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1. Introduction

Let H(Bn) be the class of all holomorphic functions on Bn and S(Bn) the collection of all the
holomorphic self-maps of Bn, where Bn is the unit ball in the n-dimensional complex space
Cn. The Bloch space B (see, e.g. [22]) is defined as the space of holomorphic functions
such that

‖ f‖B = sup
{
(1−|z|2)|ℜ f (z)| : z ∈ Bn

}
< ∞.

For each α > 0, we define a weighted-type spaces H∞
α (see, e.g. [11]) as follows:

H∞
α =

{
f ∈ H(Bn) : sup

0<r<1
(1− r2)α M∞( f ,r) < ∞

}
,

where M∞( f ,r) = sup|z|=r | f (z)|. It is easy to see that f ∈ H∞
α if and only if supz∈Bn

(1−
|z|2)α | f (z)|< ∞, so we define the norm

‖ f‖H∞
α

= sup
z∈Bn

(1−|z|2)α | f (z)|

and H∞
α with this norm is a Banach space. It is sometimes called Bers-type space which is

a special case of the weighted-type space H∞
µ (see, e.g. [4]). When α = 0, the space H∞

α is
just H∞ (see, e.g. [8, 9, 18]), which is defined by

H∞ =

{
f ∈ H(Bn) : ‖ f‖∞ = sup

z∈Bn

| f (z)|< ∞

}
.
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A positive continuous function µ on [0,1) is called normal [12], if there exist three
constants a,b (0 < a < b < ∞), and δ (0≤ δ < 1), such that for r ∈ [δ ,1)

µ(r)
(1− r)a ↓ 0,

µ(r)
(1− r)b ↑ ∞

as r→ 1. In the rest of this paper we always assume that µ is normal on [0,1), and from
now on if we say that a function µ : B→ [0,∞) is normal we will also assume that it is radial
on Bn, that is, µ(z) = µ(|z|),z ∈ Bn.

Now f ∈ H(Bn) is said to belong to Bloch-type space Bµ (see, e.g. [10, 14]), if

‖ f‖µ,1 = sup
z∈Bn

µ(z)|∇ f (z)|< ∞,

where ∇ f (z) =
(
∂ f /∂ z1(z), ...,∂ f /∂ zn(z)

)
is the complex gradient of f . It is clear that

Bµ is a Banach space with norm ‖ f‖Bµ
= | f (0)|+ ‖ f‖µ,1. For f ∈ H(Bn), we denote

‖ f‖µ,2 = supz∈Bn
µ(z)|ℜ f (z)| and ‖ f‖µ,3 = supz∈Bn

Qµ

f (z), where

ℜ f (z) = 〈∇ f (z), z̄〉=
n

∑
j=1

z j
∂ f
∂ z j

(z), Qµ

f (z) = sup
u∈Cn\{0}

|〈∇ f (z), ū〉|√
Gµ

z (u,u)
,

Gµ
z (u,u) =

1
µ2(z)

{
µ2(z)

σ2
µ(|z|)

|u|2 +(1− µ2(z)
σ2

µ(|z|)
)
|〈z,u〉|2

|z|2

}
(z 6= 0),

Gµ

0 (u,u) =
|u|2

µ2(0)
and

1
σµ(t)

=
1

µ(0)
+
∫ t

0

dτ

(1− τ)1/2µ(τ)
(0≤ t < 1).

It was proved that ‖ f‖µ,1,‖ f‖µ,2 and ‖ f‖µ,3 are equivalent for f ∈Bµ in [1] and [21].
Let ϕ ∈ S(Bn) and ψ ∈ H(Bn). The weighted composition operator Tψ,ϕ is defined by

Tψ,ϕ( f ) = ψ f ◦ϕ, f ∈ H(Bn).

We can regard this operator as a generalization of a multiplication operator Mψ and a com-
position operator Cϕ (see, e.g. [1, 2, 5, 6, 15, 25, 26]). That is when ϕ(z) ≡ z we ob-
tain Tψ,ϕ f (z) = Mψ f (z) = ψ(z) f (z) and when ψ(z) ≡ 1 we obtain Tψ,ϕ f (z) = Cϕ f (z) =
f (ϕ(z)).

Recently, Stević characterized the boundedness and compactness of the weighted compo-
sition operators between mixed-norm spaces and H∞

α spaces in the unit ball in [7]. Moreover,
Zhang and coauthor discussed the conditions for which the weighted composition operator
is bounded or compact from Bergman space to µ-Bloch space in [19] and [21]. Zhou and
Chen discussed weighted composition operators from F(p,q,s) to Bloch type spaces on the
unit ball in [20]. For some recent related results, see also [13, 16, 17, 23, 24] and the refer-
ences therein. Now in this article, we give some necessary and sufficient conditions for the
weighted composition operator Tψ,ϕ to be bounded and compact from weighted-type spaces
H∞

α to Bloch-type space Bµ on the unit ball of Cn.
Throughout the remainder of this paper, C will denote a positive constant, the exact value

of which may vary from one appearance to the next. The notation A� B means that there is
a positive constant C such that B/C ≤ A≤CB. The symbol N stands for the set of positive
integers.
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2. Some lemmas

To begin the discussion, let us state a couple of lemmas which will be used in the proof of
the main results. The following lemma was proved in [3].

Lemma 2.1. Let α > 0 and m be a positive integer. Then for every f ∈ H(Bn) it holds

sup
0<r<1

(1− r2)α M∞( f ,r)� | f (0)|+ sup
0<r<1

(1− r2)α+mM∞(ℜm f ,r).

Lemma 2.2. Let α > 0. Then for every f ∈ H(Bn) it holds

|ℜ f (z)| ≤C
‖ f‖H∞

α

(1−|z|2)α+1 .

Proof. Using Lemma 2.1 with m = 1 we obtain

‖ f‖H∞
α

= sup
0<r<1

(1−r2)α M∞( f ,r)≥C sup
0<r<1

(1−r2)α+1M∞(ℜ f ,r)≥C(1−|z|2)α+1|ℜ f (z)|.

From which the desired estimate follows.
From Lemma 2.2 we can easily obtain f ∈Bα+1 and ‖ f‖Bα+1 ≤C‖ f‖H∞

α
for f ∈ H∞

α .
For z ∈ Bn, u ∈ Cn, denote

Hz(u,u) =
(1−|z|2)|u|2 + |〈z,u〉|2

(1−|z|2)2 .

It is well-known that Hz(u,u) is the Bergman metric of Bn (see, e.g. [22]).

Lemma 2.3. Let α > 0, v(r) = (1− r2)α+1 and ϕ ∈ S(Bn). Then

Gv
ϕ(z)(Jϕ(z)z,Jϕ(z)z)≤

CHϕ(z)(Jϕ(z)z,Jϕ(z)z)
(1−|ϕ(z)|2)2α

for all z ∈ Bn, where Jϕ(z) denotes the Jacobian matrix of ϕ(z) and

Jϕ(z)z =

(
n

∑
k=1

∂ϕ1

∂ zk
zk, ...,

n

∑
k=1

∂ϕn

∂ zk
zk

)T

.

Proof. If ϕ(z) = 0, the desired result is obvious. If ϕ(z) 6= 0, for the definition of σv, we
have

1
σv(r)

= 1+
∫ r

0

dt
(1− t)1/2(1− t2)α+1 �

(1− r2)1/2

v(r)
, 0≤ r < 1.

Thus,

Gv
ϕ(z)(Jϕ(z),Jϕ(z)z)

=
1

v2(|ϕ(z)|)

[
v2(|ϕ(z)|)
σ2

v (|ϕ(z)|)
|Jϕ(z)z|2 +

(
1− v2(|ϕ(z)|)

σ2
v (|ϕ(z)|)

)
|〈ϕ(z),Jϕ(z)z〉|2

|ϕ(z)|2

]
=

1
v2(|ϕ(z)|)

[
v2(|ϕ(z)|)
σ2

v (|ϕ(z)|)

(
|Jϕ(z)z|2− |〈ϕ(z),Jϕ(z)z〉|2

|ϕ(z)|2

)
+
|〈ϕ(z),Jϕ(z)z〉|2

|ϕ(z)|2

]
≤ C

v2(|ϕ(z)|)

[
(1−|ϕ(z)|2)

(
|Jϕ(z)z|2− |〈ϕ(z),Jϕ(z)z〉|2

|ϕ(z)|2

)
+
|〈ϕ(z),Jϕ(z)z〉|2

|ϕ(z)|2

]
=

C
v2(|ϕ(z)|)

[
(1−|ϕ(z)|2)(|Jϕ(z)z|2 + |〈ϕ(z),Jϕ(z)z〉|2

]
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=
C(1−|ϕ(z)|2)2

v2(|ϕ(z)|)
Hϕ(z)(Jϕ(z)z,Jϕ(z)z) = C

Hϕ(z)(Jϕ(z)z,Jϕ(z)z)
(1−|ϕ(z)|2)2α

.

From which the desired result follows.

Lemma 2.4. Assume that f ∈ H(Bn) and ϕ ∈ S(Bn). Then

ℜ( f ◦ϕ)(z) = 〈∇ f (ϕ(z)),Jϕ(z)z〉.

Proof.

ℜ( f ◦ϕ)(z) =
n

∑
i=1

zi
∂ ( f ◦ϕ)

∂ zi
=

n

∑
i=1

zi

n

∑
j=1

∂ ( f ◦ϕ)
∂w j

∂ϕ j

∂ zi

=
n

∑
j=1

∂ ( f ◦ϕ)
∂w j

n

∑
i=1

zi
∂ϕ j

∂ zi
= 〈∇ f (ϕ(z)),Jϕ(z)z〉.

By Montel theorem and the definition of compact operator, the following lemma follows.
The interested reader can also see the Lemma 2.1 in [5]. Hence we omit it.

Lemma 2.5. Assume that 0 < α < ∞, µ is a normal function on [0,1), ϕ ∈ S(Bn) and
ψ ∈ H(Bn). Then Tψ,ϕ : H∞

α → Bµ is compact if and only if for any bounded sequence
{ fk}k∈N ∈ H∞

α which converges to zero uniformly on compact subsets of Bn as k→ ∞, we
have ‖Tψ,ϕ fk‖Bµ

→ 0 as k→ ∞.

3. The boundedness and compactness of Tψ,ϕ : H∞
α →Bµ .

In this section we characterize the boundedness and compactness of the operator Tψ,ϕ :
H∞

α →Bµ .

Theorem 3.1. Suppose that 0 < α < ∞, µ is a normal function on [0,1),ϕ ∈ S(Bn) and
ψ ∈ H(Bn). Then Tψ,ϕ : H∞

α →Bµ is bounded if and only if

(3.1) M1 := sup
z∈Bn

µ(z)|ℜψ(z)|
(1−|ϕ(z)|2)α

< ∞

and

(3.2) M2 := sup
z∈Bn

µ(z)|ψ(z)|
(1−|ϕ(z)|2)α

{
Hϕ(z)(Jϕ(z)z,Jϕ(z)z)

}1/2
< ∞.

Proof. Assume that (3.1) and (3.2) hold. Then for any f ∈ H∞
α , if Jϕ(z)z 6= 0, for z ∈ Bn.

By Lemma 2.4, Lemma 2.3 and Lemma 2.2 we have

µ(z)|ℜ(Tψ,ϕ f )(z)|
≤ µ(z)|ℜψ(z)|| f (ϕ(z))|+ µ(z)|ψ(z)||ℜ( f ◦ϕ)(z)|

≤
µ(z)|ℜψ(z)|‖ f‖H∞

α

(1−|ϕ(z)|2)α
+ µ(z)|ψ(z)||〈∇ f (ϕ(z)),Jϕ(z)z〉|

≤M1‖ f‖H∞
α

+
Cµ(z)|ψ(z)|{Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2|〈∇ f (ϕ(z)),Jϕ(z)z〉|

(1−|ϕ(z)|2)α

√
Gv

ϕ(z)(Jϕ(z)z,Jϕ(z)z)

≤M1‖ f‖H∞
α

+CM2‖ f‖B(1−r2)α+1 ≤C‖ f‖H∞
α
.(3.3)
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When z ∈ Bn and Jϕ(z)z = 0, from (3.1) we can easily obtain that

(3.4) µ(z)|ℜ(Tψ,ϕ( f ))(z)| ≤M1‖ f‖H∞
α
.

Combining (3.3) with (3.4) it follows that

‖Tψ,ϕ f‖Bµ
= sup

z∈Bn

µ(z)|ℜ(Tψ,ϕ f )(z)| ≤C‖ f‖H∞
α
.

From which the boundedness of Tψ,ϕ : H∞
α →Bµ follows.

For the converse direction, we suppose that Tψ,ϕ : H∞
α → Bµ is bounded. First, we

assume that w ∈ Bn and ϕ(w) = rwe1, where rw = |ϕ(w)| and e1 is the vector (1,0,0, ...,0).
If
√

(1− r2
w)(|η2|2 + ....+ |ηn|2) ≤ |η1|, where Jϕ(w)w = (η1, ...,ηn)T . We consider the

function

fw(z) =
{

1− r2
w

(1− rwz1)2

}α z1− rw

1− rwz1
.

Then

sup
z∈Bn

(1−|z|2)α | fw(z)| ≤ sup
z∈Bn

(1−|z1|2)α

(1−|z1|)α

{
1− r2

w

1− rw

}α

≤ 4α .

It shows that fw ∈ H∞
α and ‖ fw‖H∞

α
≤C. Note that fw(ϕ(w)) = 0 and

∇ fw(ϕ(w)) =
(

1
(1− r2

w)α+1 ,0, ...,0
)

.

It follows from Lemma 2.4 that

‖Tψ,ϕ fw‖Bµ
≥ µ(w)|ℜ(ψ fw ◦ϕ)(w)|
≥ µ(w)|ψ(w)||ℜ( fw ◦ϕ)(w)|−µ(w)|ℜψ(w)|| fw(ϕ(w))|

= µ(w)|ψ(w)||〈∇ fw(ϕ(w)),Jϕ(w)w〉|

=
µ(w)|ψ(w)||η1|

(1− r2
w)α+1 .(3.5)

By the definition of Hϕ(w)(Jϕ(w)w,Jϕ(w)w) and (3.5), it follows that

µ(w)|ψ(w)|
(1−|ϕ(w)|2)α

{Hϕ(w)(Jϕ(w)w,Jϕ(w)w)}1/2

=
µ(w)|ψ(w)|{(1−|ϕ(w)|2)|Jϕ(w)w|2 + |〈ϕ(w),Jϕ(w)w〉|2}1/2

(1−|ϕ(w)|2)α+1

=
µ(w)|ψ(w)|{(1− r2

w)(|η2|2 + ...+ |ηn|2)+ |η1|2}1/2

(1−|ϕ(w)|2)α+1

≤
√

2µ(w)|ψ(w)||η1|
(1− r2

w)α+1 ≤C‖Tψ,ϕ fw‖Bµ
.(3.6)

This shows that when
√

(1− r2
w)(|η2|2 + ....+ |ηn|2)≤ |η1|, the result (3.2) holds.

On the other hand, if
√

(1− r2
w)(|η2|2 + ....+ |ηn|2) > |η1|. For j = 2, ...,n, let θ j =

argη j and a j = e−iθ j , when η j 6= 0 or a j = 0 when η j = 0. Taking

fw(z) =
a2z2 + ...+anzn

(1− rwz1)α+1 .
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It is easy to check that

sup
z∈Bn

(1−|z|2)α | fw(z)| ≤ sup
z∈Bn

(1−|z|2)α n−1
(1−|z1|)α(1− rw)

≤C,

which implies that fw ∈ H∞
α and ‖ fw‖H∞

α
≤C. Notice that fw(ϕ(w)) = 0 and

∇ fw(ϕ(w)) =
(

0,
a2

(1− r2
w)α+1 , ...,

an

(1− r2
w)α+1

)
.

Similar to the proof of (3.5), we obtain that

µ(w)|ψ(w)|(|η2|+ ...+ |ηn|)
(1− r2

w)α+1 ≤C‖Tψ,ϕ fw‖Bµ .(3.7)

It follows from (3.7) that

µ(w)|ψ(w)|
(1−|ϕ(w)|2)α

{Hϕ(w)(Jϕ(w)w,Jϕ(w)w)}1/2

=
µ(w)|ψ(w)|{(1−|ϕ(w)|2)|Jϕ(w)w|2 + |〈ϕ(w),Jϕ(w)w〉|2}1/2

(1−|ϕ(w)|2)α+1

=
µ(w)|ψ(w)|{(1− r2

w)(|η2|2 + ...+ |ηn|2)+ |η1|2}1/2

(1−|ϕ(w)|2)α+1

≤ µ(w)|ψ(w)|{2(1− r2
w)(|η2|2 + ...+ |ηn|2)}1/2

(1−|ϕ(w)|2)α+1

≤C
µ(w)|ψ(w)|

√
2(1− r2

w)(|η2|+ ...+ |ηn|)
(1− r2

w)α+1 ≤C‖Tψ,ϕ fw‖Bµ .(3.8)

Therefore, when
√

(1− r2
w)(|η2|2 + ....+ |ηn|2) > |η1|, we can also obtain (3.2). Combin-

ing the two cases we know that (3.2) holds.
For the general situation, we can use the unitary transform Uw to make ϕ(w) = rwe1Uw.

In order to prove (3.2), we first give a proposition.

Proposition 3.1. Suppose that 0 < α < ∞,µ is a normal function on [0,1), ϕ ∈ S(Bn) and
ψ ∈ H(Bn). Let ϕ̃(z) = Uwϕ(z), and g = f ◦U−1

w for any f ∈ H∞
α . Then

(a) Hϕ̃(z)(Jϕ̃(z)z,Jϕ̃(z)z) = Hϕ(z)(Jϕ(z)z,Jϕ(z)z);
(b) ‖g‖H∞

α
= ‖ f‖H∞

α
;

(c) ‖Tψ,ϕ̃ g‖Bµ = ‖Tψ,ϕ f‖Bµ .

Proof.

(a) Note that Jϕ̃(z)z = UwJ(ϕ)(z)z and |ϕ̃(z)|2 = |ϕ(z)|2, we have

Hϕ̃(z)(Jϕ̃(z)z,Jϕ̃(z)z) =

(
1−
∣∣ϕ̃(z)

∣∣2)∣∣Jϕ̃(z)z
∣∣2 +

∣∣〈ϕ̃(z),Jϕ̃(z)z
〉∣∣2

(1−|ϕ̃(z)|2)2

=
(1−|ϕ(z)|2)|Jϕ(z)z|2 + |〈ϕ(z),Jϕ(z)z〉|2

(1−|ϕ(z)|2)2

= Hϕ(z)(Jϕ(z)z,Jϕ(z)z).
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(b)

‖g‖H∞
α

= sup
z∈Bn

(
1−|z|2

)α |g(z)|= sup
z∈Bn

(
1−|z|2

)α | f (U−1
w (z))|

= sup
z∈Bn

(
1−|z|2

)α | f (z)|= ‖ f‖H∞
α
.

In the last equality, we use the linear coordinate translation w = U−1
w z and |w| =

|U−1
w z|= |z|.

(c)

‖Tψ,ϕ̃ g‖Bµ = sup
z∈Bn

µ(z)|ψ(z)||g(ϕ̃(z))|= sup
z∈Bn

µ(z)|ψ(z)|| f (ϕ(z))|= ‖Tψ,ϕ f‖Bµ .

Now we return to prove that (3.2) holds in general situation. In fact, taking the function
gw = fw ◦U−1

w . By Proposition 3.1, (3.6) and (3.8), it follows that

µ(w)|ψ(w)|
(1−|ϕ(w)|2)α

{
Hϕ(w)(Jϕ(w)w,Jϕ(w)w)

}1/2

=
µ(w)|ψ(w)|

(1−|ϕ̃(w)|2)α

{
Hϕ̃(w)(Jϕ̃(w)w,Jϕ̃(w)w)

}1/2

≤C‖Tψ,ϕ̃ gw‖Bµ = C‖Tψ,ϕ fw‖Bµ ≤C.

This means that (3.2) holds.
Next we prove (3.1). Set the function

hw(z) =
{

1−|ϕ(w)|2

(1−〈z,ϕ(w)〉)2

}α

, w ∈ Bn.

Since

sup
z∈Bn

(1−|z|2)α |hw(z)| ≤ sup
z∈Bn

(1−|z|2)α

(1−|z|)α

(
1−|ϕ(w)|2

1−|ϕ(w)|

)α

≤ 4α ,

it follows that hw ∈ H∞
α and ‖hw‖H∞

α
≤C. Moreover hw(ϕ(w)) = 1/((1−|ϕ(w)|2)α) and

∇hw(ϕ(w)) = 2α

(
ϕ1(w)

(1−|ϕ(w)|2)α+1 , ...,
ϕn(w)

(1−|ϕ(w)|2)α+1

)
.

Thus

‖Tψ,ϕ(hw)‖Bµ
≥ µ(w)|ℜ(ψhw ◦ϕ)(w)|
= µ(w)|ℜψ(w)hw(ϕ(w))+ψ(w)ℜ(hw ◦ϕ)(w)|

≥ µ(w)|ℜψ(w)|
(1−|ϕ(w)|2)α

−µ(w)|ψ(w)||ℜ(hw ◦ϕ)(w)|.(3.9)

From (3.2) and ∇hw(ϕ(w)) we have

µ(w)|ψ(w)||ℜ(hw ◦ϕ)(w)|= µ(w)|ψ(w)||〈∇hw(ϕ(w)),Jϕ(w)w〉|

=
2αµ(w)|ψ(w)||〈ϕ(w),Jϕ(w)w〉|

(1−|ϕ(w)|2)α+1

≤ 2αµ(w)|ψ(w)|
(1−|ϕ(w)|2)α

{
Hϕ(w)(Jϕ(w)w,Jϕ(w)w)

}1/2

≤CM2 < ∞.(3.10)
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Combining (3.9) and (3.10) we obtain (3.1). This completes the proof of Theorem 3.1.

Theorem 3.2. Suppose that 0 < α < ∞, µ is a normal function on [0,1), ϕ ∈ S(Bn) and
ψ ∈H(Bn). Then Tψ,ϕ : H∞

α →Bµ is compact if and only if the followings are all satisfied:
(a) ψ ∈Bµ and ψϕl ∈Bµ for l ∈ {1, ...,n};
(b)

(3.11) lim
|ϕ(z)|→1

µ(z)|ℜψ(z)|
(1−|ϕ(z)|2)α

= 0;

(c)

(3.12) lim
|ϕ(z)|→1

µ(z)|ψ(z)|
(1−|ϕ(z)|2)α

{Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2 = 0.

Proof. First suppose that (a), (b) and (c) hold. Then from (b) and (c) we have for any ε > 0,
there is a δ > 0, such that

(3.13)
µ(z)|ℜψ(z)|
(1−|ϕ(z)|2)α

< ε

and

(3.14)
µ(z)|ψ(z)|

(1−|ϕ(z)|2)α
{Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2 < ε,

when |ϕ(z)|> δ . Let { fk}k∈N be any sequence which converges to 0 uniformly on compact
subsets of Bn satisfying ‖ fk‖H∞

α
≤ 1. Then fk and ∇ fk converge to 0 uniformly on K = {w∈

Bn : |w| ≤ δ}. Since

(3.15)

sup
z∈Bn

µ(z)|ℜ(Tψ,ϕ fk)(z)|= sup
ϕ(z)∈K

µ(z)|ℜ(Tψ,ϕ fk)(z)|

+ sup
ϕ(z)∈Bn\K

µ(z)|ℜ(Tψ,ϕ fk)(z)|.

If |ϕ(z)|> δ and Jϕ(z)z 6= 0, by Lemma 2.4, Lemma 2.3 and Lemma 2.2 we have

µ(z)|ℜ(Tψ,ϕ fk)(z)| ≤ µ(z)|ψ(z)||ℜ( fk ◦ϕ)(z)|+ µ(z)|ℜψ(z)|| fk(ϕ(z))|

≤
Cµ(z)|ψ(z)|{Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2|〈∇ fk(ϕ(z)),Jϕ(z)z〉|

(1−|ϕ(z)|2)α

√
Gv

ϕ(z)(Jϕ(z)z,Jϕ(z)z)
+ ε‖ fk‖H∞

α

≤Cε‖ fk‖B(1−r2)α+1 + ε‖ fk‖H∞
α
≤Cε.(3.16)

When Jϕ(z)z = 0,

µ(z)|ℜ(Tψ,ϕ fk)(z)| ≤ ε‖ fk‖H∞
α
≤ ε.(3.17)

Combining (3.16) and (3.17) we obtain that

sup
ϕ(z)∈Bn\K

µ(z)|ℜ(Tψ,ϕ fk)(z)| ≤Cε.(3.18)

If |ϕ(z)| ≤ δ , it follows from (a) that

µ(z)|ℜ(Tψ,ϕ fk)(z)|
≤ µ(z)|ψ(z)||ℜ( fk ◦ϕ)(z)|+ µ(z)|ℜψ(z)|| fk(ϕ(z))|

≤ µ(z)|ψ(z)||〈∇ fk(ϕ(z)),Jϕ(z)z〉|+ | fk(ϕ(z))|‖ψ‖Bµ
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≤ |∇ fk(ϕ(z))|
n

∑
l=1

(
µ(z)|ψ(z)||ℜϕl(z)|

)
+ | fk(ϕ(z))|‖ψ‖Bµ

≤ |∇ fk(ϕ(z))|
n

∑
l=1

(
µ(z)|ψ(z)||ℜϕl(z)|−µ(z)|ℜψ(z)||ϕl(z)|+ µ(z)|ℜψ(z)|

)
+ | fk(ϕ(z))|‖ψ‖Bµ

≤ |∇ fk(ϕ(z))|
n

∑
l=1

(
µ(z)|ψ(z)ℜϕl(z)+ℜψ(z)ϕl(z)|+ µ(z)|ℜψ(z)|

)
+ | fk(ϕ(z))|‖ψ‖Bµ

≤ |∇ fk(ϕ(z))|
n

∑
l=1

(
‖ψϕl‖Bµ

+‖ψ‖Bµ

)
+ | fk(ϕ(z))|‖ψ‖Bµ

→ 0, k→ ∞.(3.19)

Then from (3.15), (3.18), (3.19) and Lemma 2.5 we get the compactness of Tψ,ϕ : H∞
α →Bµ .

For the converse direction, we assume that Tψ,ϕ : H∞
α →Bµ is compact. Then the bound-

edness of Tψ,ϕ : H∞
α →Bµ is obvious. Taking f (z) = 1 ∈ H∞

α , we obtain

‖Tψ,ϕ f‖Bµ
= sup

z∈Bn

µ(z)|ℜ(Tψ,ϕ f )(z)|

= sup
z∈Bn

µ(z)|ℜψ(z) f (ϕ(z))+ψ(z)ℜ( f ◦ϕ)(z)|= sup
z∈Bn

µ(z)|ℜψ(z)|< ∞.

This shows that ψ ∈Bµ .
On the other hand, for l ∈ {1, ...,n}, taking the functions f (z) = zl ∈ H∞

α , we can obtain

‖Tψ,ϕ f‖Bµ
= sup

z∈Bn

µ(z)|ℜψ(z) f (ϕ(z))+ψ(z)ℜ( f ◦ϕ)(z)|

= sup
z∈Bn

µ(z)|ℜψ(z)ϕl(z)+ψ(z)ℜϕl(z)|= sup
z∈Bn

µ(z)|ℜ(ψϕl)(z)|.

Then we obtain that ψϕl ∈Bµ for l ∈ {1, ...,n}. The desired result (a) follows.
Next we prove (3.12). Let {zk}k∈N be a sequence in Bn such that |ϕ(zk)|→ 1 as k→∞ (If

such a sequence does not exist then (3.12) obviously holds). We can suppose that ϕ(zk) =
rke1, where rk = |ϕ(zk)|, e1 is the vector (1,0,0, ...,0). Thus |rk| → 1 as k→ ∞.

If
√

(1− r2
k)(|η2|2 + ....+ |ηn|2) ≤ |η1|, where Jϕ(zk)zk = (η1, ...,ηn)T . Defining the

function

fk(z) =
{

1− r2
k

(1− rkz1)2

}α
z1− rk

1− rkz1
, k ∈ N.

From Theorem 3.1 we know that fk ∈H∞
α with ‖ fk‖H∞

α
≤C, and notice that fk converges to

0 uniformly on compact subsets of Bn when k→ ∞. From the compactness of Tψ,ϕ : H∞
α →

Bµ , we have that lim
k→∞
‖Tψ,ϕ fk‖Bµ

= 0. Then from the similar proof of (3.3) in Theorem

3.1 we have

(3.20)
µ(zk)|ψ(zk)||η1|

(1− r2
k)

α+1 ≤ ‖Tψ,ϕ fk‖Bµ
→ 0, k→ ∞.

And by the similar proofs of (3.6) and (3.20) we have

µ(zk)|ψ(zk)|
(1−|ϕ(zk)|2)α

{
Hϕ(zk)(Jϕ(zk)zk,Jϕ(zk)zk)

}1/2
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≤
√

2µ(zk)|ψ(zk)||η1|
(1− r2

k)
α+1 → 0, k→ ∞.(3.21)

On the other hand, if
√

(1− r2
k)(|η2|2 + ....+ |ηn|2) > |η1|. For j = 2, ...,n, let θ j =

argη j and a j = e−iθ j , when η j 6= 0 or a j = 0 when η j = 0. Taking

fk(z) =
(a2z2 + ...+anzn)(1− r2

k)
(1− rkz1)α+2 .

Then from Theorem 3.1 we know fk ∈ H∞
α ,k ∈ N and fk converges to 0 uniformly on com-

pact subsets of Bn when k→ ∞. Since the compactness of Tψ,ϕ : H∞
α →Bµ , we have that

limk→∞ ‖Tψ,ϕ fk‖Bµ
= 0. We notice that fk(ϕ(zk)) = 0 and

∇ fw(ϕ(zk)) =
(

0,
a2

(1− r2
k)

α+1 , ...,
an

(1− r2
k)

α+1

)
Using the similar proof of (3.7) we obtain

(3.22)
µ(zk)|ψ(zk)|(|η2|+ ...+ |ηn|)

(1− r2
k)

α+1 ≤ ‖Tψ,ϕ fk‖Bµ
→ 0, k→ ∞.

And by using (3.8) we obtain

µ(zk)|ψ(zk)|
(1−|ϕ(zk)|2)α

{
Hϕ(zk)(Jϕ(zk)zk,Jϕ(zk)zk)

}1/2

≤C
µ(zk)|ψ(zk)|

√
2(1− r2

k)(|η2|+ ...+ |ηn|)

(1− r2
k)

α+1 → 0, k→ ∞.(3.23)

Combining (3.21) and (3.23) we obtain (3.12) under two cases. For the general situation,
we can use the unitary transform Uk to make ϕ(zk) = rke1Uk and we can prove (3.12) by
taking the function gk = fk ◦U−1

k .
Next we prove (3.11). We still let {zk}k∈N be a sequence in Bn such that |ϕ(zk)| → 1 as

k→ ∞ (If such a sequence does not exist then (3.11) obviously holds). Choosing

hk(z) =
{

1−|ϕ(zk)|2

(1−〈z,zk〉)2

}α

.

From Theorem 3.1 we know that hk ∈ H∞
α and hk→ 0 uniformly on the compact subsets of

Bn when k→ ∞. By the compactness of Tψ,ϕ : H∞
α →Bµ and by the similar proof of (3.9)

we obtain that

(3.24) ‖Tψ,ϕ(hk)‖Bµ
≥ µ(zk)|ℜψ(zk)|

(1−|ϕ(zk)|2)α
−µ(zk)|ψ(zk)||ℜ(hk ◦ϕ)(zk)|.

Since from (3.12) we have that

µ(zk)|ψ(zk)||ℜ(hw ◦ϕ)(zk)|

≤ 2αµ(zk)|ψ(zk)|
(1−|ϕ(zk)|2)α

{
Hϕ(zk)(Jϕ(zk)zk,Jϕ(zk)zk)

}1/2→ 0, k→ ∞.(3.25)

Combining (3.24) and (3.25) we obtain (3.11).

Remark 3.1. When ψ(z)≡ 1,Tψ,ϕ = Cϕ , we obtain the next two Corollaries about compo-
sition operator from Theorems 3.1 and 3.2.
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Corollary 3.1. Suppose that 0 < α < ∞, µ is a normal function in [0,1) and ϕ ∈ S(Bn).
Then Cϕ : H∞

α →Bµ is bounded if and only if

sup
z∈Bn

µ(z){Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2

(1−|ϕ(z)|2)α
< ∞.

Corollary 3.2. Suppose that 0 < α < ∞, µ is a normal function in [0,1) and ϕ ∈ S(Bn).
Then Cϕ : H∞

α →Bµ is compact if and only if

lim
|ϕ(z)|→1

µ(z){Hϕ(z)(Jϕ(z)z,Jϕ(z)z)}1/2

(1−|ϕ(z)|2)α
= 0.

and ϕl ∈Bµ for any l ∈ {1, ...,n}.

Remark 3.2. When ϕ(z)≡ z,Tψ,ϕ = Mψ , we obtain the next two Corollaries about multi-
plication operator from Theorems 3.1 and 3.2.

Corollary 3.3. Suppose that 0 < α < ∞, µ is a normal function on [0,1) and ψ ∈ H(Bn).
Then Mψ : H∞

α →Bµ is bounded if and only if

sup
z∈Bn

µ(z)|ℜψ(z)|
(1−|z|2)α

< ∞ and sup
z∈Bn

µ(z)|ψ(z)|
(1−|z|2)α+1 < ∞.

Corollary 3.4. Suppose that 0 < α < ∞, µ is a normal function on [0,1) and ψ ∈ H(Bn).
Then Mψ : H∞

α →Bµ is compact if and only if
(a) ψ ∈Bµ and zlψ ∈Bµ for any l ∈ {1, ...,n};
(b)

lim
|z|→1

µ(z)|ℜψ(z)|
(1−|z|2)α

= 0;

(c)

lim
|z|→1

µ(z)|ψ(z)|
(1−|z|2)α+1 = 0.
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