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Abstract. A subset A of a bitopological space (X, 7, 1,) is said to be ij — @f-open if for
every x € A there exists an ij — B-open set U containing x such that U — A is countable. In
this paper, we introduce and study a new class of functions called pairwise ®f-continuous
functions by using the notion of ij — @f-open sets, and we give some characterizations of
pairwise wf-continuous functions. Also pairwise wf-connectedness and pairwise @wf-set
connected functions are introduced in bitopological spaces and some of their properties are
established.
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1. Introduction and preliminaries

The concept of a bitopological space was first introduced by Kelly [5]. Aljarrah and Noorani
defined the notions of @f-open sets and ®B-continuity in topological spaces (resp. [1,2]).
Also Aljarrah and Noorani [3] extended the notion of @f-open sets to the bitopological
spaces.

In the present paper, motivated by [6], we use the notion of ij — wf-open sets to define
pairwise @f-continuity in bitopological spaces and we obtain many properties of these
functions. Also we define pairwise ®f-connected functions and pairwise @f-set con-
nected functions and investigate their properties. Throughout the present paper, the spaces
(X,11,m) , (Y,01,02) and (Z, p1, p2) always mean bitopological spaces on which no sepa-
ration axioms are assumed unless explicitly stated. For a subset A of a bitopological space
(X,71,72), T, — CI(A)(resp. 7; —int(A)) denotes the closure (resp. interior) of A with respect
to 7; for i = 1,2. For a nonempty set X, 1, 74;s and 7., will denote, respectively, the usual,
discrete and cocountable topologies on X. Also R and @Q denote the sets of all real and
rational numbers. A subset A of a space X is said to be ij — 3-open [4] (briefly ij — BO) if
A C 1, —Cl(7; —int(t; — CI(A))), and it is said to be ij — @B-open [3] (briefly ij — wBO) if
for every x € A there exists an ij — 3-open set U containing x such that U — A is countable.
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The complement of an ij — @O subset is said to be ij — @f-closed (briefly ij — wBC).
The intersection of all ij — @B C sets in X containing A is called the ij — wf-closure of A
and is denoted by ij — @B Cl(A) . The union of all ij — @B O sets in X contained A is called
ij — wB-interior of A and is denoted by ij — int(A).
Here we recall the following known definitions and properties.

Definition 1.1. [7] A bitopological space (X, T1,7>) is called pairwise connected if X can
not be expressed as the union of two non empty disjoint sets A and B such that (AN T —
CI(B))U (1, —CI(A)NB) = ¢.
Definition 1.2. [7] A function f: (X,1;,72) — (Y, 01, 02) is said to be pairwise continuous
(resp. pairwise open) if the induced functions f: (X, 1) — (Y,01) and f: (X, 72) — (Y,02)
are both continuous (resp. open).
Theorem 1.1. [4] Let f: (X,71,72) — (Y, 01, 02) be a pairwise continuous pairwise open
Sunction. IfAisanij—BO setin X, then f(A) isanij—BO setinY.
Remark 1.1. [3]

(i) IfasubsetA of (X,71,72)isij—wBOand U € ®O(X,71)NwO(X, 1), then ANU

isij—mpo.

(ii) The union of arbitrarily many of ij — 0O sets is ij — @ O.
Lemma 1.1. [3] Let A and Y be subsets of (X, 7)) suchthat ACY. IfAisij— ©BO in
(X,71,m), then A is ij — wBO in (Y, 7|y, T2|y). If, in addition, Y € 7, then the converse
holds.

2. Pairwise @f-continuous functions

Definition 2.1. A function f: (X, 71,T) — (Y, 01, 02) is said to be pairwise @ -continuous
if the inverse image of each G;-open subset of Y is an ij — wBO set in X, where i # j and
iL,j=1,2

Every pairwise continuous function is pairwise @f-continuous but the converse is not
true, as the following example shows.
Example 2.1. Let X = R with the topologies 7 = {¢,R,R—Q} and » = 7, let Y = {0, 1}
with the topologies o1 = {¢,Y,{0}} and 0, = {¢,Y,{1}}. Let f: (X, 71,72) — (Y,01,07)
be the function defined as follows

1 R —
f<x>={0’ ey

Then f is pairwise @f-continuous but not pairwise continuous.

Remark 2.1. The pairwise ®f-continuity of a function f: (X, 7;,12) — (¥, 01,02) is inde-
pendent of the @f-continuity of the induced functions f: (X,7;) — (Y,01) and f: (X, 70) —
(Y,0,) as can be seen in the following examples.

Example 2.2. Let X = R with the topologies 7| = {¢,R,Q} and 7 = T, let Y = {0,1}
with the topologies o1 = {¢,Y,{0}} and 0, = {¢,Y,{1}}. Let f: (X, 71,72) — (Y,01,072)
be the function defined as follows

0, xeR —
f(x)z{1 ey



Pairwise wf-Continuous Functions 579

Then f is pairwise @f-continuous. However, the induced function f : (X, 1) — (¥,0,) is
not @f-continuous, since f~'({1}) = Q ¢ wBO(X, ;) where {1} € 0.

Example 2.3. Let X = R with the topologies 7| = 7, and Tp = Ty, let ¥ = {0, 1} with the
topologies o1 = {¢,Y,{1}} and 0> = {9,Y,{0}}. Let f: (X,7;,72) — (Y,01,02) be the
function defined as follows
0, xR -Q
fx) =
1, xeQ

Then the induced functions f: (X,7;) — (¥, 01) and f: (X, 7o) — (¥, 02) are ®@B-continuous
but £ is not pairwise ®f-continuous, since f~'({1}) = Q ¢ 12 — ®B O where {1} € 0.

Theorem 2.1. For a function f : (X, 71, T2) — (Y, 01, 02) the following properties are equiv-
alent:
(i) f is pairwise ©f-continuous.
(ii) The inverse image of each o;-closed set of Y is ij — ®BC in X.
(iii) Foreachx € X and each'V € o; containing f(x), there exists an ij — @B O set U of
X containing x such that f(U) C V.
(iv) ij— wBCI(f~1(B)) C f~'(i—CI(B)) for every subset B of Y.
(v) f(ij—oBCI(A)) Ci—CI(f(A)) for every subset A of X.
On each statement above i # jand i, j=1,2.

Proof. (i) < (ii) Let V be o;-closed in Y, then Y —V is o;-open in Y. Therefore, by as-
sumption f~1(Y —V)isij—®BOinX,i# jandi,j=1,2. Hence f~'(V)isij— wBC in
X. Conversely, let V be o;-open in Y, then Y —V is o;-closed in Y, by (i) f~' (Y — V) is
ij—®BCinX, hence f~1(V)isij— ®BOinX.

(i) — (iii) Let x € X and V be a o;-open set in ¥ containing f(x). By () f~'(V) is
ij—0BOinX. Now take U = f~!(V), then x € U and f(U) C V. Therefore, we obtain the
result.

(iii) — (iv) Let B be any subset of Y. Assume that x € X — f~!(i — CI(B)). Then f(x) €
Y — (i—CI(B)) and so there exists a 6;-open set V of Y containing f(x) such that VB = ¢.
Therefore, by (iii) there exists U an ij — @B O set such that x € U and f(U) C V. Hence we
have UN f~!(B) = ¢ and x € X — (ij — ®BCI(f~'(B))). Thus we obtain the result.

(iv) < (v) Trivial.

(iv) — (ii) Let V be o;-closed in Y, then by (iv), ij — @BCI(f~'(V)) C £~ (V). Thus,
fU(V)isij— oBCinX. |

Definition 2.2. Let (X, 1),T) be a bitopological space and A be a subset of X. The ij — of3
frontier of A is defined as follows:

ij—oPBF(A)=ij— oBClA)Nij— ofClX —A) = (ij — ©BCIA)) — (ij — wPInt(A)).

Theorem 2.2. Let (X,71,T) and (Y, 01,02) be bitopological spaces and f : (X,T1,T) —
(Y,01,02) be a function. Then X — (ij— wBc(f)) = U{ij— oBF(f~1(V)):V €0, f(x) €
V,x € X}, where ij— wBc(f) denotes the set of points at which f is pairwise ®-continuous.

Proof. Let x € X — (ij — oBc(f)). Then there exists a o;-open set V of Y containing
f(x) such that U N (X — f~1(V)) # ¢ for every ij — ®BO set U of (X,7;,7,) containing
x. Thus, x € ij — @BCI(X — f~1(V)). Then x € f~ (V)N (ij — @BCI(X — f~1(V))) C
ij — 0BF(f~1(V)). Hence, X — (ij — @Be(f)) € U{ij — oBF(f (V) : V € 01, f(x) €
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V,x € X}. Conversely, let x ¢ X — (ij — @Bc(f)) and x € ij — wBc(f), then for each o;-
open set V in Y containing f(x), there exists an ij — @B O set U containing x such that
f(U) CV and hence x € U C f~!(V). Therefore, we obtain that x € ij — @BInt(f~1(V))
and hence x ¢ ij — ®BF,(f~'(V)) for each o;-open set V in ¥ containing f(x). 1

Proposition 2.1. If f: (X, 71,72) — (Y, 01, 02) is pairwise ®B-continuous and A € 0O(X,
7)) NWO(X, T2), then the restriction fa : (A, Ti|a, 2|a) — (Y, 01,07) is pairwise @3- con-
tinuous.

Proof. Since f is pairwise wf-continuous, for any V € o;in Y, f~!(V)isij — @BO in X.
By Remark 1.1() f~!(V)NA is ij — @B O in X. Therefore, by Lemma 1.1 (f|4)~'(V) is
ij — ®BO in the space (A, T |4, T2]a)- 1
Proposition 2.2. Let f: (X, 71,72) — (Y,01,02) be a function and X = U{Uy € ;|0 € A}
If the restriction flu, : (Ua,T1|u, 02|u,) — (Y, 01,02) is pairwise f-continuous for each
o € A, then f is pairwise ®-continuous.

Proof. Let V be any o;-open set of Y. Since f|y, is pairwise @f-continuous for each
acA, (flu,) '(V)=f1(V)NUq isij— ®BO in Uy. Hence by Lemma 1.1, f~1(V) N U,
is ij — ®BO in X for each o € A. Now take f~!(V) = agA(f*'(V) NUg). By Remark
1.1Gi)f~!(V) €ij— ®BO in X. Hence f is pairwise ®f-continuous. 1

The composition of two pairwise wf-continuous functions is not a pairwise wf-conti-
nuous function in general as shown in the following example.

Example 2.4. Let X = R with the topologies 7| = 7, and 7o = T, let ¥ = {0, 1} with
the topologies o1 = {9,Y,{1}} and 02 = {¢,Y,{0}} and let Z = {3,4} with the topologies
p1 ={¢,Z,{4}} and p, = {¢,Z,{3}}. Let f: (X,71,72) — (Y,01,02) be the function

defined as follows
I, xéeR -Q
fx)=
0, xeQ
Let g: (Y,01,02) — (Z,p1,p2) be the function defined as follows
3, x=1
gk = {4, x=0

Then f and g are pairwise wp-continuous. However g o f is not pairwise @f-continuous.
Note that (go f)~!({4}) = Q is not 12— ®B0 in X and all 12 — BO sets in X containing
x € Q are uncountable.

Definition 2.3. A function f: (X,71,72) — (Y, 01,02) is said to be:
() Pairwise wB-irresolute if f~1(U) is anij— ®BO set in X for eachij— ®BO set U
inY.
(i) Pairwise ®B-openif f(U)isanij— 0O setinY for eachij— wBO setU in X.
On each statement above, i # jand i,j=1,2.

It is clear that a function f: (X, 7y, 72) — (¥, 01, 02) is pairwise @f-irresolute if and only
if f~1(U)isij— wBCin X foreach ij — ®BCsetU inY, where i # jandi,j=1,2.
Theorem 2.3. Let f: (X, 71,T2) — (Y,01,02) and g : (Y,01,02) — (Z,p1,p2) be two func-
tions. Then, the following properties hold:
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(i) If f is pairwise ®B-continuous and g is pairwise continuous, then go f is pairwise
f-continuous.
(ii) If f and g are pairwise @P-irresolute, then go f is pairwise wp-irresolute.
(iii) If f is pairwise wB-irresolute and g is pairwise @f-continuous, then go f is pair-
wise @ -continuous.
(iv) If f is pairwise wB-irresolute and g is pairwise continuous, then go f is pairwise
f-continuous.

Proof. (i) Letx € X and V € p; with (go f)(x) € V. Since g is pairwise continuous, there
exists W € o; with f(x) € W and g(W) C V. Moreover, since f is pairwise ®f3-continuous,
there exists an ij — @B O set U in X containing x such that f(U) C W. Therefore, we obtain
(gof)U)Cg(W)CV.

(ii) Let f and g be pairwise @f-irresolute. Let V be ij — @B O in Z. Since g is pairwise
op-irresolute, g~ (V) is ij — ®BO in Y. Since f is pairwise ®B-irresolute, £~ (g~ (V))
isij— ®PBO in X. Therefore, go f is pairwise wf-irresolute.

The proofs of (iii) and (iv) are similar to (ii). 1

Proposition 2.3. Let f: (X, 71,T) — (Y,01,02) be a pairwise continuous pairwise open
Sunction. Then f is pairwise ®f-open.

Proof. LetU beij— PO inX and y € f(U). Then, there exists x € U such that f(x) = y.
Since U is ij — wf-open, there exists i j — BO set U} in X containing x such that Uy —U C C,
where C is a countable set, hence f(U;) — f(U) C f(C). Since f is pairwise continuous
pairwise open, by Theorem 1.1 f(U;) is an ij — BO setin Y containing y = f(x) and hence
fU)isij—wBfOinY. 1

Recall that a bitopological space (X, 7}, 1;) is said to be pairwise T3 [5](resp. pairwise
of — T, [3]) if for each pair of distinct points x and y of X, there exist a T;-open (resp.
ij— B O)set U containing x and a 7;-open (ji — @B 0) set V containing y such that UNV =
¢fori+#j,i,j=1,2.

Proposition 2.4. If (Y,0y,0,) is pairwise T and [ : (X,71,72) — (Y,01,02) is a pairwise
pB-continuous injection, then (X, 71, T,) is pairwise 0 — Tr.

Proof. Let x and y be two distinct points of X. Then f(x) # f(y). Since Y is pairwise T,
there exist a 7;-open set U and a 7;-open set V such that f(x) € U, f(y) € VandUNV = ¢.
Hence f~'(U)Nf~ (V) = ¢. Since f is pairwise @fB-continuous, f~'(U) is ij — wBO,
fYV)is ji—wBO, x € f~1(U) and y € f~1(V). This implies that (X, 7], ;) is pairwise
(Dﬁ - T. 1

Lemma 2.1. Let f: (X,71,72) — (Y,01,02) be injective and pairwise @p-irresolute. If
(Y,01,07) is a pairwise 3 — Ty space, then (X, 11,72) is pairwise @ — T».

The proof is quite similar to that of Proposition 2.4.

3. Pairwise wf3-connected

Definition 3.1. A biropological space (X,T1,T>) is pairwise ®-disconnected if X can be
expressed as the union of two nonempty disjoint sets A and B such that (ANij— wBC1(B))U
(ji— wBCIA)NB) = ¢ and we write X = A\B and call this pairwise ®f-separation of X.
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Obviously, if A,B are pairwise wf3-separated sets and A;,B; are non empty subsets of
A, B respectively, then A1, B; are pairwise ®f3-separated.

The space (X,7),72) is pairwise @f-connected if and only if it is not pairwise wp-
connected. A subset A C X is said to be pairwise wf3-connected if the space (A, 714, T2[4)
is pairwise @pf-connected.

Some characterizations of pairwise wf-connectedness of bitopological spaces will be
given next.

Theorem 3.1. For any bitopological space (X,T1,T2), the following conditions are equiva-
lent:

(i) X is pairwise 0f-connected.
(i) X can not be expressed as the union of two nonempty disjoint sets A and B such
that A isij— @B O and B is ji— ®BO.
(iii) X contains no nonempty proper subset which is both ij — wBO and ji — ®BC.

Proof. (i) — (ii) Suppose X can be expressed as the union of two nonempty disjoint sets A
and B such that A is ij — @B 0 and B is ji— @B O. Since ANB = ¢, Consequently A C B°.
Then ji— wBCl(A) C ji— wBCI(B°) = BC. Therefore, ji— ®BClI(A)NB = ¢. Similarly we
can prove ANij— @BCl(B) = ¢. Hence (ANij— wBCI(B))U(ji— B ClI(A)NB) = ¢. This
is contrary to the fact that X is pairwise @f-connected. Therefore, X can not be expressed as
the union of two nonempty disjoint sets A and B such that A is ij — @B O and B is ji— ®f0.

(ii) — (iil) Suppose that X contains a nonempty proper subset which is both ij — @O
and ji— wPBC. Then X = AUAC, where A is ij — @B 0, A is ji— 0B O and ANA® = ¢. This
is contrary to our assumption. Therefore, X contains no nonempty proper subset which is
both ij — @B O and ji — wBC.

(iii) — (i) Suppose X is pairwise wf-disconnected. Then X can be expressed as the
union of two nonempty disjoint sets A and B such that (ANij — ®wBCl(B))U(ji—wBCI(A)N
B) = ¢. Since ANB = ¢, we have A = B and B = A°. Since (ji — @BCI(A)NB) = ¢, we
have ji — wBCI(A) C B°. Hence ji — ®BCl(A) C A. Therefore, A is ji — @BC. Similarly, B
isij— wPC. Since A = B¢, A is ij — @B 0. Therefore, there exists a nonempty proper set A
which is both ij — @B 0 and ji — wBC. This is contrary to our assumption. Therefore, X is
pairwise @f3-connected. 1

Proposition 3.1. If A is a pairwise ®-connected subset of a bitopological space (X,T1,T2)
which has the pairwise ®f-separation X = C\D, then either A C C or A C D.

Proof. Suppose that (X, 71, T2) has the pairwise wf-separation X = C\D. Then X = CUD,
where C and D are nonempty disjoint sets such that (CNij— wBCI(D))U (ji— @B CI(C)N
D) = ¢. Since CND = ¢, we have C = D and D = C°. Now ((CNA)Nij— oBCl(DN
A))U(ji—oBCI({CNA)N(DNA)) C (CNij—ofCl(D))U(ji—wBCl(C)ND) = ¢. Hence
A= (CNA)\(DNA) is a pairwise wf-separation of A. Since A is pairwise ®f-connected,
we have either CNA = ¢ or DNA = ¢. Consequently A C C° or A C D°. Therefore, either
ACCorACD. 1

Theorem 3.2. If A is pairwise wf-connected and A C B C (ij — wBCl(A)) N (ji — wf
CI(A)), then B is pairwise ®f3-connected.

Proof. Suppose B is not pairwise ®f3-connected. Then B = CUD, where C and D are two
nonempty disjoint sets such that (CNij — oBCI(D))U (ji — wBClI(C)ND) = ¢. Since A
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is pairwise @p-connected, we have from Proposition 3.1 A C C or A C D. Suppose A C C.
Then D C DNB C DN ji— wBCI(A) C DN ji— wBCI(C) = ¢. Therefore, § C D C ¢.
Consequently, D = ¢. Similarly, we can prove C = ¢ if A C D. This is contrary to the fact
that C and D are nonempty. Therefore, B is pairwise @f-connected. 1

Proposition 3.2. Let {A; :i € A} be a family of pairwise @ -connected subsets of a bitopo-
logical space (X,71,T). I]‘QAAi % ¢, then A = |J A; is pairwise @3 -connected.
! icA

Proof. Suppose that A is not pairwise ®f3-connected. Then A = CUD, where C and D are
two nonempty disjoint sets such that (CNij— wBClI(D))U (ji— wBCI(C)ND) = ¢. Since
A, is pairwise wf-connected and A; C A, we have A; C C or A; C D. Therefore, if UA; C C
or UA; C D, then A CCorACDand hence A=CorA=D. Then D= ¢ or C = ¢.
This is a contradiction. Otherwise, there exist j,k € A such that A; C C and Ay C D, where
J # k. Since NA; # ¢, we have x € NA; and hence x € A; C C and x € Ay C D. Therefore,
CND # ¢ which is a contradiction. Hence A is pairwise ®f3-connected. 1

Note that a space (X, 71, 7;) is said to be pairwise disconnected [7] if there exists U € 7;
andV € tjsuchthat U,V #¢, UNV =¢ andUUV =X.

Proposition 3.3. If f: (X, 11,7) — (Y, 01,02) is a pairwise ®-continuous surjection and
(X,71,T2) is pairwise @f3-connected, then (Y, 01,07) is pairwise connected.

Proof. Suppose that (Y,07,0,) is not pairwise connected. Then, there exist U € o; and
V eojsuchthat U,V #¢,UNV =¢ and UUV =Y. Since f is surjection, f~1(U) # ¢
and f~1(V) # ¢. Since f is pairwise ®wB-continuous, f~'(U) is ij — wBO and f~1(V)
is ji— wBO such that f~1(U)Nf~ (V)= ¢ and f~1(U)U f~1 (V) = X. This shows that
(X,71,T2) is not pairwise @f-connected, which is a contradiction. Hence (Y,01,0,) is
pairwise connected. 1

Corollary 3.1. If f: (X,71,72) — (Y,01,02) is a pairwise ®f-irresolute surjection and
(X,71,T2) is pairwise @f-connected, then (Y, 01,0 is pairwise ©f-connected.

The proof is similar to that of Proposition 3.3.

4. Pairwise wf-set connected functions in bitopological spaces

In this section, we introduce the notion of pairwise @f-set connected functions and study
the relationship between these functions and pairwise wf-irresolute functions. If A is both
ij—oPBCand ji— PO setinX, thenitis called an ij — wP-coset, forall i # jand i, j=1,2.

Definition 4.1. A bitopological space (X,T1,T) is said to be ij — ®f-connected between
A and B, where A and B are nonempty subsets of X, if there exists no ij — ®f-coset F
such that A C F C X — B. X is said to be pairwise ®-connected between A and B if X is
12 — wP-connected between A and B and 21 — 0 f3-connected between A and B.

Remark 4.1.

(i) X is 12 — wPB-connected between A and B if and only if it is 21 — wf-connected
between B and A.

(ii) If X isij— wpP-connected between A and Band A C Cand B C D, then X is ij — 0f3-
connected between C and D.
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Definition 4.2. A function f: (X,71,7) — (Y,01,07) is said to be pairwise ®f-set con-
nected if f(X) is ij — @wB-connected between f(A) and f(B) in the bitopological subspace
whenever X is ij — wf-connected between A and B, where i # j, i,j =1,2.

Proposition 4.1. If a subspace M of a bitopological space X is i j — w[3-connected between
A and B, then so in the whole space, where i # jand i, j=1,2.

Proof. Suppose not, so there exists an ij — @f3-coset F in X such that A C F C X — B. Then
FNMis an ij— @wf-coset in M with ANM C FNM C M — B. Thus M is not ij — wf3-
connected between A and B. This is a contradiction. Therefore, X is ij — @f-connected
between A and B. 1

Recall that a subset A of a bitopological space (X, 71, 72) is called an ij-coset in X [6] if
A is T;-closed and 7;-open, where i # jand i,j = 1,2.

Lemma4.1. IfM is a subspace whichis a 12— (21—)coset in X and X is i j — @ -connected
between two subsets A and B of M, then M is i j — @ f3-connected between A and B.

Proof. Suppose M is not 12 — @f-connected between A and B. So there exists a 12 — @3-
coset F in M such that A C F C M — B. Since M is a 12-coset in X, by Lemma 1.1, F' is
a 12— wP-coset in X and hence X is not 12 — wf-connected between A and B. This is
a contradiction. Thus M is 12 — wfB-connected between A and B. Now if X is 21 — wf3-
connected between A and B, then it is 12 — @wf-connected between B and A and hence M is
12 — wf-connected between B and A which implies that M is 21 — wf-connected between
A and B. Therefore, we obtain the result. 1

Theorem 4.1. A function f: (X,11,%) — (Y, 01,02) is pairwise @f3-set connected if and
only if f~V(F) is an ij — ®B-coset in X for any ij — ®B-coset F in f(X).

Proof. NECESSITY. Let f be pairwise wf-set connected and F be any ij — wf-coset in
f(X). Suppose that f~!(F) is not ij — @B-coset in X, then X is ij — ®fB-connected be-
tween f~!(F) and X — f~!(F). Since f is pairwise wf-set connected, f(X) is ij — ®f-
connected between f(f~!(F)) and f(X — f~'(F)). But f(f '(F)) = FNf(X) =F and
f(X — f~Y(F)) = f(X) — F and by Theorem 3.1 F is not ij — @B-coset in f(X). This is a
contradiction. Hence f~!(F) is an ij — wB-coset in X.

SUFFICIENCY. Let f~'(F) be an ij — @B-coset in X for any ij — @B-coset F in f(X)
and let X be ij — wf-connected between A and B. Suppose f(X) is not ij — @f-connected
between f(A) and f(B), then there exists an ij — wfB-coset F in f(X) such that f(A) CF C
f(X)—f(B). ButA C f~'(F)C X —Band f~!(F) is ij — ®B-coset in X. This contradicts
that X is ij — wB-connected between A and B. Therefore, f is pairwise ®wf-connected. 1

Lemma4.2. Let f: (X,11,72) — (Y, 01,02) be a pairwise @f3-set connected function. If X
is pairwise ®f-connected, then f(X) is pairwise @ -connected.

Proof. Suppose f(X) is not pairwise wf-connected. Then, by Theorem 3.1 there exists
an ij — @f-coset F such that ¢ # F # f(X). Since f is pairwise @f-set connected, by
Theorem 4.1 f~!(F) is an ij — @B-coset in X. This contradicts that X is pairwise ®f-
connected. Therefore, f(X) is pairwise ®f-connected. 1

It is clear that every function f : (X, 71, 72) — (Y, 01, 02) such that f(X) is @f-connected,
is pairwise @p-set connected.
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Lemma 4.3. Let f: (X,71,T) — (Y,01,02) be pairwise ®f-set connected and A C X be
such that f(A) is an ij-coset in f(X). Then the restriction f|s : A — Y is pairwise ®f-set
connected.

Proof. Let A be ij — wf-connected between C and D. Then by Proposition 4.1, X is ij —
of-connected between C and D and f(X) is ij — wfB-connected between f(C) and f(D)
(since f is pairwise @f-set connected). Since f(A) is an ij-coset in f(X), by Lemma 4.1,
f(A) is ij — wB-connected between f(C) and f(D). Therefore, we obtain the result. 1

Theorem 4.2. Let f: (X,7),72) — (Y,01,02) be a pairwise wf-set connected, pairwise
o®B-open surjection and f~(y) be pairwise ®pB-connected for each’y € Y. Then for any i j-
coset F inY, F is pairwise @B-connected if and only if f~'(F) is pairwise ®B-connected.

Proof. NECESSITY. Let f~!(F) be not pairwise ®f-connected for some ij — wf-coset F
in Y. Then by Theorem 3.1 there exists an ij — wf-coset K with ¢ # K # f~'(F), in the
bitopological subspace (f~!(F), 1 |-1(F), T2l p-1(p)). We show that f(K) is an ij — @f-
coset in F with ¢ # f(K) # F. Since f~!(y) is pairwise ®f-connected, by Proposition
3.1 either f~'(y) C K or f~'(y) C f"'(F)—K forall y € F and so ¢ # f(K) # F and
FK)NF(f~Y(F)—K) = ¢. Since f is surjective, f(K)U f(f~'(F) —K) = F and hence
f(f"Y(F)—K)=F — f(K). Since fis ij — wfB-open, fly-1(p) is ij — @B-open onto F and
hence f(K) is an ij — wfB-coset in F. This implies that F is not pairwise ®f3-connected.
Therefore, if F is pairwise @fB-connected then f~!(F) is pairwise ®f-connected.
SUFFICIENCY. Since f(f~!'(F)) = F and F is an ij-coset in Y, by Lemma 4.3, the
restriction f| -1y : f~Y(F) — Y is pairwise wf-set connected. Now by Lemma 4.2, it
follows that f| .1 (g (f ' (F)) = F is pairwise wf-connected if f~'(F) is pairwise op-
connected. Therefore, we obtain the result. |

Definition 4.3. A bitopological space (X,T1,T2) is said to be ij — ®B-extremally discon-
nected if the ji— @fB-closure of any ij — 0O setis ij — wBO, wherei+# jandi,j=1,2.
The space is said to be pairwise ®f-extremally disconnected if it is 12 — ©-extremally
disconnected and 21 — wp-extremally disconnected.

Theorem 4.3. Let f: (X, 71,72) — (Y,01,02) be pairwise wP-set connected. If Y is pair-
wise 0f3 — Ty and ij — @B-extremally disconnected, then f|c : C — Y is constant for every
pairwise WP-connected subset C of X.

Proof. Letx,y € C and x # y. Suppose f(x) # f(y) in Y. Since Y is pairwise ®ff — T and
ij — oB-extremally disconnected, there exists ji — @f-coset V in Y such that f(x) € V and
f(y) ¢ V.Now f~1(V)is ji— ®B-cosetin X as f is pairwise ®-set connected. Therefore,
by Lemma 1.1 f~!(V)NC is a nonempty proper ji — @f3-coset in the subspace C and by
Theorem 3.1 C is not pairwise @f-connected. This is a contradiction. Hence f(x) = f(y),
for all x,y € C and hence f|¢c : C — Y is constant. 1

Definition 4.4. A bitopological space (X, 7),T) is said to be pairwise ®f — C-compact if
given an ij — @PBC set A of X and a cover {Vy : o0 € A} of A by ji— @B O sets of X, then
there exists a finite subset A, of A such that A C U{ij — oBCl(Vy : ¢ € Ao)}, i,j = 1,2,
i

Theorem 4.4. Let Y be pairwise @ -extermally disconnected, pairwise o3 — C-compact
and pairwise @3 —Ty. Then f: (X,71,T) — (Y, 01,02) is pairwise ®B-irresolute if and
only if it is pairwise ®-set connected.
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Proof. NECESSITY. It is obvious.

SUFFICIENCY. Let f be not pairwise @ f-irresolute. Then, there exists an ij — @B C set
F in Y such that f~!(F) is not an ij — @BC in X. Let x € ij — wBCI(f ' (F)) — f~'(F).
Then X is ij — wB-connected between f~!(F) and x. Hence f(X) is ij — ®B-connected be-
tween f(f~!(F)) and f(x). By Proposition 4.1 and Remark 4.1(ii), Y is ij — @B-connected
between F and f(x). Now since Y is pairwise w3 — T,, for each y € F there exists a
Jji— ®BO set V, containing y in Y such that f(x) ¢ ij — @wBCI(V,). Then the family
{V, 1y € F} is a cover of F by ji — @O sets in Y. Since Y pairwise @ — C-compact,

n
there exist a finite number of points y1,y2,....,y, in F such that F C |J ij —wBCI(V),) =V
k=1

(say). Then V is an ij — wfB-coset in ¥ since Y is pairwise @f-extermally disconnected.
Also, f(x) ¢ V since f(x) ¢ ij— wBCL(V,) for any y € F. This contradicts that Y is ij — wf3-
connected between F and f(x). Hence f is pairwise @f-irresolute. 1
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