BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

A Note on *F*-Weak Multiplication Modules

¹Hamid Agha Tavallaee, ²Mansoureh Mahtabi Oghani, and ³Robabeh Mahtabi Oghani

¹Department of Mathematics, Tehran-North Branch, Islamic Azad University, Tehran, Iran ²Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran ³Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran ¹tavallaee@iust.ac.ir, ²mansourehmahtabi@gmail.com, ³r.mahtabi@gmail.com

Abstract. In this paper the definition of an *F*-weak multiplication module is given and we prove some results for such a module. Then, using the definition of a semiprime submodule of a module, we characterize these submodules for *F*-weak multiplication modules. Finally, we show that any *F*-weak multiplication module satisfies the semi-radical formula.

2010 Mathematics Subject Classification: 13C05, 13C13, 13E15, 13C99

Keywords and phrases: *F*-weak multiplication module, semiprime submodule, envelope of a submodule, radical and semi-radical of a submodule, modules satisfying the semi-radical formula.

1. Introduction

In this paper all rings are commutative with identity and all modules over rings are unitary. If *K* and *N* are submodules of an *R*-module *M*, we recall that $(N :_R K) = (N : K) = \{r \in R \mid rK \subseteq N\}$, which is an ideal of *R*. A proper submodule *N* of an *R*-module *M* is said to be prime if for $r \in R$, $x \in M$; $rx \in N$ implies that $x \in N$ or $r \in (N : M)$. In such a case p = (N : M) is a prime ideal of *R* and *N* is said to be *p*-prime. The set of all prime submodules of *M* is denoted by Spec(*M*) and for a submodule *N* of *M*, $radN = \bigcap_{L \in Spec(M), N \subseteq L} L$. If no prime submodule of *M* contains *N*, we write radN = M. Also the set of all maximal submodules of *M* is denoted by Max(*M*) and Rad $M = \bigcap_{P \in Max(M)} P$. For an ideal *I* of *R*, $radI = \bigcap_{p \in Spec(R), I \subseteq p} p$. The ideal *I* of *R* is called a radical ideal if radI = I. Similarly, we say that a submodule *N* of an *R*-module *M* is a radical submodule if radN = N.

In Section 2, we recall the definition of F-weak multiplication module and we state and prove some properties of these modules. Then in Section 3, after recalling the definition of semiprime submodules and semi-radical formula, we find the semiprime submodules of F-weak multiplication modules.

Communicated by Lee See Keong.

Received: February 17, 2011; Revised: October 15, 2011.

2. Some basic definitions and results

Definition 2.1. We recall that an *R*-module *M* is called weak multiplication if $\text{Spec}(M) = \emptyset$ or for every prime submodule *N* of *M* we have N = IM where *I* is an ideal of *R*. Also, if *M* is a weak multiplication, then N = (N : M)M for every prime submodule *N* of *M*.

Now we introduce our main definition, which was first stated in [12].

Definition 2.2. An R-module M is F-weak multiplication, if:

- (1) *M* is weak multiplication;
- (2) For every $p \in \text{Spec}(R)$, pM is a prime submodule of M and (pM : M) = p.

We recall that an *R*-module *M* is called a multiplication *R*-module, if for any submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM. For example one can show that the *R*-module *M* is *F*-weak multiplication in the following cases:

- (i) *M* is a finitely generated multiplication *R*-module such that $Ann_R(M) \subseteq p$ for every $p \in Spec(R)$;
- (ii) In (i) we assume $Ann_R(M) = 0$, that is, M is faithful.

In the following example, we show that an *F*-weak multiplication module is not necessarily a multiplication module.

Example 2.1. Let *K* be a field and $A = K[x_1, x_2, x_3, ...]$ denote the polynomial ring in a countably infinite set of indeterminates $x_1, x_2, x_3, ...$ Let $\underline{a} = (x_1 - x_1^2, x_2 - x_2^2, x_3 - x_3^2, ...)$ and $B = A/\underline{a}$. Then the prime ideals of the ring *B* are as follows: $p = (y_1, y_2, y_3, ...)/(x_1 - x_1^2, x_2 - x_2^2, x_3 - x_3^2, ...)$ where $y_j = x_j$ or $y_j = 1 - x_j$ for every j = 1, 2, 3, ... Obviously the ring *B* has infinitely many prime ideals and dim B = 0.

Now, let $M = \prod_{p_i \in \text{Spec}(B)} B/p_i = B/p_1 \times B/p_2 \times B/p_3 \times \dots$ We show that *M* is a nonfinitely generated *F*-weak multiplication *B*-module which is not a multiplication *B*-module. Let $p \in \text{Spec}(B)$ be arbitrary, then $M/(pM) \cong B/p$ and since B/p is simple, then M/(pM)is simple and so $pM \neq M$. Now by [7, Proposition 2], $pM \in \text{Spec}(M)$ and (pM : M) = p. Since the only prime submodules of *M* are the set $\{pM \mid p \in \text{Spec}(B)\}$ hence *M* is a weak multiplication *B*-module and therefore *M* is an *F*-weak multiplication *B*-module.

Now, let $p_1 = (x_1, x_2, x_3, ...)/(x_1 - x_1^2, x_2 - x_2^2, x_3 - x_3^2, ...)$ and $p_2 = (1 - x_1, 1 - x_2, 1 - x_3, ...)/(x_1 - x_1^2, x_2 - x_2^2, x_3 - x_3^2, ...)$ be two prime ideals of *B* and let $N = 0_{B/p_1} \times 0_{B/p_2} \times B/p_3 \times B/p_4 \times ...$ be a submodule of *M*. Then $p_1p_2 = \underline{a}/\underline{a} = 0_B$ is the only ideal of *B* which kills both B/p_1 and B/p_2 , but $p_1p_2M = 0_BM = 0 \neq N$. So there exists no ideal *I* of *B* such that N = IM, hence *M* is not a multiplication *B*-module.

Proposition 2.1. Let *R* be a non-trivial ring and *M* an *F*-weak multiplication *R*-module. Then *M* has a maximal submodule.

Proof. See [12, Proposition 2.4].

Here by a *pure submodule* of *M* we mean a proper submodule *N* such that $rM \cap N = rN$ for every $r \in R$.

Lemma 2.1. Let *R* be an integral domain and *M* be an *F*-weak multiplication *R*-module. Then *M* is a torsion-free module. Consequently the only proper pure submodule of *M* is zero. *Proof.* For the first part of lemma, see [12, Proposition 2.6].

Assume that N be an arbitrary pure submodule of M. Since M is torsion-free. Hence by [7, Result 2], N is a (0)-prime submodule of M. Now by the definition of F-weak multiplication modules $N = \langle 0 \rangle$.

Theorem 2.1. Let R be a local ring with the maximal ideal \underline{m} and M be an R-module. If $\underline{m}M \neq M$ is a maximal submodule of M then M is a cyclic R-module.

Proof. We know that $M/(\underline{m}M)$ is a vector space over the field R/\underline{m} . Since $M/(\underline{m}M)$ is a simple R/\underline{m} -module, then $M/(\underline{m}M)$ is cyclic and so:

$$\exists y \in M - \underline{m}M \; ; \; \frac{M}{\underline{m}M} = \langle y + \underline{m}M \rangle.$$

On the other hand, since $\underline{m}M$ is a maximal submodule of M and $y \notin \underline{m}M$ then $\langle y \rangle + \underline{m}M = M$. Now we have:

(2.1)
$$\frac{M}{\underline{m}M} = \frac{\langle y \rangle + \underline{m}M}{\underline{m}M} \cong \frac{\langle y \rangle}{\langle y \rangle \cap \underline{m}M}$$

Obviously $\langle y \rangle \cap \underline{m}M = \underline{m}\langle y \rangle$ and then by (2.1), $M/(\underline{m}M) \cong \langle y \rangle/(\underline{m}\langle y \rangle)$. But $M/(\underline{m}M)$ is a cyclic R/\underline{m} -module, hence $\langle y \rangle/(\underline{m}\langle y \rangle)$ is a cyclic R/\underline{m} -module and we have:

$$\frac{\langle \mathbf{y} \rangle}{\underline{m} \langle \mathbf{y} \rangle} = \langle r\mathbf{y} + \underline{m} \langle \mathbf{y} \rangle \rangle.$$

Since $r \in R - \underline{m}$ is a unit element, without loose of the generality we set r = 1 and hence $\langle y \rangle / (\underline{m} \langle y \rangle) = \langle y + \underline{m} \langle y \rangle \rangle$. Then we have

$$\frac{M}{mM} = \langle y + \underline{m}M \rangle \cong \langle y + \underline{m}\langle y \rangle \rangle.$$

On the other hand, $y + \underline{m}\langle y \rangle \subseteq y + \underline{m}M$ therefore $\langle y + \underline{m}\langle y \rangle \rangle \subseteq \langle y + \underline{m}M \rangle$. Also since $\langle y + \underline{m}\langle y \rangle \rangle$ is an R/\underline{m} -module hence $\langle y + \underline{m}\langle y \rangle \rangle$ is an R/\underline{m} -submodule of $\langle y + \underline{m}M \rangle$. But $\langle y + \underline{m}M \rangle$ is a simple R/\underline{m} -module, hence

$$\langle y + \underline{m} \langle y \rangle \rangle = 0_{\underline{M} \over \underline{m} M} \text{ or } \langle y + \underline{m} \langle y \rangle \rangle = \langle y + \underline{m} M \rangle.$$

But $y \notin \underline{m}M$, hence $\langle y + \underline{m}\langle y \rangle \rangle = \langle y + \underline{m}M \rangle$.

Now we show that $M = \langle y \rangle$. Let $ry + \underline{m} \langle y \rangle \in \langle y + \underline{m} \langle y \rangle \rangle$ where $r \in R - \underline{m}$ be an arbitrary element, then there exists $r' \in R - \underline{m}$ such that $ry + \underline{m} \langle y \rangle = r'y + \underline{m}M$. Then,

$$(r-r')y + \underline{m}\langle y \rangle = \underline{m}M \implies \underline{m}M \subseteq \langle y \rangle.$$

But $\langle y \rangle \neq \underline{m}M$ and $\underline{m}M$ is maximal. Therefore $M = \langle y \rangle$ and the proof is now completed.

Corollary 2.1. Let R be a local ring with the maximal ideal \underline{m} and let M be an F-weak multiplication R-module then M is a cyclic R-module.

Proof. Since $\underline{m}M$ is the only maximal submodule of M then by Theorem 2.1, there exists $m \in M - \underline{m}M$ such that $M = \langle m \rangle$.

Theorem 2.2. Let *R* be a non-trivial ring and let *M* be an *F*-weak multiplication *R*-module. Then M_p is an *F*-weak multiplication R_p -module for every $p \in \text{Spec}(R)$. *Proof.* Let *M* be an *F*-weak multiplication *R*-module then by [3, Lemma 2.3], M_p is weak multiplication R_p -module for every $p \in \text{Spec}(R)$. Let $p \in \text{Spec}(R)$ be arbitrary. First we show that $(pR_p)M_p = (pM)_p \neq M_p$. If not, $(pM)_p = M_p$. Then

$$\forall m \in M - pM, \quad \frac{m}{1} \in (pM)_p \quad \Longrightarrow \quad \exists t \in R - p, \quad tm \in pM$$

But $pM \in \operatorname{Spec}(M)$ hence $m \in pM$, a contradiction. Therefore $(pM)_p \neq M_p$. We assume $Q \in \operatorname{Spec}(R_p)$ then there exists $I \in \operatorname{Spec}(R)$ such that $I \cap (R-p) = \emptyset$ and $Q = IR_p$. Now we must show that $QM_p \in \operatorname{Spec}(M_p)$ and $(QM_p : M_p) = Q$. Since $QM_p = (IM)_p \subseteq (pM)_p$ and by above $(pM)_p \neq M_p$ then $(IM)_p \neq M_p$. Now let $r/s.m/s' \in (IM)_p$ where $r/s \in R_p$, $m/s' \in M_p$. Then $(rm)/(ss') \in (IM)_p$ and so there exists $t \in R-p$ such that $trm \in IM$. But $IM \in \operatorname{Spec}(M)$ hence $tr \in I$ or $m \in IM$. Thus $r \in I$ or $m \in IM$, so $(IM)_p \in \operatorname{Spec}(M_p)$.

Next we show that $((IM)_p : M_p) = IR_p$. We know

(2.2)
$$IR_p = (IM:M)_p \subseteq ((IM)_p:M_p).$$

Let $r/s \in ((IM)_p : M_p)$ be arbitrary. Then for any $m/s' \in M_p$ where $m \notin IM$ we have:

$$\frac{r}{s} \cdot \frac{m}{s'} = \frac{rm}{ss'} \in (IM)_p \implies \exists t \in R - p, \quad trm \in IM$$

But $IM \in \text{Spec}(M)$ then $r \in I$ and so $r/s \in IR_p$. Now by (2.2), $((IM)_p : M_p) = IR_p$. The proof is now completed.

Corollary 2.2. Let R be a non-trivial ring such that every non-zero prime ideal of R is a maximal ideal. Let M be an R-module. Then M is an F-weak multiplication R-module if and only if M_m is an F-weak multiplication R_m -module for every $\underline{m} \in Max(R)$.

Proof. (\Longrightarrow) . By Theorem 2.2, is clear.

(\Leftarrow). Let $M_{\underline{m}}$ be an *F*-weak multiplication $R_{\underline{m}}$ -module for every $\underline{m} \in Max(R)$. We show that *M* is an *F*-weak multiplication *R*-module. First by [3, Lemma 2.3], *M* is a weak multiplication *R*-module. We prove that $(\underline{m}M : M) = \underline{m}$ for any $\underline{m} \in Max(R)$. We know that,

(2.3)
$$\underline{m}R_{\underline{m}} \subseteq (\underline{m}M:M)_{\underline{m}} \subseteq ((\underline{m}M)_{\underline{m}}:M_{\underline{m}}).$$

By Corollary 2.1, $M_{\underline{m}}$ is cyclic. But by [8, Theorem 2 (4)] and [5, Theorem 2.5 (ii)], $M_{\underline{m}}$ has the only maximal submodule $(\underline{m}M)\underline{m}$. Hence

(2.4)
$$((\underline{m}M)_{\underline{m}}:M_{\underline{m}}) = \underline{m}R_{\underline{m}}.$$

So by (2.3) and (2.4), $(\underline{m}M : M)_{\underline{m}} = \underline{m}R_m$ and hence $(\underline{m}M : M) \neq R$. Therefore $(\underline{m}M : M) = \underline{m}$ and also by [7, Proposition 2], $\underline{m}M \in \text{Spec}(M)$. The proof is now completed.

Let us recall that a module M over a ring R is "locally cyclic" if $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$ -module for all maximal ideals \underline{m} of R.

Lemma 2.2. F-weak multiplication modules are locally cyclic.

Proof. Let *M* be an *F*-weak multiplication *R*-module and $\{\underline{m}_i\}_{i \in I} = \operatorname{Max}(R)$. Then by Theorem 2.2, $M_{\underline{m}}$ is an *F*-weak multiplication $R_{\underline{m}}$ -module for every $\underline{m} \in \operatorname{Max}(R)$. Therefore by Corollary 2.1, *M* is locally cyclic.

Theorem 2.3. Let *R* be a non-trivial ring and let *M* be an *F*-weak multiplication *R*-module. Then every proper submodule of *M* is contained in a maximal submodule of *M*.

Proof. If not, we assume that there exists a proper submodule N of M such that N is not contained in any maximal submodule of M. But we know by Proposition 2.1, that for every $\underline{m} \in Max(R), \underline{m}M$ is a maximal submodule of M, then:

$$\begin{split} N \nsubseteq \underline{m}M, \quad \forall \underline{m} \in \operatorname{Max}(R) & \Longrightarrow \quad N + \underline{m}M = M, \quad \forall \underline{m} \in \operatorname{Max}(R) \\ & \Longrightarrow \quad (N + \underline{m}M)_{\underline{m}} = N_{\underline{m}} + (\underline{m}M)_{\underline{m}} = M_{\underline{m}}, \quad \forall \underline{m} \in \operatorname{Max}(R). \end{split}$$

By Lemma 2.2, M is locally cyclic and so each $M_{\underline{m}}$ is cyclic. Now by [2, Corollary 2.7], $N_{\underline{m}} = M_{\underline{m}}$ for every $\underline{m} \in \text{Max}(R)$. But $(M/N)_{\underline{m}} \cong M_{\underline{m}}/N_{\underline{m}}$, then $(M/N)_{\underline{m}} \cong 0$ for every $\underline{m} \in \text{Max}(R)$.

By [2, Proposition 3.8], M/N = 0 and so N = M, a contradiction. Therefore there exists $\underline{m} \in Max(R)$ such that $N \subseteq \underline{m}M$.

Corollary 2.3. Let *M* be an *F*-weak multiplication *R*-module and let *N* be a submodule of *M* such that M = N + RadM. Then M = N.

Proof. If not $M \neq N$. Since M is F-weak multiplication, then N is contained in a maximal submodule of M, say $\underline{m}M$, where $\underline{m} \in Max(R)$. Then,

$$M = N + \operatorname{Rad} M \subseteq \underline{m}M + \operatorname{Rad} M \subseteq \underline{m}M.$$

So, $M \subseteq \underline{m}M$, a contradiction. Therefore M = N.

Definition 2.3. An element u of an R-module M is said to be a unit provided that u does not belong to any maximal submodule of M.

Theorem 2.4. Let M be an F-weak multiplication R-module. Then $u \in M$ is a unit if and only if $\langle u \rangle = M$.

Proof. Let $u \in M$ be a unit element, then we have:

$$\forall \underline{m} \in \operatorname{Max}(R), u \in M - \underline{m}M.$$

So, $\langle u \rangle \leq M$ and $\langle u \rangle \not\subseteq \underline{m}M$ for any $\underline{m} \in \operatorname{Max}(R)$. Thus, $\langle u \rangle = M$ or $\langle u \rangle$ is a maximal submodule of M. But $\langle u \rangle \neq \underline{m}M$ for every $\underline{m} \in \operatorname{Max}(R)$ and every maximal submodule of M is of the form $\underline{m}M$ for some $\underline{m} \in \operatorname{Max}(R)$. Therefore $\langle u \rangle = M$.

Conversely, let $\langle u \rangle = M$. We show that $u \in M$ is a unit element. If not, $\langle u \rangle$ is a proper submodule of *M* and then:

$$\exists \underline{m} \in \operatorname{Max}(R) ; \langle u \rangle \subseteq \underline{m}M$$

Hence $M = \underline{m}M$, a contradiction. Therefore $u \in M$ is a unit.

Corollary 2.4. If M is an F-weak multiplication R-module then for every proper submodule N of M, $\operatorname{rad} N \neq M$.

Proof. The proof is clear by Theorem 2.3.

Lemma 2.3. Let *M* be a non-zero faithful multiplication *R*-module, then *M* is an *F*-weak multiplication *R*-module.

Proof. Let *M* be a multiplication *R*-module then by [4, Lemma 2 (i)], M_p is a multiplication R_p -module for every $p \in \text{Spec}(R)$. We show that $(pR_p)M_p \neq M_p$ for every $p \in \text{Spec}(R)$.

Since M_p is a multiplication R_p -module hence by [8, Theorem 2 (4)], $Max(M_p) \neq \emptyset$. Now let Q be a maximal submodule of M_p , then since R_p is a local ring with the maximal

.

ideal pR_p hence by [5, Theorem 2.5 (ii)], $Q = (pR_p)M_p = (pM)_p$ is the only maximal submodule of M_p and so $(pR_p)M_p = (pM)_p \neq M_p$ and $((pM)_p : M_p) = pR_p$.

Therefore $(pR_p)M_p = (pM)_p \neq M_p$ for every $p \in \text{Spec}(R)$ and so $pM \neq M$. Since $\text{Ann}_R(M) \subseteq p$ for every $p \in \text{Spec}(R)$ then by [5, Corollary 2.11], $pM \in \text{Spec}(M)$.

Now, we show that (pM : M) = p. Let $r \in (pM : M)$ be arbitrary, then $rM \subseteq pM$ and hence $(rM)_p \subseteq (pM)_p$. Thus $r/1M_p \subseteq (pM)_p$ and then $r/1 \in ((pM)_p : M_p)$. By the above, $r/1 \in pR_p$ and hence $r \in p$. Therefore $(pM : M) \subseteq p$ and so p = (pM : M). The proof is now completed.

We recall that if $N = I_1 M$ and $K = I_2 M$ (I_1 and I_2 are ideals of R) are submodules of a multiplication R-module M then the *product* of N and K, denoted by NK, is defined by $NK = I_1 I_2 M$. It is clear that NK is a submodule of M and $NK \subseteq N \cap K$.

Proposition 2.2. Let $M_1, ..., M_n$ be arbitrary submodules of a multiplication *R*-module *M*. Let *P* be a proper submodule of *M*. Then *P* is prime submodule of *M* if and only if $\prod_{i=1}^{n} M_i \subseteq P$ implies that $M_i \subseteq P$ for some i = 1, ..., n.

Proof. Use [1, Theorem 3.16] and induction on *n*.

Proposition 2.3. Let $M_1, ..., M_n$ be submodules of a multiplication *R*-module *M* and let *N* be a prime submodules of *M* such that $\bigcap_{i=1}^n M_i \subseteq N$. Then $M_i \subseteq N$ for some i = 1, ..., n. Also, if $N = \bigcap_{i=1}^n M_i$, then $N = M_i$ for some i = 1, ..., n.

Proof. Let $\bigcap_{i=1}^{n} M_i \subseteq N$. Since $\prod_{i=1}^{n} M_i \subseteq \bigcap_{i=1}^{n} M_i \subseteq N$, the result follows by the above proposition.

Lemma 2.4. Let M be an F-weak multiplication R-module and M_1, \ldots, M_n be submodules of M and let N be a prime submodule of M such that $\bigcap_{i=1}^n M_i \subseteq N$. Then $M_i \subseteq N$ for some M_i $(1 \le i \le n)$. Also, if $N = \bigcap_{i=1}^n M_i$, then $N = M_i$ for some M_i $(1 \le i \le n)$.

Proof. Since $N \in \text{Spec}(M)$ hence N = pM for some $p \in \text{Spec}(R)$. Now, let $\bigcap_{i=1}^{n} M_i \subseteq N$ then $(\bigcap_{i=1}^{n} M_i)_p \subseteq N_p$ and hence $\bigcap_{i=1}^{n} (M_i)_p \subseteq N_p$. By Corollary 2.1 and Theorem 2.2, M_p is multiplication. So by Proposition 2.3, $(M_i)_p \subseteq N_p$ for some $(M_i)_p (1 \le i \le n)$. We show that $M_i \subseteq N$. Let $x \in M_i$ hence $x/1 \in (M_i)_p$ and so $x/1 \in N_p$. Then there exists $t \in R - p$ such that $tx \in N$. But $N \in \text{Spec}(M)$ hence $x \in N$. Therefore $M_i \subseteq N$, and the proof is now completed.

Lemma 2.5. Let *R* be a non-trivial ring and let *M* be a multiplication *R*-module. Then $IM \neq M$ for any proper ideal *I* of *R*.

Proof. Let *I* be an arbitrary proper ideal of *R*, then there exists a maximal ideal \underline{m} of *R* such that $I \subseteq \underline{m}$. We show that $\underline{m}M \neq M$. By [4, Lemma 2 (i)], $M_{\underline{m}}$ is a multiplication $R_{\underline{m}}$ -module and also by [8, Theorem 2 (4)], $Max(M_{\underline{m}}) \neq \emptyset$. Now, let *W* be a maximal submodule of $M_{\underline{m}}$, then since $R_{\underline{m}}$ is a local ring with the maximal ideal $\underline{m}R_{\underline{m}}$, by [5, Theorem 2.5 (ii)], $W = (\underline{m}R_{\underline{m}})M_{\underline{m}} = (\underline{m}M)_{\underline{m}}$ and so $((\underline{m}M)_{\underline{m}} : M_{\underline{m}}) = \underline{m}R_{\underline{m}}$. But $\underline{m}R_{\underline{m}} \subseteq (\underline{m}M : M)_{\underline{m}} \subseteq ((\underline{m}M)_{\underline{m}} : M_{\underline{m}}) = \underline{m}R_{\underline{m}}$, so $(\underline{m}M : M)_{\underline{m}} = \underline{m}R_{\underline{m}}$, and therefore $\underline{m}M \neq M$. Now since $IM \subseteq \underline{m}M \neq M$, we have $IM \neq M$ for every proper ideal *I* of *R*.

Corollary 2.5. Let *R* be a non-trivial ring and let *M* be a non-zero multiplication *R*-module. Let every prime ideal of *R* be a maximal ideal of *R*. Then $pM \in \text{Spec}(M)$ for any $p \in \text{Spec}(R)$. Proof. It is clear by Lemma 2.5 and [7, Proposition 2].

Let *M* be a multiplication *R*-module. Then:

- (i) If *R* is a ring with dim R = 0, then Corollary 2.5 is satisfied for *M*.
- (ii) If *R* is an integral domain with dimR = 1, then for each non-zero prime ideal of *R* Corollary 2.5 is satisfied for *M*.

3. Semiprime submodules of F-weak multiplication modules

We recall the following definitions from [10].

Definition 3.1. A proper submodule N of an R-module M is said to be semiprime in M, if for every ideal I of R and every submodule K of M, $I^2K \subseteq N$ implies that $IK \subseteq N$. Since the ring R is an R-module over itself, a proper ideal I of R is semiprime if for every ideals J and K of R, $J^2K \subseteq I$ implies that $JK \subseteq I$.

Remark 3.1. There exists another definition of semiprime submodules in [6] as follows:

A proper submodule N of the R-module M is semiprime if whenever $r^k m \in N$ for some $r \in R$, $m \in M$ and positive integer k, then $rm \in N$.

By [11, Remark 2.6], we see that this definition is equivalent to Definition 3.1.

Definition 3.2. Let M be an R-module and $N \le M$. The envelope of the submodule N is denoted by $E_M(N)$ or simply by E(N) and is defined as $E(N) = \{x \in M \mid \exists r \in R, a \in M; x = ra \text{ and } r^n a \in N \text{ for some positive integer } n\}.$

The envelope of a submodule is not a submodule in general.

Let *M* be an *R*-module and $N \le M$. If there exists a semiprime submodule of *M* which contains *N*, then the intersection of all semiprime submodules containing *N* is called the *semi-radical* of *N* and is denoted by $S - \operatorname{rad}_M(N)$, or simply $S - \operatorname{rad}(N)$. If there is no semiprime submodule containing *N*, then we define $S - \operatorname{rad}(N) = M$, in particular $S - \operatorname{rad}(M) = M$.

We say that *M* satisfies the radical formula, or *M* (s.t.r.f) if for every $N \le M$, rad $N = \langle E(N) \rangle$. Also we say that *M* satisfies the semi-radical formula, or *M* (s.t.s.r.f) if for every $N \le M$, $S - \operatorname{rad}(N) = \langle E(N) \rangle$. Now let $x \in E(N)$ and *P* be a semiprime submodule of *M* containing *N*. Then x = ra for some $r \in R$, $a \in M$ and for some positive integer *n*, $r^n a \in N$. But $r^n a \in P$ and since *P* is semiprime we have $ra \in P$. Hence $E(N) \subseteq P$. We see that $E(N) \subseteq \bigcap P$ (P is a semiprime submodule of *M* is clearly semiprime, we have $S - \operatorname{rad}(N) \subseteq \operatorname{rad}(N)$. We conclude that $\langle E(N) \rangle \subseteq S - \operatorname{rad}(N) \subseteq \operatorname{rad}N$ and as a result if *M* (s.t.r.f) then it is also (s.t.s.r.f).

Remark 3.2. We define the S – rad of an ideal I of the ring R as the intersection of all semiprime ideals of R containing I.

Definition 3.3. A submodule N of M is called an S – rad submodule if S – rad(N) = N.

Theorem 3.1. Let *M* be an *F*-weak multiplication *R*-module, then *M* (s.t.s.r.f).

Proof. By Lemma 2.2, M is locally cyclic. Hence $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$ -module for every $\underline{m} \in Max(R)$ and so by [10, Proposition 4.9, Theorem 4.10], M (s.t.s.r.f).

Corollary 3.1. If *M* is an *F*-weak multiplication *R*-module, then every proper submodule of *M* is semiprime.

Proof. By Theorem 3.1, M (s.t.s.r.f) hence by [10, Proposition 4.1], every proper submodule of M is semiprime.

Lemma 3.1. *Let M be an F-weak multiplication R-module. Then for any proper submodule N of M we have:*

$$\operatorname{rad}(N_m) = (\operatorname{rad} N)_m$$
; $\forall \underline{m} \in \operatorname{Max}(R)$.

Proof. By [10, Theorem 3.15],

$$(3.1) (rad N)_m \subseteq rad(N_m),$$

for any $N \le M$. Also by Lemma 2.2, M is locally cyclic ,that is, $M_{\underline{m}}$ is a cyclic $R_{\underline{m}}$ -module for any $\underline{m} \in Max(R)$. So by [9, Theorem 4], $M_{\underline{m}}$ (s.t.r.f) and hence (s.t.s.r.f). Thus $\langle E(H) \rangle = S - rad(H) = radH$ for every submodule H of $M_{\underline{m}}$. But by [10, Proposition 4.1], S - rad(H) = H for any submodule H of $M_{\underline{m}}$.

$$rad N_m = N_m ; \forall N \le M.$$

Since $N_m \subseteq (\operatorname{rad} N)_m$ then by (3.2),

Now by (3.1) and (3.3),

$$\operatorname{rad}(N_m) = (\operatorname{rad} N)_m ; \forall \underline{m} \in \operatorname{Max}(R).$$

Lemma 3.2. If M is an F-weak multiplication R-module and N is a proper submodule of M. Then M/N (s.t.s.r.f).

Proof. By Theorem 3.1, M (s.t.s.r.f). Let H/N be an arbitrary proper submodule of M/N. Then by [10, Proposition 3.16], $S - \operatorname{rad}_{M/N}(H/N) = (S - \operatorname{rad}_M(H))/N = H/N$. Therefore every proper submodule H/N of M/N is semiprime and so by [10, Proposition 4.1], M/N(s.t.s.r.f).

Lemma 3.3. Let *R* be a ring and *M* an *F*-weak multiplication *R*-module. Then the only primary submodules of *M* are those submodules which are prime.

Proof. Let M be an F-weak multiplication module. Let N be an arbitrary primary submodule of M. By Corollary 3.1, N is a semiprime submodule of M and by [11, Proposition 2.4], (N : M) is a semiprime ideal of R. Now by [11, Lemma 3.1], N is a prime submodule of M. The proof is now completed.

It should be noted that, Lemma 3.3 is not necessarily true if M = R, the ring itself. Because according to [10, Theorem 4.4], R (s.t.s.r.f) if we have one of the following.

- (i) For every free R-module F, F (s.t.s.r.f).
- (ii) For every faithful *R*-module *C*, *C* (s.t.s.r.f).

Acknowledgement. We would like to thank the referees for their comments and suggestions on the manuscript.

764

References

- [1] R. Ameri, On the prime submodules of multiplication modules, *Int. J. Math. Math. Sci.* 2003, no. 27, 1715–1724.
- [2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, 1969.
- [3] A. Azizi, Weak multiplication modules, Czechoslovak Math. J. 53(128) (2003), no. 3, 529-534.
- [4] A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174–178.
- [5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755–779.
- [6] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, *Comm. Algebra* 20 (1992), no. 12, 3593–3602.
- [7] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
- [8] C.-P. Lu, Spectra of modules, *Comm. Algebra* 23 (1995), no. 10, 3741–3752.
- [9] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, *Canad. Math. Bull.* 29 (1986), no. 1, 37–39.
- [10] H. A. Tavallaee, Modules satisfying the semi-radical formula, Hadronic J. 32 (2009), no. 4, 407-423.
- [11] H. A. Tavallaee and S. Ghalandarzadeh, Semiprime submodules and envelope of modules, *IUST-International Journal of Engineering Sciences*, 14 (4), (2003), 131–142.
- [12] H. A. Tavallaee and R. M. Oghani, Some remarks on F-weak multiplication modules, *Thai J. Math.* 9 (2011), no. 2, 439–448.