A Note on F-Weak Multiplication Modules

${ }^{1}$ Hamid Agha Tavallaee, ${ }^{2}$ Mansoureh Mahtabi Oghani, and ${ }^{3}$ Robabeh Mahtabi Oghani
${ }^{1}$ Department of Mathematics, Tehran-North Branch, Islamic Azad University, Tehran, Iran
${ }^{2}$ Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
${ }^{3}$ Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
${ }^{1}$ tavallaee@iust.ac.ir, ${ }^{2}$ mansourehmahtabi@gmail.com, ${ }^{3}$ r.mahtabi@gmail.com

Abstract

In this paper the definition of an F-weak multiplication module is given and we prove some results for such a module. Then, using the definition of a semiprime submodule of a module, we characterize these submodules for F-weak multiplication modules. Finally, we show that any F-weak multiplication module satisfies the semi-radical formula.

2010 Mathematics Subject Classification: 13C05, 13C13, 13E15, 13C99

Abstract

Keywords and phrases: F-weak multiplication module, semiprime submodule, envelope of a submodule, radical and semi-radical of a submodule, modules satisfying the semi-radical formula.

1. Introduction

In this paper all rings are commutative with identity and all modules over rings are unitary. If K and N are submodules of an R-module M, we recall that $\left(N:_{R} K\right)=(N: K)=\{r \in$ $R \mid r K \subseteq N\}$, which is an ideal of R. A proper submodule N of an R-module M is said to be prime if for $r \in R, x \in M ; r x \in N$ implies that $x \in N$ or $r \in(N: M)$. In such a case $p=$ ($N: M$) is a prime ideal of R and N is said to be p-prime. The set of all prime submodules of M is denoted by $\operatorname{Spec}(M)$ and for a submodule N of $M, \operatorname{rad} N=\bigcap_{L \in \operatorname{Spec}(M), N \subseteq L} L$. If no prime submodule of M contains N, we write $\operatorname{rad} N=M$. Also the set of all maximal submodules of M is denoted by $\operatorname{Max}(M)$ and $\operatorname{Rad} M=\bigcap_{P \in \operatorname{Max}(M)} P$. For an ideal I of R, $\operatorname{rad} I=\bigcap_{p \in \operatorname{Spec}(R), I \subseteq p} p$. The ideal I of R is called a radical ideal if $\operatorname{rad} I=I$. Similarly, we say that a submodule N of an R-module M is a radical submodule if $\operatorname{rad} N=N$.

In Section 2, we recall the definition of F-weak multiplication module and we state and prove some properties of these modules. Then in Section 3, after recalling the definition of semiprime submodules and semi-radical formula, we find the semiprime submodules of F-weak multiplication modules.

[^0]
2. Some basic definitions and results

Definition 2.1. We recall that an R-module M is called weak multiplication if $\operatorname{Spec}(M)=\emptyset$ or for every prime submodule N of M we have $N=I M$ where I is an ideal of R. Also, if M is a weak multiplication, then $N=(N: M) M$ for every prime submodule N of M.

Now we introduce our main definition, which was first stated in [12].
Definition 2.2. An R-module M is F-weak multiplication, if:
(1) M is weak multiplication;
(2) For every $p \in \operatorname{Spec}(R), p M$ is a prime submodule of M and $(p M: M)=p$.

We recall that an R-module M is called a multiplication R-module, if for any submodule N of M there exists an ideal I of R such that $N=I M$. For example one can show that the R-module M is F-weak multiplication in the following cases:
(i) M is a finitely generated multiplication R-module such that $\operatorname{Ann}_{R}(M) \subseteq p$ for every $p \in \operatorname{Spec}(R)$;
(ii) In (i) we assume $\operatorname{Ann}_{R}(M)=0$, that is, M is faithful.

In the following example, we show that an F-weak multiplication module is not necessarily a multiplication module.

Example 2.1. Let K be a field and $A=K\left[x_{1}, x_{2}, x_{3}, \ldots\right]$ denote the polynomial ring in a countably infinite set of indeterminates $x_{1}, x_{2}, x_{3}, \ldots$ Let $\underline{a}=\left(x_{1}-x_{1}^{2}, x_{2}-x_{2}^{2}, x_{3}-x_{3}^{2}, \ldots\right)$ and $B=A / \underline{a}$. Then the prime ideals of the ring B are as follows: $p=\left(y_{1}, y_{2}, y_{3}, \ldots\right) /\left(x_{1}-\right.$ $\left.x_{1}^{2}, x_{2}-x_{2}^{2}, x_{3}-x_{3}^{2}, \ldots\right)$ where $y_{j}=x_{j}$ or $y_{j}=1-x_{j}$ for every $j=1,2,3, \ldots$ Obviously the ring B has infinitely many prime ideals and $\operatorname{dim} B=0$.

Now, let $M=\prod_{p_{i} \in \operatorname{Spec}(B)} B / p_{i}=B / p_{1} \times B / p_{2} \times B / p_{3} \times \ldots$. We show that M is a nonfinitely generated F-weak multiplication B-module which is not a multiplication B-module. Let $p \in \operatorname{Spec}(B)$ be arbitrary, then $M /(p M) \cong B / p$ and since B / p is simple, then $M /(p M)$ is simple and so $p M \neq M$. Now by [7, $\operatorname{Proposition~2],~} p M \in \operatorname{Spec}(M)$ and $(p M: M)=p$. Since the only prime submodules of M are the set $\{p M \mid p \in \operatorname{Spec}(B)\}$ hence M is a weak multiplication B-module and therefore M is an F-weak multiplication B-module.

Now, let $p_{1}=\left(x_{1}, x_{2}, x_{3}, \ldots\right) /\left(x_{1}-x_{1}^{2}, x_{2}-x_{2}^{2}, x_{3}-x_{3}^{2}, \ldots\right)$ and $p_{2}=\left(1-x_{1}, 1-\right.$ $\left.x_{2}, 1-x_{3}, \ldots\right) /\left(x_{1}-x_{1}^{2}, x_{2}-x_{2}^{2}, x_{3}-x_{3}^{2}, \ldots\right)$ be two prime ideals of B and let $N=0_{B / p_{1}} \times$ $0_{B / p_{2}} \times B / p_{3} \times B / p_{4} \times \ldots$ be a submodule of M. Then $p_{1} p_{2}=\underline{a} / \underline{a}=0_{B}$ is the only ideal of B which kills both B / p_{1} and B / p_{2}, but $p_{1} p_{2} M=0_{B} M=0 \neq N$. So there exists no ideal I of B such that $N=I M$, hence M is not a multiplication B-module.

Proposition 2.1. Let R be a non-trivial ring and M an F-weak multiplication R-module. Then M has a maximal submodule.

Proof. See [12, Proposition 2.4].
Here by a pure submodule of M we mean a proper submodule N such that $r M \cap N=r N$ for every $r \in R$.
Lemma 2.1. Let R be an integral domain and M be an F-weak multiplication R-module. Then M is a torsion-free module. Consequently the only proper pure submodule of M is zero.

Proof. For the first part of lemma, see [12, Proposition 2.6].
Assume that N be an arbitrary pure submodule of M. Since M is torsion-free. Hence by [7, Result 2], N is a (0)-prime submodule of M. Now by the definition of F-weak multiplication modules $N=\langle 0\rangle$.

Theorem 2.1. Let R be a local ring with the maximal ideal \underline{m} and M be an R-module. If $\underline{m} M \neq M$ is a maximal submodule of M then M is a cyclic R-module.

Proof. We know that $M /(\underline{m} M)$ is a vector space over the field R / \underline{m}. Since $M /(\underline{m} M)$ is a simple R / \underline{m}-module, then $M /(\underline{m} M)$ is cyclic and so:

$$
\exists y \in M-\underline{m} M ; \frac{M}{\underline{m} M}=\langle y+\underline{m} M\rangle .
$$

On the other hand, since $\underline{m} M$ is a maximal submodule of M and $y \notin \underline{m} M$ then $\langle y\rangle+\underline{m} M=M$. Now we have:

$$
\begin{equation*}
\frac{M}{\underline{m} M}=\frac{\langle y\rangle+\underline{m} M}{\underline{m} M} \cong \frac{\langle y\rangle}{\langle y\rangle \cap \underline{m} M} . \tag{2.1}
\end{equation*}
$$

Obviously $\langle y\rangle \cap \underline{m} M=\underline{m}\langle y\rangle$ and then by (2.1), $M /(\underline{m} M) \cong\langle y\rangle /(\underline{m}\langle y\rangle)$. But $M /(\underline{m} M)$ is a cyclic R / \underline{m}-module, hence $\langle y\rangle /(\underline{m}\langle y\rangle)$ is a cyclic R / \underline{m}-module and we have:

$$
\frac{\langle y\rangle}{\underline{m}\langle y\rangle}=\langle r y+\underline{m}\langle y\rangle\rangle .
$$

Since $r \in R-\underline{m}$ is a unit element, without loose of the generality we set $r=1$ and hence $\langle y\rangle /(\underline{m}\langle y\rangle)=\langle\bar{y}+\underline{m}\langle y\rangle\rangle$. Then we have

$$
\frac{M}{\underline{m} M}=\langle y+\underline{m} M\rangle \cong\langle y+\underline{m}\langle y\rangle\rangle .
$$

On the other hand, $y+\underline{m}\langle y\rangle \subseteq y+\underline{m} M$ therefore $\langle y+\underline{m}\langle y\rangle\rangle \subseteq\langle y+\underline{m} M\rangle$. Also since $\langle y+$ $\underline{m}\langle y\rangle\rangle$ is an R / \underline{m}-module hence $\langle y+\underline{m}\langle y\rangle\rangle$ is an R / \underline{m}-submodule of $\langle y+\underline{m} M\rangle$. But $\langle y+\underline{m} M\rangle$ is a simple R / \underline{m}-module, hence

$$
\langle y+\underline{m}\langle y\rangle\rangle=0_{\frac{M}{m M}} \text { or }\langle y+\underline{m}\langle y\rangle\rangle=\langle y+\underline{m} M\rangle \text {. }
$$

But $y \notin \underline{m} M$, hence $\langle y+\underline{m}\langle y\rangle\rangle=\langle y+\underline{m} M\rangle$.
Now we show that $M=\langle y\rangle$. Let $r y+\underline{m}\langle y\rangle \in\langle y+\underline{m}\langle y\rangle\rangle$ where $r \in R-\underline{m}$ be an arbitrary element, then there exists $r^{\prime} \in R-\underline{m}$ such that $r y+\underline{m}\langle y\rangle=r^{\prime} y+\underline{m} M$. Then,

$$
\left(r-r^{\prime}\right) y+\underline{m}\langle y\rangle=\underline{m} M \Longrightarrow \underline{m} M \subseteq\langle y\rangle .
$$

But $\langle y\rangle \neq \underline{m} M$ and $\underline{m} M$ is maximal. Therefore $M=\langle y\rangle$ and the proof is now completed.
Corollary 2.1. Let R be a local ring with the maximal ideal \underline{m} and let M be an F-weak multiplication R-module then M is a cyclic R-module.

Proof. Since $\underline{m} M$ is the only maximal submodule of M then by Theorem 2.1, there exists $m \in M-\underline{m} M$ such that $M=\langle m\rangle$.

Theorem 2.2. Let R be a non-trivial ring and let M be an F-weak multiplication R-module. Then M_{p} is an F-weak multiplication R_{p}-module for every $p \in \operatorname{Spec}(R)$.

Proof. Let M be an F-weak multiplication R-module then by [3, Lemma 2.3], M_{p} is weak multiplication R_{p}-module for every $p \in \operatorname{Spec}(R)$. Let $p \in \operatorname{Spec}(R)$ be arbitrary. First we show that $\left(p R_{p}\right) M_{p}=(p M)_{p} \neq M_{p}$. If not, $(p M)_{p}=M_{p}$. Then

$$
\forall m \in M-p M, \quad \frac{m}{1} \in(p M)_{p} \quad \Longrightarrow \quad \exists t \in R-p, \quad t m \in p M
$$

But $p M \in \operatorname{Spec}(M)$ hence $m \in p M$, a contradiction. Therefore $(p M)_{p} \neq M_{p}$. We assume $Q \in \operatorname{Spec}\left(R_{p}\right)$ then there exists $I \in \operatorname{Spec}(R)$ such that $I \cap(R-p)=\emptyset$ and $Q=I R_{p}$. Now we must show that $Q M_{p} \in \operatorname{Spec}\left(M_{p}\right)$ and $\left(Q M_{p}: M_{p}\right)=Q$. Since $Q M_{p}=(I M)_{p} \subseteq(p M)_{p}$ and by above $(p M)_{p} \neq M_{p}$ then $(I M)_{p} \neq M_{p}$. Now let $r / s . m / s^{\prime} \in(I M)_{p}$ where $r / s \in$ $R_{p}, m / s^{\prime} \in M_{p}$. Then $(r m) /\left(s s^{\prime}\right) \in(I M)_{p}$ and so there exists $t \in R-p$ such that $t r m \in I M$. But $I M \in \operatorname{Spec}(M)$ hence $t r \in I$ or $m \in I M$. Thus $r \in I$ or $m \in I M$, so $(I M)_{p} \in \operatorname{Spec}\left(M_{p}\right)$.

Next we show that $\left((I M)_{p}: M_{p}\right)=I R_{p}$. We know

$$
\begin{equation*}
I R_{p}=(I M: M)_{p} \subseteq\left((I M)_{p}: M_{p}\right) . \tag{2.2}
\end{equation*}
$$

Let $r / s \in\left((I M)_{p}: M_{p}\right)$ be arbitrary. Then for any $m / s^{\prime} \in M_{p}$ where $m \notin I M$ we have:

$$
\frac{r}{s} \cdot \frac{m}{s^{\prime}}=\frac{r m}{s s^{\prime}} \in(I M)_{p} \quad \Longrightarrow \quad \exists t \in R-p, \quad \operatorname{trm} \in I M
$$

But $I M \in \operatorname{Spec}(M)$ then $r \in I$ and so $r / s \in I R_{p}$. Now by (2.2), $\left((I M)_{p}: M_{p}\right)=I R_{p}$. The proof is now completed.

Corollary 2.2. Let R be a non-trivial ring such that every non-zero prime ideal of R is a maximal ideal. Let M be an R-module. Then M is an F-weak multiplication R-module if and only if $M_{\underline{m}}$ is an F-weak multiplication $R_{\underline{\underline{m}}}$-module for every $\underline{m} \in \operatorname{Max}(R)$.
Proof. (\Longrightarrow). By Theorem 2.2, is clear.
($\Longleftarrow)$. Let $M_{\underline{m}}$ be an F-weak multiplication $R_{\underline{m}}$-module for every $\underline{m} \in \operatorname{Max}(R)$. We show that M is an F-weak multiplication R-module. First by [3, Lemma 2.3], M is a weak multiplication R-module. We prove that $(\underline{m} M: M)=\underline{m}$ for any $\underline{m} \in \operatorname{Max}(R)$. We know that,

$$
\begin{equation*}
\underline{m} R_{\underline{m}} \subseteq(\underline{m} M: M)_{\underline{m}} \subseteq\left((\underline{m} M)_{\underline{m}}: M_{\underline{m}}\right) \tag{2.3}
\end{equation*}
$$

By Corollary $2.1, M_{\underline{m}}$ is cyclic. But by [8, Theorem 2 (4)] and [5, Theorem 2.5 (ii)], $M_{\underline{m}}$ has the only maximal submodule $(\underline{m} M) \underline{m}$. Hence

$$
\begin{equation*}
\left((\underline{m} M)_{\underline{m}}: M_{\underline{m}}\right)=\underline{m} R_{\underline{m}} . \tag{2.4}
\end{equation*}
$$

So by (2.3) and (2.4), $(\underline{m} M: M)_{\underline{m}}=\underline{m} R_{m}$ and hence $(\underline{m} M: M) \neq R$. Therefore $(\underline{m} M: M)=\underline{m}$ and also by [7, Proposition 2], $\underline{m} M \in \operatorname{Spec}(M)$. The proof is now completed.

Let us recall that a module M over a ring R is "locally cyclic" if $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$-module for all maximal ideals \underline{m} of R.

Lemma 2.2. F-weak multiplication modules are locally cyclic.
Proof. Let M be an F-weak multiplication R-module and $\left\{\underline{m}_{i}\right\}_{i \in I}=\operatorname{Max}(R)$. Then by Theorem 2.2, $M_{\underline{m}}$ is an F-weak multiplication $R_{\underline{m}}$-module for every $\underline{m} \in \operatorname{Max}(R)$. Therefore by Corollary $2 . \overline{1}, M$ is locally cyclic.

Theorem 2.3. Let R be a non-trivial ring and let M be an F-weak multiplication R-module. Then every proper submodule of M is contained in a maximal submodule of M.

Proof. If not, we assume that there exists a proper submodule N of M such that N is not contained in any maximal submodule of M. But we know by Proposition 2.1, that for every $\underline{m} \in \operatorname{Max}(R), \underline{m} M$ is a maximal submodule of M, then:

$$
\begin{aligned}
N \nsubseteq \underline{m} M, \quad \forall \underline{m} \in \operatorname{Max}(R) & \Longrightarrow N+\underline{m} M=M, \quad \forall \underline{m} \in \operatorname{Max}(R) \\
& \Longrightarrow(N+\underline{m} M)_{\underline{m}}=N_{\underline{m}}+(\underline{m} M)_{\underline{m}}=M_{\underline{m}}, \quad \forall \underline{m} \in \operatorname{Max}(R) .
\end{aligned}
$$

By Lemma 2.2, M is locally cyclic and so each $M_{\underline{m}}$ is cyclic. Now by [2, Corollary 2.7], $N_{\underline{m}}=M_{\underline{m}}$ for every $\underline{m} \in \operatorname{Max}(R)$. But $(M / N)_{\underline{m}} \cong M_{\underline{m}} / N_{\underline{m}}$, then $(M / N)_{\underline{m}} \cong 0$ for every $\underline{m} \in \operatorname{Max}(R)$.

By [2, Proposition 3.8], $M / N=0$ and so $N=M$, a contradiction. Therefore there exists $\underline{m} \in \operatorname{Max}(R)$ such that $N \subseteq \underline{m} M$.

Corollary 2.3. Let M be an F-weak multiplication R-module and let N be a submodule of M such that $M=N+\operatorname{Rad} M$. Then $M=N$.

Proof. If not $M \neq N$. Since M is F-weak multiplication, then N is contained in a maximal submodule of M, say $\underline{m} M$, where $\underline{m} \in \operatorname{Max}(R)$. Then,

$$
M=N+\operatorname{Rad} M \subseteq \underline{m} M+\operatorname{Rad} M \subseteq \underline{m} M .
$$

So, $M \subseteq \underline{m} M$, a contradiction. Therefore $M=N$.
Definition 2.3. An element u of an R-module M is said to be a unit provided that u does not belong to any maximal submodule of M.

Theorem 2.4. Let M be an F-weak multiplication R-module. Then $u \in M$ is a unit if and only if $\langle u\rangle=M$.

Proof. Let $u \in M$ be a unit element, then we have:

$$
\forall \underline{m} \in \operatorname{Max}(R), u \in M-\underline{m} M .
$$

So, $\langle u\rangle \leq M$ and $\langle u\rangle \nsubseteq \underline{m} M$ for any $\underline{m} \in \operatorname{Max}(R)$. Thus, $\langle u\rangle=M$ or $\langle u\rangle$ is a maximal submodule of M. But $\langle u\rangle \neq \underline{m} M$ for every $\underline{m} \in \operatorname{Max}(R)$ and every maximal submodule of M is of the form $\underline{m} M$ for some $\underline{m} \in \operatorname{Max}(R)$. Therefore $\langle u\rangle=M$.

Conversely, let $\langle u\rangle=M$. We show that $u \in M$ is a unit element. If not, $\langle u\rangle$ is a proper submodule of M and then:

$$
\exists \underline{m} \in \operatorname{Max}(R) ;\langle u\rangle \subseteq \underline{m} M
$$

Hence $M=\underline{m} M$, a contradiction. Therefore $u \in M$ is a unit.
Corollary 2.4. If M is an F-weak multiplication R-module then for every proper submodule N of $M, \operatorname{rad} N \neq M$.

Proof. The proof is clear by Theorem 2.3.
Lemma 2.3. Let M be a non-zero faithful multiplication R-module, then M is an F-weak multiplication R-module.

Proof. Let M be a multiplication R-module then by [4, Lemma 2 (i)], M_{p} is a multiplication R_{p}-module for every $p \in \operatorname{Spec}(R)$. We show that $\left(p R_{p}\right) M_{p} \neq M_{p}$ for every $p \in \operatorname{Spec}(R)$.

Since M_{p} is a multiplication R_{p}-module hence by [8, Theorem 2 (4)], $\operatorname{Max}\left(M_{p}\right) \neq \emptyset$. Now let Q be a maximal submodule of M_{p}, then since R_{p} is a local ring with the maximal
ideal $p R_{p}$ hence by [5, Theorem 2.5 (ii)], $Q=\left(p R_{p}\right) M_{p}=(p M)_{p}$ is the only maximal submodule of M_{p} and so $\left(p R_{p}\right) M_{p}=(p M)_{p} \neq M_{p}$ and $\left((p M)_{p}: M_{p}\right)=p R_{p}$.

Therefore $\left(p R_{p}\right) M_{p}=(p M)_{p} \neq M_{p}$ for every $p \in \operatorname{Spec}(R)$ and so $p M \neq M$. Since $\operatorname{Ann}_{R}(M) \subseteq p$ for every $p \in \operatorname{Spec}(R)$ then by [5, Corollary 2.11], $p M \in \operatorname{Spec}(M)$.

Now, we show that $(p M: M)=p$. Let $r \in(p M: M)$ be arbitrary, then $r M \subseteq p M$ and hence $(r M)_{p} \subseteq(p M)_{p}$. Thus $r / 1 M_{p} \subseteq(p M)_{p}$ and then $r / 1 \in\left((p M)_{p}: M_{p}\right)$. By the above, $r / 1 \in p R_{p}$ and hence $r \in p$. Therefore $(p M: M) \subseteq p$ and so $p=(p M: M)$. The proof is now completed.

We recall that if $N=I_{1} M$ and $K=I_{2} M$ (I_{1} and I_{2} are ideals of R) are submodules of a multiplication R-module M then the product of N and K, denoted by $N K$, is defined by $N K=I_{1} I_{2} M$. It is clear that $N K$ is a submodule of M and $N K \subseteq N \cap K$.

Proposition 2.2. Let M_{1}, \ldots, M_{n} be arbitrary submodules of a multiplication R-module M. Let P be a proper submodule of M. Then P is prime submodule of M if and only if $\prod_{i=1}^{n} M_{i} \subseteq$ P implies that $M_{i} \subseteq P$ for some $i=1, \ldots, n$.

Proof. Use [1, Theorem 3.16] and induction on n.
Proposition 2.3. Let M_{1}, \ldots, M_{n} be submodules of a multiplication R-module M and let N be a prime submodules of M such that $\bigcap_{i=1}^{n} M_{i} \subseteq N$. Then $M_{i} \subseteq N$ for some $i=1, \ldots, n$. Also, if $N=\bigcap_{i=1}^{n} M_{i}$, then $N=M_{i}$ for some $i=1, \ldots, n$.

Proof. Let $\bigcap_{i=1}^{n} M_{i} \subseteq N$. Since $\prod_{i=1}^{n} M_{i} \subseteq \bigcap_{i=1}^{n} M_{i} \subseteq N$, the result follows by the above proposition.

Lemma 2.4. Let M be an F-weak multiplication R-module and M_{1}, \ldots, M_{n} be submodules of M and let N be a prime submodule of M such that $\bigcap_{i=1}^{n} M_{i} \subseteq N$. Then $M_{i} \subseteq N$ for some $M_{i}(1 \leq i \leq n)$. Also, if $N=\bigcap_{i=1}^{n} M_{i}$, then $N=M_{i}$ for some $M_{i}(1 \leq i \leq n)$.
Proof. Since $N \in \operatorname{Spec}(M)$ hence $N=p M$ for some $p \in \operatorname{Spec}(R)$. Now, let $\bigcap_{i=1}^{n} M_{i} \subseteq N$ then $\left(\bigcap_{i=1}^{n} M_{i}\right)_{p} \subseteq N_{p}$ and hence $\bigcap_{i=1}^{n}\left(M_{i}\right)_{p} \subseteq N_{p}$. By Corollary 2.1 and Theorem 2.2, M_{p} is multiplication. So by Proposition 2.3, $\left(M_{i}\right)_{p} \subseteq N_{p}$ for some $\left(M_{i}\right)_{p}(1 \leq i \leq n)$. We show that $M_{i} \subseteq N$. Let $x \in M_{i}$ hence $x / 1 \in\left(M_{i}\right)_{p}$ and so $x / 1 \in N_{p}$. Then there exists $t \in R-p$ such that $t x \in N$. But $N \in \operatorname{Spec}(M)$ hence $x \in N$. Therefore $M_{i} \subseteq N$, and the proof is now completed.

Lemma 2.5. Let R be a non-trivial ring and let M be a multiplication R-module. Then $I M \neq M$ for any proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists a maximal ideal \underline{m} of R such that $I \subseteq \underline{m}$. We show that $\underline{m} M \neq M$. By [4, Lemma 2 (i)], $M_{\underline{m}}$ is a multiplication $R_{\underline{m}^{-}}$ module and also by [8, Theorem 2 (4)], $\operatorname{Max}\left(M_{\underline{m}}\right) \neq \emptyset$. Now, let W be a maximal submodule of $M_{\underline{m}}$, then since $R_{\underline{m}}$ is a local ring with the maximal ideal $\underline{m} R_{\underline{m}}$, by [5, Theorem 2.5 (ii)], $W=\left(\underline{m} R_{\underline{m}}\right) M_{\underline{m}}=(\underline{m} M)_{\underline{m}}$ and so $\left((\underline{m} M)_{\underline{m}}: M_{\underline{m}}\right)=\underline{m} R_{\underline{m}}$. But $\underline{m} R_{\underline{m}} \subseteq(\underline{m} M: M)_{\underline{m}} \subseteq\left((\underline{m} M)_{\underline{m}}\right.$: $\left.M_{\underline{m}}\right)=\underline{m} R_{\underline{m}}$, so $(\underline{m} M: M)_{\underline{m}}=\underline{m} R_{\underline{m}}$, and therefore $\underline{m} M \neq M$. Now since $I M \subseteq \underline{m} M \neq M$, we have $I M \neq M$ for every proper ideal I of R.

Corollary 2.5. Let R be a non-trivial ring and let M be a non-zero multiplication R-module. Let every prime ideal of R be a maximal ideal of R. Then $p M \in \operatorname{Spec}(M)$ for any $p \in$ $\operatorname{Spec}(R)$.

Proof. It is clear by Lemma 2.5 and [7, Proposition 2].
Let M be a multiplication R-module. Then:
(i) If R is a ring with $\operatorname{dim} R=0$, then Corollary 2.5 is satisfied for M.
(ii) If R is an integral domain with $\operatorname{dim} R=1$, then for each non-zero prime ideal of R Corollary 2.5 is satisfied for M.

3. Semiprime submodules of F-weak multiplication modules

We recall the following definitions from [10].
Definition 3.1. A proper submodule N of an R-module M is said to be semiprime in M, if for every ideal I of R and every submodule K of $M, I^{2} K \subseteq N$ implies that $I K \subseteq N$. Since the ring R is an R-module over itself, a proper ideal I of R is semiprime iffor every ideals J and K of $R, J^{2} K \subseteq I$ implies that $J K \subseteq I$.

Remark 3.1. There exists another definition of semiprime submodules in [6] as follows:
A proper submodule N of the R-module M is semiprime if whenever $r^{k} m \in N$ for some $r \in R, m \in M$ and positive integer k, then $r m \in N$.

By [11, Remark 2.6], we see that this definition is equivalent to Definition 3.1.
Definition 3.2. Let M be an R-module and $N \leq M$. The envelope of the submodule N is denoted by $E_{M}(N)$ or simply by $E(N)$ and is defined as $E(N)=\{x \in M \mid \exists r \in R$, a \in $M ; x=r a$ and $r^{n} a \in N$ for some positive integer $\left.n\right\}$.

The envelope of a submodule is not a submodule in general.
Let M be an R-module and $N \leq M$. If there exists a semiprime submodule of M which contains N, then the intersection of all semiprime submodules containing N is called the semi-radical of N and is denoted by $S-\operatorname{rad}_{M}(N)$, or simply $S-\operatorname{rad}(N)$. If there is no semiprime submodule containing N, then we define $S-\operatorname{rad}(N)=M$, in particular $S-$ $\operatorname{rad}(M)=M$.

We say that M satisfies the radical formula, or M (s.t.r.f) if for every $N \leq M, \operatorname{rad} N=$ $\langle E(N)\rangle$. Also we say that M satisfies the semi-radical formula, or M (s.t.s.r.f) if for every $N \leq M, S-\operatorname{rad}(N)=\langle E(N)\rangle$. Now let $x \in E(N)$ and P be a semiprime submodule of M containing N. Then $x=r a$ for some $r \in R, a \in M$ and for some positive integer $n, r^{n} a \in N$. But $r^{n} a \in P$ and since P is semiprime we have $r a \in P$. Hence $E(N) \subseteq P$. We see that $E(N) \subseteq \bigcap P$ (P is a semiprime submodule containing N). So $E(N) \subseteq S-\operatorname{rad}(N)$. On the other hand, since every prime submodule of M is clearly semiprime, we have $S-\operatorname{rad}(N) \subseteq$ $\operatorname{rad} N$. We conclude that $\langle E(N)\rangle \subseteq S-\operatorname{rad}(N) \subseteq \operatorname{rad} N$ and as a result if M (s.t.r.f) then it is also (s.t.s.r.f).
Remark 3.2. We define the $S-\operatorname{rad}$ of an ideal I of the ring R as the intersection of all semiprime ideals of R containing I.
Definition 3.3. A submodule N of M is called an $S-\operatorname{rad}$ submodule if $S-\operatorname{rad}(N)=N$.
Theorem 3.1. Let M be an F-weak multiplication R-module, then M (s.t.s.r.f).
Proof. By Lemma 2.2, M is locally cyclic. Hence $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$-module for every $\underline{m} \in \operatorname{Max}(R)$ and so by [10, Proposition 4.9, Theorem 4.10], M (s.t.s.r.f).
Corollary 3.1. If M is an F-weak multiplication R-module, then every proper submodule of M is semiprime.

Proof. By Theorem 3.1, M (s.t.s.r.f) hence by [10, Proposition 4.1], every proper submodule of M is semiprime.

Lemma 3.1. Let M be an F-weak multiplication R-module. Then for any proper submodule N of M we have:

$$
\operatorname{rad}\left(N_{\underline{m}}\right)=(\operatorname{rad} N)_{\underline{m}} ; \forall \underline{m} \in \operatorname{Max}(R) .
$$

Proof. By [10, Theorem 3.15],

$$
\begin{equation*}
(\operatorname{rad} N)_{\underline{m}} \subseteq \operatorname{rad}\left(N_{\underline{m}}\right), \tag{3.1}
\end{equation*}
$$

for any $N \leq M$. Also by Lemma 2.2, M is locally cyclic ,that is, $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$-module for any $\underline{m} \in \operatorname{Max}(R)$. So by [9, Theorem 4], $M_{\underline{m}}$ (s.t.r.f) and hence (s.t.s.r.f). Thus $\langle E(H)\rangle=S-$ $\operatorname{rad}(H)=\operatorname{rad} H$ for every submodule H of $\bar{M}_{\underline{m}}$. But by [10, Proposition 4.1], $S-\operatorname{rad}(H)=H$ for any submodule H of $M_{\underline{m}}$.

$$
\begin{equation*}
\operatorname{rad} N_{\underline{m}}=N_{\underline{m}} ; \forall N \leq M . \tag{3.2}
\end{equation*}
$$

Since $N_{\underline{m}} \subseteq(\operatorname{rad} N)_{\underline{m}}$ then by (3.2),

$$
\begin{equation*}
\operatorname{rad} N_{\underline{m}} \subseteq(\operatorname{rad} N)_{\underline{m}} . \tag{3.3}
\end{equation*}
$$

Now by (3.1) and (3.3),

$$
\operatorname{rad}\left(N_{\underline{m}}\right)=(\operatorname{rad} N)_{\underline{m}} ; \forall \underline{m} \in \operatorname{Max}(R) .
$$

Lemma 3.2. If M is an F-weak multiplication R-module and N is a proper submodule of M. Then M / N (s.t.s.r.f).

Proof. By Theorem 3.1, M (s.t.s.r.f). Let H / N be an arbitrary proper submodule of M / N. Then by [10, Proposition 3.16], $S-\operatorname{rad}_{M / N}(H / N)=\left(S-\operatorname{rad}_{M}(H)\right) / N=H / N$. Therefore every proper submodule H / N of M / N is semiprime and so by [10, Proposition 4.1], M / N (s.t.s.r.f).

Lemma 3.3. Let R be a ring and M an F-weak multiplication R-module. Then the only primary submodules of M are those submodules which are prime.

Proof. Let M be an F-weak multiplication module. Let N be an arbitrary primary submodule of M. By Corollary 3.1, N is a semiprime submodule of M and by [11, Proposition 2.4], $(N: M)$ is a semiprime ideal of R. Now by [11, Lemma 3.1], N is a prime submodule of M. The proof is now completed.

It should be noted that, Lemma 3.3 is not necessarily true if $M=R$, the ring itself. Because according to [10, Theorem 4.4], R (s.t.s.r.f) if we have one of the following.
(i) For every free R-module F, F (s.t.s.r.f).
(ii) For every faithful R-module C, C (s.t.s.r.f).

Acknowledgement. We would like to thank the referees for their comments and suggestions on the manuscript.

References

[1] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 2003, no. 27, 17151724.
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
[3] A. Azizi, Weak multiplication modules, Czechoslovak Math. J. 53(128) (2003), no. 3, 529-534.
[4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.
[5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
[6] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), no. 12, 3593-3602.
[7] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
[8] C.-P. Lu, Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741-3752.
[9] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), no. 1, 37-39.
[10] H. A. Tavallaee, Modules satisfying the semi-radical formula, Hadronic J. 32 (2009), no. 4, 407-423.
[11] H. A. Tavallaee and S. Ghalandarzadeh, Semiprime submodules and envelope of modules, IUST-International Journal of Engineering Sciences, 14 (4), (2003), 131-142.
[12] H. A. Tavallaee and R. M. Oghani, Some remarks on F-weak multiplication modules, Thai J. Math. 9 (2011), no. 2, 439-448.

[^0]: Communicated by Lee See Keong.
 Received: February 17, 2011; Revised: October 15, 2011.

