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Abstract. In this paper, we deal with the oscillation of bounded solutions of a class of
second-order half-linear neutral delay dynamic equations with an oscillating coefficient on a
time scale. We establish several oscillation criteria for all bounded solutions of the equations
by employing a generalized Riccati technique and an integral averaging technique. The
results obtained here extend and complement some known results concerning the equations
in which the coefficients are of one sign. Examples are given to illustrate our main results.
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1. Introduction

The goal of this paper is to establish some oscillation criteria for all bounded solutions of
the following second-order half-linear neutral delay dynamic equation with an oscillating
coefficient

(1.1)
(

r(t)|x∆(t)|β−1x∆(t)
)∆

+ f (t,y(δ (t))) = 0

on a time scale T, where

(1.2) x(t) := y(t)+ p(t)y(τ(t)), t ∈ T.

Throughout this paper, we assume that supT = ∞ since we are interested in the oscillation
of solutions near infinity. Furthermore, in this paper we will use the following hypotheses:

(A1) p ∈Crd(T,R), p is an oscillating function, and limt→∞ p(t) = 0;
(A2) β > 0 is a constant;
(A3) t0 ∈ T, I := [t0,∞) is a time scale interval in T, i.e., I := {t : t ∈ T, t ≥ t0}, r ∈

Crd(I,(0,∞)), and
∫

∞

t0

( 1
r(t)

)1/β
∆t = ∞;

(A4) τ ∈Crd(T,T) and limt→∞ τ(t) = ∞;
(A5) δ ∈Crd(T,T),δ (t)≤ t for t ∈ I and limt→∞ δ (t) = ∞;
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(A6) f : I×R→ R is continuous function such that u f (t,u) > 0 for all t ∈ I and for all
u 6= 0 and there exists a positive rd-continuous function q defined on I such that
| f (t,u)| ≥ q(t)|uβ | for all t ∈ I and for all u ∈ R.

By a solution of (1.1) we mean a nontrivial real function y such that y(t)+ p(t)y(τ(t)) ∈
C1

rd [ty,∞) and r(t)|[y(t) + p(t)y(τ(t))]∆|β−1[y(t) + p(t)y(τ(t))]∆ ∈ C1
rd [ty,∞) for a certain

ty ≥ t0 and satisfying (1.1) for t ≥ ty. Our attention is restricted to those solutions of (1.1)
which exist on the half-line [ty,∞) and satisfy sup{|y(t)| : t > t∗} > 0 for any t∗ ≥ ty. A
solution y of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative. Otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.

Since Stefan Hilger [21] introduced the theory of time scales, many authors have ex-
pounded on various aspects of this new theory; see the books [3,4] by Bohner and Peterson
and the papers [1,2,5,8–18,20,22,23,28–31,35,37,40,41] and the references cited therein.
A time scale T is an arbitrary nonempty closed subset of the reals R (see [3, 4]), and the
cases when this time scale is equal to the reals R or to the integers Z represent the classical
theories of differential equations and of difference equations. Many results concerning dif-
ferential equations carry over quite easily to corresponding results for difference equations,
while other results seem to be completely different from their continuous counterparts. The
study of dynamic equations on time scales reveals such discrepancies, and helps avoid prov-
ing results twice—once for differential equations and once again for difference equations.
The general idea is to prove a result for a dynamic equation where the domain of the un-
known function is a time scale. In this way results not only related to the set of real numbers
R or the set of integers Z but those pertaining to more general time scales are obtained.
Therefore, not only can the theory of dynamic equations unify the theories of differential
equations and of difference equations, but it is also able to extend these classical cases to
cases “in between,” e.g., to the so-called q-difference equations.

Dynamic equations on time scales have many applications in biology, engineering, eco-
nomics, physics, neural networks, social sciences and so on (see [3, 33]). For instance, it
can model insect populations that are continuous while in season, die out in say winter,
while their eggs are incubating or dormant, and then hatch in a new season, giving rise
to a nonoverlapping population (see [3]). A book on the subject of time scale, by Bohner
and Peterson [3], summarizes and organizes much of time scale calculus. For advances of
dynamic equations on time scales we refer the reader to the book [4].

During the last years, much interest has focused on obtaining oscillation criteria of solu-
tions of different classes of dynamic equations on time scales, and we refer the reader to the
papers [1, 5, 8–15, 17, 18, 23, 25, 28–31, 35, 37, 40, 41] and the references cited therein.

Note that if β > 0 is a quotient of odd positive integers then (1.1) reduces to the equation

(1.3)
(

r(t)
([

y(t)+ p(t)y(τ(t))
]∆)β)∆

+ f (t,y(δ (t))) = 0, t ∈ T.

In 2006, for the case when β ≥ 1 is a quotient of odd positive integers, Wu et al. [35]
considered (1.3) where the conditions (A3)–(A6) and the following conditions are satisfied:

(A7) p ∈Crd(T,R) and 0≤ p(t) < 1 for t ∈ T;
(A8) τ(t)≤ t for t ∈ T;
(A9) δ : R→ R is continuous, δ : T→ R is strictly increasing, and T̃ := δ (T) = {δ (t) :

t ∈ T} ⊂ T is a time scale;
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(A10) (δ ◦σ)(t) = (σ ◦δ )(t) for all t ∈ T, here σ(t) := inf{s ∈ T : s > t} is the forward
jump operator on T.

Wu et al. [35] got several oscillation theorems for (1.3).
In 2007, Saker et al. [30] considered (1.3) where β ≥ 1 is an odd positive integer and the

conditions (A3)–(A8) and the following condition are satisfied:

(A11)
∫

∞

t0 δ β (s)q(s)[1− p(δ (s))]β ∆t = ∞.

Saker et al. [30] removed the conditions (A9) and (A10) used in [35], and established some
new oscillation criteria that can be applied on any time scale T.

In 2010, Zhang and Wang [40] studied the oscillation of (1.3) where β > 0 is a quotient
of odd positive integers and the conditions (A3)–(A8) and r∆(t) ≥ 0 for t ∈ T are assumed
to hold. Their results for β ≥ 1 extended and complemented the results in [30,35] and those
for 0 < β < 1 are new.

Very recently, Saker and O’Regan [31] were concerned with the oscillatory behavior of
(1.3), where β ≥ 1 is a quotient of odd positive integers, δ ∈ Crd(T,T), limt→∞ δ (t) = ∞

and the conditions (A3), (A4) and (A6)–(A8) are assumed to hold. Saker and O’Regan [31]
didn’t require the condition (A11) used in [30] and the condition r∆(t) ≥ 0 for t ∈ T used
in [40]. The results in [31] covered both the case when δ (t) > t for t ∈ T and the case when
δ (t)≤ t for t ∈ T and improved some of those in [30, 40].

For recent contributions on oscillatory and asymptotic properties of different classes dif-
ferential equations and difference equations with an oscillating coefficient, we refer the
reader to the papers [6, 7, 24, 26, 27, 34, 36, 38, 39, 42, 43].

In [27], Luo and Shen introduce a new technique to obtain some new oscillation criteria
for the oscillating coefficient delay differential equation with piecewise constant argument
of the form

x′(t)+a(t)x(t)+b(t)x([t− k]) = 0,

where a(t) and b(t) are right continuous functions on [−k,∞), k is a positive integer, b(t) is
oscillatory, and [.] denotes the greatest integer function.

Bolat and Akin [7] and Zhou and Yu [43] considered the higher-order neutral type non-
linear forced differential equation with an oscillating coefficient of the form

[y(t)+ p(t)y(τ(t))](n) +
m

∑
i=1

qi(t) fi(y(δi(t))) = s(t),

where n≥ 2 and the following conditions are always assumed to hold: (i) p(t),qi(t),τ(t),s(t)
∈ C[t0,∞) for i = 1,2, . . . ,m; (ii) p(t) and s(t) are oscillating functions; (iii) qi(t) ≥ 0 for
i = 1,2, . . . ,m; (iv) δi(t) ∈C′[t0,∞),δ ′i (t) > 0,δi(t)≤ t, limt→∞ δi(t) = ∞ for i = 1,2, . . . ,m,
and limt→∞ τ(t) = ∞; (v) fi(u) ∈C(R) is nondecreasing function, u fi(u) > 0 for u 6= 0 and
i = 1,2, . . . ,m. Bolat and Akin [7] established some oscillation criteria for the equation. By
using Krasnoselskii’s fixed point theorem and some new techniques, Zhou and Yu [43] ob-
tained a necessary and sufficient criterion for every bounded solution of the equation to be
oscillatory or to tend to zero and a sufficient condition for the existence of bounded positive
solutions of the equation for general p(t) and s(t). In particular, Zhou and Yu [43] im-
proved the results of Bolat and Akin [7] by removing certain conditions and relaxing some
hypotheses used in [7].
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Zein and Abu-Kaff [39] presented several sufficient conditions for the oscillation of
bounded solutions of n-th order neutral type nonlinear differential equation with an os-
cillating coefficient of the form

[y(t)+ p(t)y(τ(t))](n) + f (t,y(t),y(δ (t))) = s(t),

where n ≥ 2, p(t) ∈C(R+,R) is an oscillatory function with limt→∞ p(t) = 0, here R+ =
[0,+∞),τ(t),δ (t) ∈C(R+,R),δ (t)≤ t, limt→∞ τ(t) = limt→∞ δ (t) = ∞, f : R+×R×R→
R is continuous, and y f (t,x,y) > 0 for xy > 0, and there exists an oscillatory function
r(t) ∈ Cn(R+,R) such that r(n)(t) = s(t) and limt→∞ r(t) = 0. Zafer in [38] established
some sufficient conditions for the oscillation of the equation when 0 ≤ p(t) < 1. Zein and
Abu-Kaff [39] extended the results of Zafer in [38].

Yu and Tang [36] and Tang and Cheng [34] studied the oscillation of all solutions of the
delay difference equation

yn+1− yn + pnyn−k = 0, n = 0,1,2, · · · ,

where k is a positive integer and {pn} is an oscillatory real sequence. Yu and Tang [36]
gave an interesting result on the oscillation of the equation by using an effective kind of
method to evade those n values pn taking on negative values. Tang and Cheng [34] obtained
an oscillation criterion for the equation by making use of the convexity property of the
function x lnx. The results in [36] and [34] improved and extended some of the existing
results.

Li [26] established some sufficient conditions for the oscillation of the second-order non-
linear difference equation

∆[ang(∆yn)]+ pn+1 f (yn+1) = 0, n≥ 0,

where ∆ is the forward difference operator defined by ∆yn = yn+1−yn, {an} is an eventually
positive real sequence, {pn} is an oscillatory real sequence, and f and g are continuous real-
valued functions on R and satisfy: u f (u) > 0,ug(u) > 0, f ′(u)≥ 0 and g′(u) > 0 for u 6= 0.

Bolat and Akin [6] were concerned with the oscillation of solutions of the higher-order
nonlinear difference equation of the form

∆
n[y(k)+ p(k)y(k− τ)]+q(k) f (y(δ (k))) = 0, n≥ 2 ∈ N0, k ∈ N0,

where N0 = {0,1,2, · · ·}, p(k) : N0→ R is an oscillating function, q(k) : N0→ [0,∞), τ is
a positive integer, δ (k) : N0 → Z, δ (k) ≤ k, limk→∞ δ (k) = ∞, f (u) ∈ C(R,R) is a nonde-
creasing function and u f (u) > 0 for u 6= 0. They presented two sufficient conditions which
ensure that every solution of the equation oscillates or converges to zero.

Zhou [42] dealt with the oscillatory and asymptotic properties of the higher-order non-
linear neutral difference equation of the form

∆(an(∆m(yn− pnyn−τ))α)+ f (n,yδ (n)) = 0,

where n ∈ N = {1,2, · · ·},m,τ ∈ N,α is a quotient of odd positive integers, an : N →
(0,∞),δ (n) ≤ n and δ (n)→ ∞ as n→ ∞, pn : N→ R, f (n,u) : N×R→ R,u f (n,u) > 0,
and f (n,u) is continuous with respect to u, and f (n,u) ≥ f (n,v) for u ≥ v and for n ∈ N.
Zhou [42] obtained several necessary and sufficient conditions for every bounded solution
of the equation to be oscillatory or to tend to zero for general pn. Zhou [42] weakened some
conditions of the results in [6, 24].
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The motivation of this paper principally comes from the papers [6, 7, 24, 26, 27, 30, 31,
34–36, 38–40, 42, 43]. Obviously, the condition (A7) is indispensable for all the results
in [30, 31, 35, 40]. Also, these results require the condition that β is a quotient of odd
positive integers with β ≥ 1 or β > 0. Therefore, we raise naturally the question whether it
is possible to find some new oscillation criteria for (1.1) when p∈Crd(T,R) is an oscillating
function and β > 0 is a constant. To the best of our knowledge, nothing is known regarding
this question up to now. Our aim in this paper is to give an affirmative answer to this
question. By using a generalized Riccati technique and an integral averaging technique, we
obtain some sufficient conditions for the oscillation of all bounded solutions of (1.1) when
p ∈ Crd(T,R) is an oscillating function and β > 0 is a constant. Our results extend and
complement the results established in [30, 31, 35, 40]. We also illustrate the main results
with several examples.

In what follows, for convenience, when we write a functional inequality without speci-
fying its domain of validity we assume that it holds for all sufficiently large t.

2. Preliminaries on time scales and lemmas

For completeness, we recall the following concepts related to the notion of time scales.
More details can be found in [3, 4].

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We assume
throughout that T has the topology that it inherits from the standard topology on the real
numbers R. Some examples of time scales are as follows: the real numbers R, the integers
Z, the positive integers N, the nonnegative integers N0, [0,1]∪ [2,3], [0,1]∪N, hZ := {hk :
k ∈ Z,h > 0} and qZ := {qk : k ∈ Z,q > 1}∪{0}. But the rational numbers Q, the complex
numbers C and the open interval (0,1) are not time scales. Many other interesting time
scales exist, and they give rise to plenty of applications (see [3]).

For t ∈ T, the forward jump operator and the backward jump operator are defined by:

(2.1) σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

where infø = supT (i.e., σ(t) = t if T has a maximum t) and supø = infT (i.e., ρ(t) = t if
T has a minimum t), here ø denotes the empty set.

Let t ∈ T. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is
left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. Also, if t < supT and σ(t) = t, then t is called right-dense, and if t > infT and
ρ(t) = t, then t is called left-dense. The graininess function µ : T→ [0,∞) is defined by

(2.2) µ(t) := σ(t)− t.

We also need below the set Tκ : If T has a left-scattered maximum m, then Tκ = T−{m}.
Otherwise, Tκ = T. Let f : T→ R, then we define the function f σ : Tκ → R by

f σ (t) := f (σ(t)) for all t ∈ Tκ ,

i.e., f σ := f ◦σ .
For a,b ∈ T with a < b, we define the interval [a,b] in T by

[a,b] := {t ∈ T : a≤ t ≤ b}.

Open intervals and half-open intervals, etc. are defined accordingly.
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Fix t ∈ Tκ and let f : T→R. Define f ∆(t) to be the number (provided it exists) with the
property that given any ε > 0, there is a neighbourhood U of t such that

|[ f (σ(t))− f (s)]− f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈U.

In this case, we say that f ∆(t) is the (delta) derivative of f at t and that f is (delta) differen-
tiable at t.

Assume that f : T→ R and let t ∈ Tκ . If f is (delta) differentiable at t, then

(2.3) f (σ(t)) = f (t)+ µ(t) f ∆(t).

If µ(t) 6= 0, then from (2.3) we have

(2.4) f ∆(t) =
f (σ(t))− f (t)

µ(t)
.

A function f : T→ R is said to be right-dense continuous (rd-continuous) provided it
is continuous at each right-dense point in T and its left-sided limits exist (finite) at all left-
dense points in T. The set of all such rd-continuous functions is denoted by

Crd(T) = Crd(T,R).

The set of functions f : T→R that are (delta) differentiable and whose (delta) derivative
is rd-continuous is denoted by

C1
rd(T) = C1

rd(T,R).

We will make use of the following product and quotient rules for the (delta) derivatives
of the product f g and the quotient f /g of two (delta) differentiable functions f and g:

(2.5) ( f g)∆ = f ∆g+ f σ g∆ = f g∆ + f ∆gσ

and

(2.6)
( f

g

)∆

=
f ∆g− f g∆

ggσ
,

where gσ = g◦σ and ggσ 6= 0.
For a,b ∈ T and a (delta) differentiable function f , the Cauchy (delta) integral of f ∆ is

defined by ∫ b

a
f ∆(t)∆t = f (b)− f (a).

The integration by parts formula reads

(2.7)
∫ b

a
f (t)g∆(t)∆t = f (b)g(b)− f (a)g(a)−

∫ b

a
f ∆(t)gσ (t)∆t

or

(2.8)
∫ b

a
f σ (t)g∆(t)∆t = f (b)g(b)− f (a)g(a)−

∫ b

a
f ∆(t)g(t)∆t.

The infinite integral is defined as∫
∞

a
f (s)∆s = lim

t→∞

∫ t

a
f (s)∆s.

Next we present some lemmas which we will need in the proof of our main results.
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Lemma 2.1 (Bohner and Peterson [3], p. 32, Theorem 1.87). Let f : R→R be continuously
differentiable and suppose g : T→ R is delta differentiable. Then f ◦ g : T→ R is delta
differentiable and satisfies

( f ◦g)∆(t) =
{∫ 1

0
f ′(g(t)+hµ(t)g∆(t))dh

}
g∆(t).

Lemma 2.2 (Hardy et al. [19]). If X and Y are nonnegative, then

λXY λ−1−Xλ ≤ (λ −1)Y λ when λ > 1,

where the equality holds if and only if X = Y.

Lemma 2.3 (Bohner and Peterson [3], p. 29, Theorem 1.76 (ii)). Assume a,b ∈ T and
f : T→ R is rd-continuous. If [a,b] consists of finitely many isolated points, then∫ b

a
f (t)∆t = ∑

t∈[a,b)
µ(t) f (t).

3. Main results

Theorem 3.1. Suppose that (A1)–(A6) hold. Furthermore, assume that there exist a constant
M ∈ (0,1) and a positive function ϕ ∈C1

rd(I,R) such that for all sufficiently large T ≥ t0,

(3.1) limsup
t→∞

∫ t

T1

[
Mβ

ψ
β (s,T )q(s)ϕ(s)−

r(s)(ϕ∆
+(s))β+1

(β +1)β+1ϕβ (s)

]
∆s = ∞,

where T1 > T satisfies that δ (t) > T for t ∈ [T1,∞),

ψ(s,T ) := (
∫ s

T

1
r1/β (u)

∆u)−1
∫

δ (s)

T

1
r1/β (u)

∆u

for T < δ (s) and ϕ∆
+(s) := max{ϕ∆(s),0}. Then every bounded solution of (1.1) is oscilla-

tory.

Proof. Suppose that y is a bounded nonoscillatory solution of (1.1). Without loss of gener-
ality, we may assume that y is a bounded eventually positive solution of (1.1). Then from
(1.2) and (A1) we get that x is bounded. From (A5) we obtain

(3.2) δ (t) > 0 and y(δ (t)) > 0.

It follows from (A6) and (3.2) that

(3.3) f (t,y(δ (t)))≥ q(t)[y(δ (t))]β > 0.

From (1.1) and (3.3) we conclude

(3.4) [r(t)|x∆(t)|β−1x∆(t)]∆ =− f (t,y(δ (t)))≤−q(t)[y(δ (t))]β < 0.

Thus, there exists t1 ∈ [t0,∞) such that r(t)|x∆(t)|β−1x∆(t) is strictly decreasing on [t1,∞)
and is eventually of one sign. Therefore, x∆(t) is eventually of one sign, too. We claim

(3.5) x∆(t) > 0, t ∈ [t1,∞).

Assume on the contrary, then there exists t2 ∈ [t1,∞) such that x∆(t2) ≤ 0. Hence, we have
r(t2)|x∆(t2)|β−1x∆(t2) ≤ 0. Take t3 > t2. Since r(t)|x∆(t)|β−1x∆(t) is strictly decreasing
on [t1,∞), it is clear that r(t3)|x∆(t3)|β−1x∆(t3) < r(t2)|x∆(t2)|β−1x∆(t2). Therefore, for
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t ∈ [t3,∞) we have r(t)|x∆(t)|β−1x∆(t) ≤ r(t3)|x∆(t3)|β−1x∆(t3) := c < 0. Thus, we ob-

tain x∆(t)≤−(−c)
1
β

( 1
r(t)

)1/β for t ∈ [t3,∞). By integrating both sides of the last inequality
from t3 to t, we get

x(t)− x(t3)≤−(−c)
1
β

∫ t

t3

( 1
r(s)

)1/β
∆s, t ∈ [t3,∞).

Letting t → ∞ and using (A3), we see limt→∞ x(t) =−∞. This contradicts the fact that x is
bounded. Hence, (3.5) holds. From (3.5) we find that x(t) is strictly increasing on [t1,∞)
and is eventually of one sign. We now claim that x(t) is eventually positive, i.e., there exists
t4 ∈ [t1,∞) such that

(3.6) x(t) > 0, t ∈ [t4,∞).

Assume on the contrary that x(t) is eventually nonpositive, then there exists t5 ∈ [t1,∞) such
that x(t)≤ 0 for t ∈ [t5,∞). Therefore, from (1.2) we conclude

(3.7) p(t)y(τ(t)) = x(t)− y(t) < 0.

Since p is an oscillating function on T and y(τ(t)) > 0, we find a contradiction to (3.7).
Thus, (3.6) holds. From (3.5), (3.6) and the property that x is bounded, we get limt→∞ x(t) :=
L > 0. From (1.2) we have y(t) = x(t)− p(t)y(τ(t)). Hence, for M ∈ (0,1), from (A1) we
have

lim
t→∞

[y(t)−Mx(t)] = lim
t→∞

[(1−M)x(t)− p(t)y(τ(t))] = (1−M)L > 0.

Then by the locally sign-preserving property of limit we conclude y(t)−Mx(t) > 0, i.e.,
y(t) > Mx(t) for all sufficiently large t. Therefore, from (A5) we obtain y(δ (t)) > Mx(δ (t)).
In view of (3.4) and (3.5), there exists T ∈ [t4,∞) such that

(3.8) [r(t)(x∆(t))β ]∆ ≤−Mβ q(t)[x(δ (t))]β , t ∈ [T,∞).

Define the function w by the generalized Riccati substitution

(3.9) w(t) = ϕ(t)
r(t)(x∆(t))β

xβ (t)
, t ∈ [T,∞).

It is easy to see that w(t) > 0 for t ∈ [T,∞). Using (2.5) and (2.6), we get

w∆ = [r(x∆)β ]∆
ϕ

xβ
+[r(x∆)β ]σ

(
ϕ

xβ

)∆

= [r(x∆)β ]∆
ϕ

xβ
+[r(x∆)β ]σ

[
ϕ∆

(xβ )σ
−ϕ

(xβ )∆

xβ (xβ )σ

]
, t ∈ [T,∞).(3.10)

Hence, from (3.8)–(3.10) we have

w∆ ≤−Mβ q(x◦δ )β ϕ

xβ
+

ϕ∆

ϕσ
wσ −ϕ

wσ

ϕσ

(xβ )∆

xβ
, t ∈ [T,∞).(3.11)

Since r(t)(x∆(t))β is strictly decreasing on [t1,∞), for t ∈ [T,∞) we obtain

x(t)− (x◦δ )(t) =
∫ t

δ (t)

[r(u)(x∆(u))β ]1/β

r1/β (u)
∆u≤ [(r ◦δ )(t)(x∆ ◦δ )β (t)]1/β

∫ t

δ (t)

1
r1/β (u)

∆u

and

(3.12)
x(t)

(x◦δ )(t)
≤ 1+

[(r ◦δ )(t)(x∆ ◦δ )β (t)]1/β

(x◦δ )(t)

∫ t

δ (t)

1
r1/β (u)

∆u.
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Take T1 ∈ [T,∞) such that δ (t) > T for t ∈ [T1,∞). Then, for t ∈ [T1,∞) we get

(x◦δ )(t) > (x◦δ )(t)− x(T ) =
∫

δ (t)

T

[r(u)(x∆(u))β ]1/β

r1/β (u)
∆u

≥ [(r ◦δ )(t)(x∆ ◦δ )β (t)]1/β

∫
δ (t)

T

1
r1/β (u)

∆u

and

(3.13)
[(r ◦δ )(t)(x∆ ◦δ )β (t)]1/β

(x◦δ )(t)
<
(∫ δ (t)

T

1
r1/β (u)

∆u
)−1

.

Therefore, (3.12) and (3.13) imply

x(t)
(x◦δ )(t)

≤ 1+
(∫ δ (t)

T

1
r1/β (u)

∆u
)−1 ∫ t

δ (t)

1
r1/β (u)

∆u

=
∫ t

T

1
r1/β (u)

∆u
(∫ δ (t)

T

1
r1/β (u)

∆u
)−1

, t ∈ [T1,∞).

Hence, from (3.11) we obtain

w∆ ≤−Mβ
ψ

β (t,T )qϕ +
ϕ∆

ϕσ
wσ −ϕ

wσ

ϕσ

(xβ )∆

xβ
, t ∈ [T1,∞).(3.14)

where ψ is defined as in Theorem 3.1. By (2.3) and Lemma 2.1, for t ∈ [T1,∞) we have

(xβ (t))∆ = β

{∫ 1

0
[x(t)+hµ(t)x∆(t)]β−1dh

}
x∆(t)

= β

{∫ 1

0
[(1−h)x(t)+hxσ (t)]β−1dh

}
x∆(t)

≥
{

β (xσ (t))β−1x∆(t), 0 < β ≤ 1,

β (x(t))β−1x∆(t), β > 1.
(3.15)

From (3.14) and (3.15), if 0 < β ≤ 1, we get

(3.16) w∆ ≤−Mβ
ψ

β (t,T )qϕ +
ϕ∆

ϕσ
wσ −βϕ

wσ

ϕσ

x∆

xσ

(xσ

x

)β

, t ∈ [T1,∞),

whereas if β > 1, we find

(3.17) w∆ ≤−Mβ
ψ

β (t,T )qϕ +
ϕ∆

ϕσ
wσ −βϕ

wσ

ϕσ

x∆

xσ

xσ

x
, t ∈ [T1,∞).

Using the fact that x(t) is strictly increasing, r(t)(x∆(t))β is strictly decreasing and σ(t)≥ t,
we conclude

(3.18) xσ (t)≥ x(t), x∆(t)≥
( rσ (t)

r(t)

)1/β

(x∆(t))σ , t ∈ [T1,∞).

From (3.16)–(3.18), for β > 0 we obtain

w∆ ≤−Mβ
ψ

β (t,T )qϕ +
ϕ∆

ϕσ
wσ −βϕ

wσ

ϕσ

( rσ

r

)1/β (x∆)σ

xσ
, t ∈ [T1,∞).
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In view of (3.9), we get

(3.19) w∆(t)≤−Mβ
ψ

β (t,T )q(t)ϕ(t)+
ϕ∆

+(t)
ϕσ (t)

wσ (t)− βϕ(t)(wσ (t))λ

(ϕσ (t))λ r1/β (t)
, t ∈ [T1,∞),

where ϕ∆
+ is defined as in Theorem 3.1 and λ := 1+ 1

β
. Taking

X =
(βϕ(t))1/λ wσ (t)
ϕσ (t)r1/(β+1)(t)

and Y =
(β r(t))1/λ (ϕ∆

+(t))β

(β +1)β ϕβ/λ (t)
,

by Lemma 2.2 and (3.19) we have

w∆(t)≤
r(t)(ϕ∆

+(t))β+1

(β +1)β+1ϕβ (t)
−Mβ

ψ
β (t,T )q(t)ϕ(t), t ∈ [T1,∞).

Integrating from T1 to t, we obtain∫ t

T1

[
Mβ

ψ
β (s,T )q(s)ϕ(s)−

r(s)(ϕ∆
+(s))β+1

(β +1)β+1ϕβ (s)

]
∆s≤ w(T1)−w(t) < w(T1), t ∈ [T1,∞),

which implies a contradiction to (3.1). The proof is complete.
The following theorem gives a Philos-type oscillation criterion for all bounded solutions

of (1.1).

Theorem 3.2. Suppose that (A1)–(A6) hold. Furthermore, suppose that there exist a con-
stant M ∈ (0,1), a positive function ϕ ∈ C1

rd(I,R) and a function H ∈ Crd(D,R), where
D := {(t,s) ∈ T×T : t ≥ s≥ t0}, such that

H(t, t) = 0 f or t ≥ t0, H(t,s) > 0 f or (t,s) ∈ D0,

where D0 := {(t,s) ∈ T×T : t > s ≥ t0}, and H has a nonpositive rd-continuous delta
partial derivative H∆s(t,s) on D0 with respect to the second variable and satisfies, for all
sufficiently large T ≥ t0,
(3.20)

limsup
t→∞

1
H(t,T1)

∫ t

T1

[
Mβ H(t,s)ψβ (s,T )q(s)ϕ(s)− r(s)(h+(t,s)ϕσ (s))β+1

(β +1)β+1(H(t,s)ϕ(s))β

]
∆s = ∞,

where T1 is defined as in Theorem 3.1 and h+(t,s) := max{0,H∆s(t,s)+H(t,s) ϕ∆
+(s)

ϕσ (s)}, here

ϕ∆
+ is defined as in Theorem 3.1. Then all bounded solutions of (1.1) are oscillatory.

Proof. Suppose that y is a bounded nonoscillatory solution of (1.1). Without loss of gener-
ality, we may assume that y is a bounded eventually positive solution of (1.1). We proceed
as in the proof of Theorem 3.1 to get that (3.19) holds. Multiplying (3.19) by H(t,s) and
integrating from T1 to t, we find∫ t

T1

Mβ H(t,s)ψβ (s,T )q(s)ϕ(s)∆s

≤−
∫ t

T1

H(t,s)w∆(s)∆s+
∫ t

T1

H(t,s)
ϕ∆

+(s)
ϕσ (s)

wσ (s)∆s

−
∫ t

T1

H(t,s)
βϕ(s)(wσ (s))λ

(ϕσ (s))λ r1/β (s)
∆s, t ∈ [T1,∞).(3.21)
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Applying (2.7), for t ∈ [T1,∞) we get

−
∫ t

T1

H(t,s)w∆(s)∆s =
[
−H(t,s)w(s)

]s=t

s=T1
+
∫ t

T1

H∆s(t,s)wσ (s)∆s

= H(t,T1)w(T1)+
∫ t

T1

H∆s(t,s)wσ (s)∆s.(3.22)

Substituting (3.22) in (3.21), for t ∈ [T1,∞) we obtain∫ t

T1

Mβ H(t,s)ψβ (s,T )q(s)ϕ(s)∆s

≤ H(t,T1)w(T1)

+
∫ t

T1

{[
H∆s(t,s)+H(t,s)

ϕ∆
+(s)

ϕσ (s)

]
wσ (s)−H(t,s)

βϕ(s)(wσ (s))λ

(ϕσ (s))λ r1/β (s)

}
∆s

≤ H(t,T1)w(T1)+
∫ t

T1

[
h+(t,s)wσ (s)−H(t,s)

βϕ(s)(wσ (s))λ

(ϕσ (s))λ r1/β (s)

]
∆s,(3.23)

where h+ is defined as in Theorem 3.2. Therefore by using Lemma 2.2 in (3.23) with

X =
(H(t,s)βϕ(s))1/λ wσ (s)

ϕσ (s)r1/(β+1)(s)
and Y =

r1/λ (s)(h+(t,s)ϕσ (s))β

λ β (H(t,s)βϕ(s))β/λ
,

we have for t ∈ [T1,∞),∫ t

T1

Mβ H(t,s)ψβ (s,T )q(s)ϕ(s)∆s

≤ H(t,T1)w(T1)+
∫ t

T1

r(s)(h+(t,s)ϕσ (s))β+1

(β +1)β+1(H(t,s)ϕ(s))β
∆s.

Therefore, we obtain for t ∈ [T1,∞),

1
H(t,T1)

∫ t

T1

[
Mβ H(t,s)ψβ (s,T )q(s)ϕ(s)− r(s)(h+(t,s)ϕσ (s))β+1

(β +1)β+1(H(t,s)ϕ(s))β

]
∆s≤ w(T1),

which contradicts (3.20). Thus, this completes the proof.
Let H(t,s) = (t − s)m,(t,s) ∈ D, where m ≥ 1 is a constant, then H∆s(t,s) ≤ −m(t −

σ(s))m−1 for (t,s) ∈ D0 (see Saker [32]). Therefore, from (3.22) we obtain for t ∈ [T1,∞),

−
∫ t

T1

H(t,s)w∆(s)∆s≤ H(t,T1)w(T1)+
∫ t

T1

[−m(t−σ(s))m−1]wσ (s)∆s.(3.24)

By replacing (3.22) with (3.24) and using methods similar to those of the proof of Theorem
3.2, we obtain the following Kamenev-type oscillation criterion for all bounded solutions of
(1.1).

Theorem 3.3. Assume that (A1)–(A6) hold. Furthermore, suppose that there exist constants
M ∈ (0,1), m ≥ 1 and a positive function ϕ ∈ C1

rd(I,R) such that for all sufficiently large
T ≥ t0,

limsup
t→∞

1
tm

∫ t

T1

[
Mβ (t− s)m

ψ
β (s,T )q(s)ϕ(s)−

r(s)
(
K+(t,s)ϕσ (s)

)β+1

(β +1)β+1
(
(t− s)mϕ(s)

)β

]
∆s = ∞,

(3.25)
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where T1 is defined as in Theorem 3.1 and

K+(t,s) := max{(t− s)m ϕ∆
+(s)

ϕ(σ(s))
−m(t−σ(s))m−1,0},

here ϕ∆
+ is defined as in Theorem 3.1. Then all bounded solutions of (1.1) are oscillatory.

Remark 3.1. From Theorems 3.1–3.3, we can obtain many different sufficient conditions
for the oscillation of all bounded solutions of (1.1) with different choices of the functions ϕ

and H and the constant m.

For instance, let ϕ(s) = s, then Theorem 3.1 implies the following results.

Corollary 3.1. Suppose that (A1)–(A6) hold and that there exists a constant M ∈ (0,1) such
that for all sufficiently large T ≥ t0,

(3.26) limsup
t→∞

∫ t

T1

[
Mβ

ψ
β (s,T )sq(s)− r(s)

(β +1)β+1sβ

]
∆s = ∞,

where T1 and ψ are defined as in Theorem 3.1. Then every bounded solution of (1.1) is
oscillatory.

Let ϕ(s) = 1, then from Theorem 3.1 we have the following.

Corollary 3.2. Suppose that (A1)–(A6) hold and that for all sufficiently large T ≥ t0,

(3.27)
∫

∞

T1

ψ
β (s,T )q(s)∆s = ∞,

where T1 and ψ are defined as in Theorem 3.1. Then all bounded solutions of (1.1) are
oscillatory.

Next, we illustrate our main results with two examples, to which the results in [30, 31,
35, 40] fail to be applied.

Example 3.1. Consider the following second-order half-linear neutral delay dynamic equa-
tion with an oscillating coefficient

{ 1
t2

∣∣∣[y(t)+
(
− 1

2

)t

y(t−h)
]∆∣∣∣[y(t)+

(
− 1

2

)t

y(t−h)
]∆}∆

+
1

(t +h)2h3

{
8+(−1)tV (t +h)

(3.28)

−(−1)tV (t)+
2th+h2

t2

[
4− (−1)tV (t)

]}
|y(t−3h)|y(t−3h) = 0, t ∈ T, t > 0,

where h is an arbitrary odd positive integer,

(3.29) T = hZ = {hk : k ∈ Z}= {· · · ,−4h,−3h,−2h,−h,0,h,2h,3h,4h, · · ·}

and

(3.30) V (t) :=−(−1)t(1
2
)2t+2h−(−1)t

(
1
2

)2t

−4
(

1
2

)t+h

+4
(

1
2

)t

+2(−1)t
(

1
2

)2t+h

.

It is easy to see that σ(t) = t +h,µ(t) = σ(t)− t = h (see (2.1) and (2.2)) and

(3.31) lim
t→∞

V (t) = 0.
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In (3.28), r(t) = 1
t2 , p(t) =

(
− 1

2

)t
,τ(t) = t−h,β = 2,δ (t) = t−3h and

f (t,u) =
1

(t +h)2h3

{
8+(−1)tV (t +h)− (−1)tV (t)+

2th+h2

t2

[
4− (−1)tV (t)

]}
|u|u.

Let

(3.32) q(t) =
1

(t +h)2h3

{
8+(−1)tV (t +h)− (−1)tV (t)+

2th+h2

t2

[
4− (−1)tV (t)

]}
.

From (3.31) we obtain

lim
t→∞

{
8+(−1)tV (t +h)− (−1)tV (t)+

2th+h2

t2

[
4− (−1)tV (t)

]}
= 8 > 0.

Thus, there exists t0 ∈ T such that t0 ≥ h and 8 +(−1)tV (t + h)− (−1)tV (t)+ 2th+h2

t2

[
4−

(−1)tV (t)
]

> 0 for t ≥ t0. Therefore, we have q(t) > 0 on the time scale interval I :=
[t0,∞) = {t0, t0 + h, t0 + 2h, · · ·} and we find that (A1)–(A6) are satisfied. We will apply
Corollary 3.1 and it remains to prove that (3.26) holds.

For every sufficiently large T ≥ t0 (T ∈ T), take T1 = T +4h, then we have δ (t) > T for
t ∈ [T1,∞). For s ∈ [T1,∞), by Lemma 2.3 we get

ψ(s,T ) :=
(∫ s

T

1
r1/β (u)

∆u
)−1 ∫ δ (s)

T

1
r1/β (u)

∆u =
(∫ s

T
u∆u

)−1 ∫ s−3h

T
u∆u

=
(

∑
u∈[T,s)

hu
)−1(

∑
u∈[T,s−3h)

hu
)

=
[
hT +h(T +h)+ · · ·+h(s−h)

]−1[
hT +h(T +h)+ · · ·+h(s−4h)

]
=
[
h(T + s−h)

( s−T
h

)
/2
]−1[

h(T + s−4h)
( s−3h−T

h

)
/2
]

=
[
(T + s−h)

( s−T
h

)]−1[
(T + s−4h)

( s−T
h
−3
)]

.

Therefore, we have

(3.33) lim
s→∞

ψ(s,T ) = 1.

Take an arbitrary constant M ∈ (0,1). It follows from (3.31)–(3.33) that

limsup
t→∞

∫ t

T1

[
Mβ

ψ
β (s,T )sq(s)− r(s)

(β +1)β+1sβ

]/(1
s

)
∆s

= limsup
t→∞

∫ t

T1

[
M2

ψ
2(s,T )s2q(s)− 1

9s3

]
∆s =

8M2

h3 > 0.

Since limsupt→∞

∫ t
T1

1
s ∆s = ∞, we get

limsup
t→∞

∫ t

T1

[
Mβ

ψ
β (s,T )sq(s)− r(s)

(β +1)β+1sβ

]
∆s = ∞,

which implies that (3.26) holds. Thus by Corollary 3.1, every bounded solution of (3.28) is
oscillatory. In fact, y(t) = (−1)t is such a solution of (3.28). The verification is as follows:
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Let y(t) = (−1)t . In view of the fact that h is an odd positive integer, form (2.4) we get

[y(t)+
(
− 1

2
)ty(t−h)

]∆ = [(−1)t +
(
− 1

2
)t(−1)t−h]∆

= [(−1)t −
(1

2
)t]∆

=
{
[(−1)t+h−

(1
2
)t+h]− [(−1)t −

(1
2
)t]}

/h

=
[
−2(−1)t −

(1
2
)t+h +

(1
2
)t
]
/h.

Hence, we have ∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆
=
{[

2+(−1)t(1
2
)t+h− (−1)t(1

2
)t
]
/h
}

·
{
− (−1)t

[
2+(−1)t(1

2
)t+h− (−1)t(1

2
)t
]
/h
}

=
1
h2

[
−4(−1)t − (−1)t(1

2
)2t+2h− (−1)t(1

2
)2t

−4
(1

2
)t+h +4

(1
2
)t +2(−1)t(1

2
)2t+h

]
=

1
h2

[
−4(−1)t +V (t)

]
for t ≥ t0 ≥ h,(3.34)

where V (t) is defined as in (3.30). Therefore, from (3.34) and (2.4) we have{ 1
t2

∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆}∆

=
{ 1

t2h2

[
−4(−1)t +V (t)

]}∆

=
{ 1

(t +h)2h2

[
−4(−1)t+h +V (t +h)

]
− 1

t2h2

[
−4(−1)t +V (t)

]}
/h

=
(−1)t

(t +h)2h3

{
8+(−1)tV (t +h)− (−1)tV (t)+

2th+h2

t2

[
4− (−1)tV (t)

]}
= (−1)tq(t) for t ≥ t0 ≥ h,(3.35)

where q(t) is defined as in (3.32). Also, we have

(3.36) |y(t−3h)|y(t−3h) = |(−1)t−3h|(−1)t−3h =−(−1)t .

Thus, from (3.35), (3.32) and (3.36) we obtain{ 1
t2

∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆∣∣∣[y(t)+
(
− 1

2
)ty(t−h)

]∆}∆

+
1

(t +h)2h3

{
8+(−1)tV (t +h)− (−1)tV (t)+

2th+h2

t2

[
4− (−1)tV (t)

]}
· |y(t−3h)|y(t−3h) = (−1)tq(t)+q(t)[−(−1)t ] = 0 for t ≥ t0 ≥ h,
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which implies that y(t) = (−1)t is a bounded solution of (3.28). Clearly, y(t) = (−1)t is
oscillatory on T.

Example 3.2. Consider the following second-order half-linear neutral delay dynamic equa-
tion with an oscillating coefficient

(3.37)
(
(t +1)β |x∆(t)|β−1x∆(t)

)∆

+
1

ψβ (t, t∗)t
|y(δ (t))|β−1y(δ (t)) = 0, t ∈ T,

where x(t) := y(t)+ p(t)y(τ(t)), p,β ,τ and δ satisfy (A1), (A2), (A4) and (A5), respectly,
t∗ ∈ T and t∗ > 0. In (3.37), r(t) = (t + 1)β and f (t,y) = 1

ψβ (t,t∗)t
|y|β−1y. Take t0 > t∗

such that δ (t) > t∗ for t ∈ [t0,∞). Let q(t) = 1
ψβ (t,t∗)t

. Then we find that (A1)–(A6) are
satisfied. We will apply Corollary 3.2 and it remains to prove that (3.27) holds. Since
limt→∞

ψ(t,T )
ψ(t,t∗) = 1, we have∫

∞

T1

ψ
β (s,T )q(s)∆s =

∫
∞

T1

(
ψ(s,T )
ψ(s, t∗)

)β 1
s

∆s =
∫

∞

T1

1
s

∆s = ∞,

which yields that (3.27) holds. Thus, all bounded solutions of (3.37) are oscillatory by
Corollary 3.2.
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