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Abstract. In this paper, by using the coincidence degree theory, we consider the following
two-point boundary value problem for fractional differential equation{

Dα

0+ x(t) = f (t,x(t),x′(t)), t ∈ [0,1],
x(0) = 0, x′(0) = x′(1),

where Dα

0+ denotes the Caputo fractional differential operator of order α , 1 < α ≤ 2. A new
result on the existence of solutions for above fractional boundary value problem is obtained.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration on an ar-
bitrary order that can be noninteger. This subject, as old as the problem of ordinary dif-
ferential calculus, can go back to the times when Leibniz and Newton invented differential
calculus. As is known to all, the problem for fractional derivative was originally raised by
Leibniz in a letter, dated September 30, 1695. In recent years, the fractional differential
equations have received more and more attention. The fractional derivative has been occur-
ring in many physical applications such as a non-Markovian diffusion process with mem-
ory [17], charge transport in amorphous semiconductors [20], propagations of mechanical
waves in viscoelastic media [15], etc. Phenomena in electromagnetics, acoustics, viscoelas-
ticity, electrochemistry and material science are also described by differential equations of
fractional order (see [4, 6, 7, 14, 18, 19]).

Recently boundary value problems (BVPs for short) for fractional differential equations
at nonresonance have been studied in many papers (see [1–3, 8, 9, 12, 13, 21]). Moreover,
the BVPs for differential equations at resonance have also been studied in some papers
(see [5,10]). Motivated by the work above, in this paper, we consider the following BVP of
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fractional equation at resonance

(1.1)

{
Dα

0+x(t) = f (t,x(t),x′(t)), t ∈ [0,1],
x(0) = 0, x′(0) = x′(1),

where Dα

0+ denotes the Caputo fractional differential operator of order α , 1 < α ≤ 2. f :
[0,1]×R2→×R is continuous.

The rest of this paper is organized as follows. Section 2 contains some necessary nota-
tions, definitions and lemmas. In Section 3, we establish a theorem on existence of solutions
for BVP (1.1) under nonlinear growth restriction of f , basing on the coincidence degree the-
ory due to Mawhin (see [16]). Finally, in Section 4, an example is given to illustrate the main
result.

2. Preliminaries

In this section, we will introduce notations, definitions and preliminary facts which are used
throughout this paper. Let X and Y be real Banach spaces and let L : domL ⊂ X → Y be a
Fredholm operator with index zero, and P : X → X , Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL, X = KerL⊕KerP, Y = ImL⊕ ImQ.

It follows that
L|domL∩KerP : domL∩KerP→ ImL

is invertible. We denote the inverse by KP.
If Ω is an open bounded subset of X , and domL∩Ω 6= ∅, the map N : X → Y will be

called L−compact on Ω if QN(Ω) is bounded and KP(I−Q)N : Ω→ X is compact.

Lemma 2.1. [16] Let L : domL ⊂ X → Y be a Fredholm operator of index zero and N :
X → Y L−compact on Ω. Assume that the following conditions are satisfied

(1) Lx 6= λNx for every (x,λ ) ∈ [(domL\KerL)]∩∂Ω× (0,1);
(2) Nx 6∈ ImL for every x ∈ KerL∩∂Ω;
(3) deg(QN|KerL,KerL∩Ω,0) 6= 0, where Q : Y → Y is a projection such that ImL =

KerQ.
Then the equation Lx = Nx has at least one solution in domL∩Ω.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0 of a
function x : (0,+∞)→ R is given by

Iα

0+x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds,

provided that the right side integral is pointwise defined on (0,+∞).

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function
x : (0,+∞)→ R is given by

Dα

0+x(t) = In−α

0+
dnx(t)

dtn =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1x(n)(s)ds,

where n is the smallest integer greater than or equal to α , provided that the right side
integral is pointwise defined on (0,+∞).
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Lemma 2.2. [11] For α > 0, the general solution of the Caputo fractional differential
equation

Dα

0+x(t) = 0
is given by

x(t) = c0 + c1t + c2t2 + ...+ cn−1tn−1,

where ci ∈ R, i = 0,1,2, ...,n−1, here n is the smallest integer greater than or equal to α .

Lemma 2.3. [11] Assume that x ∈C(0,1)∩L(0,1) with a Caputo fractional derivative of
order α > 0 that belongs to C(0,1)∩L(0,1). Then

Iα

0+Dα

0+x(t) = x(t)+ c0 + c1t + c2t2 + ...+ cn−1tn−1

where ci ∈ R, i = 0,1,2, ...,n−1, here n is the smallest integer greater than or equal to α .

In this paper, we denote X = C1[0,1] with the norm ‖x‖X = max{‖x‖∞,‖x′‖∞} and Y =
C[0,1] with the norm ‖y‖Y = ‖y‖∞, where ‖x‖∞ = maxt∈[0,1] |x(t)|. Obviously, both X and
Y are Banach spaces. Define the operator L : domL⊂ X → Y by

(2.1) Lx = Dα

0+x,

where
domL = {x ∈ X |Dα

0+x(t) ∈ Y, x(0) = 0,x′(0) = x′(1)}.
Let N : X → Y be the Nemytskii operator

Nx(t) = f (t,x(t),x′(t)), ∀t ∈ [0,1].

Then BVP (1.1) is equivalent to the operator equation

Lx = Nx, x ∈ domL.

3. Main result

In this section, a theorem on existence of solutions for BVP (1.1) will be given.

Theorem 3.1. Let f : [0,1]×R2→ R be continuous. Assume that
(H1) there exist nonnegative functions p,q,r ∈C[0,1] with Γ(α)−2q1−2r1 > such that

| f (t,u,v)| ≤ p(t)+q(t)|u|+ r(t)|v|, ∀ t ∈ [0,1], (u,v) ∈ R2,

where p1 = ‖p‖∞, q1 = ‖q‖∞, r1 = ‖r‖∞.
(H2) there exists a constant B > 0 such that for all v ∈ R with |v|> B either

v f (t,u,v) > 0, ∀ t ∈ [0,1], u ∈ R
or

v f (t,u,v) < 0, ∀ t ∈ [0,1], u ∈ R.

Then BVP (1.1) has at leat one solution in X.

Now, we begin with some lemmas below.

Lemma 3.1. Let L be defined by (2.1), then

KerL = {x ∈ X |x(t) = c1t, c1 ∈ R, ∀t ∈ [0,1]},(3.1)

ImL =
{

y ∈ Y |
∫ 1

0
(1− s)α−2y(s)ds = 0

}
.(3.2)
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Proof. By Lemma 2.2, Dα

0+x(t) = 0 has solution

x(t) = c0 + c1t, c0,c1 ∈ R.

Combining with the boundary value condition of BVP (1.1), one has (3.1) hold.
For y ∈ ImL, there exists x ∈ domL such that y = Lx ∈ Y . By Lemma 2.3, we have

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds+ c0 + c1t.

Then, we have

x′(t) =
1

Γ(α−1)

∫ t

0
(t− s)α−2y(s)ds+ c1.

By conditions of BVP (1.1), we can get that y satisfies∫ 1

0
(1− s)α−2y(s)ds = 0.

Thus we get (3.2). On the other hand, suppose y ∈ Y and satisfies
∫ 1

0 (1− s)α−2y(s)ds = 0.
Let x(t) = Iα

0+y(t), then x ∈ domL and Dα

0+x(t) = y(t). So that, y ∈ ImL.

Lemma 3.2. Let L be defined by (2.1), then L is a Fredholm operator of index zero, and the
linear continuous projector operators P : X → X and Q : Y → Y can be defined as

Px(t) = x′(0)t, ∀t ∈ [0,1],

Qy(t) = (α−1)
∫ 1

0
(1− s)α−2y(s)ds, ∀t ∈ [0,1].

Furthermore, the operator KP : ImL→ domL∩KerP can be written by

KPy(t) =
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds, ∀t ∈ [0,1].

Proof. Obviously, ImP = KerL and P2x = Px. It follows from x = (x−Px)+ Px that X =
KerP+KerL. By simple calculation, we can get that KerL∩KerP = {0}. Then we get

X = KerL⊕KerP.

For y ∈ Y , we have

Q2y = Q(Qy) = Qy(α−1)
∫ 1

0
(1− s)α−2ds = Qy.

Let y = (y−Qy)+Qy, where y−Qy∈KerQ = ImL, Qy∈ ImQ. It follows from KerQ = ImL
and Q2y = Qy that ImQ∩ ImL = {0}. Then, we have

Y = ImL⊕ ImQ.

Thus
dim KerL = dim ImQ = codim ImL = 1.

This means that L is a Fredholm operator of index zero.
From the definitions of P,KP, it is easy to see that the generalized inverse of L is KP. In

fact, for y ∈ ImL, we have

(3.3) LKPy = Dα

0+Iα

0+y = y.

Moreover, for x ∈ domL∩KerP, we get x′(0) = x(0) = 0. By Lemma 2.3, we obtain that

Iα

0+Lx(t) = Iα

0+Dα

0+x(t) = x(t)+ c0 + c1t, c0, c1 ∈ R,
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which together with x′(0) = x(0) = 0 yields that

(3.4) KPLx = x.

Combining (3.3) with (3.4), we know that KP = (L|domL∩KerP)−1.

Lemma 3.3. Assume Ω⊂ X is an open bounded subset such that domL∩Ω 6= ∅, then N is
L-compact on Ω.

Proof. By the continuity of f , we can get that QN(Ω) and KP(I−Q)N(Ω) are bounded.
So, in view of the Arzelà-Ascoli theorem, we need only prove that KP(I−Q)N(Ω) ⊂ X is
equicontinuous.

From the continuity of f , there exists constant A > 0 such that |(I−Q)Nx| ≤ A, ∀x ∈
Ω, t ∈ [0,1]. Furthermore, denote KP,Q = KP(I−Q)N and for 0 ≤ t1 < t2 ≤ 1, x ∈ Ω, we
have

|(KP,Qx)(t2)− (KP,Qx)(t1)|

≤ 1
Γ(α)

∣∣∣∣∫ t2

0
(t2− s)α−1(I−Q)Nx(s)ds−

∫ t1

0
(t1− s)α−1(I−Q)Nx(s)ds

∣∣∣∣
≤ A

Γ(α)

[∫ t1

0
(t2− s)α−1− (t1− s)α−1ds+

∫ t2

t1
(t2− s)α−1ds

]
=

A
Γ(α +1)

(tα
2 − tα

1 )

and

|(KP,Qx)′(t2)− (KP,Qx)′(t1)|

=
α−1
Γ(α)

∣∣∣∣∫ t2

0
(t2− s)α−2(I−Q)Nx(s)ds−

∫ t1

0
(t1− s)α−2(I−Q)Nx(s)ds

∣∣∣∣
≤ A

Γ(α−1)

[∫ t1

0
(t1− s)α−2− (t2− s)α−2ds+

∫ t2

t1
(t2− s)α−2ds

]
≤ A

Γ(α)
[tα−1

2 − tα−1
1 +2(t2− t1)α−1].

Since tα and tα−1 are uniformly continuous on [0,1], we can get that KP,Q(Ω)⊂C[0,1] and
(KP,Q)′(Ω)⊂C[0,1] are equicontinuous. Thus, we get that KP,Q : Ω→ X is compact.

Lemma 3.4. Suppose (H1),(H2) hold, then the set

Ω1 = {x ∈ domL\KerL | Lx = λNx, λ ∈ (0,1)}

is bounded.

Proof. Take x ∈Ω1, then Nx ∈ ImL. By (3.2), we have∫ 1

0
(1− s)α−2 f (s,x(s),x′(s))ds = 0.

Then, by the integral mean value theorem, there exists a constant ξ ∈ (0,1) such that
f (ξ ,x(ξ ),x′(ξ )) = 0. Then from (H2), we have |x′(ξ )| ≤ B.

From x ∈ domL, we get x(0) = 0. Therefore

|x(t)|=
∣∣∣∣x(0)+

∫ t

0
x′(s)ds

∣∣∣∣≤ ‖x′‖∞.
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That is

(3.5) ‖x‖∞ ≤ ‖x′‖∞.

By Lx = λNx, we have

x(t) =
λ

Γ(α)

∫ t

0
(t− s)α−1 f (s,x(s),x′(s))ds+ x(0)+ x′(0)t, t ∈ [0,1].

Then we get

x′(t) =
λ

Γ(α−1)

∫ t

0
(t− s)α−2 f (s,x(s),x′(s))ds+ x′(0), t ∈ [0,1].

Take t = ξ , we get

x′(ξ ) =
λ

Γ(α−1)

∫
ξ

0
(ξ − s)α−2 f (s,x(s),x′(s))ds+ x′(0).

Together with |x′(ξ )| ≤ B , (H1) and (3.6), we have

|x′(0)| ≤ |x′(ξ )|+ λ

Γ(α−1)

∫
ξ

0
(ξ − s)α−2| f (s,x(s),x′(s))|ds

≤ B+
1

Γ(α−1)

∫
η

0
(ξ − s)α−2[p(s)+q(s)|x(s)|+ r(s)|x′(s)|]ds

≤ B+
1

Γ(α−1)

∫
ξ

0
(ξ − s)α−2[p1 +q1‖x‖∞ + r1‖x′‖∞]ds

≤ B+
1

Γ(α−1)

∫
ξ

0
(ξ − s)α−2[p1 +(q1 + r1)‖x′‖∞]ds

≤ B+
1

Γ(α)
[p1 +(q1 + r1)‖x′‖∞].

So, we have

‖x′‖∞ ≤
1

Γ(α−1)

∫ t

0
(t− s)α−2| f (s,x(s),x′(s))|ds+ |x′(0)|

≤ 1
Γ(α−1)

∫ t

0
(t− s)α−2[p(s)+q(s)|x(s)|+ r(s)|x′(s)|]ds+ |x′(0)|

≤ 1
Γ(α−1)

∫ t

0
(t− s)α−2[p1 +q1‖x‖∞ + r1‖x′‖∞]ds+ |x′(0)|

≤ 1
Γ(α−1)

∫ t

0
(t− s)α−2[p1 +(q1 + r1)‖x′‖∞]ds+ |x′(0)|

≤ B+
2

Γ(α)
[p1 +(q1 + r1)‖x′‖∞].

Thus, from Γ(α)−2q1−2r1 > 0, we obtain that

‖x′‖∞ ≤
BΓ(α)+2p1

Γ(α)−2q1−2r1
:= M1, and ‖x‖∞ ≤ ‖x′‖∞ ≤M1

Therefore, ‖x‖X ≤M1. So Ω1 is bounded.
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Lemma 3.5. Suppose (H2) holds, then the set

Ω2 = {x|x ∈ KerL, Nx ∈ ImL}

is bounded.

Proof. For x ∈Ω2, we have x(t) = ct, c ∈ R, and Nx ∈ ImL. Then we get∫ 1

0
(1− s)α−2 f (s,cs,c)ds = 0,

which together with (H2) implies |c| ≤ B. Thus, we have ‖x‖X ≤ B. Hence, Ω2 is bounded.

Lemma 3.6. Suppose the first part of (H2) holds, then the set

Ω3 = {x|x ∈ KerL, λx+(1−λ )QNx = 0, λ ∈ [0,1]}

is bounded.

Proof. For x ∈Ω3, we have x(t) = ct, c ∈ R, and

(3.6) λct +(1−λ )(α−1)
∫ 1

0
(1− s)α−2 f (s,cs,c)ds = 0.

If λ = 0, then |c| ≤ B because of the first part of (H2). If λ ∈ (0,1], we can also obtain
|c| ≤ B. Otherwise, if |c|> B, in view of the first part of (H2), one has

λc2t +(1−λ )(α−1)
∫ 1

0
(1− s)α−2c f (s,cs,c)ds > 0,

which contradicts to (3.6). Therefore, Ω3 is bounded. The proof is complete.

Remark 3.1. Suppose the second part of (H2) hold, then the set

Ω
′
3 = {x|x ∈ KerL, −λx+(1−λ )QNx = 0, λ ∈ [0,1]}

is bounded.

The proof of Theorem 3.1. Set Ω = {x∈X |‖x‖X < max{M1,B}+1}. It follows from Lemma
3.2 and 3.3 that L is a Fredholm operator of index zero and N is L-compact on Ω. By Lemma
3.4 and 3.5, we get that the following two conditions are satisfied

(1) Lx 6= λNx for every (x,λ ) ∈ [(domL\KerL)∩∂Ω]× (0,1);
(2) Nx /∈ ImL for every x ∈ KerL∩∂Ω.

Take
H(x,λ ) =±λx+(1−λ )QNx.

According to Lemma 3.6 (or Remark 3.1), we know that H(x,λ ) 6= 0 for x ∈ KerL∩ ∂Ω.
Therefore

deg(QN|KerL,Ω∩KerL,0) = deg(H(·,0),Ω∩KerL,0) = deg(H(·,1),Ω∩KerL,0)

= deg(±I,Ω∩KerL,0) 6= 0.

So that, the condition (3) of Lemma 2.1 is satisfied. By Lemma 2.1, we can get that Lx = Nx
has at least one solution in domL∩Ω. Therefore the BVP (1.1) has at least one solution.
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4. An example

Example 4.1. Consider the following BVP

(4.1)

{
D

3
2
0+x(t) = 1

4 (x′(t)−10)+ t
2 e−|x(t)|, t ∈ [0,1]

x(0) = 0, x′(0) = x′(1)

Where

f (t,u,v) =
1
4
(v−10)+

t
2

e−|u|.

Choose p(t) = 11/4, q(t) = 0, r(t) = 1/4, B = 10. We can get that q1 = 0, r1 = 1/4 and

Γ

(
3
2

)
−2q1−2r1 > 0.

Then, all conditions of Theorem hold, so BVP (4.1) has at least one solution.
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