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Abstract. In this paper we study the p(x)-Kirchhoff-type problem{
−m

(∫
RN

1
p(x) |∇u|p(x)dx

)
div(|∇u|p(x)−2∇u)+ |u|p(x)−2u = f (x,u) in RN

u ∈W 1,p(x)(RN).

We first establish the compact imbedding W 1,p(x)(RN) ↪→ Lq(x)
b(x)(R

N), where Lp(x)
b(x) (R

N) ={u
is measurable on RN :

∫
RN b(x)|u|p(x)dx < ∞}. Based on it, the existence and multiplicity of

solutions for the problem are obtained by variational methods.
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1. Introduction and main results

In this paper, we aim to discuss the existence and multiplicity of solutions for the following
p(x)-Kirchhoff-type problem in RN :

(1.1)

{
−m

(∫
RN

1
p(x) |∇u|p(x)dx

)
div(|∇u|p(x)−2∇u)+ |u|p(x)−2u = f (x,u) in RN

u ∈W 1,p(x)(RN)

where N ≥ 2, p is a function defined on RN , m : R→ R is continuous, f : RN ×R→
R satisfies Caratheodory conditions, i.e., f (x, t) is continuous in x for almost every t and
measurable in t for all x.

When p(x)≡ p (a constant), problem (1.1) is the p-Kirchhoff-type problem in RN . There
have been many studies on the existence of solutions for p-Kirchhoff-type problem, p(x)-
Kirchhoff-type problem and nonlocal p(x)-Laplacian Dirichlet problems on a bounded do-
main (refer to [1–6, 16]). In [8, 9], the Kirchhoff-type problems in RN have been studied.
The study on the existence of solutions for p-Kirchhoff-type problem and p(x)-Kirchhoff-
type problem in RN is a new topic. We know that in the study of equations in RN , a
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main difficulty arises from that the imbedding W 1,p(x)(RN) ↪→ Lq(x)(RN) is not compact
any more. In [8], the radially symmetric case is studied. In [9], the study is based on the
compact imbedding E ↪→ Ls(RN) (E = {u ∈ H1(RN) :

∫
RN (|∇u|2 +V (x)u2)dx < ∞}). In

this paper, we establish the compact imbedding W 1,p(x)(RN) ↪→ Lq(x)
b(x)(R

N)
(
Lp(x)

b(x)(R
N) = {u

is measurable on RN :
∫

RN b(x)|u|p(x)dx < ∞}
)

to overcome the difficulty, which is a new
method for this problem.

Denote by M (RN) the set of all measurable real functions defined on RN , elements in
M (RN) which are equal to each other almost everywhere are considered as one element.
For a function p(x) defined on RN , let

p] := inf
RN

p(x) and p] := sup
RN

p(x).

The elementary assumptions on p and m are as follows:
(p) p is Lipschitz continuous, p ∈ L∞(RN), 1 < p] ≤ p] < N;

(m0) there exists m0 > 0 such that m(t)≥ m0 for all t ≥ 0;
(m1) there is 0 < µ < 1 such that M(t)≥ µtm(t) for all t ≥ 0, where M(t) =

∫ t
0 m(s)ds.

For the functions b(x) and q(x), we suppose that they satisfy the following conditions:
(b0) b(x)≥ 0, b 6= 0 and b ∈C(RN ,R);
(b1) b(x)≥ 0, and b ∈ Lr(x)(RN), where r ∈ L∞(RN), r] ≥ 1;
(q) q ∈ L∞(RN) and 1≤ q] ≤ q] < (p∗)], where p∗(x) := (N p(x))/(N− p(x)).

For p ∈ L∞(RN) and p] ≥ 1, define

Lp(x)(RN) =
{

u ∈M (RN) :
∫

RN
|u|p(x)dx < ∞

}
,

with the norm

|u|Lp(x)(RN) = |u|p(x) = inf
{

λ > 0 :
∫

RN

∣∣∣ u
λ

∣∣∣p(x)
dx≤ 1

}
,

and
W 1,p(x)(RN) = {u ∈ Lp(x)(RN)||∇u| ∈ Lp(x)(RN)},

with the norm
‖u‖W 1,p(x)(RN) = |u|Lp(x)(RN) + |∇u|Lp(x)(RN).

In this paper we will use the following equivalent norm on W 1,p(x)(RN):

‖u‖ := inf

{
λ > 0 :

∫
RN

(∣∣∣∣∇u
λ

∣∣∣∣p(x)

+
∣∣∣ u
λ

∣∣∣p(x)
)

dx≤ 1

}
.

For p ∈ L∞(RN) with p] ≥ 1 and b satisfying (b0) we define

Lp(x)
b(x)(R

N) =
{

u ∈M (RN) :
∫

RN
b(x)|u|p(x)dx < ∞

}
,

with the norm

|u|
Lp(x)

b(x) (R
N)

= inf
{

λ > 0 :
∫

RN
b(x)

∣∣∣ u
λ

∣∣∣p(x)
dx≤ 1

}
.

It is easily verified that ρ(u) :=
∫

RN b(x)|u|p(x)dx is semimodular (see [20, Definition
2.1.1]). Therefore, according to [20, Theorem 2.3.13], the space Lp(x)

b(x)(R
N) is a Banach
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space. As 1 ≤ p] ≤ p] < N, we can obtain that the space is separable and reflexive. The
proof is similar to the proof of Lemma 3.4.4 and Theorem 3.4.7 in [20].

Before we give the main results, we first give a embedding result which is new and
critical in the paper.

Lemma 1.1. Suppose that conditions (p) and (q) hold. Assume that (b1) holds with r
satisfying p(x) ≤ s(x) := r(x)q(x)/(r(x)− 1) ≤ p∗ for a.e. x ∈ RN . Then the embedding
W 1,p(x)(RN) ↪→ Lq(x)

b(x)(R
N) is continuous.

Moreover if s] < (p∗)], the embedding W 1,p(x)(RN) ↪→ Lq(x)
b(x)(R

N) is compact.

Remark 1.1. This result is new. As we all know, the embedding W 1,p(x)(RN) ↪→ Lq(x)(RN)
is no longer compact. It leads to the difficulty in proving the (PS) condition. And this is the
main difficulty in studying problems in RN . This result provides a new tool to overcome the
difficulty.

Next, we give our main results.

Theorem 1.1. Suppose that m satisfies (m0), (m1) and f satisfies the following conditions:
(f1) | f (x, t)| ≤ b(x)|t|q(x)−1, ∀(x, t) ∈ RN ×R, where b and q satisfy the conditions of

Lemma 1.1;
(f2) there exists δ > 0 such that f (x, t)≥ b0(x)tq0(x)−1 for x ∈RN and 0 < t ≤ δ , where

b0 satisfies condition (b0) and q0 satisfies (q) with q]
0 < p].

Let q] < p] in ( f 1), then problem (1.1) has a nontrivial solution.

Remark 1.2. Let F(x, t) =
∫ t

0 f (x,s)ds. On the one hand, ( f 1) guarantees that
∫

RN F(x,u)dx
is well defined. On the other hand, from ( f 1) we can obtain f (x,0) = 0, that is, 0 is a
solution of problem (1.1), combining with condition ( f 2), a nontrivial solution of problem
(1.1) can be obtained.

If q] > p] in ( f 1), we can obtain the following result.

Theorem 1.2. Suppose that m satisfies (m0), (m1), f satisfies ( f 1) with q] > p], and
(f3) there is a positive constant α > p]/µ such that

0 < αF(x, t)≤ t f (x, t), ∀ x ∈ RN , t 6= 0.

Then problem (1.1) has a nontrivial solution.

Remark 1.3. When q] > p], the energy functional related to problem (1.1) is not coercive
any more. ( f 4) guarantees that the (PS) sequence is bounded. We will prove this theorem
through the Mountain Pass Theorem.

Besides, we can obtain the existence of infinitely many solutions for the problem (1.1)
by the Fountain Theorem.

Theorem 1.3. Suppose that m satisfies (m0), (m1), f satisfies ( f 1) with q] > p], ( f 3) and
(f4) f (x,−t) =− f (x, t), for a.e. x ∈ RN and t ∈ R.
Then problem (1.1) has a sequence of nontrivial solutions {±uk} such that

M
(∫

RN

1
p(x)
|∇(±uk)|p(x)dx

)
+
∫

RN

1
p(x)
|±uk|p(x)dx−

∫
RN

F(x,±uk)dx→+∞

as k→ ∞.
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We also can get the existence of infinitely many solutions for the problem (1.1) without
the restriction to the relationship between p and q.

Theorem 1.4. Suppose that m satisfies (m0), (m1), f satisfies ( f 1), ( f 2) and ( f 4). Then
problem (1.1) has a sequence of nontrivial negative energy solutions {uk} with uk → 0 in
W 1,p(x)(RN) as k→ ∞.

Remark 1.4. In this result, there is not any restriction to the relationship between p and q.

Remark 1.5. If m(t) = a+bt, problem (1.1) reduces to{
−
(

a+b
∫

RN
1

p(x) |∇u|p(x)dx
)

div(|∇u|p(x)−2∇u)+ |u|p(x)−2u = f (x,u) in RN

u ∈W 1,p(x)(RN).

It is clear that

m(t)≥ a > 0, for all t ≥ 0.

Taking µ = 1/2, we have

M(t) = at +
1
2

bt2 ≥ 1
2
(a+bt)t = µm(t)t, for all t ≥ 0.

That is, conditions (m0) and (m1) are satisfied. So the results corresponding to Theorem
1.1–1.4 can be obtained. The problem and results are all new.

Remark 1.6. There are some studies of p-Kirchhoff-type problem like

−
[

m
(∫

Ω

|∇u|pdx
)]p−1

4pu = f (x,u) in Ω,

where Ω is a smooth bounded domain in RN , we refer to [1–3]. Motivated by these studies,
we can consider the following problem

(1.2)

{
−(a+b

∫
RN |∇u|pdx)p−14pu+ |u|p−2u = f (x,u) in RN ,

u ∈W 1,p(RN).

where a, b are two positive constants. It is clear that problem (1.2) is a special case of
problem (1.1) with p(x)≡ p and m(t) = (a+bpt)p−1. We know that

m(t)≥ ap−1 > 0, for all t ≥ 0.

Let µ = 1/p, we have

M(t) =
1

bp2 (a+bpt)p− ap

bp2 ≥
1
p
(a+bpt)p−1t = µm(t)t, for all t ≥ 0.

That is, conditions (m0) and (m1) are satisfied. Therefore, the results corresponding to
Theorem 1.1–1.4 can be obtained. The problem and results are also all new.
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2. Preliminary

u ∈W 1,p(x)(RN) is called a weak solution of problem (1.1) if

m
(∫

RN

1
p(x)
|∇u|p(x)dx

)∫
RN
|∇u|p(x)−2

∇u ·∇vdx+
∫

RN
|u|p(x)−2uvdx =

∫
RN

f (x,u)vdx

for all v ∈W 1,p(x)(RN). Set

F(x, t) =
∫ t

0
f (x,s)ds, ∀(x, t) ∈ RN×R,

ϕ(u) = M
(∫

RN

1
p(x)
|∇u|p(x)dx

)
+
∫

RN

1
p(x)
|u|p(x)dx−

∫
RN

F(x,u)dx,∀u ∈W 1,p(x)(RN).

Note that m is continuous, so M ∈ C1(R,R). Refer to [7], we know that
∫

RN (1/p(x))
|∇u|p(x)dx,

∫
RN (1/p(x))|u|p(x)dx,

∫
RN F(x,u)dx are all in C1(W 1,p(x)(RN),R). Therefore,

ϕ ∈C1(W 1,p(x)(RN),R) and

〈ϕ ′(u),v〉= m
(∫

RN

1
p(x)
|∇u|p(x)dx

)∫
RN
|∇u|p(x)−2

∇u ·∇vdx

+
∫

RN
|u|p(x)−2uvdx−

∫
RN

f (x,u)vdx

for all u,v ∈W 1,p(x)(RN). That is, the critical points of ϕ are just the weak solutions of
problem (1.1).

Let Ω be an open subset of RN , on the basic properties of space Lp(x)(Ω) and W 1,p(x)(Ω)
we refer to [11–15,17,18]. As we all know, RN is a special open subset. So those properties
also hold for Lp(x)(RN) and W 1,p(x)(RN). In the following, we display some facts (refer
to [7, 10]) which we will use later.

Proposition 2.1. [7] The spaces Lp(x)(RN) and W 1,p(x)(RN) are separable and reflexive
Banach spaces.

Proposition 2.2. [7] The conjugate space of Lp(x)(RN) is Lq(x)(RN), where 1/p(x)+1/q(x)
= 1. For any u ∈ Lp(x)(RN) and v ∈ Lq(x)(RN), one has∫

RN
|uv|dx≤

(
1
p]

+
1
q]

)
|u|p(x)|v|q(x) ≤ 2|u|p(x)|v|q(x).

Proposition 2.3. [7] Assume that p : RN →R is Lipschitz continuous and p] < N. Then for
q∈ L∞(RN) with q] ≥ 1, p(x)≤ q(x)≤ p∗(x), there is a continuous embedding W 1,p(x)(RN)
↪→ Lq(x)(RN).

Proposition 2.4. [7] Let Ω be a bounded domain in RN , p ∈C(Ω), p] < N. Then for any
q∈ L∞(RN) with 1≤ q]≤ q] < (p∗)], there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.5. [7] Suppose that |u|q(x) ∈ Ls(x)/q(x)(RN), where q,s ∈ L∞(RN) with q] ≥
1, s] ≥ 1, q(x) ≤ s(x). Then u ∈ Ls(x)(RN) and there is a number q̄ ∈ [q],q]] such that
||u|q(x)|s(x)/q(x) = (|u|s(x))q̄.
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Proposition 2.6. [7] Let K(u) =
∫

RN (1/p(x))(|∇u|p(x) + |u|p(x))dx, then K ∈ C1(W 1,p(x)

(RN),R) and K is a convex functional, K′ : W 1,p(x)(RN)→W 1,p(x)(RN)
∗

is a strictly mono-
tone, bounded homeomorphism, and is of (S+) type, namely un ⇀ u and limn→∞〈K′(un),un−
u〉 ≤ 0 implies un→ u.

Definition 2.1. Let ϕ ∈C1(X ,R). We say that ϕ satisfies the (PS) condition if any sequence
{uk} in X such that {ϕ(uk)} is bounded and ϕ ′(uk)→ 0 in X∗ as k→ ∞ has a convergent
subsequence in X.

Lemma 2.1. limk→∞ |uk|Lp(x)
b(x) (R

N)
= 0⇐⇒ limk→∞

∫
RN b(x)|uk|p(x)dx = 0.

Proof. (⇒) From limk→∞ |uk|Lp(x)
b(x) (R

N)
= 0 we know that for every 0 < ε < 1, there exists

k1 > 0 such that for all k > k1,

inf
{

λ :
∫

RN
b(x)

∣∣∣uk

λ

∣∣∣p(x)
dx≤ 1

}
< ε

1
p] ,

so there is λε ≤ ε
1/p] < 1 such that∫

RN
b(x)

∣∣∣∣ uk

λε

∣∣∣∣p(x)

dx≤ 1,

therefore ∫
RN

b(x)|uk|p(x)dx≤ λ
p]
ε ≤ ε,

that is, limk→∞

∫
RN b(x)|uk|p(x)dx = 0.

(⇐) From limk→∞

∫
RN b(x)|uk|p(x)dx = 0 we know that for every 0 < ε < 1, there exists

k2 > 0 such that for all k > k2, ∫
RN

b(x)|uk|p(x)dx≤ ε
p]

,

so ∫
RN

b(x)
∣∣∣uk

ε

∣∣∣p(x)
dx≤ 1

ε p]

∫
RN

b(x)|uk|p(x)dx≤ 1,

therefore

inf
{

λ :
∫

RN
b(x)

∣∣∣uk

λ

∣∣∣p(x)
dx≤ 1

}
≤ ε,

that is, limk→∞ |uk|Lp(x)
b(x) (R

N)
= 0.

Lemma 2.2. Suppose that b and q satisfy the conditions in Lemma 1.1. Then for u ∈
W 1,p(x)(RN), there is a number q̄∈ [q],q]] and a constant c > 0, such that

∫
RN b(x)|u|q(x)dx≤

c‖u‖q̄.

Proof. From the the continuous imbedding W 1,p(x)(RN) ↪→ Lq(x)
b(x)(R

N), there is a constant
c1 > 0 such that |u|

Lq(x)
b(x)
≤ c1‖u‖. So there exists λ ≤ c1‖u‖ such that

∫
RN

b(x)
∣∣∣ u
λ

∣∣∣q(x)
dx≤ 1.(2.1)
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When c1‖u‖ ≥ 1, we have∫
RN

b(x)
∣∣∣ u
λ

∣∣∣q(x)
dx≥

∫
RN

1
(c1‖u‖)q(x) b(x)|u|q(x)dx≥ 1

(c1‖u‖)q]

∫
RN

b(x)|u|q(x)dx.

When c1‖u‖ ≤ 1, one has∫
RN

b(x)
∣∣∣ u
λ

∣∣∣q(x)
dx≥

∫
RN

1
(c1‖u‖)q(x) b(x)|u|q(x)dx≥ 1

(c1‖u‖)q]

∫
RN

b(x)|u|q(x)dx.

Hence there exists q̄ ∈ [q],q]] such that∫
RN

b(x)
∣∣∣ u
λ

∣∣∣q(x)
dx≥ 1

(c1‖u‖)q̄

∫
RN

b(x)|u|q(x)dx.(2.2)

It follows from (2.1) and (2.2), we obtain
∫

RN b(x)|u|q(x)dx≤ cq̄
1‖u‖q̄ ≤ c‖u‖q̄.

Lemma 2.3. Suppose that m satisfies (m0), (m1). Assume that f satisfies ( f 1) and ( f 3).
Then ϕ satisfies the (PS) condition.

Proof. Let {un} be an arbitrary sequence satisfying |ϕ(un)| ≤ c for some c > 0 and ϕ ′(un)→
0. In [7], we know that

‖u‖ ≥ 1⇔‖u‖p] ≤
∫

RN
(|∇u|p(x) + |u|p(x))dx≤ ‖u‖p]

.(2.3)

When ‖un‖ ≥ 1, from (m0), (m1), ( f 3) and (2.3), we obtain

c+‖un‖ ≥ ϕ(un)−
1
α
〈ϕ ′(un),un〉

= M
(∫

RN

1
p(x)
|∇un|p(x)dx

)
+
∫

RN

1
p(x)
|un|p(x)dx−

∫
RN

F(x,un)dx

− 1
α

m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)dx− 1

α

∫
RN
|un|p(x)dx

+
∫

RN

1
α

f (x,un)undx

≥ µm
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN

1
p(x)
|∇un|p(x)dx

− 1
α

m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)dx

+
(

1
p]
− 1

α

)∫
RN
|un|p(x)dx+

∫
RN

[
1
α

f (x,un)un−F(x,un)
]

dx

≥
(

µ

p]
− 1

α

)
m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)dx

+
(

1
p]
− 1

α

)∫
RN
|un|p(x)dx

≥min
{(

µ

p]
− 1

α

)
m0,

(
1
p]
− 1

α

)}∫
RN

(|∇un|p(x) + |un|p(x))dx

≥min
{(

µ

p]
− 1

α

)
m0,

(
1
p]
− 1

α

)}
‖un‖p] .
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As α > p]/µ > p] and p] > 1, we get {un} is bounded.
Without loss of generality, we assume that un ⇀ u, then 〈ϕ ′(un),un−u〉 → 0 as n→ ∞.

Thus, we have

〈ϕ ′(un),un−u〉= m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)−2

∇un ·∇(un−u)dx

+
∫

RN
|un|p(x)−2un(un−u)dx−

∫
RN

f (x,un)(un−u)dx

→ 0 as n→ ∞.

From ( f 1) we obtain∣∣∣∣∫RN
f (x,un)(un−u)dx

∣∣∣∣≤ ∫RN
| f (x,un)||un−u|dx≤

∫
RN

b(x)|un|q(x)−1|un−u|dx

≤ 2q]−1
(∫

RN
b(x)|un−u|q(x)dx+

∫
RN

b(x)|u|q(x)−1|un−u|dx
)

As un ⇀ u, we have
∫

RN b(x)|u|q(x)−1|un− u|dx→ 0. According to Lemma 1.1, we have
un→ u strongly in Lq(x)

b(x)(R
N), and from Lemma 2.1 we obtain

∫
RN b(x)|un− u|q(x)dx→ 0.

Consequently,
∫

RN f (x,un)(un−u)dx→ 0. Therefore, we have

m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)−2

∇un ·∇(un−u)dx+
∫

RN
|un|p(x)−2un(un−u)dx

→ 0 as n→ ∞.

In view of (m0), one has

m
(∫

RN

1
p(x)
|∇un|p(x)dx

)∫
RN
|∇un|p(x)−2

∇un ·∇(un−u)dx+
∫

RN
|un|p(x)−2u(un−u)dx

≥min{m0,1}〈K′(un),un−u〉.

So, limn→∞〈K′(un),un−u〉 ≤ 0. By Proposition 2.6, one has un→ u. According to Defini-
tion 2.1, we conclude that ϕ satisfies the (PS) condition.

Proposition 2.7. (Fountain Theorem) Let X be a Banach space with the norm ‖ · ‖ and let
X j be a sequence of subspace of X with dimX j < ∞ for each j ∈ N. Further, X =

⊕
j∈N X j,

the closure of the direct sum of all X j. Set Yk =
⊕k

j=0 X j, Zk =
⊕

∞
j=k X j. Assume that

ϕ ∈ C1(X ,R) satisfies the (PS) condition, ϕ(−u) = ϕ(u). Suppose that for every k ∈ N,
there exist ρk > rk > 0 such that

(A1) infu∈Zk,‖u‖=rk
ϕ(u)→+∞ as k→ ∞,

(A2) maxu∈Yk,‖u‖=ρk
ϕ(u)≤ 0.

Then ϕ has an unbounded sequence of critical values.

As W 1,p(x)(RN) is a separable and reflexive Banach space, there exist {en}∞
n=1 ⊂ X and

{ fn}∞
n=1 ⊂ X∗ such that

fn(em) = δn,m,

W 1,p(x)(RN) = span{en : n = 1,2, · · · ,}, (W 1,p(x)(RN))∗ = span{ fn : n = 1,2, · · · ,}.



Existence and Multiplicity of Solutions for p(x)-Kirchhoff-Type Problem in RN 775

For k = 1,2, · · · , denote

Xk = span{ek}, Yk =
k⊕

j=1

X j, Zk =
∞⊕

j=k

X j.(2.4)

Lemma 2.4. For k = 1,2, · · · , write

θk = sup
u∈Zk,‖u‖≤1

∫
RN

b(x)|u|q(x)dx,

where b, q satisfy conditions in ( f 1). Then θk > 0 and θk→ 0 as k→ ∞.

Proof. Obviously, 0 ≤ θk+1 ≤ θk, so there is θ ≥ 0 such that θk → θ as k→ ∞. For each
k = 1,2, · · · , taking uk ∈ Zk, ‖uk‖ ≤ 1 such that

0≤ θk−
∫

RN
b(x)|uk|q(x)dx <

1
k
.

From Proposition 2.1, we know that W 1,p(x)(RN) is reflexive. So {uk} has a weakly conver-
gent subsequence, without loss of generality we suppose that uk ⇀ u. We claim that u = 0.
In fact, for any fn, n = 1,2, · · · , we have fn(uk) = 0 when k > n, so fn(uk)→ 0 as k→ ∞,
this conclude that for any fn, n = 1,2, · · · , fn(u) = 0, therefore, u = 0. That is, uk ⇀ 0
weakly in W 1,p(x)(RN), as k→ ∞. By Lemma 1.1 and Lemma 2.1, one has∫

RN
b(x)|uk|q(x)dx→ 0 as k→ ∞.

So, θk→ 0 as k→ ∞.

Next, we will state the Symmetric Mountain Pass Lemma. For this purpose, we should
first introduce the definition of genus.

Definition 2.2. Let X be a real Banach space and A a subset of X. A is said to be symmetric
if u ∈ A implies−u ∈ A. For a closed symmetric set A which does not contain the origin, we
define a genus γ(A) of A by the smallest integer k such that there exists an odd continuous
mapping from A to Rk \{0}. If there does not exist such a k, we define γ(A) = ∞. Moreover,
we set γ( /0) = 0. Let Γk denotes the family of closed symmetric subsets A of X such that
0 /∈ A and γ(A)≥ k.

For the convenience of the readers, we summarize the property of a genus. We refer the
readers to [19] for the proof of the next Proposition.

Proposition 2.8. [19] Let A and B be closed symmetric subsets of X which do not contain
the origin. Then (i)–(v) below hold.

(i) If there is an odd continuous mapping from A to B, then γ(A)≤ γ(B);
(ii) If there is an odd homeomorphism from A onto B, then γ(A) = γ(B);

(iii) If γ(B) < ∞, then γ(A\B)≥ γ(A)− γ(B);
(iv) If A is compact, then γ(A) < ∞ and γ(Nδ (A)) = γ(A) for δ > 0 small enough;
(v) The n-dimensional sphere Sn has a genus of n+1 by the Borsuk-Ulam theorem.

Now, we recall the Symmetric Mountain Pass Lemma, which can be found in [21].

Proposition 2.9. [21] Let X be an infinite demensional Banach space and ϕ ∈ C1(X ,R)
satisfies (B1) and (B2):



776 M.-C. Wei and C.-L. Tang

(B1) ϕ(u) is even, bounded from below, ϕ(0) = 0 and ϕ(u) satisfies the (PS) condition.
(B2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak

ϕ(u) < 0.

Then ϕ(u) admits a sequence of critical points {uk} such that ϕ(uk) ≤ 0, uk 6= 0 and
limk→∞ uk = 0.

3. Proof of main results

Proof of Lemma 1.1. For the proof of the continuous imbedding, we just need to prove
that W 1,p(x)(RN)⊂ Lq(x)

b(x)(R
N). As p(x)≤ s(x)≤ p∗(x), from Proposition 2.3, the embedding

W 1,p(x)(RN) ↪→ Ls(x)(RN) is continuous. Hence, for any u ∈W 1,p(x)(RN), we have u ∈
Ls(x)(RN). Then one has ∫

RN
(|u|q(x))

s(x)
q(x) dx =

∫
RN
|u|s(x)dx < ∞,

hence, |u|q(x) ∈ Ls(x)/q(x)(RN). From b ∈ Lr(x)(RN), 1/r(x)+q(x)/s(x) = 1 and Proposition
2.2, we obtain ∫

RN
b(x)|u|q(x)dx≤ 2|b|Lr(x) ||u|q(x)|Ls(x)/q(x) < ∞,

hence, u ∈ Lq(x)
b(x)(R

N). That is, the imbedding W 1,p(x)(RN) ↪→ Lq(x)
b(x)(R

N) is continuous.

Next, we prove that when s] < (p∗)] the imbedding is compact. Suppose that uk ⇀ u
weakly in W 1,p(x)(RN), then {‖uk‖} is bounded, further {|uk|s(x)} is bounded. So there is a
positive constant C such that

max{||uk|q(x)|s(x)/q(x), ||u|q(x)|s(x)/q(x)} ≤C.(3.1)

Set Bn = {x ∈ RN : |x|< n}, b ∈ Lr(x)(RN) implies that

|b|Lr(x)(RN\Bn)→ 0 as n→ ∞.

For any ε > 0, we can find n1 > 0 big enough such that

|b|Lr(x)(RN\Bn1 ) ≤
ε

2q]+3C
.(3.2)

Proposition 2.4 and s] < (p∗)] conclude that there is a compact embedding W 1,p(x)(Bn1) ↪→
Ls(x)(Bn1), so uk ⇀ u implies that |uk−u|Ls(x)(Bn1 )→ 0 as k→ ∞. According to Proposition
2.2 we have ∫

Bn1

b(x)|uk−u|q(x)dx≤ |b(x)|Lr(x)(Bn1 )||uk−u|q(x)|Ls(x)/q(x)(Bn1 ).

It follows from Proposition 2.5 that ||uk−u|q(x)|Ls(x)/q(x)(Bn1 ) = |uk−u|q̄
Ls(x)(Bn1 )

→ 0 as k→∞.

Since |b(x)|Lr(x)(Bn1 ) is bounded, we have∫
Bn1

b(x)|uk−u|q(x)dx→ 0 as k→ ∞.

Thus, there exists k1 > 0 such that for any k ≥ k1 one has∫
Bn1

b(x)|uk−u|q(x)dx≤ ε

2
.(3.3)
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According to Proposition 2.2 and combining with (3.1), (3.2), (3.3) we have∫
RN

b(x)|uk−u|q(x)dx

≤
∫

Bn1

b(x)|uk−u|q(x)dx+2q]
∫

RN\Bn1

|b(x)|(|uk|q(x) + |u|q(x))dx

≤ ε

2
+2q]+1|b|Lr(x)(RN\Bn1 )(||uk|q(x)|Ls(x)/q(x)(RN\Bn1 ) + ||u|q(x)|Ls(x)/q(x)(RN\Bn1 ))

≤ ε

2
+2q]+1× ε

2q]+3C
×2C ≤ ε,

this concludes that
∫

RN b(x)|uk−u|q(x)dx→ 0 as k→∞. Then by Lemma 2.1, we have uk→
u strongly in Lq(x)

b(x)(R
N), that is, the embedding W 1,p(x)(RN) ↪→ Lq(x)

b(x)(R
N) is compact.

Proof of Theorem 1.1. From Proposition 2.6 and ( f 1), we know that ϕ is weakly lower
semi-continuous. Next, we prove that ϕ is coercive on W 1,p(x)(RN), that is, ϕ(u)→+∞ as
‖u‖→ ∞. According to Lemma 2.2, (m0), ( f 1) and (2.3), when ‖u‖> 1 we have

ϕ(u)≥ m0

∫
RN

1
p(x)
|∇u|p(x)dx+

∫
RN

1
p(x)
|u|p(x)dx−

∫
RN

F(x,u)dx

≥ min{m0,1}
p]

(∫
RN
|∇u|p(x)dx+

∫
RN
|u|p(x)dx

)
−
∫

RN

1
q]

b(x)|u|q(x)dx

≥ min{m0,1}
p]

‖u‖p] − c
q]
‖u‖q̄ ≥ min{m0,1}

p]
‖u‖p] − c

q]
‖u‖q]

,

(3.4)

where q̄ ∈ [q],q]]. Since q] < p], ϕ(u)→ +∞ as ‖u‖ → ∞. According to the least action
principle, there exists a critical point which minimizes ϕ on W 1,p(x)(RN).

Besides, we can obtain infu∈W 1,p(x)(RN) ϕ(u) < 0. In fact, from (m1), we know that the

function g(t) = M(t)/t1/µ is decreasing, so for any t0 > 0 when t > t0, we can obtain

M(t)≤ M(t0)

t1/µ

0

t1/µ ≤ ct1/µ .(3.5)

Fix a ū ∈W 1,p(x)(RN) with ‖ū‖ = 1, let
∫

RN (b0(x)/q0(x))|ū|q0(x)dx = s. For t ∈ (0,1),
according to (3.5) we have

ϕ(tū) = M
(∫

RN

1
p(x)
|∇tū|p(x)dx

)
+
∫

RN

1
p(x)
|tū|p(x)dx−

∫
RN

F(x, tū)dx

≤ c
(∫

RN

1
p(x)
|∇tū|p(x)dx

)1/µ

+
t p]

p]

∫
RN
|ū|p(x)dx−

∫
RN

b0(x)tq0(x)|ū|q0(x)

q0(x)
dx

≤ c
(p])1/µ

t p]/µ

(∫
RN
|∇ū|p(x)dx

)1/µ

+
t p]

p]

∫
RN
|ū|p(x)dx− tq]

0s

As q]
0 < p] < p]/µ , we can find t small enough such that

ϕ(tū) < 0.

Hence, infu∈W 1,p(x)(RN) ϕ(u) < 0. That is, the critical value of ϕ which we have obtained
before is not zero. Then the critical point is also not zero. Therefore, problem (1.1) has a
nontrivial solution.
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Proof of Theorem 1.2. We will prove this theorem by the Mountain Pass Theorem. Firstly,
according to Lemma 2.3, the (PS) condition holds. Secondly, we verify that there exist ρ > 0
and β > 0 such that when ‖u‖= ρ , ϕ(u)≥ β > 0. In [7], we know that

‖u‖ ≤ 1⇔‖u‖p] ≤
∫

RN
(|∇u|p(x) + |u|p(x))dx≤ ‖u‖p] .(3.6)

According to Lemma 2.2, (m0), ( f 1) and (3.6), when ‖u‖ ≤ 1 we have

ϕ(u)≥ min{m0,1}
p]

∫
RN

(|∇u|p(x) + |u|p(x))dx−
∫

RN

1
q]

b(x)|u|q(x)dx

≥ min{m0,1}
p]

∫
RN

(|∇u|p(x) + |u|p(x))dx− c
q]
‖u‖q̄

≥ min{m0,1}
p]

‖u‖p] − c
q]
‖u‖q] ,

where q̄ ∈ [q],q]]. As q] > p], when ‖u‖ small enough ϕ(u)≥ 0, so there are two constants
0 < ρ < 1 and β > 0 such that when ‖u‖= ρ , ϕ(u)≥ β > 0.

Lastly, we prove that there exists e ∈W 1,p(x)(RN) with ‖e‖ > ρ such that ϕ(e) < 0.
Condition ( f 3) implies that

F(x, tu)≥ tα F(x,u), ∀t ≥ 1.(3.7)

Choose ū ∈W 1,p(x)(RN) with ‖ū‖= 1. Then from (3.5) and (3.7), for any t > 1 we have

ϕ(tū) = M
(∫

RN

1
p(x)
|t∇ū|p(x)dx

)
+
∫

RN

1
p(x)
|tū|p(x)dx−

∫
RN

F(x, tū)dx

≤ c
(∫

RN

1
p(x)
|t∇ū|p(x)dx

)1/µ

+
1
p]

∫
RN
|tū|p(x)dx− tα

∫
RN

F(x, ū)dx

≤ c
(p])1/µ

t
p]

µ

(∫
RN
|∇ū|p(x)dx

)1/µ

+
1
p]

t p]
∫

RN
|ū|p(x)dx− tα

∫
RN

F(x, ū)dx

→−∞ as t→+∞,

due to α > p]/µ > p]. Then e = tū (t > max{1,ρ}) is what we need.
Consequently, the result is proved.

Proof of Theorem 1.3. Let us verify for ϕ the conditions in the Fountain Theorem item by
item. From condition ( f 4), ϕ(−u) = ϕ(u). We know that ϕ(u) satisfies the (PS) condition
by Lemma 2.3. Next we verify that (A1) and (A2) in Proposition 2.7 are satisfied. (A1)
When u ∈ Zk with ‖u‖ ≥ 1, from ( f 1), there exists c > 0 such that F(x, t) ≤ cb(x)|t|q(x).
Then from Lemma 2.4, we have

ϕ(u)≥ m0

∫
RN

1
p(x)
|∇u|p(x)dx+

∫
RN

1
p(x)
|u|p(x)dx− c

∫
RN

b(x)|u|q(x)dx

≥ min{m0,1}
p]

∫
RN

(|∇u|p(x) + |u|p(x))dx− cθk‖u‖q]

≥ min{m0,1}
p]

‖u‖p] − cθk‖u‖q]
.
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Let

rk =
(

min{m0,1}p]

p]q]cθk

)1/(q]−p])

,

when u ∈ Zk and ‖u‖= rk, for sufficiently large k,

ϕ(u)≥
(

min{m0,1}p]

p]q]

)q]/(q]−p]) q]− p]

p]

(
1

cθk

)p]/(q]−p])

.

Now θk→ 0 and q] > p] implies that

inf
u∈Zk,‖u‖=rk

ϕ(u)→+∞ as k→ ∞,

hence (A1) is satisfied.
(A2) From (3.5) and (3.7), for any v ∈ Yk with ‖v‖= 1 and t > 1, we have

ϕ(tv) = M
(∫

RN

1
p(x)
|t∇v|p(x)dx

)
+
∫

RN

1
p(x)
|tv|p(x)dx−

∫
RN

F(x, tv)dx

≤ c
(∫

RN
|t∇v|p(x)dx

)1/µ

+
1
p]

∫
RN
|tv|p(x)dx− tα

∫
RN

F(x,v)dx

≤ ct
p]

µ

(∫
RN
|∇v|p(x)dx

)1/µ

+
1
p]

t p]
∫

RN
|v|p(x)dx− tα

∫
RN

F(x,v)dx

→−∞ as t→+∞,

due to α > p]/µ > p]. So there exists ρk > rk such that t = ρk concludes ϕ(tv) ≤ 0, and
then

max
u∈Yk,‖u‖=ρk

ϕ(u)≤ 0,

hence (A2) is satisfied.
Proof of Theorem 1.4. Choose h ∈C∞([0,∞),R) such that 0≤ h(t)≤ 1 for t ∈ [0,∞), and
for every ε > 0, h(t) = 1 for 0 ≤ t ≤ ε/2, h(t) = 0 for t ≥ ε . Let ψ(u) = h(‖u‖). We
consider the truncated functional

Φ(u) := M
(∫

RN

1
p(x)
|∇u|p(x)dx

)
+
∫

RN

1
p(x)
|u|p(x)dx−ψ(u)

∫
RN

F(x,u)dx.

We know that Φ ∈ C1(W 1,p(x)(RN),R). If we can prove that Φ admits a sequence of
nontrivial weak solutions {un} with un → 0 as n → ∞ in W 1,p(x)(RN), Theorem 1.4 is
proved. In fact, for every ε > 0, there exists N > 0 such that for all n > N, ‖un‖ < ε/2,
ϕ(un) = Φ(un), that is, {un}n>N are just weak solutions of problem (1.1). By applying
Proposition 2.9 we show that Φ admits a sequence of nontrivial weak solutions converges
to zero in W 1,p(x)(RN).

For ‖u‖ ≥ 1, we have Φ(u) ≥ (min{m0,1}/p])‖u‖p] , which implies that Φ(u)→ ∞ as
‖u‖ → ∞. Hence Φ is coercive on W 1,p(x)(RN). Thus Φ(u) is bounded from below and the
(PS) sequence is bounded. As the proof of Lemma 2.3, the (PS) condition is satisfied. By
( f 4), it is easy to see that Φ(−u) = Φ(u) and Φ(0) = 0. This shows that (B1) holds.

As b0(x) 6= 0 and b0(x)≥ 0, we can find a bounded open set Ω⊂RN such that b0(x) > 0
for all x ∈ Ω. There exists a map φ : W 1,p(x)

0 (Ω) → W 1,p(x)(RN), such that for every

u ∈W 1,p(x)
0 (Ω), φ(u) = u, if x ∈ Ω; φ(u) = 0, if x ∈ RN \Ω. Under this map, W 1,p(x)

0 (Ω)
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is isomorphic to a subspace of W 1,p(x)(RN). So in the isomorphic meaning, the space
W 1,p(x)

0 (Ω) is a subspace of W 1,p(x)(RN). For any k, we can choose a k-dimensional lin-

ear subspace Ek of W 1,p(x)
0 (Ω) such that Ek ⊂ C∞

0 (Ω). As the norms on Ek are equivalent
each other, there exists ρk ≤min{1,ε/2} such that u ∈ Ek with ‖u‖ ≤ ρk implies |u|L∞ ≤ δ .
Set

S(k)
ρk = {u ∈ Ek|‖u‖= ρk},

the compactness of S(k)
ρk and condition ( f 2) conclude that there exists a constant dk > 0 such

that

(3.8)
∫

Ω

b0(x)|u|q0(x)

q0(x)
dx≥ dk, ∀u ∈ S(k)

ρk .

If not, for every n, there exists un ∈ S(k)
ρk such that∫

Ω

b0(x)|un|q0(x)

q0(x)
dx <

1
n
.

Let n→ ∞, we have ∫
Ω

b0(x)|un|q0(x)

q0(x)
dx→ 0.(3.9)

Since S(k)
ρk is compact, {un} has a convergent subsequence {unk} such that unk → u and

u ∈ S(k)
ρk . From (3.9), we obtain ∫

Ω

b0(x)|u|q0(x)

q0(x)
dx = 0.

For b0 > 0 on Ω, and (q0)] ≥ 1, we obtain u = 0. It is contrary to u ∈ S(k)
ρk . So (3.8) holds.

For u ∈ S(k)
ρk and t ∈ (0,1), from (3.5) we have

Φ(tu) = M
(∫

Ω

1
p(x)
|∇tu|p(x)dx

)
+
∫

Ω

1
p(x)
|tu|p(x)dx−ψ(u)

∫
Ω

F(x, tu)dx

≤ c
(∫

Ω

1
p(x)
|∇tu|p(x)dx

)1/µ

+
t p]

p]

∫
Ω

|u|p(x)dx−
∫

Ω

b0(x)tq0(x)|u|q0(x)

q0(x)
dx

≤ ct p]/µ

(p])1/µ
ρ

p]
µ

k +
t p]

p]
ρ

p]

k − tq]
0dk.

As q]
0 < p] < p]/µ , we can find tk ∈ (0,1) such that

Φ(tku) < 0, ∀u ∈ S(k)
ρk ,

that is,
Φ(u) < 0, ∀u ∈ S(k)

tkρk
.

Therefore, S(k)
tkρk
⊂ {u ∈W 1,p(x)(RN)|Φ(u) < 0}. Since S(k)

tkρk
is a sphere with radius tkρk in

Ek, a k-dimensional subspace of Ek, so γ(S(k)
tkρk

) = k + 1 by Proposition 2.8. Then γ({u ∈
W 1,p(x)(RN)|Φ(u) < 0})≥ γ(S(k)

tkρk
) = k+1. Let Ak = {u∈W 1,p(x)(RN)|Φ(u) < 0}, we have
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Ak ∈ Γk, and supu∈Ak
Φ(u) < 0. This shows that (B2) holds. Hence, by Proposition 2.9 we

complete the proof of Theorem 1.4.
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[3] F. J. S. A. Corrêa and R. G. Nascimento, On a nonlocal elliptic system of p-Kirchhoff-type under Neumann

boundary condition, Math. Comput. Modelling 49 (2009), no. 3-4, 598–604.
[4] G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359

(2009), no. 1, 275–284.
[5] G. Dai and D. Liu, Infinitely many positive solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl.

359 (2009), no. 2, 704–710.
[6] G. Dai, Infinitely many solutions for a differential inclusion problem in RN involving the p(x)-Laplacian,

Nonlinear Anal. 71 (2009), no. 3–4, 1116–1123.
[7] X.-L. Fan and X.-Y. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , Non-

linear Anal. 59 (2004), no. 1–2, 173–188.
[8] J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in RN , J. Math. Anal. Appl.

369 (2010), no. 2, 564–574.
[9] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations

in RN , Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1278–1287.
[10] X.-L. Fan and Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52

(2003), no. 8, 1843–1852.
[11] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and

W k,p(·), Math. Nachr. 268 (2004), 31–43.
[12] D. E. Edmunds and J. Rákosnı́k, Sobolev embeddings with variable exponent. II, Math. Nachr. 246/247

(2002), 53–67.
[13] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424–446.
[14] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces W k,p(x)(Ω), J. Math. Anal. Appl. 262

(2001), no. 2, 749–760.
[15] X. Fan, Y. Zhao and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the

space W 1,p(x)(Ω), J. Math. Anal. Appl. 255 (2001), no. 1, 333–348.
[16] X. Fan, On nonlocal p(x)-Laplacian Dirichlet problems, Nonlinear Anal. 72 (2010), no. 7-8, 3314–3323.
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