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1. Introduction

Throughout this article, all groups are finite. Our notation is standard and the reader is
referred to [12,14] if necessary. Recall that a class of groups F is a formation if F is closed
under homomorphic images and subdirect product. A formation F is said to be saturated if
it contains each group G with G/Φ(G) ∈ F. A formation F is said to be s-closed if every
subgroup of G belongs to F whenever G∈F. In this paper, U, Np will denote the class of all
supersolvable groups and the class of all p-nilpotent groups, respectively. As well-known
results, U, Np are saturated formations. Let F be a formation. We say a subgroup H of a
group G is F-supplemented in G if G has a subgroup T ∈ F such that G = HT . In this case,
we say T is an F-supplement of H in G.

The relationship between the properties of subgroups of the Sylow subgroups of G and
the structure of G has been investigated by many authors in the literature (see [7, 9, 13,
17, 19, 22, 23, 27, 29]). In particular, some results about p-nilpotency of finite groups were
obtained. For example, a well-known theorem due to Itô (see [14, IV, 5.5]) asserts that a
group G is p-nilpotent if all cyclic subgroups of G of order p or 4 (when p = 2) lie in the
center. Recently, we can find the following results: Let P a Sylow p-subgroup of a group
G, where p is the smallest prime dividing |G|. If the maximal subgroups of P are either all
c-normal [8, Theorem 3.4], or all c-supplemented [9, Theorem 3.2], or all s-quasinormally
embedded [1, Theorem 3.1], or all weakly s-permutable [20, Theorem 3.1], or all weakly
s-permutably embedded [19, Theorem 3.1] in G, then G is p-nilpotent. In fact, it is easy
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to see that s-permutable subgroups [15], c-normal subgroups [27], c-supplemented [3], s-
quasinormally embedded subgroups [4], weakly s-permutable [26], weakly s-permutable
embedded subgroups [19] are a series of generalizations of normal subgroups. We think it
is very necessary and interesting to unify above subgroups, so the following conception is
introduced naturally:

Definition 1.1. A subgroup H of a group G is said to be s∗-permutably embedded in G if
there is a subgroup T of G such that G = HT and H∩T ≤Hse, where Hse is an s-permutably
embedded subgroup of H contained in H.

We now give some examples to show that the new subgroup embedding property is dif-
ferent from the previous ones which are generalized.

Example 1.1. Suppose that G = S4, the symmetric group of degree 4. Take α = (34) and
β = (123). Then G = 〈α〉A4 and 〈α〉∩A4 = 1, and hence 〈α〉 is s∗-permutably embedded
in G. However 〈α〉 is not s-quasinormally embedded in G. In fact, if 〈α〉 is a Sylow 2-
subgroup of some s-permutable subgroup K of G, then K〈β 〉 is a group. Since |K〈β 〉 :
〈β 〉|= 2, we have 〈β 〉CK〈β 〉 and so 〈α〉〈β 〉= 〈β 〉〈α〉, which is a contradiction.

Example 1.2. Suppose that G = A5, the alternative group of degree 5. Then the Sylow 2-
subgroups of G are s∗-permutably embedded in G, but they are neither weakly s-permutable
in G nor c-supplemented in G.

Example 1.3. Suppose that G = S5, the symmetric group of degree 5. Let H = 〈(123),(124)〉.
Then H is s∗-permutably embedded in G, but H is not weakly s-permutably embedded in
G.

In this article, we give some new characterizations about p-nilpotent groups and Sylow
tower groups of supersoluble type by assumption that some second maximal subgroups or
second minimal subgroups of the Sylow are s∗-permutably embedded. As an application of
our results, some recent results are generalized, such as in [2, 7, 11, 18, 21, 28].

2. Preliminaries

For convenience, we list here some known results which are crucial in proving our main
result.

Lemma 2.1. [4, Lemma 1] Suppose that H is s-permutably embedded in a group G.
(1) If H ≤ L≤ G, then H is s-permutably embedded in L.
(2) If N C G, then HN is s-permutably embedded in G and HN/N is s-permutably

embedded in G/N.

Lemma 2.2. Let H be an s∗-permutably embedded subgroup of a group G.
(1) If H ≤ L≤ G, then H is s∗-permutably embedded in L.
(2) If N CG and N ≤ H ≤ G, then H/N is s∗-permutably embedded in G/N.
(3) If H is a π-subgroup and N is a normal π ′-subgroup of G, then HN/N is s∗-

permutably embedded in G/N.

Proof. By the hypothesis, there are a subgroup K of G and an s-permutably embedded
subgroup Hse of G such that G = HK and H ∩K ≤ Hse.

(1) L = L∩HK = H(L∩K) and H ∩ (L∩K) = H ∩K ≤ Hse. By Lemma 2.1(1), Hse is
s-permutably embedded in L. Hence H is s∗-permutably embedded in L.
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(2) G/N = H/N ·NK/N and (H/N)∩(KN/N)= (H∩KN)/N =(H∩K)N/N≤HseN/N.
By Lemma 2.1(2), HseN/N is s-permutably embedded in G/N. Hence H/N is s∗-permutably
embedded in G/N.

(3) Since (|G : K|, |N|) = 1, N ≤K. It is easy to see that G/N = HN/N ·KN/N = HN/N ·
K/N and (HN/N)∩ (K/N) = (HN∩K)/N = (H ∩K)N/N ≤ HseN/N. By Lemma 2.1(2),
HseN/N is s-permutably embedded in G/N. Hence HN/N is s∗-permutably embedded in
G/N.

Lemma 2.3. Let F be a formation and H is an F-supplemented subgroup of G.
(1) If H ≤ L≤ G, then H is F-supplemented in L.
(2) If N CG, then HN/N is F-supplemented in G/N.

Lemma 2.4. [30, Lemma 2.4] Let p be the smallest prime dividing the order of a group G
and H a normal subgroup of G such that G/H is p-nilpotent. If |Hp|6 p2 and G is A4-free,
then G is p-nilpotent.

Lemma 2.5. [24, Lemma 2.12] Let p be the smallest prime dividing the order of a group
G and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if P has a non-trivial
proper subgroup D such that every subgroup E of P with |E| = |D| is Np-supplemented in
G.

Lemma 2.6. [5, A, 1.2] Let U,V, and W be subgroups of a group G. Then the following
statements are equivalent:

(1) U ∩VW = (U ∩V )(U ∩W ).
(2) UV ∩UW = U(V ∩W ).

Lemma 2.7. [18, Lemma 2.3] Suppose that H is s-permutable in G, P a Sylow p-subgroup
of H, where p is a prime. If HG = 1, then P is s-permutable in G.

Lemma 2.8. [18, Lemma 2.4] Suppose P is a p-subgroup of G contained in Op(G). If P is
s-permutably embedded in G, then P is s-permutable in G.

Lemma 2.9. [25, Lemma A] If P is an s-permutable p-subgroup of G for some prime p,
then NG(P)≥ Op(G).

Lemma 2.10. [16, Lemma 2.6] Let H be a solvable normal subgroup of a group G (H 6= 1).
If every minimal normal subgroup of G which is contained in H is not contained in Φ(G),
then the Fitting subgroup F(H) of H is the direct product of minimal normal subgroups of
G which are contained in H.

Lemma 2.11. [10, Lemma 3.16] Let F be the class of groups with Sylow tower of super-
solvable type. Also let P be a normal p-subgroup of a group G such that G/P ∈ F. If G is
A4-free and |P|6 p2, then G ∈ F.

Lemma 2.12. [29, Lemma 2.8] Let M be a maximal subgroup of G, P a normal p-subgroup
of G such that G = PM, where p is a prime. Then P∩M is a normal subgroup of G.

3. New characterizations of p-nilpotent groups

Theorem 3.1. Suppose that p is the smallest prime dividing the order of a group G and H
is a normal subgroup of G such that G/H is p-nilpotent. If G is A4-free and there exists a
Sylow p-subgroup P of H such that every 2-maximal subgroup of P is either s∗-permutably
embedded or Np-supplemented in G, then G is p-nilpotent.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal order.
We will derive a contradiction in several steps.

(1) Op′(G) = 1.

If T = Op′(G) 6= 1, we consider G = G/T . Clearly, G/H ∼= G/HT is p-nilpotent because
G/H is, where H = HT/T . Let P2 = P2T/T be a 2-maximal subgroup of PT/T . We may
assume that P2 is a 2-maximal subgroup of P. Since P2 is either s∗-permutably embedded
or Np-supplemented in G, the subgroup P2T/T is either s∗-permutably embedded or Np-
supplemented in G/T by Lemmas 2.2(3) and 2.3(2). The minimality of G implies that G is
p-nilpotent, and so G is also p-nilpotent, a contradiction.

(2) H = G.

Suppose that H < G. By Lemmas 2.2(1) and 2.3(1), every 2-maximal subgroup of P is
either s∗-permutably embedded or Np-supplemented in H. Hence H satisfies the hypothesis
of the theorem. The choice of G yields that H is p-nilpotent. Now, let Hp′ be the normal
p-complement of H. Then Hp′CG. By Step (1), Hp′ ≤Op′(G) = 1. This shows that H = P.
Let N be a minimal normal subgroup of G contained in P. Then N is an elementary p-group.
It is easy to see that G/N satisfies the hypotheses of the theorem, hence G/N is p-nilpotent
by the minimality of G. Since the class of all p-nilpotent groups is a saturated formation,
N is the unique minimal normal subgroup of G contained in P and P∩Φ(G) = 1. Thus,
there is a maximal subgroup M of G such that G = NM and N ∩M = 1. Now P∩M C G
by Lemma 2.12, P∩M = 1 and N = P. Since P C G, we may pick a 2-maximal N2 of N
such that N2 CGp, where Gp is a Sylow p-subgroup of G. Then N2 is either s∗-permutably
embedded or Np-supplemented in G. Let T be any supplement of N2 in G, i.e., N2T = G.
Thus G = NT and N = N∩N2T = N2(N∩T ). This implies that N∩T 6= 1. But since N∩T
is normal in G and N is a minimal normal subgroup of G, N ∩ T = N and T = G. This
shows that N2 can not be Np-supplemented in G, and so is s∗-permutably embedded in G.
Furthermore, N2 must be s-permutably embedded in G. By Lemma 2.8, N2 is s-permutable
in G. By Lemma 2.9, Op(G)≤ NG(N2). Thus N2 C GpOp(G) = G. It follows that N2 = 1,
and so |N|= p2. By Lemma 2.4, G is p-nilpotent, a contradiction.

(3) G is not a non-abelian simple group.

By Lemma 2.4, p3||P| and so there exists a non-identity 2-maximal subgroup of P. By
Lemma 2.5, P has a 2-maximal subgroup P2 which is not Np-supplemented in G. By the
hypothesis, P2 is s∗-permutably embedded in G. Then there is a non-p-nilpotent subgroup
T of G such that G = P2T and P2∩T ≤ (P2)se. Thence there is an s-permutable subgroup K
of G such that (P2)se is a Sylow p-subgroup of K. Since K is s-permutable in G, we have K
is subnormal in G. If G is simple, then K = 1, and so (P2)se = 1. It follows that P2∩T = 1.
By Lemma 2.4, T is p-nilpotent, a contradiction.

(4) G has a unique minimal normal subgroup N such that G/N is p-nilpotent. More-
over, Φ(G) = 1.

Let N be a minimal subgroup of G and we verify that the hypothesis holds for G/N. Since
P is a Sylow p-subgroup of G, PN/N is a Sylow p-subgroup of G/N. If |PN/N|6 p2, then
G/N is p-nilpotent by Lemma 2.4. So we suppose |PN/N|> p3. Let M2/N be a 2-maximal
subgroup of PN/N. Then M2 = P2N for some 2-maximal subgroup P2 of P and P2 ∩N =
P∩N is a Sylow p-subgroup of N. If P2 is Np-supplemented in G, then M2/N is Np-
supplemented in G/N by Lemma 2.3(2). If P2 is s∗-permutably embedded in G, then there
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is a subgroup T of G such that G = P2T and P2∩T ≤ (P2)se. Thus G/N = P2N/N ·T N/N.
Since (|N : P2∩N|, |N : T ∩N|) = 1, (P2∩N)(T ∩N) = N = N∩G = N∩(P2T ). By Lemma
2.6, (P2N)∩ (T N) = (P2 ∩ T )N. It follows that (P2N/N)∩ (T N/N) = (P2N ∩ T N)/N =
(P2∩T )N/N ≤ (P2)seN/N. Since (P2)seN/N is s-permutably embedded in G/N by Lemma
2.1(2), M2/N is s∗-permutably embedded in G/N. Therefore, G/N satisfies the hypothesis
of the theorem. The minimal choice of G yields that G/N is p-nilpotent. Since the class of
all p-nilpotent groups is a saturated formation, N is the unique minimal normal subgroup of
G and Φ(G) = 1.

(5) Op(G) = 1.
Assume that Op(G) 6= 1. Then, by Step (4), N≤Op(G) and G has a maximal subgroup M

such that G = MN and G/N ∼= M is p-nilpotent. Let P1 be an arbitrary maximal subgroup of
P. We will show P1 is Np-supplemented in G. Pick some 2-maximal subgroup P2 of P such
that P2 < P1 and P2 C P. If P2 is Np-supplemented in G, then P1 is also Np-supplemented
in G obviously. By the hypothesis of the theorem, we only need prove that if P2 is s∗-
permutably embedded in G, then P2 is also Np-supplemented in G. We assume that P2 is
s∗-permutably embedded in G. Then there is a subgroup T of G such that G = P2T and
P2∩T ≤ (P2)se. Thus there is an s-permutable subgroup K of G such that (P2)se is a Sylow
p-subgroup of K. If KG 6= 1, then N ≤ KG ≤ K. It follows that N ≤ (P2)se ≤ P2, and so
G = NM = P2M. Since M is p-nilpotent, P2 is Np-supplemented in G. If KG = 1, by
Lemma 2.7, (P2)se is s-permutable in G. From Lemma 2.9 we have Op(G) ≤ NG((P2)se).
Thus (P2)se ≤ ((P2)se)G = ((P2)se)Op(G)P = ((P2)se)P ≤ P2. It follows that ((P2)se)G = 1 or
N ≤ ((P2)se)G ≤ P2. If ((P2)se)G = 1, then P2 ∩ T = 1 and so |T |p = p2. Hence T is p-
nilpotent by Lemma 2.4, and so P2 is Np-supplemented in G. If N ≤ P2, then P2 is also Np-
supplemented in G as above. From above argument, we know every maximal subgroup of
P should be Np-supplemented in G, hence G is p-nilpotent by Lemma 2.5, a contradiction.

(6) N is not p-nilpotent.
Assume N is p-nilpotent and let Np′ be the normal p-complement of N. Since Np′ char

N CG, we have Np′CG and so Np′ ≤Op′(G) = 1 by Step (1). It follows that N is a p-group.
Then N ≤ Op(G) = 1 by step (5), contrary to Step (3).

(7) G = NP.
By Lemmas 2.2(1) and 2.3(1), every 2-maximal subgroup of P is either s∗-permutably

embedded or Np-supplemented in NP. Since NP is also A4-free and P is a Sylow p-
subgroup of NP too, NP satisfies the hypothesis of the theorem. If NP < G, then the choice
of G yields that NP is p-nilpotent. It follows that N is p-nilpotent, contrary to Step (6).

(8) If G has Hall p′-subgroups, then any two Hall p′-subgroups of G are conjugate in
G.

If p is odd, then G is solvable by Feit-Thompson’s Theorem, contrary to Steps (1) and
(5). Thus p = 2. By applying a deep result of Gross [6, Main Theorem], any two Hall
p′-subgroups of G are conjugate in G.

(9) Final contradiction.
If N∩P≤Φ(P), then N is p-nilpotent by J. Tate’s theorem [14, IV, 4.7], a contradiction.

Consequently, there is a maximal subgroup P1 of P such that P = (N ∩P)P1. Take a 2-
maximal subgroup P2 of P such that P2 < P1. By the hypothesis of the theorem, P2 is either
s∗-permutably embedded or Np-supplemented in G.
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First, we assume that there is a p-nilpotent subgroup T of G such that G = P2T . By Step
(7), the normal Hall p′-subgroup Tp′ of T is also contained in N. By Frattini’s argument,
G = NNG(Tp′) = (P∩N)NG(Tp′) and so P = (P∩N)(P∩NG(Tp′)). If P∩NG(Tp′) = P,
then NG(Tp′) = G and so Tp′ C G, a contradiction. Hence there is a maximal subgroup
G1 of P such that P∩NG(Tp′) ≤ G1. Then P = (P∩N)G1. Pick a 2-maximal subgroup
P0 of P such that P0 < G1. By the hypothesis of the theorem, P0 is either s∗-permutably
embedded or Np-supplemented in G. We now prove that if P0 is s∗-permutably embedded
in G, then P0 is also Np-supplemented in G. Let L is a subgroup of G such that G = P0L
and P0 ∩ L ≤ (P0)se. So there is an s-permutable subgroup K of G such that (P0)se is a
Sylow p-subgroup of K. If KG 6= 1, then N ≤ KG ≤ K and so (P0)se ∩N is a Sylow p-
subgroup of N. We know (P0)se ∩N ≤ P0 ∩N ≤ P∩N and P∩N is a Sylow p-subgroup
of N, so (P0)se ∩N = P0 ∩N = P∩N. Consequently, P = (N ∩P)G1 = (P0 ∩N)G1 = G1,
a contradiction. Therefore KG = 1. By Lemma 2.7, (P0)se is s-permutable in G and so
(P0)se C CG. Hence P0 ∩ L ≤ (P0)se ≤ Op(G) = 1. Since |L|p = p2, L is p-nilpotent by
Lemma 2.4. Hence P0 is Np-supplemented in G. Let Lp′ be the normal p-complement of
L, then Lp′ is a Hall p′-subgroups of G. By Step (8), Lp′ and Tp′ are conjugate in G. Since
Lp′ is normalized by L, there exists g ∈ P0 such that Lg

p′ = Tp′ . Hence G = (P0L)g = P0Lg =
P0NG(Lg

p′) = P0NG(Tp′) and P = P∩P0NG(Tp′) = P0(P∩NG(Tp′))≤ G1, a contradiction.
Hence G has a non-p-nilpotent subgroup B of G such that G = P2B and P2∩B≤ (P2)se.

Then there is an s-permutable subgroup K of G such that (P2)se is a Sylow p-subgroup of
K. If KG 6= 1, then N ≤ KG ≤ K and so (P2)se ∩N = P∩N is a Sylow p-subgroup of N.
Consequently, P = ((P2)se ∩N)P1 = P1, a contradiction. Hence KG = 1. By Lemma 2.7,
(P2)se is s-permutable in G, and so (P2)se CCG. Hence P2 ∩B ≤ (P2)se ≤ Op(G) = 1. It
follows that |B|p = p2. By Lemma 2.4, B is p-nilpotent, a contradiction.

Theorem 3.2. Suppose that p is the smallest prime dividing the order of a group G and H
is a normal subgroup of G such that G/H is p-nilpotent. If G is A4-free and every subgroup
of H with order p2 is either Np-supplemented or s∗-permutably embedded in G, then G is
p-nilpotent.

Proof. Assume that the Theorem is false and let G be a counterexample of minimal order.
Then:

(1) Every proper subgroup of G is p-nilpotent.

By Lemma 2.4, we see that |H|p > p2. Let L be a arbitrary proper subgroup of G.
Since L/(L∩H)∼= LH/H ≤ G/H, L/(L∩H) is p-nilpotent. If |L∩H|p 6 p2, then L is p-
nilpotent by Lemma 2.4 If |L∩H|p > p2, then every subgroup of L∩H of order p2 is either
Np-supplemented or s∗-permutably embedded in L by Lemmas 2.2(1) and 2.3(1). Hence L
is p-nilpotent by the choice of G. This shows that G is a minimal non-p-nilpotent group.

(2) By Step (1) and [14, Theorem IV. 5.4], G is a minimal non-nilpotent group. Hence
G has the following properties:

(i) G = PQ, where P is a normal Sylow p-subgroup of G and Q is a non-normal
cyclic Sylow q-subgroup of G;

(ii) P/Φ(P) is a minimal normal subgroup of G/Φ(P).

(3) For every subgroup L of P with order p2, if there is a subgroup T of G such that
G = LT , then T = G.



New Characterizations of p-Nilpotency and Sylow Tower Groups 851

Obviously, P = P∩G = P∩ LT = L(P∩ T ). Since P/Φ(P) is abelian, we have (P∩
T )Φ(P)/Φ(P)C G/Φ(P). By Step (2)(ii), P∩T ≤ Φ(P) or P = (P∩T )Φ(P) = P∩T . If
P∩T ≤Φ(P), then L = PCG. Since G/P is p-nilpotent, G is p-nilpotent by Lemma 2.4, a
contradiction. Hence P = P∩T and T = G.

(4) For every subgroup L of P with order p2, then L is s-permutable in G.
By the hypothesis of the theorem, L is either Np-supplemented or s∗-permutably em-

bedded in G. By Step (3), L must be s∗-permutably embedded in G. Furthermore, L is
s-permutably embedded in G. Since L≤ P≤Op(G), L is s-permutable in G by Lemma 2.8.

(5) Final contradiction.
By [18, Theorem 4.4], G is p-nilpotent, a contradiction.

4. New characterizations of Sylow tower groups

Theorem 4.1. Suppose that F is the class of groups with Sylow tower of supersolvable
type and G is A4-free. Then G ∈ F if and only if there is a normal subgroup H of G such
that G/H ∈ F and every 2-maximal subgroup of any Sylow subgroup of H is either U-
supplemented or s∗-permutably embedded in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the
assertion is false and let G be a counterexample of minimal order.

Let p be smallest prime dividing |H|. By Lemmas 2.2(1) and 2.3(1), every 2-maximal
subgroup of any Sylow p-subgroup of H is either U-supplemented or s∗-permutably em-
bedded in H. By Theorem 3.1, H is p-nilpotent. Let Hp′ be the normal p′-complement of
H. By repeating the above argument on Hp′ , one can find finally that H is Sylow tower
group of supersolvable type. Again let q be the largest prime dividing |H| and Q a Sylow
q-subgroup of H. Then Q must be a normal subgroup of G and every 2-maximal subgroup
of Q is either U-supplemented or s∗-permutably embedded in G. It is easy to see that all
2-maximal subgroups of every Sylow subgroup of H/Q are either U-supplemented or s∗-
permutably embedded in G/P by Lemmas 2.2(3) and 2.3(1). By the minimality of G, we
have G/Q ∈ F. Let N be a minimal normal subgroup of G contained in Q.

(1) N is not a Sylow q-subgroup of H.
Suppose that N = Q. Since N C G, we may take some 2-maximal N2 of N such that

N2 C Gq, where Gq is a Sylow q-subgroup of G. By the hypothesis of the theorem, N2 is
either s∗-permutably embedded or U-supplemented in G. Let T be any supplement of N2 in
G, i.e., N2T = G. Thus G = NT and N = N∩N2T = N2(N∩T ). This implies that N∩T 6= 1.
But since N∩T is normal in G and N is a minimal normal subgroup of G, we have N∩T = N
and T = G. This shows that N2 can not be U-supplemented in G, and so is s∗-permutably
embedded in G. Furthermore, N2 must be s-permutably embedded in G. By Lemma 2.8,
N2 is s-permutable in G since N2 ≤ Q ≤ Oq(G). By Lemma 2.9, Oq(G) ≤ NG(N2). Thus
N2 C GqOq(G) = G. It follows that N2 = 1, and so |N| = q2. By Lemma 2.11, G ∈ F, a
contradiction.

(2) Final contradiction.
By Step (1), N < Q. Then (G/N)/(Q/N) ∼= G/Q ∈ F. We will show that G/N ∈ F. If

|Q/N|6 q2, then G/N ∈ F by Lemma 2.11. If |Q/N|> q2, then every 2-maximal subgroup
of Q/N is either U-supplemented or s∗-permutably embedded in G/N by Lemmas 2.2(2)
and 2.3(2). By the minimality of G, we have G/N ∈ F. Since F is a saturated formation,
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N is the unique minimal normal subgroup of G contained in Q and N � Φ(G). By Lemma
2.10, it follows that Q = F(Q) = N, contrary to Step (1).

Theorem 4.2. Suppose that F is the class of groups with Sylow tower of supersolvable
type and G is A4-free. Then G ∈ F if and only if there is a normal subgroup H of G such
that G/H ∈ F and every subgroup of H of prime square order is either U-supplemented or
s∗-permutably embedded in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the
assertion is false and let G be a counterexample of minimal order. Let p be smallest prime
dividing |H|. By Lemmas 2.2(1) and 2.3(1), every subgroup of any Sylow p-subgroup of H
with order p2 is either U-supplemented or s∗-permutably embedded in H. By Theorem 3.2,
H is p-nilpotent, and so H is solvable.

(1) GF is a p-group and GF/Φ(GF) is a chief factor of G, where GF is the F-residual
of G.

Since G/H ∈ F, GF ≤H. Let M be a maximal subgroup of G such that GF *M (that is,
M is an F-abnormal maximal subgroup of G). Then G = MH. We claim that the hypothesis
holds for (F,M). In fact, M/M∩H ∼= MH/H = G/H ∈ F and every subgroup of M∩H of
prime square order is s∗-permutably embedded in M. Thus the hypothesis holds for (F,M).
By the choice of G, M ∈ F. Thus (1) holds by [12, Theorem 3.4.2].

(2) For every subgroup L of GF with order p2, if there is a subgroup T of G such that
G = LT , then T = G.

Clearly, GF = GF ∩LT = L(GF ∩T ). Since GF/Φ(GF) is abelian, (GF ∩T )Φ(GF)/
Φ(GF)CG/Φ(GF). Since GF/Φ(GF) is a chief factor of G, we have GF ∩T ≤Φ(GF) or
GF = (GF ∩T )Φ(GF) = GF ∩T . If the former holds, then L = GF CG. Since G/GF ∈ F

and |GF| = p2, G ∈ F by Lemma 2.11, a contradiction. Therefore GF = GF ∩T , and so
T = G.

(3) For every subgroup L of GF with order p2, then L is s-permutable in G.

By the hypothesis of the theorem, L is either Np-supplemented or s∗-permutably em-
bedded in G. By Step (2), L must be s∗-permutably embedded in G. Furthermore, L is
s-permutably embedded in G. Since L ≤ GF ≤ Op(G), L is s-permutable in G by Lemma
2.8.

(4) Final contradiction.

Since G/GF ∈ F and every subgroup of GF of prime square order is s-permutable in G
by Step (3), G ∈ F by [18, Theorem 4.8], a contradiction.

5. Some Applications

Corollary 5.1. [2, Theorem 3] Let p be the smallest prime dividing the order of a group
G. If G is A4-free and every 2-maximal subgroup of any Sylow p-subgroup of G is comple-
mented in G, then G is p-nilpotent.

Corollary 5.2. [11, Theorem 3.2] Let p be the smallest prime dividing the order of a group
G. If G is A4-free and every 2-maximal subgroup of any Sylow p-subgroup of G is c-normal
in G, then G is p-nilpotent.
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Corollary 5.3. [18, Theorem 3.3] Let p be the smallest prime dividing the order of a group
G and P a Sylow p-subgroup of G. If every 2-maximal subgroup of P is π-quasinormally
embedded in G and G is G is A4-free, then G is p-nilpotent.

Corollary 5.4. [28, Theorem 4.2] Let G be a group and p the smallest prime dividing |G|. If
G is A4-free and every 2-maximal subgroup of any sylow p-subgroup of G is c-supplemented
in G, then G/Op(G) is p-nilpotent.

Corollary 5.5. [7, Theorem 3.4] Let p be the smallest prime dividing the order of a group G.
If G is A4-free and every 2-maximal subgroup of a Sylow p-subgroup of G is c-supplemented
in G, then G is p-nilpotent.

Corollary 5.6. [21, Theorem 3.4] Suppose that p is the smallest prime dividing the order
of a group G and H is a normal subgroup of G such that G/H is p-nilpotent. If G is A4-free
and every subgroup of H with order p2 is c-supplemented in G, then G is p-nilpotent.

Corollary 5.7. [7, Corollary 3.6] Let G be a group of odd order, and N a normal subgroup
of G such that G/N is a Sylow tower group of supersolvable type. If, for every prime p
dividing the order of N and P ∈ Sylp(N), every 2-maximal subgroup of P is c-supplemented
in G, then G is a Sylow tower group of supersolvable type.

Corollary 5.8. [18, Corollary 3.5] Let F be the class of groups with Sylow tower of super-
solvable type and N a normal subgroup of a group G. Suppose that G is A4-free. If, for
every prime p dividing the order of N and P ∈ Sylp(N), every 2-maximal subgroup of P is
s-permutably embedded in G, then G belongs to F.

Corollary 5.9. [21, Theorem 3.1] Let F be the class of groups with Sylow tower of super-
solvable type and N a normal subgroup of a group G. Suppose that G is A4-free. If, for
every prime p dividing the order of N and P ∈ Sylp(N), every 2-maximal subgroup of P is
c-supplemented in G, then G belongs to F.
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