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Abstract. In this paper, we show that the class of R-quadratic Finsler spaces is a proper
subset of the class of generalized Douglas-Weyl spaces. Then we prove that all gener-
alized Douglas-Weyl spaces with vanishing Landsberg curvature have vanishing the non-
Riemannian quantity H, generalizing result previously only known in the case of R-quadratic
metric. Also, this yields an extension of well-known Numata’s Theorem.
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1. Introduction

In Finsler geometry, there are several well-known projective invariants of Finsler metrics
namely, Douglas curvature, Weyl curvature, and another projective invariant which is due
to Akbar-Zadeh [2, 14, 15]. Douglas curvature is a non-Riemannian projective invariant
constructed from the Berwald curvature [8]. The notion of Douglas curvature was proposed
by Bácsó and Matsumoto as a generalization of Berwald curvature [4]. The Douglas curva-
ture vanishes for Riemannian spaces, therefore it is plays a role only outside the Riemannian
world [9]. Finsler metrics with Di

jkl = 0 are called Douglas metrics and Finsler metrics with
W i

k = 0 are called Weyl metrics. There is another projective invariant in Finsler geometry,
namely Di

jkl|mym = Tjklyi that is hold for some tensor Tjkl , where Di
jkl|m denotes the hori-

zontal covariant derivatives of Di
jkl with respect to the Berwald connection of F . This equa-

tion is equivalent to that for any linearly parallel vector fields u = u(t), v = v(t) and w = w(t)
along a geodesic c(t), there is a function T = T (t) such that d/dt

[
Dċ(u,v,w)

]
= T ċ. The

geometric meaning of this identity is that the rate of change of the Douglas curvature along
a geodesic is tangent to the geodesic [12].

For a manifold M, let G DW (M) denote the class of all Finsler metrics satisfying in
above relation for some tensor Tjkl (Tjkl not fixed). In [6], Bácsó-Papp show that G DW (M)
is closed under projective changes.

A natural question is: how large is G DW (M) and what kind of interesting metrics does
it have? It is obvious that all Douglas metrics belong to this class. On the other hand, all
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Weyl metrics (metrics of scalar flag curvature) also belong to this class. The later is really a
surprising result, due to Sakaguchi [17].

In this paper, we show that the class of generalized Douglas-Weyl metrics contains the
class of R-quadratic metrics as a special case.

Theorem 1.1. Every R-quadratic Finsler metric is a generalized Douglas-Weyl metric.

A Finsler metric is said to be R-quadratic if its Riemann curvature Ry is quadratic in
y ∈ TxM [5]. The notion of R-quadratic metric was introduced by Shen [18]. There are
many non-Riemann R-quadratic Finsler metrics. For example, all Berwald metrics are R-
quadratic. Some non-Berwaldian R-quadratic Finsler metrics have been constructed in [10].
Thus R-quadratic Finsler metrics form a rich class of Finsler spaces.

In [2], Akbar-Zadeh considered a non-Riemannian quantity H which is obtained from the
mean Berwald curvature by the covariant horizontal differentiation along geodesics. In the
class of Weyl metrics, vanishing this quantity reasults that the Finsler metric is of constant
flag curvature and this fact clarifies its geometric meaning [2, 13]. Recently Li-Shen prove
that every R-quadratic Randers metric has constant non-Rieman-nian invariant S-curvature,
hence it has vanishing non-Riemannian invariant H [10]. Then Mo extend their result and
show that every R-quadratic Finsler metric has vanishing H-curvature [11]. In this paper,
we get an extension of these results and prove that every generalized Douglas-Weyl space
with vanishing Landsberg curvature satisfies H = 0.

Theorem 1.2. Let (M,F) be a generalized Douglas-Weyl space. Suppose that F is a Lands-
berg metric. Then H = 0.

According to Theorem 1.2, every Landsberg metric F of scalar flag curvature K satisfies
H = 0 and then F is of constant flag curvature. By Akbar-Zadeh Theorem, the Cartan tensor
of F satisfies Äi jk + KAi jk = 0 [1]. Since F is a Landsberg metric, then KAi jk = 0. If we
suppose that F is of non-zero scalar flag curvature, then F is Riemannian. Therefore, we
get the following.

Corollary 1.1. Every Landsberg metric of non-zero scalar flag curvature is Riemannian.

Corollary 1.1 was proved by Numata [16]. Theorem 1.2 can be regarded as a general-
ization of the Numata Theorem. The converse of Theorem 1.2 is not true. For example,
consider following Finsler metric on the unit ball Bn ⊂ Rn,

F(y) :=

√
|y|2− (|x|2|y|2−〈x,y〉2)

1−|x|2
+
〈x,y〉

1−|x|2
, y ∈ TxBn = Rn

where |.| and 〈,〉 denote the Euclidean norm and inner product in Rn, respectively. F is
called the Funk metric which is a Randers metric on Bn [19]. Funk metric is a generalized
Douglas-Weyl metric satisfies H = 0 while L 6= 0.

There are many connections in Finsler geometry [20, 21]. In this paper, we set the
Berwald connection on Finsler manifolds. The h- and v- covariant derivatives of a Finsler
tensor field are denoted by “ | ” and “, ” respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M, by
T M =∪x∈MTxM the tangent bundle of M and by T M0 = T M \{0} the slit tangent bundle of
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M. A Finsler metric on M is a function F : T M→ [0,∞) which has the following properties:
(i) F is C∞ on T M0; (ii) F is positively 1-homogeneous on the fibers of tangent bundle T M,
and (iii) for each y ∈ TxM, the following quadratic form gy on TxM is positive definite,

gy(u,v) :=
1
2

∂ 2

∂ s∂ t

[
F2(y+ su+ tv)

]
|s,t=0, u,v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define Cy : TxM⊗
TxM⊗TxM→ R by

Cy(u,v,w) :=
1
2

d
dt

[gy+tw(u,v)] |t=0, u,v,w ∈ TxM.

The family C := {Cy}y∈T M0 is called the Cartan torsion. It is well known that C = 0 if and
only if F is Riemannian.

Given a Finsler manifold (M,F), then a global vector field G is induced by F on T M0,
which in a standard coordinate (xi,yi) for T M0 is given by

G = yi ∂

∂xi −2Gi(x,y)
∂

∂yi .

where Gi(x,y) := 1/4 gil(x,y){[F2]xkyl yk− [F ]2xl}. G is called the associated spray to (M,F).
The projection of an integral curve of G is called a geodesic in M. In local coordinates, a
curve c(t) is a geodesic if and only if its coordinates (ci(t)) satisfy c̈i +2Gi(ċ) = 0.

For y ∈ TxM0, define By : TxM⊗TxM⊗TxM→ TxM and Ey : TxM⊗TxM→ R by

By(u,v,w) := Bi
jkl(y)u

jvkwl ∂

∂xi

∣∣∣
x
, Ey(u,v) := Ei j(y)uiv j,

where Bi
jkl(y) := (∂ 3Gi)/(∂y j∂yk∂yl)(y), Ei j(y) := 1/2 Bm

i jm(y), u = ui∂/(∂xi)|x, v =
vi∂/(∂xi)|x and w = wi∂/(∂xi)|x. B and E are called the Berwald curvature and mean
Berwald curvature respectively. A Finsler metric is called a Berwald metric and weakly
Berwald metric if B = 0 and E = 0, respectively [19, 22].

Define B̃y : TxM⊗TxM⊗TxM→ TxM and Hy : TxM⊗TxM→ R by

B̃y(u,v,w) := B̃i
jkl(y)u

jvkwl ∂

∂xi

∣∣∣
x
, Hy(u,v) := Hi j(y)uiv j,

where B̃i
jkl := Bi

jkl|sy
s and Hi j := Ei j|sys. Then B̃y and Hy are defined as the covariant

derivative of B and E along geodesics, respectively [13].
Define Dy : TxM⊗TxM⊗TxM→ TxM by Dy(u,v,w) := Di

jkl(y)u
iv jwk∂/(∂xi)|x where

Di
jkl := Bi

jkl−
2

n+1
{

E jkδ
i
l +E jlδ

i
k +Eklδ

i
j +E jk,lyi}.

We call D := {Dy}y∈T M0 the Douglas curvature. A Finsler metric with D = 0 is called a
Douglas metric. The notion of Douglas metrics was proposed by Bácsó-Matsumoto as a
generalization of Berwald metrics [4].

Define Ly : TxM⊗TxM⊗TxM → R and L̃y : TxM⊗TxM⊗TxM → R by Ly(u,v,w) :=
Li jk(y)uiv jwk and L̃y(u,v,w) := L̃i jk(y)uiv jwk where

Li jk := Ci jk|sy
s and L̃i jk := Li jk|sy

s.

The family L := {Ly}y∈T M0 is called the Landsberg curvature. F is called a Landsberg
metric if L = 0 [23].
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Theorem 2.1. [3] For a Douglas metric F on a manifold M, if L = 0, then B = 0.

By using the notion of Landsberg curvature, we define Σy : TxM⊗TxM⊗TxM⊗TxM→R
by Σy(u,v,w,z) := Σi jkl(y)uiv jwkzl where

Σi jkl := 2(Li jk|l−Li jl|k).

A Finsler metric is said to be stretch metric if Σ = 0. In [7], Berwald showed that stretch
curvature vanishes if and only if the length of a vector remains unchanged under the parallel
displacement along an infinitesimal parallelogram.

3. Proof of Theorem 1.1

The notion of Riemann curvature for Riemann metrics can be extended to Finsler metrics.
For a vector y ∈ TxM0, the Riemann curvature Ry : TxM → TxM is defined by Ry(u) :=
Ri

k(y)u
k∂/(∂xi), where

Ri
k(y) = 2

∂Gi

∂xk −
∂ 2Gi

∂x j∂yk y j +2G j ∂ 2Gi

∂y j∂yk −
∂Gi

∂y j
∂G j

∂yk .

The family R := {Ry}y∈T M0 is called the Riemann curvature [19]. A Finsler metric F is said
to be R-quadratic if Ry is quadratic in y ∈ TxM at each point x ∈M. Let

Ri
jkl(x,y) :=

1
3

∂

∂y j

{
∂Ri

k
∂yl −

∂Ri
l

∂yk

}
,

where Ri
jkl is the Riemann curvature of Berwald connection. We have

Ri
k = Ri

jkl(x,y)y
jyl .

Then Ri
k is quadratic in y ∈ TxM if and only if Ri

jkl are functions of position alone.
In this section, we prove that every R-quadratic Finsler metric is a generalized Douglas-

Weyl metric. To prove this, we need the following.

Lemma 3.1.
Ri

jkl|m +Ri
jlm|k +Ri

jmk|l = Bi
jkuRu

lm +Bi
jluRu

km +Bi
kluRu

jm,(3.1)

Bi
jkl|m−Bi

jmk|l = Ri
jml,k,(3.2)

Bi
jkl,m = Bi

jkm,l .(3.3)

Proof. The curvature form of Berwald connection is

(3.4) Ω
i
j = dω

i
j−ω

k
j ∧ω

i
k =

1
2

Ri
jklω

k ∧ω
l−Bi

jklω
k ∧ω

n+l .

For the Berwald connection, we have the following structure equation

(3.5) dgi j−g jkΩ
k
i−gikΩ

k
j =−2Li jkω

k +2Ci jkω
n+k.

Differentiating (3.5) yields the following Ricci identity

gp jΩ
p
i−gpiΩ

p
j =−2Li jk|lω

k ∧ω
l−2Li jk,lω

k ∧ω
n+l−2Ci jl|kω

k ∧ω
n+l

−2Ci jl,kω
n+k ∧ω

n+l−2Ci jpΩ
p
ly

l .
(3.6)

Differentiating of (3.4) yields

(3.7) dΩ
j

i −ω
k

i ∧Ω
j

k +ω
j

k ∧Ω
k

i = 0.
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Define Bi
jkl|m and Bi

jkl,m by

(3.8) dBi
jkl−Bi

mklω
m
i −Bi

jmlω
m
k −Bi

jkmω
m
l +Bi

jklω
i
m = Bi

jkl|mω
m +Bi

jkl,mω
n+m.

Similarly, we define Ri
jkl|m and Ri

jkl,m by

(3.9) dRi
jkl−Ri

mklω
m
i −Bi

jmlω
m
k −Ri

jkmω
m
l +Ri

jklω
i
m = Ri

jkl|mω
m +Ri

jkl,mω
n+m.

From (3.6), (3.7), (3.8) and (3.9), one obtains the above Bianchi identity.

Proposition 3.1. Every R-quadratic Finsler metric is a generalized Douglas-Weyl metric.

Proof.

(3.10) Di
jkl = Bi

jkl−
2

n+1
{

E jkδ
i
l +Eklδ

i
j +El jδ

i
k +E jk,lyi}.

Then

(3.11) Di
jkl|mym = Bi

jkl|mym− 2
n+1

{
H jkδ

i
l +Hklδ

i
j +Hl jδ

i
k +E jk,l|mymyi}.

By (3.2), it follows that

(3.12) Bi
jkl|mym = Ri

jml,kym,

which yields

(3.13) H jk = Rp
jmp,kym.

We obtain

(3.14) hi
α Dα

jkl|mym = hi
α Rα

jml,kym− 2
n+1

{
Rp

jmp,khi
l +Rp

lmp, jh
i
k +Rp

kmp,lh
i
j
}

ym.

F is R-quadratic, then we have
hi

α Dα

jkl|mym = 0.

It means that F is a generalized Douglas-Weyl metric.
The following examples shows that there is a generalized Douglas-Weyl metric which is

not R-quadratic.

Example 3.1. Let X = (x,y,z) ∈ B3(1)⊂ R3 and Y = (u,v,w) ∈ TxB3(1). Put
A := (x2 + y2 + z2)u−2x(xu+ yv+ zw),
B := 1− (x2 + y2 + z2)2,
C := u2 + v2 +w2.

Define F = F(x,y) by

F := α +β =

√
A2 +BC

B
+

A
B

.

The flag curvature of F is given by

K =
−3u

F
+ x2−2y2−2z2.

It means that F is of scalar flag curvature and then F is a generalized Douglas-Weyl metric
on B3(1). It is easy to show that F is not R-quadratic metric.
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4. Proof of Theorem 1.2

In these section, we will prove a generalized version of Theorem 1.2. Indeed, we study
compact generalized Douglas-Weyl spaces with vanishing stretch curvature and prove the
following.

Theorem 4.1. Every compact generalized Douglas-Weyl space with vanishing stretch cur-
vature satisfies H = 0.

The most elegant importance of studying Finsler metrics, is to obtain non-Riemannian
PDEs in the sence that they hold trivially for Riemannian metrics. To prove Theorem 4.1, we
find a PDE on mean Berwald curvature of generalized Douglas-Weyl metrics with vanishing
stretch tensor. For this reason, we need the following:

Lemma 4.1. Let (M,F) be a generalized Douglas-Weyl space. Then

(4.1) B̃l
i jk|h =

−2yl

F2 L̃i jk|h +
2

n+1
{Hi j|hhl

k +H jk|hhl
i +Hik|hhl

j}.

Proof.

(4.2) Di
jkl = Bi

jkl−
2

n+1
{E jkδ

i
l +Eklδ

i
j +El jδ

i
k +E jk,lyi}.

Then

(4.3) hm
i Di

jkl|sy
s = hm

i Bi
jkl|sy

s− 2
n+1

{H jkhm
l +Hklhm

j +Hl jhm
k }.

By assumption we get

(4.4) hm
i B̃i

jkl =
2

n+1
{H jkhm

l +Hklhm
j +Hl jhm

k }.

Taking a horizontal derivative of (4.4) yields

(4.5) hm
i B̃i

jkl|h =
2

n+1
{H jk|hhm

l +Hkl|hhm
j +Hl j|hhm

k }.

Using

(4.6) gipypBi
jkl =−2L jkl ,

one can yields

(4.7) hm
i B̃i

jkl|h = (hm
i Bi

jkl)|s|hys = (Bm
jkl +

2ym

F2 L jkl)|s|hys = B̃m
jkl|h +

2ym

F2 L̃ jkl|h.

By (4.5) and (4.7) we obtain (4.1).

Lemma 4.2. Let (M,F) be a generalized Douglas-Weyl space. Suppose that F is a stretch
metric. Then for any geodesic c(t) and any parallel vector field U(t) along c, the following
function

(4.8) E(t) = Eċ(U(t),U(t)),

satisfying in the following equation

(4.9) E(t) = H(0)t +E(0).
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Proof. Since F is a stretch metric, then we have Li jk|l = Li jl|k. Contracting it with yl yields
L̃i jk = 0. By considering Lemma 4.1, we have

B̃l
i jk|h− B̃l

i jh|k =
2

n+1
{
(H jk|h−H jh|k)h

l
i +(Hik|h−Hih|k)h

l
j
}

+
2

n+1
{

Hi j|hhl
k−Hi j|khl

h
}
.

(4.10)

Putting j = l in (4.10), we get

Hik|h−Hih|k =
2

n+1
{Hik|h−Hih|k},(4.11)

which yields

(4.12) Hik|h = Hih|k.

Contacting (4.12) with yh

(4.13) Hik|hyh = 0.

Let

(4.14) H(t) = Hċ(U(t),U(t)).

From the definition of Hy, we have

(4.15) H(t) = E
′
(t).

By (4.13) we have H′(t) = 0 which implies that

H(t) = H(0).

Then by (4.15), we get the equation (4.9).

Remark 4.1. Let (M,F) be a Finsler space and c : [a,b]→M be a geodesic. For a parallel
vector field V (t) along c, we have gċ(V (t),V (t)) = constant.

Proof of Theorem 4.1. Take an arbitrary unit vector y ∈ TxM and an arbitrary vector v ∈
TxM. Let c(t) be the geodesic with ċ(0) = y and V (t) the parallel vector field along c with
V (0) = v. Define E(t) and H(t) as in (4.8) and (4.14), respectively. Then by Lemma 4.2,
we have E(t) = t H(0)+ E(t). Suppose that Ey is bounded, i.e., there is a constant N < ∞

such that

(4.16) ||E||x := sup
y∈TxM0

sup
v∈TxM

Ey(v,v)

[gy(v,v)]
3
2
≤ N.

By Remark 4.1, we know that T := gċ(V (t),V (t)) = constant is positive constant. Thus

|E(t)| ≤ NT
3
2 < ∞,

and E(t) is a bounded function on [0,∞). This implies

Hy(v,v) = H(0) = 0.

Therefore H = 0.
By Theorem 4.1, every compact generalized Douglas-Weyl space with vanishing Lands-

berg curvature satisfies H = 0. By a similar way, it follows that every compact Douglas
space with vanishing stretch curvature satisfy in H = 0.
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Proof of Theorem 1.2. By (4.4) we have

(4.17) hm
i B̃i

jkl =
2

n+1
{H jkhm

l +Hklhm
j +Hl jhm

k }.

Using (4.6) we get

(4.18) hm
i B̃i

jkl = B̃m
jkl +

2
F2 L̃ jklym.

From assumption and the relations (4.17) and (4.18), we obtain

(4.19) B̃m
jkl =

2
n+1

{H jkhm
l +Hklhm

j +Hl jhm
k }.

By putting m = k in (4.19), we conclude that H = 0.
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