups of $\operatorname{Aut}^Z(G)$ of order |A| and |B| respectively.

(ii) Let g = kh for some $k \in K$ and $h \in H$. Then $\hat{f}(g) = g^{-1}$ implies that $f(h) = h^{-1}k^{-1}$, so $h \in N$ and f(h) = 1, therefore g = 1. Hence we can assume that $\hat{f}(g) \neq g^{-1}$ for all $1 \neq g \in G$, then $\sigma_{\hat{f}} \in \operatorname{Aut}^{Z}(G)$. Also

$$\begin{aligned} \sigma_{\hat{f}_1} \sigma_{\hat{f}_2}(g) &= \sigma_{\hat{f}_1}(g\hat{f}_2(g)) = g\hat{f}_2(g)\hat{f}_1(g)\hat{f}_1(\hat{f}_2(g)) \\ &= g\hat{f}_1(g)\hat{f}_2(g), \quad (\hat{f}_1(hk) = f_1(h) \& \hat{f}_2(g) \in L \leqslant K) \\ &= g(\hat{f}_1.\hat{f}_2)(g), \end{aligned}$$

hence $\sigma_{\hat{f}_1}\sigma_{\hat{f}_2} = \sigma_{\hat{f}_1,\hat{f}_2} \in A'$ for all $\sigma_{\hat{f}_1}, \sigma_{\hat{f}_2} \in A'$, therefore A' is a subgroup of $\operatorname{Aut}^Z(G)$. Now the mapping $f \longmapsto \sigma_{\hat{f}}$ is an isomorphism from A into A', and the result follows.

(iii) Follows similarly.

The following lemma is similar to that of [6, lemma 2.4]

Lemma 2.2. Let *G* be a finite group with a normal subgroup *N* such that $G/N = K/N \rtimes H/N$. Suppose that $A \leq H \cap Z(G)$ and $B \leq K \cap Z(G)$ with $A \cap B = 1$. We set

$$\begin{split} R_1 &= \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(H, A), N \leqslant \operatorname{Ker} f, \ f(x) \neq x^{-1}, \ x \in H \setminus \{1\}\}, \\ S_1 &= \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(K, B), N[H, K] \leqslant \operatorname{Ker} f, \ f(x) \neq x^{-1}, \ x \in K \setminus \{1\}\}, \\ T_1 &= \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(H, B), N \leqslant \operatorname{Ker} f \}, \\ U_1 &= \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(K, A), N[H, K] \leqslant \operatorname{Ker} f \}. \end{split}$$

Then

- (i) R_1 , S_1 , T_1 and U_1 are all subgroups of $\operatorname{Aut}^Z(G)$ having mutually trivial intersections,
- (ii) T_1 and U_1 are abelian and $[R_1, S_1] = 1$,
- (iii) $R_1 \cup S_1 \subseteq \mathscr{N}_{\operatorname{Aut}^Z(G)}(T_1) \cap \mathscr{N}_{\operatorname{Aut}^Z(G)}(U_1).$

Proof. (i) We only show that $R_1 \leq \operatorname{Aut}^Z(G)$, others are similar. At first, we prove that $\hat{f}(g) \neq g^{-1}$, which implies $\sigma_{\hat{f}} \in \operatorname{Aut}^Z(G)$. If $\hat{f}(g) = g^{-1}$ for some $1 \neq g = hk$, then $f(h) = k^{-1}h^{-1}$ which implies $hf(h) = k^{-1} \in N$. Now, from f(hf(h)) = 1 we have $f(f(h)) = (f(h))^{-1}$, which contradicts $1 \neq f(h) \in A \leq H$. Now we show that R_1 is closed under composition. To see that, let $\tau = \sigma_{\hat{f}_1} \sigma_{\hat{f}_2}$. So $\tau(x) = x\hat{f}_1(x)\hat{f}_2(x)\hat{f}_1(\hat{f}_2(x))$, hence $x^{-1}\tau(x) \in A$. Now, define $\hat{f}: G \to A$ with $\hat{f}(x) = x^{-1}\tau(x)$ and let f be the restriction of \hat{f} to H. Since for all $n \in N$, $\tau(n) = n$, then $f(n) = \hat{f}(n) = n^{-1}\tau(n) = 1$, and so $N \leq \operatorname{Ker}(f)$. Also, if $h^{-1} = f(h)$ then $h^{-1} = \hat{f}(h) = h^{-1}\tau(h)$ hence h = 1. Therefore $\tau = \sigma_{\hat{f}} \in R_1$.

I

For the second part, let $X \in \{A, B\}$ and $f \in \text{Hom}(H, X)$, then $\sigma_{\hat{f}}(k) = kf(1) = k$. Also for any $f \in \text{Hom}(K, X)$, $\sigma_{\hat{f}}(h) = hf(1) = h$. So for all σ in $R_1 \cap S_1$, $R_1 \cap U_1$ or $S_1 \cap T_1$, $\sigma(hk) = \sigma(h)\sigma(k) = hk$. Now, for $\sigma_{\hat{f}} \in R_1 \cap T_1$, $f(h) \in A \cap B = 1$. Thus, $\sigma(h) = h$ and $\sigma_{\hat{f}}(k) = kf(1) = k$, hence $\sigma_{\hat{f}}$ is an identity map. Similarly, one can show that $S_1 \cap U_1 = 1$.

(ii) Let $f_1, f_2 \in \text{Hom}(H, B)$. Since $B \leq K$ then for all $x \in G$, $\hat{f}_1(\hat{f}_2(x)) = \hat{f}_2(\hat{f}_1(x)) = 1$. Hence,

$$\sigma_{\hat{f}_1}\sigma_{\hat{f}_2}(x) = x\hat{f}_1(x)\hat{f}_2(x) = x\hat{f}_2(x)\hat{f}_1(x) = \sigma_{\hat{f}_2}\sigma_{\hat{f}_1}(x).$$

So T_1 is abelian. Similarly one can see that U_1 is abelian. Let $f \in \text{Hom}(H,A)$ and $g \in \text{Hom}(K,B)$. Then, $\hat{f}(\hat{g}(hk)) = \hat{f}(g(k)) = 1$ and $\hat{g}(\hat{f}(hk)) = \hat{g}(f(h)) = 1$. Therefore, $\sigma_{\hat{f}}\sigma_{\hat{g}}(x) = x\hat{g}(x)\hat{f}(x) = \sigma_{\hat{g}}\sigma_{\hat{f}}(x)$. Now, we have $\sigma_{\hat{f}}\sigma_{\hat{g}} = \sigma_{\hat{g}}\sigma_{\hat{f}}$.

(iii) Let $\sigma_{\hat{f}} \in R_1, \sigma_{\hat{\gamma}} \in T_1$, and set $\mu = \sigma_{\hat{f}}^{-1} \sigma_{\hat{\gamma}} \sigma_{\hat{f}}$. We have $K \leq \text{Ker } f_{\mu}$, because $\sigma_{\hat{f}}$ and $\sigma_{\hat{\gamma}}$ fix K elementwise. Now $\mu(x) = \sigma_{\hat{f}}^{-1}(\hat{\gamma}(\sigma_{\hat{f}}(x)))x = \hat{\gamma}(\sigma_{\hat{f}}(x))x$ for all $x \in G$, and $f_{\mu}(x) = x^{-1}\mu(x) \in B$. Thus $f_{\mu} \in \text{Hom}(H,B)$ and $N \leq \text{Ker } f_{\mu}$. Hence $\mu = \sigma_{\hat{f}_{\mu}} \in T_1$ and so R_1 normalizes T_1 . Next let $\sigma_{\hat{f}} \in R_1, \sigma_{\hat{\gamma}} \in U_1$, and set $\mu = \sigma_{\hat{f}}\sigma_{\hat{\gamma}}\sigma_{\hat{f}}^{-1}$. We find that $\mu(h) =$ h for all $h \in H$ because $\sigma_{\hat{\gamma}}$ fixes H elementwise. Therefore $H \leq \text{Ker } f_{\mu}$. Now $\mu(x) =$ $f(\gamma(\sigma_{\hat{f}}^{-1}(x)))\gamma(\sigma_{\hat{f}}^{-1}(x))x$ for all $x \in G$, and $f_{\mu}(x) = x^{-1}\mu(x) \in A$. Thus $f_{\mu} \in \text{Hom}(K,A)$ and $N[H,K] \leq \text{Ker } f_{\mu}$. Hence $\mu = \sigma_{\hat{f}_{\mu}} \in U_1$ and so R_1 normalizes U_1 , which completes the proof.

Lemma 2.3. If $G = K \rtimes H$ then $Z(G) \leq \mathscr{C}_K(H)Z(H)$. Furthermore, if Z(H) acts trivially on K then $Z(H) \leq Z(G)$ and $Z(G) = \mathscr{C}_{Z(K)}(H) \times Z(H)$.

The proof of above Lemma is obvious. Note that since Z(H) acts trivially on K, we have $\mathscr{C}_{Z(K)}(H) = K \cap Z(G)$ and $Z(H) = H \cap Z(G)$.

3. Main results

In this section we give the order and the structure of $\text{Aut}^{\mathbb{Z}}(G)$, where G is a semidirect product.

Theorem 3.1. Let $G = K \rtimes H$ be a semidirect product of groups H and K, where (|H|, |K|) = 1. 1. Then $\sigma_H \in \operatorname{Aut}^Z(H)$ and $\sigma_K \in \operatorname{Aut}^Z(K)$ for all σ in $\operatorname{Aut}^Z(G)$ and $\operatorname{Aut}^Z(G) \cong R \times S$ (defined as in page 3). Furthermore, if Z(H) acts trivially on K then $\operatorname{Aut}^Z(G) \cong \operatorname{Aut}^Z(H) \times S$. In particular, if $G = K \times H$ then $\operatorname{Aut}^Z(G) \cong \operatorname{Aut}^Z(H) \times \operatorname{Aut}^Z(K)$.

Proof. Let $\sigma \in \operatorname{Aut}^Z(G)$ and $k \in K$. Then $\sigma_K \in \operatorname{Aut}(K)$ and $k^{-1}\sigma(k) \in Z(G) \cap K \leq Z(K)$. Hence $\sigma_K \in \operatorname{Aut}^Z(K)$. Let $\sigma \in \operatorname{Aut}^Z(G)$ and $h \in H$. We may write $\sigma(h) = h'k$, where $h' \in H$ and $k \in K$. Then $h^{-1}h' \in Z(H)$ and $k \in \mathscr{C}_K(H)$. On letting |K| = t, we see that $\sigma(h^t) = h^{t'}$ for some $h' \in H$. Since for all $h \in H$ there exists an element $h_1 \in H$ such that $h = h_1^t$, we have $\sigma(h) \in H$. Hence H is an invariant subgroup under the central automorphism σ of G. Then $\sigma_H \in \operatorname{Aut}(H)$ and $h^{-1}\sigma(h) \in Z(G) \cap H \leq Z(H)$, hence $\sigma_H \in \operatorname{Aut}^Z(H)$.

On taking $A = Z(G) \cap H$, $B = Z(G) \cap K$, N = 1 and using Lemma 2.2, we find that $T_1 = 1$ and $U_1 = 1$. Also the subgroups R_1 and S_1 of $\operatorname{Aut}^Z(G)$ have trivial intersection. Now we show that $R \cong R_1$ and $S \cong S_1$. We define a map $\varphi : R_1 \to R$ by $\varphi(\sigma_{\hat{f}}) = \sigma_{\hat{f}}|_H$. Then φ is welldefined and is a homomorphism. Also if $\varphi(\sigma_{\hat{f}}) = 1$ then $\sigma_{\hat{f}}(hk) = \sigma_{\hat{f}}(h)\sigma_{\hat{f}}(k) = hk$ and $\sigma_{\hat{f}} = 1$. Furthermore, φ is surjective, because if $\sigma \in \operatorname{Aut}^Z(G)$, then on setting $\tau = \sigma_H \in R$, we have $f_{\tau} \in \operatorname{Hom}(H, Z(G) \cap H)$ and $f_{\tau}(h) \neq h^{-1}$ for every $h \in H - \{1\}$. Thus $\sigma_{\hat{f}_{\tau}} \in R_1$ and $\varphi(\sigma_{\hat{f}_{\tau}}) = \sigma_{\hat{f}_{\tau}}|_H = \tau$. It follows that φ is an isomorphism. Similarly we can see that $S \cong S_1$. Now it is easy to observe that the map $\theta : \operatorname{Aut}^Z(G) \to R \times S$ defined by $\theta(\sigma) = (\sigma_H, \sigma_K)$ is a monomorphism. We show that θ is surjective. To do this, we consider $\delta, \tau \in \operatorname{Aut}^Z(G)$ for which we have $\delta_H \in \operatorname{Aut}^Z(H)$ and $\tau_K \in \operatorname{Aut}^Z(K)$, since (|H|, |K|) = 1. Therefore $\delta_H \in R$ and $\tau_K \in S$. Now we define $\sigma(hk) = \delta(h)\tau(k)$, we can easily see that $\sigma \in \operatorname{Aut}^Z(G)$ and $\theta(\sigma) = (\delta, \tau)$. So θ is an isomorphism.

If Z(H) acts trivially on K then $Z(H) \leq Z(G)$ and $R = \operatorname{Aut}^{Z}(H)$, so $\operatorname{Aut}^{Z}(G) \cong \operatorname{Aut}^{Z}(H) \times S$. In particular, if $G = K \times H$ then $R = \operatorname{Aut}^{Z}(H)$, $S = \operatorname{Aut}^{Z}(K)$ and $\operatorname{Aut}^{Z}(G) \cong \operatorname{Aut}^{Z}(H) \times \operatorname{Aut}^{Z}(K)$.

Theorem 3.2. Let $G = K \rtimes H$ and $\mathscr{C}_K(H) = 1$. Then $\sigma_H \in \operatorname{Aut}^Z(H)$ and $\pi_H \sigma_K \in \operatorname{Hom}(K, Z(G) \cap H)$ for all σ in $\operatorname{Aut}^Z(G)$. Moreover, $\operatorname{Aut}^Z(G) \cong U \rtimes R$.

Proof. Let $\sigma \in \operatorname{Aut}^{Z}(G)$ and $h \in H$. Then $\sigma(h) = h_{1}k_{1}$ and $h^{-1}\sigma(h) = h^{-1}h_{1}k_{1} \in Z(G)$. Therefore from Lemma 2.3, $h^{-1}h_{1} \in Z(H)$ and $k_{1} \in \mathscr{C}_{K}(H) = 1$, and hence $\sigma_{H} \in \operatorname{Aut}^{Z}(H)$. Let $k \in K$, since $\mathscr{C}_{K}(H) = 1$, we have $\sigma(k) = hk$ and $\pi_{H}\sigma_{K} \in \operatorname{Hom}(K, Z(G) \cap H)$, where $h \in H$.

By taking $A = Z(G) \cap H$, N = 1 and using Lemma 2.2, we find that $T_1 = 1$ and $S_1 = 1$. Also the subgroups R_1 and U_1 of $\operatorname{Aut}^Z(G)$ have trivial intersection and $R_1 \leq \mathscr{N}_{\operatorname{Aut}^Z(G)}(U_1)$. By a similar argument given for Theorem 3.1, we have $R \cong R_1$. It is now sufficient to show $U \cong U_1$. We define the map $\varphi : U_1 \to U$ by $\varphi(\sigma_{\hat{f}}) = \pi_H \sigma_{\hat{f}}|_{\mathcal{K}}$. Clearly φ is well-defined. Furthermore, φ is a homomorphism because

$$\begin{split} \varphi(\sigma_{\hat{f}_{1}}\sigma_{\hat{f}_{2}})(k) &= \pi_{H}(\sigma_{\hat{f}_{1}}\sigma_{\hat{f}_{2}})(k) = \pi_{H}(k\hat{f}_{1}(k)\hat{f}_{2}(k)\hat{f}_{1}(\hat{f}_{2}(k))) \\ &= \hat{f}_{1}(k)\hat{f}_{2}(k) = (\varphi(\sigma_{\hat{f}_{1}})\varphi(\sigma_{\hat{f}_{2}}))(k). \end{split}$$

It is easy to check that φ is one-to-one. Also φ is surjective because if $\sigma \in \operatorname{Aut}^{\mathbb{Z}}(G)$, on setting $g = \pi_H \sigma_K \in U$, we have $g \in \operatorname{Hom}(K, \mathbb{Z}(G))$ and $[H, K] \leq \operatorname{Ker} g$. Thus $\sigma_{\hat{g}} \in U_1$ and $\varphi(\sigma_{\hat{g}}) = \pi_H \sigma_{\hat{g}}|_{K} = g$. Therefore φ is an isomorphism.

Now the map $\psi: U_1 \rtimes R_1 \to \operatorname{Aut}^Z(G)$ defined by $(\sigma_{\hat{\gamma}}, \sigma_{\hat{f}}) \mapsto \sigma_{\hat{f}} \sigma_{\hat{\gamma}}$ is one-to-one, and so $|R_1||U_1| \leq |\operatorname{Aut}^Z(G)|$.

Next we consider the map ϕ : Aut^{*Z*}(*G*) \rightarrow *U* \rtimes *R* defined by $\sigma \mapsto (\pi_H \sigma_K, \sigma_H)$. If $\phi(\sigma) = \phi(\tau)$ then $\pi_H \sigma_K = \pi_H \tau_K$ and $\sigma_H = \tau_H$. Thus for any $h \in H$ and $k \in K$, we have $\sigma(h) = \tau(h)$ and $\sigma(k) = \tau(k)$. Therefore ϕ is one-to-one and so $|\operatorname{Aut}^Z(G)| \leq |R| |U| = |R_1| |U_1|$. Hence $|\operatorname{Aut}^Z(G)| = |R| |U|$ and $\operatorname{Aut}^Z(G) \cong U \rtimes R$.

Theorem 3.3. Let $G = K \rtimes H$, where K is purely non-abelian and Z(H) acts trivially on K. Then $Aut^{Z}(G) \cong RTUS$.

Proof. We only show that $\pi_H \sigma_H \in \operatorname{Aut}^Z(H)$ and $\pi_K \sigma_K \in \operatorname{Aut}^Z(K)$, similarly we can see that $\pi_H \sigma_K \in \operatorname{Hom}(K, Z(H))$ and $\pi_K \sigma_H \in \operatorname{Hom}(H, Z(G) \cap K)$.

Let $\sigma \in \operatorname{Aut}^{Z}(G)$ and $k \in K$. We may write $\sigma(k) = k_{1}h_{1}$, where $k_{1} \in K$ and $h_{1} \in H$. Hence $k^{-1}k_{1}h_{1} \in Z(G)$. We have by Lemma 2.3, $k^{-1}k_{1} \in Z(K)$ and $h_{1} \in Z(H)$. We have $\pi_{K}\sigma_{K} \in \operatorname{Hom}(K,K)$ and $k^{-1}\pi_{K}\sigma(k) \in Z(G) \cap K \leq Z(K)$. Now define $f_{\sigma}: K \to Z(G) \cap K$ by $f_{\sigma}(k) = k^{-1}\pi_{\kappa}\sigma(k)$. Clearly f_{σ} is well-defined. Furthermore, f_{σ} is a homomorphism since

$$f_{\sigma}(kk') = k'^{-1}k^{-1}\pi_{\kappa}\sigma(kk') = k'^{-1}k^{-1}\pi_{\kappa}(\sigma(k)\sigma(k'))$$

= $k'^{-1}k^{-1}\pi_{\kappa}(h_{1}h_{1}h_{2}k_{2})$, (where $\sigma(k) = k_{1}h_{1}$ and $\sigma(k') = k_{2}h_{2}$),
= $k'^{-1}k^{-1}\pi_{\kappa}(h_{1}h_{2}k_{1}^{h_{2}}k_{2}) = k'^{-1}k^{-1}k_{1}^{h_{2}}k_{2}$
= $k'^{-1}k^{-1}k_{1}k_{2}$, (by Lemma 2.3 and this fact $h_{2} \in Z(H)$),
= $k^{-1}k_{1}k'^{-1}k_{2} = k^{-1}\pi_{\kappa}\sigma(k)k'^{-1}\pi_{\kappa}\sigma(k') = f_{\sigma}(k)f_{\sigma}(k')$.

Therefore, $\sigma_{f_{\sigma}} \in \operatorname{Aut}^{Z}(K)$ because *K* is purely non-abelian. Thus $\pi_{K}\sigma_{K} = \sigma_{f_{\sigma}} \in \operatorname{Aut}^{Z}(K)$. Next let $\sigma \in \operatorname{Aut}^{Z}(G)$ and $h \in H$. We may write $\sigma(h) = h_{1}k_{1}$, where $k_{1} \in K$ and $h_{1} \in H$. Then $h^{-1}h_{1} \in Z(H)$, and so $h^{-1}\pi_{H}\sigma(h) \in Z(H)$. Suppose that Ker $\pi_{H}\sigma_{H} \neq 1$; so $\pi_{H}\sigma(h) = 1$, for some $h \in H - \{1\}$. Therefore, there is a non-trivial element *k* in *K*, such that $\sigma(h) = k$. It follows that *k* belongs to the kernel of $\pi_{K}\sigma^{-1}{}_{K}$ contrary to the first part of the proof. Hence $\pi_{H}\sigma_{H} \in \operatorname{Aut}^{Z}(H)$. Similarly $\pi_{H}\sigma_{K} \in \operatorname{Hom}(K, Z(H))$ and $\pi_{K}\sigma_{H} \in \operatorname{Hom}(H, Z(G) \cap K)$.

By taking A = Z(H), $B = Z(G) \cap K$, N = 1 and using Lemma 2.2, we find that R_1, S_1 , T_1 and U_1 being subgroups of $\operatorname{Aut}^Z(G)$ have mutually trivial intersections. Also $R_1 \cup S_1 \subseteq \mathscr{N}_{\operatorname{Aut}^Z(G)}(T_1) \cap \mathscr{N}_{\operatorname{Aut}^Z(G)}(U_1)$. It is easy to see that $R \cong R_1, S \cong S_1, T \cong T_1$ and $U \cong U_1$.

We now consider the map $\phi : R_1 \times T_1 \times U_1 \times S_1 \longrightarrow \operatorname{Aut}^Z(G)$ defined by

$$(\sigma_{\hat{f}}, \sigma_{\hat{g}}, \sigma_u, \sigma_v) \mapsto \sigma_{\hat{f}} \sigma_{\hat{g}} \sigma_u \sigma_v.$$

Then ϕ is one-to-one. To see this, let $h \in H$ and $\sigma_{\hat{f}} \sigma_{\hat{g}} \sigma_{\hat{u}} \sigma_{\hat{v}}(h) = \sigma_{\hat{f}'} \sigma_{\hat{g}'} \sigma_{\hat{u}'} \sigma_{\hat{v}'}(h)$. Then we have $\sigma_{\hat{f}}(h\sigma_{\hat{g}}(h)) = \sigma_{\hat{f}'}(h\sigma_{\hat{v}'}(h))$, which implies that

$$\hat{f'}^{-1}(h)\hat{f}(h) = \hat{g}(h)\hat{g'}^{-1}(h) \in H \cap K = 1.$$

Hence $\hat{f} = \hat{f}'$ and $\hat{g} = \hat{g}'$. Therefore $\sigma_{\hat{f}} = \sigma_{\hat{f}'}$ and $\sigma_{\hat{g}} = \sigma_{\hat{g}'}$. Now let $k \in K$ and $\sigma_{\hat{f}} \sigma_{\hat{g}} \sigma_{\hat{u}} \sigma_{\hat{v}}(k) = \sigma_{\hat{f}'} \sigma_{\hat{o}'} \sigma_{\hat{u}'} \sigma_{\hat{v}'}(k)$. It follows that $\sigma_{\hat{u}} \sigma_{\hat{v}}(k) = \sigma_{\hat{u}'} \sigma_{\hat{v}'}(k)$. So

$$\hat{v}(k)\hat{v'}^{-1}(k) = \hat{u'}(k)\hat{u'}(\hat{v'}(k))\hat{u}(\hat{v}(k))^{-1}\hat{u}^{-1}(k) \in H \cap K = 1.$$

Therefore, $\sigma_{\hat{u}} = \sigma_{\hat{u}'}$ and $\sigma_{\hat{v}} = \sigma_{\hat{v}'}$, so $|R_1||T_1||U_1||S_1| \leq |\operatorname{Aut}^Z(G)|$.

Now we define a map φ : Aut^{*Z*}(*G*) \longrightarrow *R* × *T* × *U* × *S* by

$$\boldsymbol{\sigma}\mapsto (\boldsymbol{\pi}_{\!_{H}}\boldsymbol{\sigma}_{\!_{H}}, \boldsymbol{\pi}_{\!_{K}}\boldsymbol{\sigma}_{\!_{H}}, \boldsymbol{\pi}_{\!_{H}}\boldsymbol{\sigma}_{\!_{K}}, \boldsymbol{\pi}_{\!_{K}}\boldsymbol{\sigma}_{\!_{K}}).$$

Clearly φ is well-defined. Also if $\varphi(\sigma) = \varphi(\tau)$ then

$$(\pi_H \sigma_H, \pi_K \sigma_H, \pi_H \sigma_K, \pi_K \sigma_K) = (\pi_H \tau_H, \pi_K \tau_H, \pi_H \tau_K, \pi_K \tau_K).$$

Let $h \in H$, $\sigma(h) = h_1k_1$ and $\tau(h) = h_2k_2$. Then $h_1 = h_2$, $k_1 = k_2$ and $\sigma(h) = \tau(h)$. Similarly, we have $\sigma(k) = \tau(k)$ for all $k \in K$. Thus $\sigma = \tau$ and φ is one-to-one, and hence $|\operatorname{Aut}^Z(G)| \le |R||T||U||S|$. Therefore, $|\operatorname{Aut}^Z(G)| = |R||T||U||S|$ and $\operatorname{Aut}^Z(G) \cong RTUS$.

Theorem 3.4. Let G = HK, where K is a normal subgroup of G and $N = H \cap K$ is invariant under the central automorphisms of G. If $N \leq G$ and $\mathscr{C}_K(H/N) = N$, then $\operatorname{Aut}_N^Z(G) \cong$ $U' \rtimes R'$, where $R' = \{\sigma_H | \sigma \in \operatorname{Aut}_N^Z(G)\}$ and $U' = \{f_{\sigma_K} | \sigma \in \operatorname{Aut}_N^Z(G)\}$. *Proof.* Since $\sigma(N) \leq N$, every $\sigma \in \operatorname{Aut}^Z(G)$ induces an automorphism $\sigma^* \in \operatorname{Aut}^Z(G/N)$. Also we have $\mathscr{C}_{K/N}(H/N) = N$. Now by Theorem 3.2, $\sigma^*|_{H/N} \in \operatorname{Aut}^Z(H/N)$, and we see that $\sigma_H \in \operatorname{Aut}^Z(H)$ and $\sigma^*(kN) = kNhN$. So $\sigma(k)N = khN$ and $k^{-1}\sigma(k) = hn \in H$. The map $f_{\sigma_K} : K \longrightarrow Z(G) \cap H$ defined by $k \longmapsto k^{-1}\sigma(k)$ is a homomorphism.

On taking $A = Z(G) \cap H$ and using Lemma 2.2, R_1 and U_1 being subgroups of Aut^Z(G) have trivial intersection. We have $R' \cong R_1$ and $U' \cong U_1$. It is easy to see that the map

$$\psi: U_1 \rtimes R_1 \to \operatorname{Aut}_N^Z(G)$$

defined by $(\sigma_{\hat{f}}, \sigma_{\hat{\gamma}}) \mapsto \sigma_{\hat{f}} \sigma_{\hat{\gamma}}$ is one-to-one, so that $|R_1||U_1| \leq |\operatorname{Aut}_N^Z(G)|$. Next we consider the map $\phi : \operatorname{Aut}_N^Z(G) \to U' \rtimes R'$ defined by $\sigma \mapsto (f_{\sigma_K}, \sigma_H)$. If $\phi(\sigma) = \phi(\tau)$, then $f_{\sigma_K} = f_{\tau_K}$ and $\sigma_H = \tau_H$. Thus for every $h \in H$ and $k \in K$, we have $\sigma(h) = \tau(h)$ and $\sigma(k) = \tau(k)$. Therefore, ϕ is one-to-one, and hence $|\operatorname{Aut}_N^Z(G)| \leq |R'||U'| = |R_1||U_1|$. Therefore, $|\operatorname{Aut}_N^Z(G)| = |R'||U'|$ and $\operatorname{Aut}_N^Z(G) \cong U' \rtimes R'$.

Corollary 3.1. Let N be a normal subgroup of G such that $G/N = K/N \rtimes H/N$ and (|H/N|, |K/N|) = 1. If N is invariant under $\operatorname{Aut}^Z(G)$, then $\sigma_H \in \operatorname{Aut}^Z(H)$ and $\sigma_K \in \operatorname{Aut}^Z(K)$ for all σ in $\operatorname{Aut}^Z(G)$. Moreover, $\operatorname{Aut}^Z_N(G) \cong R' \times S'$, where $R' = \{\sigma_H | \sigma \in \operatorname{Aut}^Z_N(G)\}$ and $S' = \{\sigma_K | \sigma \in \operatorname{Aut}^Z_N(G)\}$.

Proof. Since *N* is invariant under $\operatorname{Aut}^{Z}(G)$, every $\sigma \in \operatorname{Aut}^{Z}(G)$ induces an automorphism $\sigma^{*} \in \operatorname{Aut}^{Z}(G/N)$. We have (|H/N|, |K/N|) = 1, now by Theorem 3.1, $\sigma^{*}|_{H/N} \in \operatorname{Aut}^{Z}(H/N)$ and $\sigma^{*}|_{K/N} \in \operatorname{Aut}^{Z}(K/N)$, and we see that $\sigma_{H} \in \operatorname{Aut}^{Z}(H)$ and $\sigma_{K} \in \operatorname{Aut}^{Z}(K)$. By a similar argument given for Theorem 3.1, we have $\operatorname{Aut}^{Z}(G) \cong R' \times S'$.

4. Applications

Let *G* be a finite solvable group and *M* be a non-normal maximal subgroup of *G*. Then $G/C = L/C \rtimes M/C$, where $C = \text{Core}_G(M)$ and L/C is an elementary abelian group. If (|M/C|, |C|) = 1, then $G = L \rtimes M_1$, where $M_1 \leq M$. Furthermore, if (|M/C|, |L/C|) = 1, then $(|L|, |M_1|) = 1$. Now by Theorem 3.1, we have $\text{Aut}^Z(G) \cong R \times S$.

Let *G* be a finite solvable group. By [8, Proposition 4.9], we see that *G* has a maximal subgroup *M* such that in all must all cases, M/C becomes abelian, and hence (|M/C|, |L/C|) = 1 holds.

Theorem 4.1. Let G be a finite solvable group and let M be a non-normal maximal subgroup of G such that M/C is abelian, where $C = \text{Core}_G(M)$. If (|L/C|, |C|) = 1, then $\text{Aut}^Z(G) \cong R$, where $R = \{\sigma_M | \sigma \in \text{Aut}^Z(G)\}$.

Proof. We have $G' \leq L$ because $G/L \cong M/C$ is abelian, also L/C = [L/C, M/C] hence $L = [L, M]C \leq G'C \leq L$, therefore L = CG'. Since $G' \cap M \leq G' \cap C$,

$$G/(G' \cap C) = (G'M)/(G' \cap C) \cong G'/(G' \cap C) \rtimes M/(G' \cap C).$$

Now since *p* does not divide |M/C| and |C|, so $p \nmid |M|$ also $G'/(G' \cap C) \cong L/C$ is of order of a power of *p*, therefore $(|G'/(G' \cap C)|, |M/(G' \cap C)|) = 1$, and we see that $\operatorname{Aut}^{\mathbb{Z}}(G) \cong \mathbb{R}$.

Theorem 4.2. Let G be a finite solvable group and let M be a non-normal maximal subgroup of index p^t . Then

(i) $\operatorname{Aut}_{C}^{Z}(G) \cong U' \rtimes R'$, where $C = \operatorname{Core}_{G}(M)$,

(ii) if M/C is abelian, then $\operatorname{Aut}_C^Z(G) \cong R' \times S'$, where R' is abelian and S' is elementary abelian of order $|\Omega_1(P)|^t$, where P is a Sylow p-subgroup of Z(G).

Proof. (i) We have $G/C = L/C \rtimes M/C$, where $C = \text{Core}_G(M)$ and L/C is elementary abelian. Thus *C* is invariant under $\text{Aut}^Z(G)$ and $\mathscr{C}_{L/C}(M/C) = C$. On taking M = H, L = K and C = N, now Theorem 3.4 completes the proof.

(ii) Since M/C is abelian, (|M/C|, |L/C|) = 1. By taking

$$R_1 = \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(M, Z(G)), C \leq \operatorname{Ker} f, f(m) \neq m^{-1}, m \in M \setminus \{1\}\},\$$

$$S_1 = \{\sigma_{\hat{f}} | f \in \operatorname{Hom}(L, Z(G)), C[M, L] \leq \operatorname{Ker} f, f(l) \neq l^{-1}, l \in L \setminus \{1\}\}.$$

and using Corollary 3.1, we have $R_1 \cong R'$, $S_1 \cong S'$ and $\operatorname{Aut}_C^Z(G) \cong R' \times S'$. The subgroup R_1 is abelian because for all $\sigma_{\hat{f}}, \sigma_{\hat{h}} \in R_1$ and $g = ml \in G$, where $m \in M$ and $l \in L$, we have

$$\sigma_{\hat{f}}\sigma_{\hat{h}}(g) = \sigma_{\hat{f}}\sigma_{\hat{h}}(ml) = \sigma_{\hat{f}}(ml\,h(m)) = ml\,h(m)f(m) \quad (\text{since } h(m) \in Z(G) \leq C)$$
$$= \sigma_{\hat{h}}\sigma_{\hat{f}}(g).$$

Similarly the subgroup S_1 is abelian. Also for all $\sigma_{\hat{f}} \in S_1$ and $g = ml \in G$, where $m \in M$ and $l \in L$, we have $(\sigma_{\hat{f}})^p (ml) = ml(\hat{f}(ml))^p = mlf(l^p) = ml$ because L/C is elementary abelian. Hence R' is abelian and S' is elementary abelian.

Example 4.1. Let $G = ((\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9) \rtimes \mathbb{Z}_3$, consider the maximal subgroup $M = \mathbb{Z}_9 \rtimes \mathbb{Z}_3$ of *G*. Then (by using GAP),

$$C = \operatorname{Core}_G(M) = \mathbb{Z}_3 \times \mathbb{Z}_3, \ Z(G) = \mathbb{Z}_3, \ M/C = \mathbb{Z}_3 \ and \ L/C = \mathbb{Z}_2 \times \mathbb{Z}_2.$$

Since (|L/C|, |Z(G)|) = 1, $S' \cong S_1 = \{1\}$. Furthermore $R' \cong R_1 \cong \mathbb{Z}_3$ because,

$$\operatorname{Hom}(M/C, Z(G)) = \operatorname{Hom}(\mathbb{Z}_3, \mathbb{Z}_3) \cong \mathbb{Z}_3.$$

The group G satisfies the conditions of Theorem 4.2(ii). That is $\operatorname{Aut}^{\mathbb{Z}}(G) \cong \mathbb{Z}_3 \times \mathbb{Z}_3$, $\operatorname{Aut}^{\mathbb{Z}}_{\mathbb{C}}(G) \cong \mathbb{Z}_3$ and $\operatorname{Aut}^{\mathbb{Z}}(G) / \operatorname{Aut}^{\mathbb{Z}}_{\mathbb{C}}(G) \cong \mathbb{Z}_3$.

References

- [1] J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137–143.
- [2] M. S. Attar, c-characteristically simple groups, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 147–154.
- [3] M. J. Curran and D. J. McCaughan, Central automorphisms that are almost inner, *Comm. Algebra* 29 (2001), no. 5, 2081–2087.
- [4] W. Guo, X. Feng and J. Huang, New characterizations of some classes of finite groups, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 3, 575–589.
- [5] M.-H. Jafari and A.-R. Jamali, On the nilpotency and solubility of the central automorphism group of a finite group, *Algebra Collog.* 15 (2008), no. 3, 485–492.
- [6] M.-H. Jafari and A.-R. Jamali, On the occurrence of some finite groups in the central automorphism group of finite groups, *Math. Proc. R. Ir. Acad.* 106A (2006), no. 2, 139–148 (electronic).
- [7] A.-R. Jamali and H. Mousavi, On the central automorphism groups of finite *p*-groups, Algebra Colloq. 9 (2002), no. 1, 7–14.
- [8] A.-R. Jamali and H. Mousavi, A note on the σ-covers of finite soluble groups, Algebra Colloq. 12 (2005), no. 4, 691–697.
- [9] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, New York, 1982.
- [10] The GAP Group. GAP Groups, Algorithms and Programing, Version 4.4; (2005).

716