Weighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball

${ }^{1}$ Yu-Xia Liang, ${ }^{2}$ Ze-Hua Zhou and ${ }^{3}$ Xing-Tang Dong
1,2,3 Department of Mathematics, Tianjin University, Tianjin 300072, P.R. China
${ }^{1}$ liangyx1986@126.com, ${ }^{2}$ zehuazhou2003@yahoo.com.cn, ${ }^{3}$ dongxingtang@ $163 . c o m$

Abstract

In this paper, we characterize the boundedness and compactness of weighted composition operator from Bers-type space to Bloch-type space on the unit ball of \mathbb{C}^{n}.

2010 Mathematics Subject Classification: Primary: 47B38; Secondary: 32A37, 32A38, 32H02, 47B33

Keywords and phrases: Weighted composition operator, Bers-type space, Bloch-type space, boundedness, compactness.

1. Introduction

Let $H\left(B_{n}\right)$ be the class of all holomorphic functions on B_{n} and $S\left(B_{n}\right)$ the collection of all the holomorphic self-maps of B_{n}, where B_{n} is the unit ball in the n-dimensional complex space \mathbb{C}^{n}. The Bloch space \mathscr{B} (see, e.g. [22]) is defined as the space of holomorphic functions such that

$$
\|f\|_{\mathscr{B}}=\sup \left\{\left(1-|z|^{2}\right)|\Re f(z)|: z \in B_{n}\right\}<\infty .
$$

For each $\alpha>0$, we define a weighted-type spaces H_{α}^{∞} (see, e.g. [11]) as follows:

$$
H_{\alpha}^{\infty}=\left\{f \in H\left(B_{n}\right): \sup _{0<r<1}\left(1-r^{2}\right)^{\alpha} M_{\infty}(f, r)<\infty\right\},
$$

where $M_{\infty}(f, r)=\sup _{|z|=r}|f(z)|$. It is easy to see that $f \in H_{\alpha}^{\infty}$ if and only if $\sup _{z \in B_{n}}(1-$ $\left.|z|^{2}\right)^{\alpha}|f(z)|<\infty$, so we define the norm

$$
\|f\|_{H_{\alpha}^{\infty}}=\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|
$$

and H_{α}^{∞} with this norm is a Banach space. It is sometimes called Bers-type space which is a special case of the weighted-type space H_{μ}^{∞} (see, e.g. [4]). When $\alpha=0$, the space H_{α}^{∞} is just H^{∞} (see, e.g. [8, 9, 18]), which is defined by

$$
H^{\infty}=\left\{f \in H\left(B_{n}\right):\|f\|_{\infty}=\sup _{z \in B_{n}}|f(z)|<\infty\right\} .
$$

A positive continuous function μ on [0,1) is called normal [12], if there exist three constants $a, b(0<a<b<\infty)$, and $\delta(0 \leq \delta<1)$, such that for $r \in[\delta, 1)$

$$
\frac{\mu(r)}{(1-r)^{a}} \downarrow 0, \quad \frac{\mu(r)}{(1-r)^{b}} \uparrow \infty
$$

as $r \rightarrow 1$. In the rest of this paper we always assume that μ is normal on $[0,1)$, and from now on if we say that a function $\mu: \mathbb{B} \rightarrow[0, \infty)$ is normal we will also assume that it is radial on B_{n}, that is, $\mu(z)=\mu(|z|), z \in B_{n}$.

Now $f \in H\left(B_{n}\right)$ is said to belong to Bloch-type space \mathscr{B}_{μ} (see, e.g. [10, 14]), if

$$
\|f\|_{\mu, 1}=\sup _{z \in B_{n}} \mu(z)|\nabla f(z)|<\infty
$$

where $\nabla f(z)=\left(\partial f / \partial z_{1}(z), \ldots, \partial f / \partial z_{n}(z)\right)$ is the complex gradient of f. It is clear that \mathscr{B}_{μ} is a Banach space with norm $\|f\|_{\mathscr{B}_{\mu}}=|f(0)|+\|f\|_{\mu, 1}$. For $f \in H\left(B_{n}\right)$, we denote $\|f\|_{\mu, 2}=\sup _{z \in B_{n}} \mu(z)|\Re f(z)|$ and $\|f\|_{\mu, 3}=\sup _{z \in B_{n}} Q_{f}^{\mu}(z)$, where

$$
\begin{gathered}
\Re f(z)=\langle\nabla f(z), \bar{z}\rangle=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}(z), \quad Q_{f}^{\mu}(z)=\sup _{u \in \mathbb{C}^{n} \backslash\{0\}} \frac{|\langle\nabla f(z), \bar{u}\rangle|}{\sqrt{G_{z}^{\mu}(u, u)}}, \\
G_{z}^{\mu}(u, u)=\frac{1}{\mu^{2}(z)}\left\{\frac{\mu^{2}(z)}{\sigma_{\mu}^{2}(|z|)}|u|^{2}+\left(1-\frac{\mu^{2}(z)}{\sigma_{\mu}^{2}(|z|)}\right) \frac{|\langle z, u\rangle|^{2}}{|z|^{2}}\right\} \quad(z \neq 0), \\
G_{0}^{\mu}(u, u)=\frac{|u|^{2}}{\mu^{2}(0)} \quad \text { and } \quad \frac{1}{\sigma_{\mu}(t)}=\frac{1}{\mu(0)}+\int_{0}^{t} \frac{d \tau}{(1-\tau)^{1 / 2} \mu(\tau)} \quad(0 \leq t<1) .
\end{gathered}
$$

It was proved that $\|f\|_{\mu, 1},\|f\|_{\mu, 2}$ and $\|f\|_{\mu, 3}$ are equivalent for $f \in \mathscr{B}_{\mu}$ in [1] and [21].
Let $\varphi \in S\left(B_{n}\right)$ and $\psi \in H\left(B_{n}\right)$. The weighted composition operator $T_{\psi, \varphi}$ is defined by

$$
T_{\psi, \varphi}(f)=\psi f \circ \varphi, \quad f \in H\left(B_{n}\right) .
$$

We can regard this operator as a generalization of a multiplication operator M_{ψ} and a composition operator C_{φ} (see, e.g. $\left.[1,2,5,6,15,25,26]\right)$. That is when $\varphi(z) \equiv z$ we obtain $T_{\psi, \varphi} f(z)=M_{\psi} f(z)=\psi(z) f(z)$ and when $\psi(z) \equiv 1$ we obtain $T_{\psi, \varphi} f(z)=C_{\varphi} f(z)=$ $f(\varphi(z))$.

Recently, Stević characterized the boundedness and compactness of the weighted composition operators between mixed-norm spaces and H_{α}^{∞} spaces in the unit ball in [7]. Moreover, Zhang and coauthor discussed the conditions for which the weighted composition operator is bounded or compact from Bergman space to μ-Bloch space in [19] and [21]. Zhou and Chen discussed weighted composition operators from $F(p, q, s)$ to Bloch type spaces on the unit ball in [20]. For some recent related results, see also [13, 16, 17, 23, 24] and the references therein. Now in this article, we give some necessary and sufficient conditions for the weighted composition operator $T_{\psi, \varphi}$ to be bounded and compact from weighted-type spaces H_{α}^{∞} to Bloch-type space \mathscr{B}_{μ} on the unit ball of \mathbb{C}^{n}.

Throughout the remainder of this paper, C will denote a positive constant, the exact value of which may vary from one appearance to the next. The notation $A \asymp B$ means that there is a positive constant C such that $B / C \leq A \leq C B$. The symbol \mathbb{N} stands for the set of positive integers.

2. Some lemmas

To begin the discussion, let us state a couple of lemmas which will be used in the proof of the main results. The following lemma was proved in [3].

Lemma 2.1. Let $\alpha>0$ and m be a positive integer. Then for every $f \in H\left(B_{n}\right)$ it holds

$$
\sup _{0<r<1}\left(1-r^{2}\right)^{\alpha} M_{\infty}(f, r) \asymp|f(0)|+\sup _{0<r<1}\left(1-r^{2}\right)^{\alpha+m} M_{\infty}\left(\Re^{m} f, r\right) .
$$

Lemma 2.2. Let $\alpha>0$. Then for every $f \in H\left(B_{n}\right)$ it holds

$$
|\Re f(z)| \leq C \frac{\|f\|_{H_{\alpha}^{\infty}}}{\left(1-|z|^{2}\right)^{\alpha+1}}
$$

Proof. Using Lemma 2.1 with $m=1$ we obtain

$$
\|f\|_{H_{\alpha}^{\infty}}=\sup _{0<r<1}\left(1-r^{2}\right)^{\alpha} M_{\infty}(f, r) \geq C \sup _{0<r<1}\left(1-r^{2}\right)^{\alpha+1} M_{\infty}(\Re f, r) \geq C\left(1-|z|^{2}\right)^{\alpha+1}|\Re f(z)| .
$$

From which the desired estimate follows.
From Lemma 2.2 we can easily obtain $f \in \mathscr{B}^{\alpha+1}$ and $\|f\|_{\mathscr{B}^{\alpha+1}} \leq C\|f\|_{H_{\alpha}^{\infty}}$ for $f \in H_{\alpha}^{\infty}$. For $z \in B_{n}, u \in \mathbb{C}^{n}$, denote

$$
H_{z}(u, u)=\frac{\left(1-|z|^{2}\right)|u|^{2}+|\langle z, u\rangle|^{2}}{\left(1-|z|^{2}\right)^{2}}
$$

It is well-known that $H_{z}(u, u)$ is the Bergman metric of B_{n} (see, e.g. [22]).
Lemma 2.3. Let $\alpha>0, v(r)=\left(1-r^{2}\right)^{\alpha+1}$ and $\varphi \in S\left(B_{n}\right)$. Then

$$
G_{\varphi(z)}^{v}(J \varphi(z) z, J \varphi(z) z) \leq \frac{C H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)}{\left(1-|\varphi(z)|^{2}\right)^{2 \alpha}}
$$

for all $z \in B_{n}$, where $J \varphi(z)$ denotes the Jacobian matrix of $\varphi(z)$ and

$$
J \varphi(z) z=\left(\sum_{k=1}^{n} \frac{\partial \varphi_{1}}{\partial z_{k}} z_{k}, \ldots, \sum_{k=1}^{n} \frac{\partial \varphi_{n}}{\partial z_{k}} z_{k}\right)^{T}
$$

Proof. If $\varphi(z)=0$, the desired result is obvious. If $\varphi(z) \neq 0$, for the definition of σ_{v}, we have

$$
\frac{1}{\sigma_{v}(r)}=1+\int_{0}^{r} \frac{d t}{(1-t)^{1 / 2}\left(1-t^{2}\right)^{\alpha+1}} \asymp \frac{\left(1-r^{2}\right)^{1 / 2}}{v(r)}, \quad 0 \leq r<1
$$

Thus,

$$
\begin{aligned}
& G_{\varphi(z)}^{v}(J \varphi(z), J \varphi(z) z) \\
& =\frac{1}{v^{2}(|\varphi(z)|)}\left[\frac{v^{2}(|\varphi(z)|)}{\sigma_{v}^{2}(|\varphi(z)|)}|J \varphi(z) z|^{2}+\left(1-\frac{v^{2}(|\varphi(z)|)}{\sigma_{v}^{2}(|\varphi(z)|)}\right) \frac{|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{|\varphi(z)|^{2}}\right] \\
& =\frac{1}{v^{2}(|\varphi(z)|)}\left[\frac{v^{2}(|\varphi(z)|)}{\sigma_{v}^{2}(|\varphi(z)|)}\left(|J \varphi(z) z|^{2}-\frac{|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{|\varphi(z)|^{2}}\right)+\frac{|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{|\varphi(z)|^{2}}\right] \\
& \leq \frac{C}{v^{2}(|\varphi(z)|)}\left[\left(1-|\varphi(z)|^{2}\right)\left(|J \varphi(z) z|^{2}-\frac{|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{|\varphi(z)|^{2}}\right)+\frac{|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{|\varphi(z)|^{2}}\right] \\
& =\frac{C}{v^{2}(|\varphi(z)|)}\left[\left(1-|\varphi(z)|^{2}\right)\left(|J \varphi(z) z|^{2}+|\langle\varphi(z), J \varphi(z) z\rangle|^{2}\right]\right.
\end{aligned}
$$

$$
=\frac{C\left(1-|\varphi(z)|^{2}\right)^{2}}{v^{2}(|\varphi(z)|)} H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)=C \frac{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)}{\left(1-|\varphi(z)|^{2}\right)^{2 \alpha}} .
$$

From which the desired result follows.
Lemma 2.4. Assume that $f \in H\left(B_{n}\right)$ and $\varphi \in S\left(B_{n}\right)$. Then

$$
\mathfrak{R}(f \circ \varphi)(z)=\langle\nabla f(\varphi(z)), \overline{J \varphi(z) z}\rangle .
$$

Proof.

$$
\begin{aligned}
\mathfrak{R}(f \circ \varphi)(z) & =\sum_{i=1}^{n} z_{i} \frac{\partial(f \circ \varphi)}{\partial z_{i}}=\sum_{i=1}^{n} z_{i} \sum_{j=1}^{n} \frac{\partial(f \circ \varphi)}{\partial w_{j}} \frac{\partial \varphi_{j}}{\partial z_{i}} \\
& =\sum_{j=1}^{n} \frac{\partial(f \circ \varphi)}{\partial w_{j}} \sum_{i=1}^{n} z_{i} \frac{\partial \varphi_{j}}{\partial z_{i}}=\langle\nabla f(\varphi(z)), \overline{J \varphi(z) z}\rangle .
\end{aligned}
$$

By Montel theorem and the definition of compact operator, the following lemma follows. The interested reader can also see the Lemma 2.1 in [5]. Hence we omit it.

Lemma 2.5. Assume that $0<\alpha<\infty, \mu$ is a normal function on $[0,1), \varphi \in S\left(B_{n}\right)$ and $\psi \in H\left(B_{n}\right)$. Then $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is compact if and only if for any bounded sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}} \in H_{\alpha}^{\infty}$ which converges to zero uniformly on compact subsets of B_{n} as $k \rightarrow \infty$, we have $\left\|T_{\psi, \varphi} f_{k}\right\|_{\mathscr{B}_{\mu}} \rightarrow 0$ as $k \rightarrow \infty$.

3. The boundedness and compactness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$.

In this section we characterize the boundedness and compactness of the operator $T_{\psi, \varphi}$: $H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$.

Theorem 3.1. Suppose that $0<\alpha<\infty, \mu$ is a normal function on $[0,1), \varphi \in S\left(B_{n}\right)$ and $\psi \in H\left(B_{n}\right)$. Then $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is bounded if and only if

$$
\begin{equation*}
M_{1}:=\sup _{z \in B_{n}} \frac{\mu(z)|\Re \psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}<\infty \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}:=\sup _{z \in B_{n}} \frac{\mu(z)|\psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}<\infty . \tag{3.2}
\end{equation*}
$$

Proof. Assume that (3.1) and (3.2) hold. Then for any $f \in H_{\alpha}^{\infty}$, if $J \varphi(z) z \neq 0$, for $z \in B_{n}$. By Lemma 2.4, Lemma 2.3 and Lemma 2.2 we have

$$
\begin{align*}
& \mu(z)\left|\Re\left(T_{\psi, \varphi} f\right)(z)\right| \\
& \leq \mu(z)|\Re \psi(z)||f(\varphi(z))|+\mu(z)|\psi(z)||\Re(f \circ \varphi)(z)| \\
& \leq \frac{\mu(z)|\Re \psi(z)|\|f\|_{H_{\alpha}^{\infty}}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}+\mu(z)|\psi(z)||\langle\nabla f(\varphi(z)), \overline{J \varphi(z) z}\rangle| \\
& \leq M_{1}\|f\|_{H_{\alpha}^{\infty}}+\frac{C \mu(z)|\psi(z)|\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}|\langle\nabla f(\varphi(z)), \overline{J \varphi(z) z}\rangle|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \sqrt{G_{\varphi(z)}^{v}(J \varphi(z) z, J \varphi(z) z)}} \\
& \leq M_{1}\|f\|_{H_{\alpha}^{\infty}}+C M_{2}\|f\|_{\mathscr{B}_{\left(1-r^{2}\right)^{\alpha+1}} \leq C\|f\|_{H_{\alpha}^{\infty}} .} \tag{3.3}
\end{align*}
$$

When $z \in B_{n}$ and $J \varphi(z) z=0$, from (3.1) we can easily obtain that

$$
\begin{equation*}
\mu(z)\left|\Re\left(T_{\psi, \varphi}(f)\right)(z)\right| \leq M_{1}\|f\|_{H_{\alpha}^{\infty}} . \tag{3.4}
\end{equation*}
$$

Combining (3.3) with (3.4) it follows that

$$
\left\|T_{\psi, \varphi} f\right\|_{\mathscr{B}_{\mu}}=\sup _{z \in B_{n}} \mu(z)\left|\Re\left(T_{\psi, \varphi} f\right)(z)\right| \leq C\|f\|_{H_{\alpha}^{\infty}} .
$$

From which the boundedness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ follows.
For the converse direction, we suppose that $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is bounded. First, we assume that $w \in B_{n}$ and $\varphi(w)=r_{w} e_{1}$, where $r_{w}=|\varphi(w)|$ and e_{1} is the vector $(1,0,0, \ldots, 0)$. If $\sqrt{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)} \leq\left|\eta_{1}\right|$, where $J \varphi(w) w=\left(\eta_{1}, \ldots, \eta_{n}\right)^{T}$. We consider the function

$$
f_{w}(z)=\left\{\frac{1-r_{w}^{2}}{\left(1-r_{w} z_{1}\right)^{2}}\right\}^{\alpha} \frac{z_{1}-r_{w}}{1-r_{w} z_{1}} .
$$

Then

$$
\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{w}(z)\right| \leq \sup _{z \in B_{n}} \frac{\left(1-\left|z_{1}\right|^{2}\right)^{\alpha}}{\left(1-\left|z_{1}\right|\right)^{\alpha}}\left\{\frac{1-r_{w}^{2}}{1-r_{w}}\right\}^{\alpha} \leq 4^{\alpha} .
$$

It shows that $f_{w} \in H_{\alpha}^{\infty}$ and $\left\|f_{w}\right\|_{H_{\alpha}^{\infty}} \leq C$. Note that $f_{w}(\varphi(w))=0$ and

$$
\nabla f_{w}(\varphi(w))=\left(\frac{1}{\left(1-r_{w}^{2}\right)^{\alpha+1}}, 0, \ldots, 0\right) .
$$

It follows from Lemma 2.4 that

$$
\begin{align*}
\left\|T_{\psi, \varphi} f_{w}\right\|_{\mathscr{B}_{\mu}} & \geq \mu(w)\left|\Re\left(\psi f_{w} \circ \varphi\right)(w)\right| \\
& \geq \mu(w)|\psi(w)|\left|\Re\left(f_{w} \circ \varphi\right)(w)\right|-\mu(w)\left|\Re \psi(w) \| f_{w}(\varphi(w))\right| \\
& =\mu(w)|\psi(w)| \mid\left\langle\nabla f_{w}(\varphi(w)), \overline{J \varphi(w) w\rangle}\right| \\
& =\frac{\mu(w)|\psi(w)|\left|\eta_{1}\right|}{\left(1-r_{w}^{2}\right)^{\alpha+1}} . \tag{3.5}
\end{align*}
$$

By the definition of $H_{\varphi(w)}(J \varphi(w) w, J \varphi(w) w)$ and (3.5), it follows that

$$
\begin{align*}
& \frac{\mu(w)|\psi(w)|}{\left(1-|\varphi(w)|^{2}\right)^{\alpha}}\left\{H_{\varphi(w)}(J \varphi(w) w, J \varphi(w) w)\right\}^{1 / 2} \\
= & \frac{\mu(w)|\psi(w)|\left\{\left(1-|\varphi(w)|^{2}\right)|J \varphi(w) w|^{2}+|\langle\varphi(w), J \varphi(w) w\rangle|^{2}\right\}^{1 / 2}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
= & \frac{\mu(w)|\psi(w)|\left\{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots+\left|\eta_{n}\right|^{2}\right)+\left|\eta_{1}\right|^{2}\right\}^{1 / 2}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
\leq & \frac{\sqrt{2} \mu(w)|\psi(w)|\left|\eta_{1}\right|}{\left(1-r_{w}^{2}\right)^{\alpha+1}} \leq C\left\|T_{\psi, \varphi} f_{w}\right\|_{\mathscr{B} \mu} . \tag{3.6}
\end{align*}
$$

This shows that when $\sqrt{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)} \leq\left|\eta_{1}\right|$, the result (3.2) holds.
On the other hand, if $\sqrt{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)}>\left|\eta_{1}\right|$. For $j=2, \ldots, n$, let $\theta_{j}=$ $\arg \eta_{j}$ and $a_{j}=e^{-i \theta_{j}}$, when $\eta_{j} \neq 0$ or $a_{j}=0$ when $\eta_{j}=0$. Taking

$$
f_{w}(z)=\frac{a_{2} z_{2}+\ldots+a_{n} z_{n}}{\left(1-r_{w} z_{1}\right)^{\alpha+1}} .
$$

It is easy to check that

$$
\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}\left|f_{w}(z)\right| \leq \sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha} \frac{n-1}{\left(1-\left|z_{1}\right|\right)^{\alpha}\left(1-r_{w}\right)} \leq C
$$

which implies that $f_{w} \in H_{\alpha}^{\infty}$ and $\left\|f_{w}\right\|_{H_{\alpha}^{\infty}} \leq C$. Notice that $f_{w}(\varphi(w))=0$ and

$$
\nabla f_{w}(\varphi(w))=\left(0, \frac{a_{2}}{\left(1-r_{w}^{2}\right)^{\alpha+1}}, \ldots, \frac{a_{n}}{\left(1-r_{w}^{2}\right)^{\alpha+1}}\right)
$$

Similar to the proof of (3.5), we obtain that

$$
\begin{equation*}
\frac{\mu(w)|\psi(w)|\left(\left|\eta_{2}\right|+\ldots+\left|\eta_{n}\right|\right)}{\left(1-r_{w}^{2}\right)^{\alpha+1}} \leq C\left\|T_{\psi, \varphi} f_{w}\right\|_{\mathscr{B}} \mu . \tag{3.7}
\end{equation*}
$$

It follows from (3.7) that

$$
\begin{align*}
& \frac{\mu(w)|\psi(w)|}{\left(1-|\varphi(w)|^{2}\right)^{\alpha}}\left\{H_{\varphi(w)}(J \varphi(w) w, J \varphi(w) w)\right\}^{1 / 2} \\
& =\frac{\mu(w)|\psi(w)|\left\{\left(1-|\varphi(w)|^{2}\right)|J \varphi(w) w|^{2}+|\langle\varphi(w), J \varphi(w) w\rangle|^{2}\right\}^{1 / 2}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
& =\frac{\mu(w)|\psi(w)|\left\{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots+\left|\eta_{n}\right|^{2}\right)+\left|\eta_{1}\right|^{2}\right\}^{1 / 2}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
& \leq \frac{\mu(w)|\psi(w)|\left\{2\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots+\left|\eta_{n}\right|^{2}\right)\right\}^{1 / 2}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
& \leq C \frac{\mu(w)|\psi(w)| \sqrt{2\left(1-r_{w}^{2}\right)}\left(\left|\eta_{2}\right|+\ldots+\left|\eta_{n}\right|\right)}{\left(1-r_{w}^{2}\right)^{\alpha+1}} \leq C\left\|T_{\psi, \varphi} f_{w}\right\|_{\mathscr{B} \mu} . \tag{3.8}
\end{align*}
$$

Therefore, when $\sqrt{\left(1-r_{w}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)}>\left|\eta_{1}\right|$, we can also obtain (3.2). Combining the two cases we know that (3.2) holds.

For the general situation, we can use the unitary transform U_{w} to make $\varphi(w)=r_{w} e_{1} U_{w}$. In order to prove (3.2), we first give a proposition.

Proposition 3.1. Suppose that $0<\alpha<\infty, \mu$ is a normal function on $[0,1), \varphi \in S\left(B_{n}\right)$ and $\psi \in H\left(B_{n}\right)$. Let $\widetilde{\varphi}(z)=U_{w} \varphi(z)$, and $g=f \circ U_{w}^{-1}$ for any $f \in H_{\alpha}^{\infty}$. Then
(a) $H_{\widetilde{\varphi}(z)}(J \widetilde{\varphi}(z) z, J \widetilde{\varphi}(z) z)=H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)$;
(b) $\|g\|_{H_{\alpha}^{\infty}}=\|f\|_{H_{\alpha}^{\infty}}$;
(c) $\left\|T_{\psi, \widetilde{\varphi}} g\right\|_{\mathscr{B} \mu}=\left\|T_{\psi, \varphi} f\right\|_{\mathscr{B} \mu}$.

Proof.
(a) Note that $J \widetilde{\varphi}(z) z=U_{w} J(\varphi)(z) z$ and $|\widetilde{\varphi}(z)|^{2}=|\varphi(z)|^{2}$, we have

$$
\begin{aligned}
H_{\widetilde{\varphi}(z)}(J \widetilde{\varphi}(z) z, J \widetilde{\varphi}(z) z) & =\frac{\left(1-|\widetilde{\varphi}(z)|^{2}\right)|J \widetilde{\varphi}(z) z|^{2}+|\langle\widetilde{\varphi}(z), J \widetilde{\varphi}(z) z\rangle|^{2}}{\left(1-|\widetilde{\varphi}(z)|^{2}\right)^{2}} \\
& =\frac{\left(1-|\varphi(z)|^{2}\right)|J \varphi(z) z|^{2}+|\langle\varphi(z), J \varphi(z) z\rangle|^{2}}{\left(1-|\varphi(z)|^{2}\right)^{2}} \\
& =H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\|g\|_{H_{\alpha}^{\infty}} & =\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}|g(z)|=\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}\left|f\left(U_{w}^{-1}(z)\right)\right| \\
& =\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}|f(z)|=\|f\|_{H_{\alpha}^{\infty}} .
\end{aligned}
$$

In the last equality, we use the linear coordinate translation $w=U_{w}^{-1} z$ and $|w|=$ $\left|U_{w}^{-1} z\right|=|z|$.
(c)

$$
\left\|T_{\psi, \widetilde{\varphi}} g\right\|_{\mathscr{B} \mu}=\sup _{z \in B_{n}} \mu(z)|\psi(z)||g(\widetilde{\varphi}(z))|=\sup _{z \in B_{n}} \mu(z)|\psi(z)||f(\varphi(z))|=\left\|T_{\psi, \varphi} f\right\|_{\mathscr{B} \mu} \rrbracket
$$

Now we return to prove that (3.2) holds in general situation. In fact, taking the function $g_{w}=f_{w} \circ U_{w}^{-1}$. By Proposition 3.1, (3.6) and (3.8), it follows that

$$
\begin{aligned}
& \quad \frac{\mu(w)|\psi(w)|}{\left(1-|\varphi(w)|^{2}\right)^{\alpha}}\left\{H_{\varphi(w)}(J \varphi(w) w, J \varphi(w) w)\right\}^{1 / 2} \\
& =\frac{\mu(w)|\psi(w)|}{\left(1-|\widetilde{\varphi}(w)|^{2}\right)^{\alpha}}\left\{H_{\widetilde{\varphi}(w)}(J \widetilde{\varphi}(w) w, J \widetilde{\varphi}(w) w)\right\}^{1 / 2} \\
& \leq C\left\|T_{\psi, \widetilde{\varphi} g_{w} \|_{\mathscr{B}} \mu}=C\right\| T_{\psi, \varphi} f_{w} \|_{\mathscr{B} \mu} \leq C .
\end{aligned}
$$

This means that (3.2) holds.
Next we prove (3.1). Set the function

$$
h_{w}(z)=\left\{\frac{1-|\varphi(w)|^{2}}{(1-\langle z, \varphi(w)\rangle)^{2}}\right\}^{\alpha}, \quad w \in B_{n}
$$

Since

$$
\sup _{z \in B_{n}}\left(1-|z|^{2}\right)^{\alpha}\left|h_{w}(z)\right| \leq \sup _{z \in B_{n}} \frac{\left(1-|z|^{2}\right)^{\alpha}}{(1-|z|)^{\alpha}}\left(\frac{1-|\varphi(w)|^{2}}{1-|\varphi(w)|}\right)^{\alpha} \leq 4^{\alpha}
$$

it follows that $h_{w} \in H_{\alpha}^{\infty}$ and $\left\|h_{w}\right\|_{H_{\alpha}^{\infty}} \leq C$. Moreover $h_{w}(\varphi(w))=1 /\left(\left(1-|\varphi(w)|^{2}\right)^{\alpha}\right)$ and

$$
\nabla h_{w}(\varphi(w))=2 \alpha\left(\frac{\overline{\varphi_{1}(w)}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}}, \ldots, \frac{\overline{\varphi_{n}(w)}}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}}\right)
$$

Thus

$$
\begin{align*}
\left\|T_{\psi, \varphi}\left(h_{w}\right)\right\|_{\mathscr{B} \mu} & \geq \mu(w)\left|\Re\left(\psi h_{w} \circ \varphi\right)(w)\right| \\
& =\mu(w)\left|\Re(w) h_{w}(\varphi(w))+\psi(w) \Re\left(h_{w} \circ \varphi\right)(w)\right| \\
& \geq \frac{\mu(w) \mid \Re(\psi(w) \mid}{\left(1-|\varphi(w)|^{2}\right)^{\alpha}}-\mu(w)\left|\psi(w) \| \Re\left(h_{w} \circ \varphi\right)(w)\right| . \tag{3.9}
\end{align*}
$$

From (3.2) and $\nabla h_{w}(\varphi(w))$ we have

$$
\begin{align*}
\mu(w)|\psi(w)|\left|\Re\left(h_{w} \circ \varphi\right)(w)\right| & =\mu(w)|\psi(w)|\left|\left\langle\nabla h_{w}(\varphi(w)), \overline{J \varphi(w) w}\right\rangle\right| \\
& =\frac{2 \alpha \mu(w)|\psi(w)||\langle\varphi(w), J \varphi(w) w\rangle|}{\left(1-|\varphi(w)|^{2}\right)^{\alpha+1}} \\
& \leq \frac{2 \alpha \mu(w)|\psi(w)|}{\left(1-|\varphi(w)|^{2}\right)^{\alpha}}\left\{H_{\varphi(w)}(J \varphi(w) w, J \varphi(w) w)\right\}^{1 / 2} \\
& \leq C M_{2}<\infty . \tag{3.10}
\end{align*}
$$

Combining (3.9) and (3.10) we obtain (3.1). This completes the proof of Theorem 3.1.
Theorem 3.2. Suppose that $0<\alpha<\infty, \mu$ is a normal function on $[0,1), \varphi \in S\left(B_{n}\right)$ and $\psi \in H\left(B_{n}\right)$. Then $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is compact if and only if the followings are all satisfied:
(a) $\psi \in \mathscr{B}_{\mu}$ and $\psi \varphi_{l} \in \mathscr{B}_{\mu}$ for $l \in\{1, \ldots, n\}$;
(b)

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|\Re \psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}=0 ; \tag{3.11}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\lim _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)|\psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}=0 . \tag{3.12}
\end{equation*}
$$

Proof. First suppose that (a), (b) and (c) hold. Then from (b) and (c) we have for any $\varepsilon>0$, there is a $\delta>0$, such that

$$
\begin{equation*}
\frac{\mu(z)|\Re \psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}<\varepsilon \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu(z)|\psi(z)|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}<\varepsilon \tag{3.14}
\end{equation*}
$$

when $|\varphi(z)|>\delta$. Let $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ be any sequence which converges to 0 uniformly on compact subsets of B_{n} satisfying $\left\|f_{k}\right\|_{H_{\alpha}^{\infty}} \leq 1$. Then f_{k} and ∇f_{k} converge to 0 uniformly on $K=\{w \in$ $\left.B_{n}:|w| \leq \delta\right\}$. Since

$$
\begin{align*}
\sup _{z \in B_{n}} \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right|= & \sup _{\varphi(z) \in K} \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| \\
& +\sup _{\varphi(z) \in B_{n} \backslash K} \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| . \tag{3.15}
\end{align*}
$$

If $|\varphi(z)|>\delta$ and $J \varphi(z) z \neq 0$, by Lemma 2.4, Lemma 2.3 and Lemma 2.2 we have

$$
\begin{align*}
& \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| \leq \mu(z)|\psi(z)|\left|\Re\left(f_{k} \circ \varphi\right)(z)\right|+\mu(z)|\Re \psi(z)|\left|f_{k}(\varphi(z))\right| \\
& \leq \frac{C \mu(z)|\psi(z)|\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2} \mid\left\langle\nabla f_{k}(\varphi(z)), \overline{J \varphi(z) z\rangle}\right|}{\left(1-|\varphi(z)|^{2}\right)^{\alpha} \sqrt{G_{\varphi(z)}^{v}(J \varphi(z) z, J \varphi(z) z)}}+\varepsilon\left\|f_{k}\right\|_{H_{\alpha}^{\infty}} \\
& \leq C \varepsilon\left\|f_{k}\right\|_{\mathscr{B}_{\left(1-r^{2}\right)^{\alpha+1}}}+\varepsilon\left\|f_{k}\right\|_{H_{\alpha}^{\infty}} \leq C \varepsilon . \tag{3.16}
\end{align*}
$$

When $J \varphi(z) z=0$,

$$
\begin{equation*}
\mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| \leq \varepsilon\left\|f_{k}\right\|_{H_{\alpha}^{\infty}} \leq \varepsilon . \tag{3.17}
\end{equation*}
$$

Combining (3.16) and (3.17) we obtain that

$$
\begin{equation*}
\sup _{\varphi(z) \in B_{n} \backslash K} \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| \leq C \varepsilon \tag{3.18}
\end{equation*}
$$

If $|\varphi(z)| \leq \delta$, it follows from (a) that

$$
\begin{aligned}
& \mu(z)\left|\Re\left(T_{\psi, \varphi} f_{k}\right)(z)\right| \\
& \leq \mu(z)|\psi(z)|\left|\Re\left(f_{k} \circ \varphi\right)(z)\right|+\mu(z)|\Re \psi(z)|\left|f_{k}(\varphi(z))\right| \\
& \leq \mu(z)|\psi(z)| \mid\left\langle\nabla f_{k}(\varphi(z)), \overline{J \varphi(z) z\rangle\left|+\left|f_{k}(\varphi(z))\right|\|\psi\|_{\mathscr{B}_{\mu}}\right.}\right.
\end{aligned}
$$

$$
\begin{align*}
\leq & \left|\nabla f_{k}(\varphi(z))\right| \sum_{l=1}^{n}\left(\mu(z)|\psi(z)|\left|\Re \varphi_{l}(z)\right|\right)+\left|f_{k}(\varphi(z))\right|\|\psi\|_{\mathscr{B}_{\mu}} \\
\leq & \left|\nabla f_{k}(\varphi(z))\right| \sum_{l=1}^{n}\left(\mu(z)|\psi(z)|\left|\Re \varphi_{l}(z)\right|-\mu(z)\left|\Re \psi(z) \| \varphi_{l}(z)\right|+\mu(z)|\Re \psi(z)|\right) \\
& +\left|f_{k}(\varphi(z))\right|\|\psi\|_{\mathscr{B}_{\mu}} \\
\leq & \left|\nabla f_{k}(\varphi(z))\right| \sum_{l=1}^{n}\left(\mu(z)\left|\psi(z) \Re \varphi_{l}(z)+\Re \psi(z) \varphi_{l}(z)\right|+\mu(z)|\Re \psi(z)|\right) \\
& +\left|f_{k}(\varphi(z))\right|\|\psi\|_{\mathscr{B}_{\mu}} \\
\leq & \left|\nabla f_{k}(\varphi(z))\right| \sum_{l=1}^{n}\left(\left\|\psi \varphi_{l}\right\|_{\mathscr{B}_{\mu}}+\|\psi\|_{\mathscr{B}_{\mu}}\right)+\left|f_{k}(\varphi(z))\right|\|\psi\|_{\mathscr{B}_{\mu}} \rightarrow 0, \quad k \rightarrow \infty . \tag{3.19}
\end{align*}
$$

Then from (3.15), (3.18), (3.19) and Lemma 2.5 we get the compactness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$.
For the converse direction, we assume that $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is compact. Then the boundedness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is obvious. Taking $f(z)=1 \in H_{\alpha}^{\infty}$, we obtain

$$
\begin{aligned}
\left\|T_{\psi, \varphi} f\right\|_{\mathscr{B}_{\mu}} & =\sup _{z \in B_{n}} \mu(z)\left|\Re\left(T_{\psi, \varphi} f\right)(z)\right| \\
& =\sup _{z \in B_{n}} \mu(z)|\Re \psi(z) f(\varphi(z))+\psi(z) \Re(f \circ \varphi)(z)|=\sup _{z \in B_{n}} \mu(z)|\Re \psi(z)|<\infty .
\end{aligned}
$$

This shows that $\psi \in \mathscr{B} \mu$.
On the other hand, for $l \in\{1, \ldots, n\}$, taking the functions $f(z)=z_{l} \in H_{\alpha}^{\infty}$, we can obtain

$$
\begin{aligned}
\left\|T_{\psi, \varphi} f\right\|_{\mathscr{B}_{\mu}} & =\sup _{z \in B_{n}} \mu(z)|\Re \psi(z) f(\varphi(z))+\psi(z) \Re(f \circ \varphi)(z)| \\
& =\sup _{z \in B_{n}} \mu(z)\left|\Re \psi(z) \varphi_{l}(z)+\psi(z) \Re \varphi_{l}(z)\right|=\sup _{z \in B_{n}} \mu(z)\left|\Re\left(\psi \varphi_{l}\right)(z)\right| .
\end{aligned}
$$

Then we obtain that $\psi \varphi_{l} \in \mathscr{B}_{\mu}$ for $l \in\{1, \ldots, n\}$. The desired result (a) follows.
Next we prove (3.12). Let $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ be a sequence in B_{n} such that $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow \infty$ (If such a sequence does not exist then (3.12) obviously holds). We can suppose that $\varphi\left(z_{k}\right)=$ $r_{k} e_{1}$, where $r_{k}=\left|\varphi\left(z_{k}\right)\right|, e_{1}$ is the vector $(1,0,0, \ldots, 0)$. Thus $\left|r_{k}\right| \rightarrow 1$ as $k \rightarrow \infty$.

If $\sqrt{\left(1-r_{k}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)} \leq\left|\eta_{1}\right|$, where $J \varphi\left(z_{k}\right) z_{k}=\left(\eta_{1}, \ldots, \eta_{n}\right)^{T}$. Defining the function

$$
f_{k}(z)=\left\{\frac{1-r_{k}^{2}}{\left(1-r_{k} z_{1}\right)^{2}}\right\}^{\alpha} \frac{z_{1}-r_{k}}{1-r_{k} z_{1}}, \quad k \in \mathbb{N}
$$

From Theorem 3.1 we know that $f_{k} \in H_{\alpha}^{\infty}$ with $\left\|f_{k}\right\|_{H_{\alpha}^{\infty}} \leq C$, and notice that f_{k} converges to 0 uniformly on compact subsets of B_{n} when $k \rightarrow \infty$. From the compactness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow$ \mathscr{B}_{μ}, we have that $\lim _{k \rightarrow \infty}\left\|T_{\psi, \varphi} f_{k}\right\|_{\mathscr{B}_{\mu}}=0$. Then from the similar proof of (3.3) in Theorem 3.1 we have

$$
\begin{equation*}
\frac{\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|\left|\eta_{1}\right|}{\left(1-r_{k}^{2}\right)^{\alpha+1}} \leq\left\|T_{\psi, \varphi} f_{k}\right\|_{\mathscr{B}_{\mu}} \rightarrow 0, \quad k \rightarrow \infty \tag{3.20}
\end{equation*}
$$

And by the similar proofs of (3.6) and (3.20) we have

$$
\frac{\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|}{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\alpha}}\left\{H_{\varphi\left(z_{k}\right)}\left(J \varphi\left(z_{k}\right) z_{k}, J \varphi\left(z_{k}\right) z_{k}\right)\right\}^{1 / 2}
$$

$$
\begin{equation*}
\leq \frac{\sqrt{2} \mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|\left|\eta_{1}\right|}{\left(1-r_{k}^{2}\right)^{\alpha+1}} \rightarrow 0, \quad k \rightarrow \infty \tag{3.21}
\end{equation*}
$$

On the other hand, if $\sqrt{\left(1-r_{k}^{2}\right)\left(\left|\eta_{2}\right|^{2}+\ldots .+\left|\eta_{n}\right|^{2}\right)}>\left|\eta_{1}\right|$. For $j=2, \ldots, n$, let $\theta_{j}=$ $\arg \eta_{j}$ and $a_{j}=e^{-i \theta_{j}}$, when $\eta_{j} \neq 0$ or $a_{j}=0$ when $\eta_{j}=0$. Taking

$$
f_{k}(z)=\frac{\left(a_{2} z_{2}+\ldots+a_{n} z_{n}\right)\left(1-r_{k}^{2}\right)}{\left(1-r_{k} z_{1}\right)^{\alpha+2}}
$$

Then from Theorem 3.1 we know $f_{k} \in H_{\alpha}^{\infty}, k \in N$ and f_{k} converges to 0 uniformly on compact subsets of B_{n} when $k \rightarrow \infty$. Since the compactness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$, we have that $\lim _{k \rightarrow \infty}\left\|T_{\Psi, \varphi} f_{k}\right\|_{\mathscr{B}_{\mu}}=0$. We notice that $f_{k}\left(\varphi\left(z_{k}\right)\right)=0$ and

$$
\nabla f_{w}\left(\varphi\left(z_{k}\right)\right)=\left(0, \frac{a_{2}}{\left(1-r_{k}^{2}\right)^{\alpha+1}}, \ldots, \frac{a_{n}}{\left(1-r_{k}^{2}\right)^{\alpha+1}}\right)
$$

Using the similar proof of (3.7) we obtain

$$
\begin{equation*}
\frac{\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|\left(\left|\eta_{2}\right|+\ldots+\left|\eta_{n}\right|\right)}{\left(1-r_{k}^{2}\right)^{\alpha+1}} \leq\left\|T_{\psi, \varphi} f_{k}\right\|_{\mathscr{B}_{\mu}} \rightarrow 0, \quad k \rightarrow \infty \tag{3.22}
\end{equation*}
$$

And by using (3.8) we obtain

$$
\begin{align*}
& \frac{\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|}{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\alpha}}\left\{H_{\varphi\left(z_{k}\right)}\left(J \varphi\left(z_{k}\right) z_{k}, J \varphi\left(z_{k}\right) z_{k}\right)\right\}^{1 / 2} \\
& \leq C \frac{\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right| \sqrt{2\left(1-r_{k}^{2}\right)}\left(\left|\eta_{2}\right|+\ldots+\left|\eta_{n}\right|\right)}{\left(1-r_{k}^{2}\right)^{\alpha+1}} \rightarrow 0, \quad k \rightarrow \infty \tag{3.23}
\end{align*}
$$

Combining (3.21) and (3.23) we obtain (3.12) under two cases. For the general situation, we can use the unitary transform U_{k} to make $\varphi\left(z_{k}\right)=r_{k} e_{1} U_{k}$ and we can prove (3.12) by taking the function $g_{k}=f_{k} \circ U_{k}^{-1}$.

Next we prove (3.11). We still let $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ be a sequence in B_{n} such that $\left|\varphi\left(z_{k}\right)\right| \rightarrow 1$ as $k \rightarrow \infty$ (If such a sequence does not exist then (3.11) obviously holds). Choosing

$$
h_{k}(z)=\left\{\frac{1-\left|\varphi\left(z_{k}\right)\right|^{2}}{\left(1-\left\langle z, z_{k}\right\rangle\right)^{2}}\right\}^{\alpha} .
$$

From Theorem 3.1 we know that $h_{k} \in H_{\alpha}^{\infty}$ and $h_{k} \rightarrow 0$ uniformly on the compact subsets of B_{n} when $k \rightarrow \infty$. By the compactness of $T_{\psi, \varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ and by the similar proof of (3.9) we obtain that

$$
\begin{equation*}
\left\|T_{\psi, \varphi}\left(h_{k}\right)\right\|_{\mathscr{B}_{\mu}} \geq \frac{\mu\left(z_{k}\right)\left|\Re \psi\left(z_{k}\right)\right|}{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\alpha}}-\mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|\left|\mathfrak{R}\left(h_{k} \circ \varphi\right)\left(z_{k}\right)\right| . \tag{3.24}
\end{equation*}
$$

Since from (3.12) we have that

$$
\begin{align*}
& \mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|\left|\Re\left(h_{w} \circ \varphi\right)\left(z_{k}\right)\right| \\
& \leq \frac{2 \alpha \mu\left(z_{k}\right)\left|\psi\left(z_{k}\right)\right|}{\left(1-\left|\varphi\left(z_{k}\right)\right|^{2}\right)^{\alpha}}\left\{H_{\varphi\left(z_{k}\right)}\left(J \varphi\left(z_{k}\right) z_{k}, J \varphi\left(z_{k}\right) z_{k}\right)\right\}^{1 / 2} \rightarrow 0, \quad k \rightarrow \infty . \tag{3.25}
\end{align*}
$$

Combining (3.24) and (3.25) we obtain (3.11).
Remark 3.1. When $\psi(z) \equiv 1, T_{\psi, \varphi}=C_{\varphi}$, we obtain the next two Corollaries about composition operator from Theorems 3.1 and 3.2.

Corollary 3.1. Suppose that $0<\alpha<\infty, \mu$ is a normal function in $[0,1)$ and $\varphi \in S\left(B_{n}\right)$. Then $C_{\varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is bounded if and only if

$$
\sup _{z \in B_{n}} \frac{\mu(z)\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}<\infty .
$$

Corollary 3.2. Suppose that $0<\alpha<\infty, \mu$ is a normal function in $[0,1)$ and $\varphi \in S\left(B_{n}\right)$. Then $C_{\varphi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is compact if and only if

$$
\lim _{|\varphi(z)| \rightarrow 1} \frac{\mu(z)\left\{H_{\varphi(z)}(J \varphi(z) z, J \varphi(z) z)\right\}^{1 / 2}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha}}=0 .
$$

and $\varphi_{l} \in \mathscr{B}_{\mu}$ for any $l \in\{1, \ldots, n\}$.
Remark 3.2. When $\varphi(z) \equiv z, T_{\psi, \varphi}=M_{\psi}$, we obtain the next two Corollaries about multiplication operator from Theorems 3.1 and 3.2.

Corollary 3.3. Suppose that $0<\alpha<\infty, \mu$ is a normal function on $[0,1)$ and $\psi \in H\left(B_{n}\right)$. Then $M_{\psi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is bounded if and only if

$$
\sup _{z \in B_{n}} \frac{\mu(z)|\Re \psi(z)|}{\left(1-|z|^{2}\right)^{\alpha}}<\infty \quad \text { and } \quad \sup _{z \in B_{n}} \frac{\mu(z)|\psi(z)|}{\left(1-|z|^{2}\right)^{\alpha+1}}<\infty .
$$

Corollary 3.4. Suppose that $0<\alpha<\infty, \mu$ is a normal function on $[0,1)$ and $\psi \in H\left(B_{n}\right)$. Then $M_{\psi}: H_{\alpha}^{\infty} \rightarrow \mathscr{B}_{\mu}$ is compact if and only if
(a) $\psi \in \mathscr{B}_{\mu}$ and $z_{l} \psi \in \mathscr{B}_{\mu}$ for any $l \in\{1, \ldots, n\}$;
(b)

$$
\lim _{|z| \rightarrow 1} \frac{\mu(z)|\Re \psi(z)|}{\left(1-|z|^{2}\right)^{\alpha}}=0 ;
$$

(c)

$$
\lim _{|z| \rightarrow 1} \frac{\mu(z)|\psi(z)|}{\left(1-|z|^{2}\right)^{\alpha+1}}=0 .
$$

Acknowledgment. The authors thank the editor and referees for many useful comments and suggestions. This paper was supported in part by the National Natural Science Foundation of China (Grant Nos. 10971153, 10671141).

References

[1] H. Chen and P. Gauthier, Boundedness from below of composition operators on α-Bloch spaces, Canad. Math. Bull. 51 (2008), no. 2, 195-204.
[2] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC, Boca Raton, FL, 1995.
[3] Z. Hu, Extended Cesàro operators on mixed norm spaces, Proc. Amer. Math. Soc. 131 (2003), no. 7, 21712179.
[4] X. Lü, Weighted composition operators from $F(p, q, s)$ spaces to Bers-type spaces in the unit ball, Appl. Math. J. Chinese Univ. Ser. $B 24$ (2009), no. 4, 462-472.
[5] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679-2687.
[6] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215.
[7] S. Stević, Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball, J. Inequal. Appl. 2007, Art. ID 28629, 9 pp.
[8] S. Stević, On a new operator from H^{∞} to the Bloch-type space on the unit ball, Util. Math. 77 (2008), 257263.
[9] S. Stević, Sibirsk. Mat. Zh. 50 (2009), no. 3, 621-624; translation in Sib. Math. J. 50 (2009), no. 3, 495-497.
[10] S. Stević, On an integral operator between Bloch-type spaces on the unit ball, Bull. Sci. Math. 134 (2010), no. 4, 329-339.
[11] S. Stević and S. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput. 215 (2009), no. 7, 2464-2471.
[12] A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
[13] E. Wolf, A note on spectra of weighted composition operators on weighted Banach spaces of holomorphic functions, Bull. Malays. Math. Sci. Soc. (2) 31 (2008), no. 2, 145-152.
[14] X. Wang and T. Liu, Composition type operators from Hardy spaces to μ-Bloch spaces on the unit ball, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 5, 1430-1438.
[15] J. Xiao, Composition operators associated with Bloch-type spaces, Complex Variables Theory Appl. 46 (2001), no. 2, 109-121.
[16] W. Yang, Volterra composition operators from $F(p, q, s)$ spaces to Bloch-type spaces, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 267-277.
[17] C. Yuan and Z.-H. Zhou, The essential norm and spectrum of a weighted composition operator on $H^{\infty}\left(B_{N}\right)$, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 499-511.
[18] X. Zhu, Extended Cesàro operators from H^{∞} to Zygmund type spaces in the unit ball, J. Comput. Anal. Appl. 11 (2009), no. 2, 356-363.
[19] X. Zhang, Composition type operator from Bergman space to μ-Bloch type space in \mathbf{C}^{n}, J. Math. Anal. Appl. 298 (2004), no. 2, 710-721.
[20] Z.-H. Zhou and R.-Y. Chen, Weighted composition operators from $F(p, q, s)$ to Bloch type spaces on the unit ball, Internat. J. Math. 19 (2008), no. 8, 899-926.
[21] X. J. Zhang and J. C. Liu, Composition operators from weighted Bergman spaces to μ-Bloch spaces, Chinese Ann. Math. Ser. A 28 (2007), no. 2, 255-266.
[22] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, 226, Springer, New York, 2005.
[23] X. Zhu, An integral-type operator from H^{∞} to Zygmund-type spaces, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 679-686.
[24] X. Zhu, Composition operators from Zygmund spaces to Bloch spaces in the unit ball, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 4, 961-968.
[25] Z. Zhou and J. Shi, Compactness of composition operators on the Bloch space in classical bounded symmetric domains, Michigan Math. J. 50 (2002), no. 2, 381-405.
[26] H.-G. Zeng and Z.-H. Zhou, An estimate of the essential norm of a composition operator from $F(p, q, s)$ to β^{α} in the unit ball, J. Inequal. Appl. 2010, Art. ID 132970, 22 pp.

