BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Pairwise $\omega\beta$ -Continuous Functions

¹Heyam Hussein Aljarrah, ²Mohd Salmi Md Noorani and ³Takashi Noiri

^{1,2}School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia ³2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan ¹hiamaliarah@vahoo.com, ²msn@ukm.mv, ³t.noiri@nifty.com

Abstract. A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $ij - \omega\beta$ -open if for every $x \in A$ there exists an $ij - \beta$ -open set *U* containing *x* such that U - A is countable. In this paper, we introduce and study a new class of functions called pairwise $\omega\beta$ -continuous functions by using the notion of $ij - \omega\beta$ -open sets, and we give some characterizations of pairwise $\omega\beta$ -continuous functions. Also pairwise $\omega\beta$ -connectedness and pairwise $\omega\beta$ -set connected functions are introduced in bitopological spaces and some of their properties are established.

2010 Mathematics Subject Classification: 54C05, 54C08, 54C10

Keywords and phrases: Pairwise $\omega\beta$ -continuous, pairwise $\omega\beta$ -connected, pairwise $\omega\beta$ -set connected functions, $ij - \omega\beta O$.

1. Introduction and preliminaries

The concept of a bitopological space was first introduced by Kelly [5]. Aljarrah and Noorani defined the notions of $\omega\beta$ -open sets and $\omega\beta$ -continuity in topological spaces (resp. [1,2]). Also Aljarrah and Noorani [3] extended the notion of $\omega\beta$ -open sets to the bitopological spaces.

In the present paper, motivated by [6], we use the notion of $ij - \omega\beta$ -open sets to define pairwise $\omega\beta$ -continuity in bitopological spaces and we obtain many properties of these functions. Also we define pairwise $\omega\beta$ -connected functions and pairwise $\omega\beta$ -set connected functions and investigate their properties. Throughout the present paper, the spaces (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, ρ_1, ρ_2) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. For a subset *A* of a bitopological space $(X, \tau_1, \tau_2), \tau_i - \text{Cl}(A)(\text{resp. } \tau_i - int(A))$ denotes the closure (resp. interior) of *A* with respect to τ_i for i = 1, 2. For a nonempty set *X*, τ_u , τ_{dis} and τ_{coc} will denote, respectively, the usual, discrete and cocountable topologies on *X*. Also \mathbb{R} and \mathbb{Q} denote the sets of all real and rational numbers. A subset *A* of a space *X* is said to be $ij - \beta$ -open [4] (briefly $ij - \beta O$) if $A \subseteq \tau_j - \text{Cl}(\tau_i - \text{int}(\tau_j - \text{Cl}(A)))$, and it is said to be $ij - \omega\beta$ -open [3] (briefly $ij - \omega\beta O$) if for every $x \in A$ there exists an $ij - \beta$ -open set *U* containing *x* such that U - A is countable.

Communicated by Rosihan M. Ali, Dato'.

Received: July 27, 2012; Revised: November 12, 2012.

The complement of an $ij - \omega\beta O$ subset is said to be $ij - \omega\beta$ -closed (briefly $ij - \omega\beta C$). The intersection of all $ij - \omega\beta C$ sets in X containing A is called the $ij - \omega\beta$ -closure of A and is denoted by $ij - \omega\beta Cl(A)$. The union of all $ij - \omega\beta O$ sets in X contained A is called $ij - \omega\beta$ -interior of A and is denoted by ij - int(A).

Here we recall the following known definitions and properties.

Definition 1.1. [7] A bitopological space (X, τ_1, τ_2) is called pairwise connected if X can not be expressed as the union of two non empty disjoint sets A and B such that $(A \cap \tau_1 - Cl(B)) \cup (\tau_2 - Cl(A) \cap B) = \phi$.

Definition 1.2. [7] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be pairwise continuous (resp. pairwise open) if the induced functions $f : (X, \tau_1) \to (Y, \sigma_1)$ and $f : (X, \tau_2) \to (Y, \sigma_2)$ are both continuous (resp. open).

Theorem 1.1. [4] Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous pairwise open function. If A is an $ij - \beta O$ set in X, then f(A) is an $ij - \beta O$ set in Y.

Remark 1.1. [3]

- (i) If a subset A of (X, τ_1, τ_2) is $ij \omega\beta O$ and $U \in \omega O(X, \tau_1) \cap \omega O(X, \tau_2)$, then $A \cap U$ is $ij \omega\beta O$.
- (ii) The union of arbitrarily many of $ij \omega\beta O$ sets is $ij \omega\beta O$.

Lemma 1.1. [3] Let A and Y be subsets of (X, τ_1, τ_2) such that $A \subseteq Y$. If A is $ij - \omega\beta O$ in (X, τ_1, τ_2) , then A is $ij - \omega\beta O$ in $(Y, \tau_1|_Y, \tau_2|_Y)$. If, in addition, $Y \in \tau_i$, then the converse holds.

2. Pairwise $\omega\beta$ -continuous functions

Definition 2.1. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise $\omega\beta$ -continuous if the inverse image of each σ_i -open subset of Y is an $ij - \omega\beta O$ set in X, where $i \neq j$ and i, j = 1, 2.

Every pairwise continuous function is pairwise $\omega\beta$ -continuous but the converse is not true, as the following example shows.

Example 2.1. Let $X = \mathbb{R}$ with the topologies $\tau_1 = \{\phi, \mathbb{R}, \mathbb{R} - \mathbb{Q}\}$ and $\tau_2 = \tau_u$, let $Y = \{0, 1\}$ with the topologies $\sigma_1 = \{\phi, Y, \{0\}\}$ and $\sigma_2 = \{\phi, Y, \{1\}\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the function defined as follows

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q} \\ 0, & x \in \mathbb{Q} \end{cases}$$

Then f is pairwise $\omega\beta$ -continuous but not pairwise continuous.

Remark 2.1. The pairwise $\omega\beta$ -continuity of a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is independent of the $\omega\beta$ -continuity of the induced functions $f : (X, \tau_1) \to (Y, \sigma_1)$ and $f : (X, \tau_2) \to (Y, \sigma_2)$ as can be seen in the following examples.

Example 2.2. Let $X = \mathbb{R}$ with the topologies $\tau_1 = \{\phi, \mathbb{R}, \mathbb{Q}\}$ and $\tau_2 = \tau_{coc}$, let $Y = \{0, 1\}$ with the topologies $\sigma_1 = \{\phi, Y, \{0\}\}$ and $\sigma_2 = \{\phi, Y, \{1\}\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the function defined as follows

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

Then *f* is pairwise $\omega\beta$ -continuous. However, the induced function $f : (X, \tau_2) \to (Y, \sigma_2)$ is not $\omega\beta$ -continuous, since $f^{-1}(\{1\}) = \mathbb{Q} \notin \omega\beta O(X, \tau_2)$ where $\{1\} \in \sigma_2$.

Example 2.3. Let $X = \mathbb{R}$ with the topologies $\tau_1 = \tau_u$ and $\tau_2 = \tau_{coc}$, let $Y = \{0, 1\}$ with the topologies $\sigma_1 = \{\phi, Y, \{1\}\}$ and $\sigma_2 = \{\phi, Y, \{0\}\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the function defined as follows

$$f(x) = \begin{cases} 0, & x \in \mathbb{R} - \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

Then the induced functions $f: (X, \tau_1) \to (Y, \sigma_1)$ and $f: (X, \tau_2) \to (Y, \sigma_2)$ are $\omega\beta$ -continuous but f is not pairwise $\omega\beta$ -continuous, since $f^{-1}(\{1\}) = \mathbb{Q} \notin 12 - \omega\beta O$ where $\{1\} \in \sigma_1$.

Theorem 2.1. For a function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ the following properties are equivalent:

- (i) f is pairwise $\omega\beta$ -continuous.
- (ii) The inverse image of each σ_i -closed set of Y is $ij \omega\beta C$ in X.
- (iii) For each $x \in X$ and each $V \in \sigma_i$ containing f(x), there exists an $ij \omega\beta O$ set U of X containing x such that $f(U) \subseteq V$.
- (iv) $ij \omega\beta \operatorname{Cl}(f^{-1}(B)) \subseteq f^{-1}(i \operatorname{Cl}(B))$ for every subset B of Y.
- (v) $f(ij \omega\beta \operatorname{Cl}(A)) \subset i \operatorname{Cl}(f(A))$ for every subset A of X.

On each statement above $i \neq j$ *and* i, j = 1, 2*.*

Proof. (i) \leftrightarrow (ii) Let *V* be σ_i -closed in *Y*, then Y - V is σ_i -open in *Y*. Therefore, by assumption $f^{-1}(Y - V)$ is $ij - \omega\beta O$ in *X*, $i \neq j$ and i, j = 1, 2. Hence $f^{-1}(V)$ is $ij - \omega\beta C$ in *X*. Conversely, let *V* be σ_i -open in *Y*, then Y - V is σ_i -closed in *Y*, by (ii) $f^{-1}(Y - V)$ is $ij - \omega\beta C$ in *X*, hence $f^{-1}(V)$ is $ij - \omega\beta O$ in *X*.

(i) \rightarrow (iii) Let $x \in X$ and V be a σ_i -open set in Y containing f(x). By (i) $f^{-1}(V)$ is $ij - \omega\beta O$ in X. Now take $U = f^{-1}(V)$, then $x \in U$ and $f(U) \subseteq V$. Therefore, we obtain the result.

(iii) \rightarrow (iv) Let *B* be any subset of *Y*. Assume that $x \in X - f^{-1}(i - \operatorname{Cl}(B))$. Then $f(x) \in Y - (i - \operatorname{Cl}(B))$ and so there exists a σ_i -open set *V* of *Y* containing f(x) such that $V \cap B = \phi$. Therefore, by (iii) there exists *U* an $ij - \omega\beta O$ set such that $x \in U$ and $f(U) \subseteq V$. Hence we have $U \cap f^{-1}(B) = \phi$ and $x \in X - (ij - \omega\beta\operatorname{Cl}(f^{-1}(B)))$. Thus we obtain the result.

 $(iv) \leftrightarrow (v)$ Trivial.

(iv) \rightarrow (ii) Let V be σ_i -closed in Y, then by (iv), $ij - \omega\beta \operatorname{Cl}(f^{-1}(V)) \subset f^{-1}(V)$. Thus, $f^{-1}(V)$ is $ij - \omega\beta C$ in X.

Definition 2.2. Let (X, τ_1, τ_2) be a bitopological space and A be a subset of X. The $ij - \omega\beta$ frontier of A is defined as follows:

$$ij - \omega\beta F_{r}(A) = ij - \omega\beta Cl(A) \cap ij - \omega\beta Cl(X - A) = (ij - \omega\beta Cl(A)) - (ij - \omega\beta Int(A)).$$

Theorem 2.2. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces and $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. Then $X - (ij - \omega\beta c(f)) = \cup \{ij - \omega\beta F_r(f^{-1}(V)) : V \in \sigma_i, f(x) \in V, x \in X\}$, where $ij - \omega\beta c(f)$ denotes the set of points at which f is pairwise $\omega\beta$ -continuous.

Proof. Let $x \in X - (ij - \omega\beta c(f))$. Then there exists a σ_i -open set V of Y containing f(x) such that $U \cap (X - f^{-1}(V)) \neq \phi$ for every $ij - \omega\beta O$ set U of (X, τ_1, τ_2) containing x. Thus, $x \in ij - \omega\beta Cl(X - f^{-1}(V))$. Then $x \in f^{-1}(V) \cap (ij - \omega\beta Cl(X - f^{-1}(V))) \subseteq ij - \omega\beta F_r(f^{-1}(V))$. Hence, $X - (ij - \omega\beta c(f)) \subseteq \cup \{ij - \omega\beta F_r(f^{-1}(V)) : V \in \sigma_i, f(x) \in V\}$.

 $V, x \in X$. Conversely, let $x \notin X - (ij - \omega\beta c(f))$ and $x \in ij - \omega\beta c(f)$, then for each σ_i open set *V* in *Y* containing f(x), there exists an $ij - \omega\beta O$ set *U* containing *x* such that $f(U) \subseteq V$ and hence $x \in U \subseteq f^{-1}(V)$. Therefore, we obtain that $x \in ij - \omega\beta \text{Int}(f^{-1}(V))$ and hence $x \notin ij - \omega\beta F_r(f^{-1}(V))$ for each σ_i -open set *V* in *Y* containing f(x).

Proposition 2.1. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -continuous and $A \in \omega O(X, \tau_1) \cap \omega O(X, \tau_2)$, then the restriction $f|_A : (A, \tau_1|_A, \tau_2|_A) \to (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -continuous.

Proof. Since *f* is pairwise $\omega\beta$ -continuous, for any $V \in \sigma_i$ in *Y*, $f^{-1}(V)$ is $ij - \omega\beta O$ in *X*. By Remark 1.1(i) $f^{-1}(V) \cap A$ is $ij - \omega\beta O$ in *X*. Therefore, by Lemma 1.1 $(f|A)^{-1}(V)$ is $ij - \omega\beta O$ in the space $(A, \tau_1|_A, \tau_2|_A)$.

Proposition 2.2. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function and $X = \bigcup \{U_{\alpha} \in \tau_i | \alpha \in \Delta\}$. If the restriction $f|_{U_{\alpha}} : (U_{\alpha}, \tau_1|_{U_{\alpha}}\tau_2|_{U_{\alpha}}) \to (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -continuous for each $\alpha \in \Delta$, then f is pairwise $\omega\beta$ -continuous.

Proof. Let *V* be any σ_i -open set of *Y*. Since $f|_{U_{\alpha}}$ is pairwise $\omega\beta$ -continuous for each $\alpha \in \Delta$, $(f|_{U_{\alpha}})^{-1}(V) = f^{-1}(V) \cap U_{\alpha}$ is $ij - \omega\beta O$ in U_{α} . Hence by Lemma 1.1, $f^{-1}(V) \cap U_{\alpha}$ is $ij - \omega\beta O$ in *X* for each $\alpha \in \Delta$. Now take $f^{-1}(V) = \bigcup_{\alpha \in \Delta} (f^{-1}(V) \cap U_{\alpha})$. By Remark 1.1(ii) $f^{-1}(V) \in ij - \omega\beta O$ in *X*. Hence *f* is pairwise $\omega\beta$ -continuous.

The composition of two pairwise $\omega\beta$ -continuous functions is not a pairwise $\omega\beta$ -continuous function in general as shown in the following example.

Example 2.4. Let $X = \mathbb{R}$ with the topologies $\tau_1 = \tau_u$ and $\tau_2 = \tau_{coc}$, let $Y = \{0, 1\}$ with the topologies $\sigma_1 = \{\phi, Y, \{1\}\}$ and $\sigma_2 = \{\phi, Y, \{0\}\}$ and let $Z = \{3, 4\}$ with the topologies $\rho_1 = \{\phi, Z, \{4\}\}$ and $\rho_2 = \{\phi, Z, \{3\}\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be the function defined as follows

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} - \mathbb{Q} \\ 0, & x \in \mathbb{Q} \end{cases}$$

Let $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \rho_1, \rho_2)$ be the function defined as follows

$$g(x) = \begin{cases} 3, & x = 1\\ 4, & x = 0 \end{cases}$$

Then *f* and *g* are pairwise $\omega\beta$ -continuous. However $g \circ f$ is not pairwise $\omega\beta$ -continuous. Note that $(g \circ f)^{-1}(\{4\}) = \mathbb{Q}$ is not $12 - \omega\beta O$ in *X* and all $12 - \beta O$ sets in *X* containing $x \in \mathbb{Q}$ are uncountable.

Definition 2.3. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- (i) Pairwise $\omega\beta$ -irresolute if $f^{-1}(U)$ is an $ij \omega\beta O$ set in X for each $ij \omega\beta O$ set U in Y.
- (ii) Pairwise $\omega\beta$ -open if f(U) is an $ij \omega\beta O$ set in Y for each $ij \omega\beta O$ set U in X. On each statement above, $i \neq j$ and i, j = 1, 2.

It is clear that a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -irresolute if and only if $f^{-1}(U)$ is $ij - \omega\beta C$ in X for each $ij - \omega\beta C$ set U in Y, where $i \neq j$ and i, j = 1, 2.

Theorem 2.3. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \rho_1, \rho_2)$ be two functions. Then, the following properties hold:

- (i) If f is pairwise $\omega\beta$ -continuous and g is pairwise continuous, then $g \circ f$ is pairwise $\omega\beta$ -continuous.
- (ii) If f and g are pairwise $\omega\beta$ -irresolute, then $g \circ f$ is pairwise $\omega\beta$ -irresolute.
- (iii) If f is pairwise $\omega\beta$ -irresolute and g is pairwise $\omega\beta$ -continuous, then $g \circ f$ is pairwise $\omega\beta$ -continuous.
- (iv) If f is pairwise $\omega\beta$ -irresolute and g is pairwise continuous, then $g \circ f$ is pairwise $\omega\beta$ -continuous.

Proof. (i) Let $x \in X$ and $V \in \rho_i$ with $(g \circ f)(x) \in V$. Since g is pairwise continuous, there exists $W \in \sigma_i$ with $f(x) \in W$ and $g(W) \subseteq V$. Moreover, since f is pairwise $\omega\beta$ -continuous, there exists an $ij - \omega\beta O$ set U in X containing x such that $f(U) \subseteq W$. Therefore, we obtain $(g \circ f)(U) \subseteq g(W) \subseteq V$.

(ii) Let f and g be pairwise $\omega\beta$ -irresolute. Let V be $ij - \omega\beta O$ in Z. Since g is pairwise $\omega\beta$ -irresolute, $g^{-1}(V)$ is $ij - \omega\beta O$ in Y. Since f is pairwise $\omega\beta$ -irresolute, $f^{-1}(g^{-1}(V))$ is $ij - \omega\beta O$ in X. Therefore, $g \circ f$ is pairwise $\omega\beta$ -irresolute.

The proofs of (iii) and (iv) are similar to (ii).

Proposition 2.3. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a pairwise continuous pairwise open function. Then f is pairwise $\omega\beta$ -open.

Proof. Let U be $ij - \omega\beta O$ in X and $y \in f(U)$. Then, there exists $x \in U$ such that f(x) = y. Since U is $ij - \omega\beta$ -open, there exists $ij - \beta O$ set U_1 in X containing x such that $U_1 - U \subseteq C$, where C is a countable set, hence $f(U_1) - f(U) \subseteq f(C)$. Since f is pairwise continuous pairwise open, by Theorem 1.1 $f(U_1)$ is an $ij - \beta O$ set in Y containing y = f(x) and hence f(U) is $ij - \omega\beta O$ in Y.

Recall that a bitopological space (X, τ_1, τ_2) is said to be pairwise T_2 [5](resp. pairwise $\omega\beta - T_2$ [3]) if for each pair of distinct points x and y of X, there exist a τ_i -open (resp. $ij - \omega\beta O$) set U containing x and a τ_j -open ($ji - \omega\beta O$) set V containing y such that $U \cap V = \phi$ for $i \neq j, i, j = 1, 2$.

Proposition 2.4. If (Y, σ_1, σ_2) is pairwise T_2 and $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise $\omega\beta$ -continuous injection, then (X, τ_1, τ_2) is pairwise $\omega\beta - T_2$.

Proof. Let *x* and *y* be two distinct points of *X*. Then $f(x) \neq f(y)$. Since *Y* is pairwise T_2 , there exist a τ_i -open set *U* and a τ_j -open set *V* such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \phi$. Hence $f^{-1}(U) \cap f^{-1}(V) = \phi$. Since *f* is pairwise $\omega\beta$ -continuous, $f^{-1}(U)$ is $ij - \omega\beta O$, $f^{-1}(V)$ is $ji - \omega\beta O$, $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$. This implies that (X, τ_1, τ_2) is pairwise $\omega\beta - T_2$.

Lemma 2.1. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be injective and pairwise $\omega\beta$ -irresolute. If (Y, σ_1, σ_2) is a pairwise $\omega\beta - T_2$ space, then (X, τ_1, τ_2) is pairwise $\omega\beta - T_2$.

The proof is quite similar to that of Proposition 2.4.

3. Pairwise $\omega\beta$ -connected

Definition 3.1. A bitopological space (X, τ_1, τ_2) is pairwise $\omega\beta$ -disconnected if X can be expressed as the union of two nonempty disjoint sets A and B such that $(A \cap ij - \omega\beta Cl(B)) \cup (ji - \omega\beta Cl(A) \cap B) = \phi$ and we write $X = A \setminus B$ and call this pairwise $\omega\beta$ -separation of X.

Obviously, if *A*, *B* are pairwise $\omega\beta$ -separated sets and *A*₁, *B*₁ are non empty subsets of *A*, *B* respectively, then *A*₁, *B*₁ are pairwise $\omega\beta$ -separated.

The space (X, τ_1, τ_2) is pairwise $\omega\beta$ -connected if and only if it is not pairwise $\omega\beta$ -connected. A subset $A \subset X$ is said to be pairwise $\omega\beta$ -connected if the space $(A, \tau_1|_A, \tau_2|_A)$ is pairwise $\omega\beta$ -connected.

Some characterizations of pairwise $\omega\beta$ -connectedness of bitopological spaces will be given next.

Theorem 3.1. For any bitopological space (X, τ_1, τ_2) , the following conditions are equivalent:

- (i) X is pairwise $\omega\beta$ -connected.
- (ii) X can not be expressed as the union of two nonempty disjoint sets A and B such that A is $ij \omega\beta O$ and B is $ji \omega\beta O$.
- (iii) *X* contains no nonempty proper subset which is both $ij \omega\beta O$ and $ji \omega\beta C$.

Proof. (i) \rightarrow (ii) Suppose *X* can be expressed as the union of two nonempty disjoint sets *A* and *B* such that *A* is $ij - \omega\beta O$ and *B* is $ji - \omega\beta O$. Since $A \cap B = \phi$, Consequently $A \subseteq B^c$. Then $ji - \omega\beta Cl(A) \subseteq ji - \omega\beta Cl(B^c) = B^c$. Therefore, $ji - \omega\beta Cl(A) \cap B = \phi$. Similarly we can prove $A \cap ij - \omega\beta Cl(B) = \phi$. Hence $(A \cap ij - \omega\beta Cl(B)) \cup (ji - \omega\beta Cl(A) \cap B) = \phi$. This is contrary to the fact that *X* is pairwise $\omega\beta$ -connected. Therefore, *X* can not be expressed as the union of two nonempty disjoint sets *A* and *B* such that *A* is $ij - \omega\beta O$ and *B* is $ji - \omega\beta O$.

(ii) \rightarrow (iii) Suppose that *X* contains a nonempty proper subset which is both $ij - \omega\beta O$ and $ji - \omega\beta C$. Then $X = A \cup A^c$, where *A* is $ij - \omega\beta O$, A^c is $ji - \omega\beta O$ and $A \cap A^c = \phi$. This is contrary to our assumption. Therefore, *X* contains no nonempty proper subset which is both $ij - \omega\beta O$ and $ji - \omega\beta C$.

(iii) \rightarrow (i) Suppose *X* is pairwise $\omega\beta$ -disconnected. Then *X* can be expressed as the union of two nonempty disjoint sets *A* and *B* such that $(A \cap ij - \omega\beta Cl(B)) \cup (ji - \omega\beta Cl(A) \cap B) = \phi$. Since $A \cap B = \phi$, we have $A = B^c$ and $B = A^c$. Since $(ji - \omega\beta Cl(A) \cap B) = \phi$, we have $ji - \omega\beta Cl(A) \subseteq B^c$. Hence $ji - \omega\beta Cl(A) \subseteq A$. Therefore, *A* is $ji - \omega\beta C$. Similarly, *B* is $ij - \omega\beta C$. Since $A = B^c$, *A* is $ij - \omega\beta C$. Therefore, there exists a nonempty proper set *A* which is both $ij - \omega\beta O$ and $ji - \omega\beta C$. This is contrary to our assumption. Therefore, *X* is pairwise $\omega\beta$ -connected.

Proposition 3.1. If A is a pairwise $\omega\beta$ -connected subset of a bitopological space (X, τ_1, τ_2) which has the pairwise $\omega\beta$ -separation $X = C \setminus D$, then either $A \subseteq C$ or $A \subseteq D$.

Proof. Suppose that (X, τ_1, τ_2) has the pairwise $\omega\beta$ -separation $X = C \setminus D$. Then $X = C \cup D$, where *C* and *D* are nonempty disjoint sets such that $(C \cap ij - \omega\beta \operatorname{Cl}(D)) \cup (ji - \omega\beta \operatorname{Cl}(C) \cap D) = \phi$. Since $C \cap D = \phi$, we have $C = D^c$ and $D = C^c$. Now $((C \cap A) \cap ij - \omega\beta \operatorname{Cl}(D \cap A)) \cup (ji - \omega\beta \operatorname{Cl}(C \cap A) \cap (D \cap A)) \subseteq (C \cap ij - \omega\beta \operatorname{Cl}(D)) \cup (ji - \omega\beta \operatorname{Cl}(C) \cap D) = \phi$. Hence $A = (C \cap A) \setminus (D \cap A)$ is a pairwise $\omega\beta$ -separation of *A*. Since *A* is pairwise $\omega\beta$ -connected, we have either $C \cap A = \phi$ or $D \cap A = \phi$. Consequently $A \subseteq C^c$ or $A \subseteq D^c$. Therefore, either $A \subseteq C$ or $A \subseteq D$.

Theorem 3.2. If A is pairwise $\omega\beta$ -connected and $A \subseteq B \subseteq (ij - \omega\beta Cl(A)) \cap (ji - \omega\beta Cl(A))$, then B is pairwise $\omega\beta$ -connected.

Proof. Suppose *B* is not pairwise $\omega\beta$ -connected. Then $B = C \cup D$, where *C* and *D* are two nonempty disjoint sets such that $(C \cap ij - \omega\beta Cl(D)) \cup (ji - \omega\beta Cl(C) \cap D) = \phi$. Since *A*

582

is pairwise $\omega\beta$ -connected, we have from Proposition 3.1 $A \subseteq C$ or $A \subseteq D$. Suppose $A \subseteq C$. Then $D \subseteq D \cap B \subseteq D \cap ji - \omega\beta Cl(A) \subseteq D \cap ji - \omega\beta Cl(C) = \phi$. Therefore, $\phi \subseteq D \subseteq \phi$. Consequently, $D = \phi$. Similarly, we can prove $C = \phi$ if $A \subseteq D$. This is contrary to the fact that *C* and *D* are nonempty. Therefore, *B* is pairwise $\omega\beta$ -connected.

Proposition 3.2. Let $\{A_i : i \in \Delta\}$ be a family of pairwise $\omega\beta$ -connected subsets of a bitopological space (X, τ_1, τ_2) . If $\bigcap_{i \in \Delta} A_i \neq \phi$, then $A = \bigcup_{i \in \Delta} A_i$ is pairwise $\omega\beta$ -connected.

Proof. Suppose that *A* is not pairwise $\omega\beta$ -connected. Then $A = C \cup D$, where *C* and *D* are two nonempty disjoint sets such that $(C \cap ij - \omega\beta Cl(D)) \cup (ji - \omega\beta Cl(C) \cap D) = \phi$. Since A_i is pairwise $\omega\beta$ -connected and $A_i \subseteq A$, we have $A_i \subseteq C$ or $A_i \subseteq D$. Therefore, if $\cup A_i \subseteq C$ or $\cup A_i \subseteq D$, then $A \subseteq C$ or $A \subseteq D$ and hence A = C or A = D. Then $D = \phi$ or $C = \phi$. This is a contradiction. Otherwise, there exist $j, k \in \Delta$ such that $A_j \subset C$ and $A_k \subset D$, where $j \neq k$. Since $\cap A_i \neq \phi$, we have $x \in \cap A_i$ and hence $x \in A_j \subset C$ and $x \in A_k \subset D$. Therefore, $C \cap D \neq \phi$ which is a contradiction. Hence *A* is pairwise $\omega\beta$ -connected.

Note that a space (X, τ_1, τ_2) is said to be pairwise disconnected [7] if there exists $U \in \tau_i$ and $V \in \tau_i$ such that $U, V \neq \phi, U \cap V = \phi$ and $U \cup V = X$.

Proposition 3.3. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a pairwise $\omega\beta$ -continuous surjection and (X, τ_1, τ_2) is pairwise $\omega\beta$ -connected, then (Y, σ_1, σ_2) is pairwise connected.

Proof. Suppose that (Y, σ_1, σ_2) is not pairwise connected. Then, there exist $U \in \sigma_i$ and $V \in \sigma_j$ such that $U, V \neq \phi$, $U \cap V = \phi$ and $U \cup V = Y$. Since f is surjection, $f^{-1}(U) \neq \phi$ and $f^{-1}(V) \neq \phi$. Since f is pairwise $\omega\beta$ -continuous, $f^{-1}(U)$ is $ij - \omega\beta O$ and $f^{-1}(V)$ is $ji - \omega\beta O$ such that $f^{-1}(U) \cap f^{-1}(V) = \phi$ and $f^{-1}(U) \cup f^{-1}(V) = X$. This shows that (X, τ_1, τ_2) is not pairwise $\omega\beta$ -connected, which is a contradiction. Hence (Y, σ_1, σ_2) is pairwise connected.

Corollary 3.1. If $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a pairwise $\omega\beta$ -irresolute surjection and (X, τ_1, τ_2) is pairwise $\omega\beta$ -connected, then (Y, σ_1, σ_2) is pairwise $\omega\beta$ -connected.

The proof is similar to that of Proposition 3.3.

4. Pairwise $\omega\beta$ -set connected functions in bitopological spaces

In this section, we introduce the notion of pairwise $\omega\beta$ -set connected functions and study the relationship between these functions and pairwise $\omega\beta$ -irresolute functions. If A is both $ij - \omega\beta C$ and $ji - \omega\beta O$ set in X, then it is called an $ij - \omega\beta$ -coset, for all $i \neq j$ and i, j = 1, 2.

Definition 4.1. A bitopological space (X, τ_1, τ_2) is said to be $ij - \omega\beta$ -connected between A and B, where A and B are nonempty subsets of X, if there exists no $ij - \omega\beta$ -coset F such that $A \subset F \subset X - B$. X is said to be pairwise $\omega\beta$ -connected between A and B if X is $12 - \omega\beta$ -connected between A and B and $21 - \omega\beta$ -connected between A and B.

Remark 4.1.

- (i) X is $12 \omega\beta$ -connected between A and B if and only if it is $21 \omega\beta$ -connected between B and A.
- (ii) If X is $ij \omega\beta$ -connected between A and B and $A \subset C$ and $B \subset D$, then X is $ij \omega\beta$ connected between C and D.

Definition 4.2. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be pairwise $\omega\beta$ -set connected if f(X) is $ij - \omega\beta$ -connected between f(A) and f(B) in the bitopological subspace whenever X is $ij - \omega\beta$ -connected between A and B, where $i \neq j$, i, j = 1, 2.

Proposition 4.1. If a subspace M of a bitopological space X is $ij - \omega\beta$ -connected between A and B, then so in the whole space, where $i \neq j$ and i, j = 1, 2.

Proof. Suppose not, so there exists an $ij - \omega\beta$ -coset *F* in *X* such that $A \subset F \subset X - B$. Then $F \cap M$ is an $ij - \omega\beta$ -coset in *M* with $A \cap M \subset F \cap M \subset M - B$. Thus *M* is not $ij - \omega\beta$ -connected between *A* and *B*. This is a contradiction. Therefore, *X* is $ij - \omega\beta$ -connected between *A* and *B*.

Recall that a subset A of a bitopological space (X, τ_1, τ_2) is called an *ij*-coset in X [6] if A is τ_i -closed and τ_j -open, where $i \neq j$ and i, j = 1, 2.

Lemma 4.1. If *M* is a subspace which is a 12 - (21 -) coset in *X* and *X* is $ij - \omega\beta$ -connected between two subsets *A* and *B* of *M*, then *M* is $ij - \omega\beta$ -connected between *A* and *B*.

Proof. Suppose *M* is not $12 - \omega\beta$ -connected between *A* and *B*. So there exists a $12 - \omega\beta$ -coset *F* in *M* such that $A \subset F \subset M - B$. Since *M* is a 12-coset in *X*, by Lemma 1.1, *F* is a $12 - \omega\beta$ -coset in *X* and hence *X* is not $12 - \omega\beta$ -connected between *A* and *B*. This is a contradiction. Thus *M* is $12 - \omega\beta$ -connected between *A* and *B*. Now if *X* is $21 - \omega\beta$ -connected between *A* and *B*, then it is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A* and hence *M* is $12 - \omega\beta$ -connected between *B* and *A*.

Theorem 4.1. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -set connected if and only if $f^{-1}(F)$ is an $ij - \omega\beta$ -coset in X for any $ij - \omega\beta$ -coset F in f(X).

Proof. NECESSITY. Let f be pairwise $\omega\beta$ -set connected and F be any $ij - \omega\beta$ -coset in f(X). Suppose that $f^{-1}(F)$ is not $ij - \omega\beta$ -coset in X, then X is $ij - \omega\beta$ -connected between $f^{-1}(F)$ and $X - f^{-1}(F)$. Since f is pairwise $\omega\beta$ -set connected, f(X) is $ij - \omega\beta$ -connected between $f(f^{-1}(F))$ and $f(X - f^{-1}(F))$. But $f(f^{-1}(F)) = F \cap f(X) = F$ and $f(X - f^{-1}(F)) = f(X) - F$ and by Theorem 3.1 F is not $ij - \omega\beta$ -coset in f(X). This is a contradiction. Hence $f^{-1}(F)$ is an $ij - \omega\beta$ -coset in X.

SUFFICIENCY. Let $f^{-1}(F)$ be an $ij - \omega\beta$ -coset in X for any $ij - \omega\beta$ -coset F in f(X)and let X be $ij - \omega\beta$ -connected between A and B. Suppose f(X) is not $ij - \omega\beta$ -connected between f(A) and f(B), then there exists an $ij - \omega\beta$ -coset F in f(X) such that $f(A) \subset F \subset$ f(X) - f(B). But $A \subset f^{-1}(F) \subset X - B$ and $f^{-1}(F)$ is $ij - \omega\beta$ -coset in X. This contradicts that X is $ij - \omega\beta$ -connected between A and B. Therefore, f is pairwise $\omega\beta$ -connected.

Lemma 4.2. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise $\omega\beta$ -set connected function. If X is pairwise $\omega\beta$ -connected, then f(X) is pairwise $\omega\beta$ -connected.

Proof. Suppose f(X) is not pairwise $\omega\beta$ -connected. Then, by Theorem 3.1 there exists an $ij - \omega\beta$ -coset F such that $\phi \neq F \neq f(X)$. Since f is pairwise $\omega\beta$ -set connected, by Theorem 4.1 $f^{-1}(F)$ is an $ij - \omega\beta$ -coset in X. This contradicts that X is pairwise $\omega\beta$ -connected. Therefore, f(X) is pairwise $\omega\beta$ -connected.

It is clear that every function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ such that f(X) is $\omega\beta$ -connected, is pairwise $\omega\beta$ -set connected.

Lemma 4.3. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise $\omega\beta$ -set connected and $A \subset X$ be such that f(A) is an ij-coset in f(X). Then the restriction $f|_A : A \to Y$ is pairwise $\omega\beta$ -set connected.

Proof. Let *A* be $ij - \omega\beta$ -connected between *C* and *D*. Then by Proposition 4.1, *X* is $ij - \omega\beta$ -connected between *C* and *D* and f(X) is $ij - \omega\beta$ -connected between f(C) and f(D) (since *f* is pairwise $\omega\beta$ -set connected). Since f(A) is an *ij*-coset in f(X), by Lemma 4.1, f(A) is $ij - \omega\beta$ -connected between f(C) and f(D). Therefore, we obtain the result.

Theorem 4.2. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise $\omega\beta$ -set connected, pairwise $\omega\beta$ -open surjection and $f^{-1}(y)$ be pairwise $\omega\beta$ -connected for each $y \in Y$. Then for any ij-coset F in Y, F is pairwise $\omega\beta$ -connected if and only if $f^{-1}(F)$ is pairwise $\omega\beta$ -connected.

Proof. NECESSITY. Let $f^{-1}(F)$ be not pairwise $\omega\beta$ -connected for some $ij - \omega\beta$ -coset Fin Y. Then by Theorem 3.1 there exists an $ij - \omega\beta$ -coset K with $\phi \neq K \neq f^{-1}(F)$, in the bitopological subspace $(f^{-1}(F), \tau_1|_{f^{-1}(F)}, \tau_2|_{f^{-1}(F)})$. We show that f(K) is an $ij - \omega\beta$ coset in F with $\phi \neq f(K) \neq F$. Since $f^{-1}(y)$ is pairwise $\omega\beta$ -connected, by Proposition 3.1 either $f^{-1}(y) \subset K$ or $f^{-1}(y) \subset f^{-1}(F) - K$ for all $y \in F$ and so $\phi \neq f(K) \neq F$ and $f(K) \cap f(f^{-1}(F) - K) = \phi$. Since f is surjective, $f(K) \cup f(f^{-1}(F) - K) = F$ and hence $f(f^{-1}(F) - K) = F - f(K)$. Since f is $ij - \omega\beta$ -open, $f|_{f^{-1}(F)}$ is $ij - \omega\beta$ -open onto F and hence f(K) is an $ij - \omega\beta$ -coset in F. This implies that F is not pairwise $\omega\beta$ -connected.

SUFFICIENCY. Since $f(f^{-1}(F)) = F$ and F is an ij-coset in Y, by Lemma 4.3, the restriction $f|_{f^{-1}(F)} : f^{-1}(F) \to Y$ is pairwise $\omega\beta$ -set connected. Now by Lemma 4.2, it follows that $f|_{f^{-1}(F)}(f^{-1}(F)) = F$ is pairwise $\omega\beta$ -connected if $f^{-1}(F)$ is pairwise $\omega\beta$ -connected. Therefore, we obtain the result.

Definition 4.3. A bitopological space (X, τ_1, τ_2) is said to be $ij - \omega\beta$ -extremally disconnected if the $ji - \omega\beta$ -closure of any $ij - \omega\beta O$ set is $ij - \omega\beta O$, where $i \neq j$ and i, j = 1, 2. The space is said to be pairwise $\omega\beta$ -extremally disconnected if it is $12 - \omega\beta$ -extremally disconnected and $21 - \omega\beta$ -extremally disconnected.

Theorem 4.3. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise $\omega\beta$ -set connected. If Y is pairwise $\omega\beta - T_2$ and $ij - \omega\beta$ -extremally disconnected, then $f|_C : C \to Y$ is constant for every pairwise $\omega\beta$ -connected subset C of X.

Proof. Let $x, y \in C$ and $x \neq y$. Suppose $f(x) \neq f(y)$ in *Y*. Since *Y* is pairwise $\omega\beta - T_2$ and $ij - \omega\beta$ -extremally disconnected, there exists $ji - \omega\beta$ -coset *V* in *Y* such that $f(x) \in V$ and $f(y) \notin V$. Now $f^{-1}(V)$ is $ji - \omega\beta$ -coset in *X* as *f* is pairwise $\omega\beta$ -set connected. Therefore, by Lemma 1.1 $f^{-1}(V) \cap C$ is a nonempty proper $ji - \omega\beta$ -coset in the subspace *C* and by Theorem 3.1 *C* is not pairwise $\omega\beta$ -connected. This is a contradiction. Hence f(x) = f(y), for all $x, y \in C$ and hence $f|_C : C \to Y$ is constant.

Definition 4.4. A bitopological space (X, τ_1, τ_2) is said to be pairwise $\omega\beta - C$ -compact if given an $ij - \omega\beta C$ set A of X and a cover $\{V_\alpha : \alpha \in \Delta\}$ of A by $ji - \omega\beta O$ sets of X, then there exists a finite subset Δ_\circ of Δ such that $A \subset \cup\{ij - \omega\beta Cl(V_\alpha : \alpha \in \Delta_\circ)\}$, $i, j = 1, 2, i \neq j$.

Theorem 4.4. Let Y be pairwise $\omega\beta$ -extermally disconnected, pairwise $\omega\beta - C$ -compact and pairwise $\omega\beta - T_2$. Then $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise $\omega\beta$ -irresolute if and only if it is pairwise $\omega\beta$ -set connected. Proof. NECESSITY. It is obvious.

SUFFICIENCY. Let *f* be not pairwise $\omega\beta$ -irresolute. Then, there exists an $ij - \omega\beta C$ set *F* in *Y* such that $f^{-1}(F)$ is not an $ij - \omega\beta C$ in *X*. Let $x \in ij - \omega\beta Cl(f^{-1}(F)) - f^{-1}(F)$. Then *X* is $ij - \omega\beta$ -connected between $f^{-1}(F)$ and *x*. Hence f(X) is $ij - \omega\beta$ -connected between $f(f^{-1}(F))$ and f(x). By Proposition 4.1 and Remark 4.1(ii), *Y* is $ij - \omega\beta$ -connected between *F* and f(x). Now since *Y* is pairwise $\omega\beta - T_2$, for each $y \in F$ there exists a $ji - \omega\beta O$ set V_y containing *y* in *Y* such that $f(x) \notin ij - \omega\beta Cl(V_y)$. Then the family $\{V_y : y \in F\}$ is a cover of *F* by $ji - \omega\beta O$ sets in *Y*. Since *Y* pairwise $\omega\beta - C$ -compact, there exist a finite number of points $y_1, y_2, ..., y_n$ in *F* such that $F \subset \bigcup_{k=1}^n ij - \omega\beta Cl(V_{y_k}) = V$

(say). Then V is an $ij - \omega\beta$ -coset in Y since Y is pairwise $\omega\beta$ -extermally disconnected. Also, $f(x) \notin V$ since $f(x) \notin ij - \omega\beta \operatorname{Cl}(V_y)$ for any $y \in F$. This contradicts that Y is $ij - \omega\beta$ -connected between F and f(x). Hence f is pairwise $\omega\beta$ -irresolute.

Acknowledgement. This work is financially supported by the Ministry of Higher Education of Malaysia Grant No: UKMTOPDOWN-ST-06-FRGS0001-2012.

References

- [1] H H Aljarrah and M S M Noorani, On $\omega\beta$ -open sets, submitted.
- [2] H. H. Aljarrah and M. S. M. Noorani, On ωβ-continuous functions, Eur. J. Pure Appl. Math. 5 (2012), no. 2, 129–140.
- [3] H. H. Aljarrah and M. S. M. Noorani, Separation axioms via $\omega\beta$ -open sets in bitopological spaces, *J. Adv. Stud. Topol.* **3** (2012), no. 3, 32–38.
- [4] F. H. Khedr, S. M. Al-Areefi and T. Noiri, Precontinuity and semiprecontinuity in bitopological spaces, *Indian J. Pure Appl. Math.* 23 (1992), no. 9, 625–633.
- [5] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. (3) 13 (1963), 71-89.
- [6] M. N. Mukherjee and G. K. Banerjee, Pairwise set-connected mappings in bitopological spaces, *Indian J. Pure Appl. Math.* 17 (1986), no. 9, 1106–1113.
- [7] W. J. Pervin, Connectedness in bitopological spaces, Nederl. Akad Wetensch. Proc. Ser. A 70 Inday. Math. 29 (1967), 369–372.