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Abstract. In longitudinal data analysis, there are many practical situations where we need
to deal with transitions to a number of states and which are repeated over time generating
a large number of trajectories from beginning to end of the study. This problem becomes
increasingly difficult to model if the number of follow-ups is increased for a set of longitu-
dinal data. A covariate-dependent Markov transition model is proposed using the logistic
link function for polytomous outcome data. A generalized and more flexible approach of
constructing the likelihood function for the first or higher order is demonstrated in this pa-
per to deal with the branching of a number of transition types starting from no depression
at the beginning of the study. The proposed method can be employed to resolve a long-
standing problem in dealing with modeling for transitions, reverse transitions and repeated
transitions by reducing the number of trajectories to a large extent resulting in estimating
relatively few parameters. The problem of depression in elderly, in terms of short and long-
term health and economic consequence, needs to be assessed more critically. This study
uses the longitudinal data from the six waves of the Health and Retirement Survey to exam-
ine the transition to depression, reverse transition from depression to no depression and also
repeated transition from no depression to depression after experiencing a reverse transition
during a study period. The results indicate that age is negatively associated with reverse and
repeated transitions, gender is negatively associated with transition and reverse transition
indicating that females are more likely to experience both. The proposed method clearly
provides a wider range of useful information in revealing the dynamics of the depression
pattern among elderly.
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1. Introduction

The disease process of depression involves several stages over a long period of time. To un-
derstand this process we need to examine the sequence of events during subsequent follow-
ups. The Markov model is a natural choice for the study of depression due to its underlying
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property of dependence in consecutive follow-ups. The higher order Markov model can be
used to investigate whether the relationship between outcomes can be explained in terms of
longer term effects of depression due to recurrence of depressive episodes during long spells
of observation. It is important to understand how the transitions among the different states
of depression take place and how the covariates influence these transitions. Markov chain is
one class of statistical models which is used to identify the characteristics of these types of
transitions. The Markov chain models for discrete variate time series appear to be restricted
due to over-parameterization and several attempts have been made to simplify the applica-
tion of Markov chain models. There are different approaches of employing Markov chain
models. Raftery [43], Raftery and Tavare [42], and Berchtold and Raftery [6] addressed one
such area of problems in estimating transition probabilities following the work of Pegram
[40]. This area of research, popularly known as the mixture transition distribution (MTD),
deals with modeling of high-order Markov chains for a finite state space. In another devel-
opment, Albert [1] proposed a finite Markov chain model for analyzing sequences of ordinal
data from a relapsing remitting of a disease. In addition, Albert and Waclawiw [2] developed
a class of quasi-likelihood models for a two state Markov chain with stationary transition
probabilities for heterogeneous transitional data. However, these models deal with only es-
timation of transition probabilities. In another attempt, Buhlmann and Wyner [9] developed
a class of stationary variable length Markov chains on a finite space. They demonstrated
that these processes essentially follow higher order Markov chains with potential memory
of variable length with applications to information theory and machine learning.

Regier [44] proposed a model for estimating odds ratio from a two state transition matrix.
A grouped data version of the proportional hazards regression model for estimating com-
putationally feasible estimators of the relative risk function was proposed by Prentice and
Gloeckler [41]. The role of previous state as a covariate was examined by Korn and Whitte-
more [32]. Wu and Ware [49] proposed a model which included accumulation of covariate
information as time passes before the event and considered occurrence or non-occurrence
of the event under study during each interval of follow up as the dependent variable. The
method could be used with any regression function such as the multiple logistic regression
model and also the one suggested by Prentice and Gloeckler [41]. Kalbfleisch and Lawless
[29] proposed the models for continuous time. They presented procedures for obtaining es-
timates for transition intensity parameters in homogeneous models. For a first order Markov
model, they introduced covariate dependence of log-linear type. Due to complexity in the
formulation of the underlying models, none of these models could be generalized to higher
order.

More recently, another class of models has emerged for analyzing transition models with
serial dependence of the first or higher orders on the basis of the marginal mean regression
structure models. Azzalini [4] introduced a stochastic model, more specifically, a first order
Markov model, to examine the influence of time-dependent covariates on the marginal dis-
tribution of the binary outcome variables in serially correlated binary data. Markov chains
are expressed in transitional form rather than marginally and the solutions are obtained such
that covariates relate only to the mean value of the process, independent of association pa-
rameters. Following Azzalini [4], Heagerty and Zeger [22] presented a class of marginalized
transition models (MTM) and Heagerty [21] proposed a class of generalized MTMs to al-
low serial dependence of first or higher order. These models are computationally tedious
and the form of the serial dependence is quite restricted. If the regression parameters are
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strongly influenced by inaccurate modeling for serial correlation then the MTMs can result
in misleading conclusions. Heagerty [21] provided derivatives for score and information
computations. Lindsey and Lambert [36] examined some important theoretical aspects con-
cerning the use of marginal models and demonstrated that there are serious limitations such
as: (i) produce profile curves that does not represent any possible individual, (ii) may show
that a treatment is better on average when, in reality, it is poorer for each individual subject,
(iii) generate complex and implausible physiological explanations with underdispersion in
subgroups and problems associated with no possible probabilistic data generating mecha-
nism.

In recent years, there has been a great deal of interest in the development of multivariate
models based on the Markov Chains. These models have wide range of applications in the
fields of reliability, economics, survival analysis, engineering, social sciences, environmen-
tal studies, biological sciences, etc. Muenz and Rubinstein [38] employed logistic regres-
sion models to analyze the transition probabilities from one state to another but still there
is a serious lack of a general methodology for analyzing transition probabilities of higher
order Markov models. In a higher order Markov model, we can examine some inevitable
characteristics that may be revealed from the analysis of transitions, reverse transitions and
repeated transitions. Islam and Chowdhury [27] extended the model for higher order with
covariate dependence for binary or polytomous outcomes. It is noteworthy that the covari-
ate dependent higher order Markov models can be used to identify the underlying factors
associated with such transitions.

In this study, it is aimed to provide a comprehensive covariate-dependent Markov model
for higher order. The proposed model is a further generalization of the models suggested
by Muenz and Rubinstein [38] and Islam and Chowdhury [27] in dealing with event history
data. Lindsey and Lambert [36] observed that the advantage of longitudinal repeated mea-
sures is that one can see how individual responses change over time. They also concluded
that this must generally be conditioned on the previous history of a subject, so that it usually
would seem that analyses that concentrate on the marginal aspects of models are discarding
important information, or not using it efficiently. Lee and Nelder [34] concluded that the
conditional models are of fundamental interest and marginal predictions can be made from
conditional models. The transition models are developed on the basis of conditional models
employing Markovian assumptions and provide more realistic formulation as compared to
the marginal models such as the generalized estimating equations. As the classical marginal
models (such as GEE) may pose difficulty with the selection of underlying correlation struc-
ture [28], which may or may not be functions of the marginal. Another alternative is the
subject-specific models taking into consideration the random effects by allowing random ef-
fect terms in the linear predictor [7]. Lee and Nelder [34] observed that conditional models
are fundamental and the advantages of conditional models over marginal models are obvious
because marginal predictions can be made from conditional models. In our study, we have
considered polytomous logit link function for m outcome categories (categories are denoted
by u = 0,1,2, . . .,m−1). We defined the set of repeated outcome variables for subject i at
the j-th follow-up as a vector, (Yi1,Yi2, ...,Yi j), where i = 1, .2, . . .,n and j = 1,2, . . .,Ji. Here
Yi j corresponds to the response at time ti j. Then the random effect model can be denoted by
[32]:

ln
(

πi ju

πi j0

)
= θu + x′i jβu +νiu, u = 1,2, ...,m−1,
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where πi ju = P(Yi j = u) are probabilities of outcomes, θu and βu = (βu1, ...,βup)
′ are fixed

effects. The random component νi ∼ N(0,Σ), where Σ is unstructured covariance matrix.
Again the assumption on covariance structure remains a problem in this type of mixed effect
models.

It has been observed that the models based on generalized estimating equations provide
very attractive and useful results but the estimates are often inefficient [16, 10]. In contrary
to the classical GEE or the random effect model described above, the proposed transitional
models introduced in Section 3, provides a more general and flexible set up for addressing
the issue of analyzing repeated polytomous outcomes emerging from longitudinal studies.
We do not need to impose any correlation or covariance structure and unlike the other alter-
natives the transition models can be employed to examine the relationship between previous
and current outcomes in terms of risk factors or covariates of interest.

Our proposed model is based on conditional approach and uses the event history effi-
ciently. Furthermore, using the Chapman-Kolmogorov equations, the proposed model in-
troduces an improvement over the previous methods in handling runs of events which is
common in longitudinal data. It is noteworthy that this paper shows that we can express the
conditional probabilities in terms of the transition probabilities generated from Markovian
assumptions. A general procedure is developed comprehensively in this paper to propose
the estimation procedure for Markov models of any order. The proposed model and infer-
ence procedures are simple and the covariate dependence of the transition probabilities of
any order can be examined without making the underlying model complex. Another advan-
tage of the model lies in the fact that the estimation and test procedures for both the specific
parameter of interest and the overall model remain easy for practical applications for any
longitudinal data.

In a recent study, Harezlak et al. [20] proposed a Markov model consisting of three
states, non-diseased, diseased and dead, and estimated the transition hazard parameters us-
ing the maximum likelihood approach for analyzing dementia data. Their model does not
include any reverse transition or repeated transition. However, instead of considering death
as missing, they considered it as a separate state and thus the results became more mean-
ingful. Islam and Singh [25], Islam [26], and Islam et al. [24] demonstrated the analysis of
transitions, reverse transitions and repeated transitions for longitudinal data. They employed
hazards model for continuous time data with discrete state outcomes. Islam et al. [24] in-
dicated the possibility of using logistic link functions for similar analysis. In the previous
works, the transitions were considered to follow hidden Markov properties of first or higher
orders. In other words, we needed to strictly observe consecutive follow-ups to obtain the
history of events. In that case, the branching of possible occurrence of the events would
produce a large number of models based on the past history. This paper introduces a sim-
plified approach based on the Chapman-Kolmogorov equations, to formulate the models for
transitions, reverse transitions and repeated transitions. The likelihood function proposed in
this paper makes the longitudinal problems for transitions among a number of states much
more flexible and thus provides a more useful generalization of the estimation procedure
for repeated measures. In addition, the confirmed deaths during consecutive follow-ups are
considered from both non depressed and depressed states so that the deaths are not included
as censored because there might be both qualitative and quantitative differences between
other types of censoring and death, particularly in analyzing depression.
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The emerging issues concerning the analysis of depression among elderly include the
identification of risk factors from longitudinal studies. The Health and Retirement Study
(HRS) conducted in the USA provides an opportunity to examine the follow-up data on
elderly population covering six consecutive follow-ups over a period of 10 years, each 2
years apart. In this paper, we have proposed a covariate dependent Markov model for three
states, no depression, depression and death. We have considered death as a separate state in
order to provide a more useful procedure for analyzing the transition from no depression to
depression as well as for analyzing reverse transition from depression to no depression and
repeated transition for those who made a reverse transition at a previous stage.

2. The covariate dependent Markov model for transition, reverse transition and re-
peated transition

Let us consider the set of repeated outcome variables for subject i at the j-th follow-up as a
vector, (Yi1,Yi2, ...,Yi j), where i = 1,.2,. . . ,n and j =1,2,. . . , Ji. Here Yi j corresponds to the
response at time ti j. Denote by Hi j =

{
Yi j′ , j′ = 1,2, ..., j−1

}
the past history of subject

i at the j-th follow-up. Let us denote Yi j1−1 = s j1−1, s j1−1 = 0,1,2, ...,m− 1; Yi j1 = s j1 ,
s j1 = 0,1,2, ...,m− 1 and so on for occurrence of events for the i-th subject at times t j1−1
and t j1 respectively where Yi j1−1 =0 and Yi j1 =0 indicate that no events occurred. The first
order Markov model for an event at time t j1 conditional upon an event at time t j1−1 is

(2.1) P(Yi j1

∣∣Yi j1−1) .

We consider here m possible outcomes for the response variable at each follow-up. The
possible outcome categories are 0,1, ...,m− 1 for the response variable, Y . The condi-
tional probability of Yi j1 = s j1 (s j1 = 0,1,2, ...,m− 1) at time t j1 given Yi j1−1 = s j1−1,
(s j1−1 = 0,1,2, ...,m− 1) at time t j1−1 is πs j1 |s j1−1

= P(Yi j1 = s j1

∣∣Yi j1−1 = s j1−1 ) for any
s j1−1, where

(2.2)
m−1

∑
s j1 =0

πs j1 |s j1−1
= 1, s j1−1 = 0,1,2, ...,m−1.

We can show that
πs j1−1s j1

= P(Yi j1 = s j1 ,Yi j1−1 = s j1−1)

= P(Yi j1 = s j1

∣∣Yi j1−1 = s j1−1 )×P(Yi j1−1 = s j1−1)
= πs j1 |s j1−1

.πs j1−1

(2.3)

where πs j1−1 = P(Yj1−1 = s j1−1).
Hence, we can express the first order transitions during the following time intervals:

(t j1−1, t j1),(t j2−1, t j12), ...,(t jk−1, t jk). The transition probabilities can be shown as:

πs ju−1s ju
= P(Yi ju = s ju ,Yi ju−1 = s ju−1)

= P(Yi ju = s ju

∣∣Yi ju−1 = s ju−1 )×P(Yi ju−1 = s ju−1)
= πs ju |s ju−1

.πs ju−1 , u = 2, ...,k.
(2.4)

Now let us consider m = 3. The states are: no depression (0), depression (1) and death
(2). Figure 1 displays the flow of transitions, reverse transitions and repeated transitions,
starting at the baseline from the state of no depression.
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0 = No Depression, 1= Depression, and 2 =Death

Figure 1. Flow chart for different transition types

We can define the following probabilities for k time points, using the Chapman-Kolmogorov
quations [44] and also using Equation (2.1). The joint probability of s j1−1at time t j1−1 and
s j1 at time t j1 is, where t j1−1 is the time of follow-up just prior to t j1 :

(2.5) πs j1−1s j1
= πs j1 |s j1−1

.πs j1−1 .

Similarly, we can obtain the joint probability based on probability of transition from
s j1−1at time t j1−1 to s j1 at time t j1and then from s j1 at time t j2−1 and s j2 at time t j2as follows,
and assuming no other events occurred in between other than remaining in the same state in
subsequent follow-ups until the time of making a transition: Here

πs j1 s j2 s j3
= P(Yi j3 = s j3

∣∣Yi j3−1 = s j2 )×P(Yi j2 = s j2

∣∣Yi j2−1 = s j1 )×P(Yi j1 = s j1).

Here, we assumed that the probability remains same for remaining in the same state
after a transition until the time of the subsequent transition. This implies that we expect
transitions only at time intervals (t j1−1, t j1),(t j2−1, t j12), ...,(t jk−1, t jk) and transitions do not
occur in between. In other words, we can express the Equations (2.4) equivalently as:

πs j1 s j2 s j3
= P(Yi j3 = s j3

∣∣Yi j3−1 = s j2 )P(Yi j2 = s j2

∣∣Yi j2−1 = s j1 )×P(Yi j2−1 = s j1)

= πs j3 |s j2
×πs j2 |s j1

×πs j1
.(2.6)

For k time points of occurrence of events, this can be generalized as follows:

πs j1 ...s jk
= P(Yi jk = s jk

∣∣Yi jk−1 = s jk−1 )× ...×P(Yi j2 = s j2

∣∣Yi j2−1 = s j1 )×P(Yi j2−1 = s j1)

= π
s jk

∣∣∣s jk−1
× ...×πs j2 |s j1

×πs j1

= πs j1

k

∏
u=2

πs ju |s ju−1
.

(2.7)

Let us illustrate the above through a simple example with only two states. Then the states
s j1 ,s j2 ,s j3 and s j4can have only two values, 0 or 1, and a follow-up at time points starting
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from t0 to t6 may result in 27 = 128 possible paths. A typical path may be as 0-0-0-1-1-0-
0. It involves a large number of potential transition types as the time points for follow-up
increase due to the inclusion of runs of 0 or 1 before making a transition. For instance, in
the first transition type, 0 was observed in subsequent times t0, t1, t2 and then 1 was observed
at times t3, t4 and subsequently 0 again at follow-up times t5, t6. In terms of transition, we
observe here only two transitions, 0-1 (during times t2, t3) and then 1-0 (during times t4, t5).
These transitions can be denoted as s j1 → s j2 (0-1), s j2 → s j3 (1-0). In other words, the first
transition for any individual is denoted as s j1 → s j2(u→ v) which is called a transition, and
the second one is s j2 → s j3 (v→ w) which is a reverse transition and the third one can be
extended as s j3 → s j4(w→ s) which is a repeated transition in the above illustration. Figure
2 shows the possible transition types based on the above example.

Figure 2. Flow chart for transitions for the typical path

Now let us develop the link function for the conditional probabilities. The covariate vec-
tor for individual i is Xi = [1, Xi1, ........, Xip] and the corresponding vector of parameters

for transition from s ju−1 to s ju is β ′s ju−1
s ju

=
[

β
s ju−1

s ju
0 , β

s ju−1
s ju

1, ........, βs ju−1
s ju

p

]
,

As there are m possible outcomes for the response variable Y at each follow-up, we can
express the transition from u to v in terms of polytomous logistic regression as follows:

(2.8) π
s ju

∣∣∣s ju−1
(X) = P(Yju = s ju

∣∣Yju−1 = s ju−1 ,X) =
e

gs ju−1
s ju

(X)

m−1
∑

s′ju =0
e

gs ju−1
s′ju

(X)

where s ju = 0,1, ...,m,

gs ju−1 s ju
(X) =


0, i f s ju = 0

ln

[
P(Y ju =s ju

∣∣∣Y ju−1=s ju−1 ,X)

P(Y ju =0
∣∣∣Y ju−1 =s ju−1 ,X)

]
, i f s ju−1 = 1, ...,m−1,

with gs ju−1 s ju
(X) = βs ju−1 s ju 0 +βs ju−1 s ju 1X1 + ...+βs ju−1 s ju pXp.

3. Estimation

The model developed in Section 2 considers m possible outcomes 0,1, ...,m− 1. Here the
transitions start from the state s j1 . To examine the transitions in the subsequent times, we
observe the conditional probabilities starting from the initial state and the corresponding
probability. Then the transitions to different state categories are observed in subsequent
follow-ups. The likelihood function for n individuals with the i-th individual (i = 1,2, ...,n)
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having (k-1) possible transitions specified by k time points t j1 , t j2 , ..., t jk can be expressed
as:

(3.1) L =
n

∏
i=1

[
πs j1

(Xi)
k

∏
u=2

{
πs ju |s ju−1

(xi)
}δis ju−1

s ju

]
where δis ju−1 s ju

= 1, if a transition of the type s ju−1 → s ju occurs to the i-th individual during
the time interval (t ju−1 , t ju), δis ju−1 s ju

= 0, otherwise.
The log likelihood function is given by

(3.2) lnL =
n

∑
i=1

[
lnπs j1

(xi)+
k

∑
u=2

δis ju−1 s ju
ln
{

πs ju |s ju−1
(xi)
}]

.

Differentiating (3.2) with respect to the parameters we obtain the log-likelihood equa-
tions and solving the equations, we obtain the maximum likelihood estimates of the param-
eters for transition type s ju−1 → s juas follows:

(3.3)
∂ lnL

∂βs ju−1 s ju q
=

n

∑
i=1

j2

∑
j1=1

δis ju−1 s ju
Xqi(1−πs ju |s ju−1

(xi)) = 0 ,q = 0,1, . . . , p.

It is noteworthy that the first part of Equation 3.2 does not contain any parameter of
interest for the probabilities of transitions we defined in 2.8.

There is no closed form solution of these equations. So we need to employ an iterative
process based on the Newton-Raphson method. For a quick convergence, we need to use
the second derivatives (which will provide the elements for the observed information matrix
after multiplication by -1),

(3.4)

∂ 2 lnL
∂βs ju−1

s ju q∂βs ju−1
s ju q′

=

−
n
∑

i=1
δis ju−1 s ju

Xq′iXqiπs ju |s ju−1
(xi)(1−πs ju |s ju−1

(xi))
,

∂ 2 lnL
∂βs ju−1

s ju q∂βs ju−1
s′ju q′

=

−
n
∑

i=1
δis ju−1 s ju

Xq′iXqi(πs ju |s ju−1
(xi))(πs′ju |s ju−1

(xi))

where u = 2, . . . ,k;q,q′ = 0, . . . , p;s ju−1 = 0,1, ...,m−1;s ju = 1, ...,m−1.
The models proposed here are different from the independent logistic regression models

for 0-1, 0-2, 0-1-0, 0-1-2, 0-1-0-1, 0-1-0-2 because the proposed models consider the event
history while the independent logistic regression models do not take account of progression
of events completely. Let us consider the transitions, for instance, 0-1, 0-1-0, 0-1-2, 0-1-0-1
and 0-1-0-2, where all these transitions have 0-1 as the first transition, and if we consider
these separately to fit distinct models, then the sample size for the first transition is reduced
resulting in biased estimates of the parameters due to ignoring a substantial proportion of
first transition of the type 0-1 which progressed further with other transitions, reverse tran-
sitions and repeated transitions.

We can also define the likelihood ratio statistic for the overall model based on Equations
3.2–3.4 for testing the hypotheses concerning the parameters of the models for different
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types of transitions. We can employ the BIC for identifying the best model out of the poten-
tial alternatives using (3.2): BIC = −2lnLr + r lnn, where Lris the maximized likelihood,
r =number of parameters in the model, and n =sample size.

4. Application to depression data

During the past decades, many developed and developing countries experienced steady in-
crease in their elderly population. With an increase in proportion of elderly population, the
focus of public health also needs major adjustments in health policies in order to face chal-
lenges due to change in age composition. One such major problem in the elderly population
is to deal with the problem of depression. It is evident from several studies that there is a
steady increase in the incidence and prevalence of depression and related problems among
the elderly population. Like in other developed countries, depression in elderly has emerged
as a major public health concern in the United States [14]. Birrer and Vemuri [8] observed
that nearly 5 million of the 31 million Americans who are 65 years or older are chronically
depressed, and 1 million have major depression. The prevalence of depression is higher
among elderly females than males. In the primary care settings, 17 to 37 percent have been
diagnosed with depression. Recurrence is also very high and can be as high as 40 percent.
Birrer and Vemuri [8] further observed that minor depression may follow a major depression
and a large proportion of patients with minor depression may develop a major depression
within two years [3]. Although minor depression is more common among elderly, they can
develop major depressive episodes. Beekman [5] observed from a 6-year longitudinal aging
study that the prognosis for depression in late life is poor and the impact of depression is
more severe than it was previously thought. The impact of depression at late-life can result
in decreased well-being, decreased daily function, increased mortality, and increased use of
health services.

It is also noteworthy that the problem of depression is not a natural problem associated
with aging but due to the presence of various factors associated with depression or other
related problems, the incidence and prevalence of depression problems tend to increase at
older age. Kales and Valenstein [30] indicated another problem related to the treatment of
depression in elderly population due to complexity in overall management stemming from a
number of factors or confounders. Factors such as chronic pain, medical disability, death of
spouse etc. can lead a spell of depression in elderly. The presence of accumulated stressors
makes it difficult for the elderly population to cope with any episode of depression. It has
been documented that there is an association between depression and increased mortality
risk in older persons with severe depressive disorder [46]. However, there is a strong belief
that the high incidence and prevalence of depression were not measured properly in the past.
It was a major concern until recent years that the depression was under recognized in the
elderly population but the rates of diagnosis increased rapidly since 1990s.

Crystal et al. [13] observed that there are significant disparities by age, ethnicity, and
insurance coverage in treatment of the diagnosed elderly population with depression. Fis-
cher et al. [15] observed that depression is one of the most prevalent, disabling, and costly
chronic health problems seen in primary care. In the USA, the major concerns of primary
care physicians working with elderly population include management of depression and de-
mentia [48, 37]. Lundquist et al. [37] further observed that these disorders pose the most
formidable challenge to the elderly population because these are the major causes of mor-
bidity and mortality in elderly. Various studies [19, 37, 39] observed that 15 percent of the
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geriatric population is affected by depression. Depression requires greater attention for the
elderly population due to high suicide rates among the geriatric patients.

For this study, an application is showed in this section from the Health and Retirement
Study (HRS) data. The HRS is sponsored by the National Institute of Aging (grant number
NIA U01AG09740) and conducted by the University of Michigan [23]. This study is con-
ducted nationwide for individuals over age 50 and their spouses. We have used the panel
data from the six rounds of the study conducted on individuals over age 50 years in 1992,
1994, 1996, 1998, 2000 and 2002. This study uses data documented by RAND. We have
used the panel data on depression for the period, 1992-2002. The depression index is based
on the score on the basis of the scale proposed by the Center for Epidemiologic Studies
Depression (CESD). As indicated in the documentation of the RAND, the CESD score is
computed on the basis of eight indicators attributing depression problem. The indicators
of depression problem are based on six negative (all or most of the time: depressed, ev-
erything is an effort, sleep is restless, felt alone, felt sad, and could not get going) and two
positive indicators (felt happy, enjoyed life). These indicators are yes/no responses of the
respondents feelings much of the time over the week prior to the interview. The CESD
score is the sum of six negative indicators minus two positive indicators. Hence, severity of
the emotional health can be measured from the CESD score. From the panels of data, we
have used 9761 respondents for analyzing depression among the elderly in the USA during
1992-2002. Steffick [47] indicated that hundreds of studies have used the CESD scale to
measure depressive symptoms in a wide range of both clinical and non-clinical populations.
Cheng et al. [11] showed the validity of a short version of the CESD scale.

We considered the following dependent and explanatory variables: no depression (CESD
score 6 0) = 0, depression (CESD score > 0) = 1, death =2 if a respondent died during any
two consecutive waves; age (in years), gender (male=1, female=0), education (high school
or lower=0, some college or higher=1), ethnic group (white=1, else 0; black=1, else 0;
others= reference category), number of conditions of health in the past (1-2 condition=1 if
the number is 1-2, else 0; 3+ conditions= 1 if the number is 3 or more, else 0; no report
of conditions is the reference category), income (low income=1 if the income belongs to
lowest 25 percent, else 0, middle income = 1 if belongs to the income group 25 percent
to 75 percent, else 0; the highest 25 percent income category is the reference category),
duration since the last transition (in years). It is noteworthy that the present study considers
only elderly population without any depression symptom at the first wave. In other words,
healthy elderly subjects are taken into consideration at the first wave and then depression
status is observed for each individual during the subsequent waves.

Table 1 shows counts based on different transition types as displayed in Figure 1. Table
2 summarizes the counts in terms of the proposed models for transitions, reverse transitions
and repeated transitions. We considered only subjects with no depression at the baseline
and observed that 61 percent of all the subjects remain as depression free during the study
period. Out of 8318 depression free subjects, 32 percent moved to the state of depression
and 7 percent made transition to death state. Out of the 2660 transitions, 21.1 percent
remained in the state of depression during the remaining period (in addition to those who
are lost to follow-up during the study period), 72.3 percent made reverse transition to no
depression from the immediate prior state of depression and 6.7 percent died from the state
of depression. Out of 1922 reverse transitions, 66.4 percent remained in the same state
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of no depression, 29.3 percent experienced transition to depression once again (repeated
transition) and 4.3 percent died from the last prior state of no depression.

Table 3 displays the estimates of the parameters for models on transitions, reverse tran-
sitions and repeated transitions as well as for models on transition to death states from no
depression, depression (transition), and no depression (reverse). It is observed that age is
negatively associated with reverse and repeated transitions. Similarly, gender is negatively
associated with all types of transitions (females are more likely to experience all transition
types considered here), but after reverse transition, males are more likely to make transition
to death state, which is not significant though. We observe that there is no association be-
tween education and different types of transition. The white race appears to have significant
association with transition to depression but the black race shows positive association to
death as compared to other ethnic groups. The interaction between age and gender exert
positive impact on transition to depression and reverse transition to depression-free state.
The number of health conditions appears to be positively associated with transition to de-
pression, death and repeated transition. The odds of such associations increase with an
increased number of conditions. Similar association is observed for low and medium in-
come groups compared to the high income category subjects and higher odds is observed
for the lower income group subjects. Duration in a state is expected to have association due
to varied intervals between subjects in making transition. It is noteworthy that duration is
negatively associated with different types of transitions. Table 4 is constructed excluding
the variables education and race which did not show statistically significant association with
any transition type or most of the transition types. The models displayed in Tables 3 and
4 are compared using the BIC and the reduced model presented in Table 4 appears to be a
better model with lower value of BIC.

From the results, it is evident that age has negative association with repeated transition
to depression and with reverse transition as well. Due to lack of any detailed study with all
these transition types in the progression of depression, we can not provide much supporting
literature. However, in a recent systematic review of 40 studies on the prognosis of depres-
sion in older patients in general practice and the community, it is concluded that within the
older population, age seems to be a negative prognostic factor [35]. In addition, Freedman
et al. [17] observed that depression does not increase mortality in elderly. Another study
[31] found on the basis of age by cohort interaction that there was evidence of more de-
pression among younger than older women in the post 1944 cohort but a flat age profile
in the pre 1945 cohort. Hence, the finding of this study provides some additional insights
to explain the ongoing debate in the relationship between age and transition to depression
among elderly with additional explanations concerning disease progression at subsequent
stages.

This study reveals that transition to depression occurs more among the elderly females
as compared to that among males. Cole and Dendukuri [12] concluded on the basis of
a systematic review and meta-analysis that female gender appears to be an important risk
factor for depression among elderly community subjects. Kasen et al. [31] that there is a
rise in depression among the women due to shift in family and work-role norms for women.

George and Lynch [18] demonstrated that black population experience greater stress
growth than whites and this result in higher depression among blacks. They showed that
there is a linear increase in stress growth for blacks but not for whites over time. However,
this study does not show any such difference among the elderly population by race.
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5. Discussion and conclusion

In this paper, a new approach is proposed to construct the likelihood function for estima-
tion of parameters for models emerging from longitudinal data. The proposed approach
takes into account transitions, reverse transitions and repeated transitions and simplifies the
construction of likelihood in order to keep the number of models and thereby, number of
parameters, to a minimum level without making the underlying theory and analysis com-
plex. It is noteworthy that the proposed method considers any number of follow-ups and
any number of transitions for each individual and can be applied to any higher order of un-
derlying Markov chain for modeling data from longitudinal studies. The multistate model
proposed in this paper is based on polytomous outcomes which is an extension of repeated
binary outcomes. The estimation procedure is illustrated in the paper and it can be seen
that the inferential procedure remains simple even after reducing the number of models and
parameters by considering the transitions of different types.

The new procedure proposed in this paper is applied to the important stages of transitions
that occur among the elderly population in terms of depression. Islam and Chowdhur [27]
showed a method for analyzing different stages of binary outcomes with covariate depen-
dence but the proposed technique generalizes it for polytomous outcomes to take account
of multiple outcomes at each follow-up. In addition, the method illustrated in this paper
shows the procedure to take account of transitions taking place at different follow-ups. This
paper provides an extended procedure for dealing with the longitudinal data on depression
employing a discrete-time and discrete state Markov model with covariate dependence and
shows a more generalized form of the likelihood function in order to model for transitions,
reverse transitions and repeated transitions at different follow-ups. In this paper, we have
also considered deaths from no depression or depression states as a separate state instead
of considering it as a potential source of censoring. We have considered polytomous lo-
gistic link functions for analyzing the different types of transitions. The proposed model
can be extended easily for continuous-time and discrete-state processes with different link
functions.

The problem of depression has emerged as a major health concern during the past decades.
This problem can have long-term impact in terms of health risk as well as major socio-
economic consequences. In some cases, the transitions, reverse transitions as well as re-
peated transitions to or from the state of depression can be of interest both to the researchers
and to the health professionals. The application of the proposed model to the HRS data
on depression for six waves during 1992-2002 reveals some interesting results that reflect
the underlying differences in m making transitions, reverse transitions and repeated transi-
tions. The statistical procedure proposed in this paper has the following advantages over
the existing techniques: (i) the estimates are obtained for covariate dependence for different
models such as transitions, reverse transitions, repeated transitions as well as for transitions
to death from no depression (both for first and reverse transitions), and depression (after
transition from no depression) from the same global model based on event history data;
(ii) it takes into account the conditional nature of transitions in estimating the underlying
relationships between covariates and transition probabilities, (iii) the estimates provide a
comparable scenario in explaining the nature of relationships for transitions, reverse transi-
tions and repeated transitions and provides a more specific set of results that can explain the
underlying relationships more specifically in terms of progression of the disease, etc.
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This study provides a generalized approach of covariate dependent Markov chain mod-
els for transitions in depression among elderly population in the USA. The results provide
important findings associated with transition to depression, reverse transition to no depres-
sion and repeated transition to depression that occur over a period of time in the elderly
population. The findings of this study provides a more detailed and more comprehensive set
of results which can help in explaining the long term patterns in depression as well as the
underlying factors that cause transitions to different phases of depression.
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Table 1. Counts based on transitions, reverse transitions and repeated transition

Transition
Types

N Transition
Types

N Transition
Types

N Transition
Types

N

No transition 0-0-0-0-0-3 247 0-0-0-1 504 0-0-2 103
0-3 176 0-0-0-0-0-0 3183 0-0-0-0-1 307 0-0-0-2 126
0-0-3 672 Transition 0-1 0-0-0-0-0-1 219 0-0-0-0-2 130
0-0-0-3 463 0-1 1099 Transition 0-2 0-0-0-0-0-2 111
0-0-0-0-3 332 0-0-1 531 0-2 115

No transition 0-0-0-0-1-3 5 0-0-0-0-1-0 208 Transitions 0-1-2
0-1-1-1-1-1 113 0-0-0-1-1-3 3 0-0-0-1-1-0 66 0-1-2 50
0-0-1-1-1-1 48 0-0-1-3 7 0-0-1-1-1-0 27 0-0-1-2 17
0-0-0-1-1-1 53 Reverse Tran. 0-1-

0
0-1-1-1-1-0 50 0-1-1-2 14

0-0-0-0-1-1 76 0-1-0 246 0-1-0-0-0-0 160 0-0-0-1-2 14
0-0-0-0-0-1 219 0-0-1-0 161 0-0-0-1-0-0 241 0-0-1-1-2 12
0-1-3 16 0-1-0-0 181 0-0-1-0-0-0 162 0-1-1-1-2 15
0-1-1-3 8 0-1-1-0 93 0-0-1-1-0-0 47 0-0-0-0-1-2 18
0-1-1-1-3 5 0-0-0-1-0 109 0-1-1-0-0-0 49 0-0-0-1-1-2 12
0-1-1-1-1-3 2 0-0-1-1-0 41 0-1-1-1-0-0 33 0-0-1-1-1-2 9
0-0-0-1-3 6 0-1-1-1-0 48 0-1-1-1-1-2 16

No transition 0-1-1-0-3 13 0-1-1-0-1-0 16 Transitions 0-1-0-
2

0-0-1-1-0-0 47 0-1-0-0-3 31 0-1-0-0-1-0 38 0-1-0-2 12
0-0-1-0-0-0 162 0-0-1-0-3 32 0-1-0-1 127 0-0-1-0-2 8
0-1-1-1-0-0 33 0-0-0-1-0-3 30 0-0-1-0-1 20 0-1-1-0-2 7
0-0-0-1-0-0 241 0-1-1-1-0-3 10 0-1-1-0-1 23 0-1-0-0-2 17
0-0-0-0-1-0 208 0-0-1-0-0-3 17 0-1-0-0-1 26 0-0-0-1-0-2 10
0-0-0-1-1-0 66 0-1-1-0-0-3 7 0-0-0-1-0-1 69 0-0-1-0-0-2 8
0-1-0-0-0-0 160 0-1-0-0-0-3 18 0-0-1-1-0-1 28 0-1-1-1-0-2 3
0-1-1-0-0-0 49 0-0-1-1-0-3 13 0-1-1-0-0-1 21 0-1-0-0-0-2 11
0-1-1-1-1-0 50 Rep. Tran. 0-1-0-1 0-0-1-0-0-1 37 0-1-1-0-0-2 6
0-0-1-1-1-0 27 0-1-0-1-0-0 45 0-1-1-1-0-1 35
0-1-0-3 62 0-0-1-0-1-0 39 0-1-0-0-0-1 40

Note: No depression = 0; Depression = 1; Death = 2; and Missing = 3.
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Table 2. Distribution of respondents in terms of the proposed models for transitions, reverse
transitions and repeated transitions

Transition Types N %

No transition from no depression 5073 61.0
No depression to depression (0→1) 2660 32.0
No depression to death (0→2) 585 7.0
Total 8318 100.0

No transition after transition to depression 561 21.1
No depression to depression to no
depression (0→1→0)

1922 72.3

No depression to depression to
death (0→1→2)

177 6.7

Total 2660 100.0

No transition after reverse transition 1276 66.4
No depression to depression to no
depression to depression (0→1→0→1)

564 29.3

No depression to depression to no
Depression to death (0→1→0→2)

82 4.3

Total 1922 100.0
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Table 3. Estimates of the parameters of the proposed models for transitions, reverse transi-
tions and repeated transitions

Variables Transitions
0->1 0->2

β SE OR 95% CI β SE OR 95% CI
Intercept 0.53 0.71 -7.51 1.13
Age 0.02 0.01 1.02 1.00 1.05 0.10 0.02 1.10 1.06 1.15
Gender -3.38 0.84 0.03 0.01 0.18 -2.15 1.20 0.12 0.01 1.23
Education -0.01 0.07 0.99 0.86 1.14 0.16 0.11 1.17 0.95 1.45
White 0.35 0.16 1.41 1.03 1.94 0.41 0.26 1.50 0.90 2.51
Black 0.29 0.18 1.34 0.95 1.89 0.65 0.27 1.91 1.12 3.27
1-2 Conditions 0.33 0.07 1.39 1.21 1.60 0.76 0.12 2.15 1.70 2.71
3+ Conditions 0.71 0.12 2.03 1.61 2.57 1.80 0.16 6.07 4.48 8.22
Low Income 0.13 0.10 1.14 0.93 1.40 0.76 0.16 2.14 1.56 2.93
Medium Income 0.12 0.09 1.13 0.95 1.35 0.36 0.15 1.43 1.07 1.90
Duration -0.55 0.02 0.58 0.56 0.60 -0.44 0.02 0.65 0.62 0.68
Age*Gender 0.04 0.01 1.05 1.02 1.08 0.04 0.02 1.04 1.00 1.08

Reverse Transitions Transition to Death
0->1->0 0->1->2

Intercept 17.54 1.87 6.68 2.56
Age -0.13 0.03 0.88 0.83 0.93 -0.02 0.04 0.98 0.90 1.06
Gender -7.14 2.85 0.00 0.00 0.21 -3.45 3.58 0.03 0.00 35.40
Education 0.19 0.17 1.21 0.87 1.68 0.32 0.25 1.37 0.85 2.22
White -0.42 0.41 0.65 0.29 1.47 -0.32 0.54 0.73 0.25 2.12
Black -0.77 0.44 0.46 0.20 1.09 -0.24 0.57 0.79 0.26 2.39
1-2 Conditions -0.13 0.17 0.88 0.63 1.21 0.33 0.27 1.40 0.83 2.36
3+ Conditions -0.28 0.24 0.76 0.47 1.21 1.40 0.32 4.07 2.19 7.58
Low Income -0.03 0.24 0.97 0.60 1.57 1.17 0.39 3.21 1.49 6.90
Medium Income 0.00 0.22 1.00 0.66 1.53 0.47 0.37 1.61 0.78 3.31
Duration -1.04 0.05 0.35 0.32 0.39 -1.01 0.06 0.37 0.32 0.41
Age*Gender 0.11 0.05 1.11 1.02 1.21 0.06 0.06 1.06 0.95 1.19

Repeated Transitions Reverse Transition and Transition to Death
0->1->0->1 0->1->0->2

Intercept 8.29 1.26 0.64 3.03
Age -0.12 0.02 0.88 0.85 0.92 -0.07 0.05 0.94 0.85 1.03
Gender -0.61 2.18 0.54 0.01 38.71 2.51 4.07 12.33 0.00 35941.94
Education -0.18 0.13 0.84 0.65 1.09 -0.44 0.34 0.65 0.33 1.25
White 0.15 0.28 1.17 0.68 2.01 -0.73 0.42 0.48 0.21 1.09
Black 0.14 0.30 1.15 0.64 2.08 -0.45 0.46 0.64 0.26 1.55
1-2 Conditions 0.37 0.13 1.45 1.12 1.87 0.79 0.32 2.20 1.18 4.12
3+ Conditions 0.69 0.19 1.99 1.38 2.87 1.46 0.38 4.32 2.05 9.11
Low Income 0.27 0.19 1.32 0.90 1.92 2.46 0.75 11.72 2.68 51.27
Medium Income 0.07 0.17 1.07 0.77 1.51 1.37 0.75 3.92 0.91 16.95
Duration -0.23 0.02 0.79 0.76 0.83 -0.18 0.04 0.84 0.77 0.91
Age*Gender 0.01 0.04 1.01 0.94 1.08 -0.02 0.07 0.98 0.86 1.11
Model Chi-square 6676.18 (d.f =66, p-value=0.000)
BIC 14638.31
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Table 4. Estimates of the parameters of the proposed reduced models for transitions, reverse
transitions and repeated transitions

Variables Transitions
0->1 0->2

β SE OR 95% CI β SE OR 95% CI
Intercept 0.83 0.69 -6.94 1.10
Age 0.02 0.01 1.02 1.00 1.05 0.10 0.02 1.10 1.06 1.15
Gender -3.38 0.84 0.03 0.01 0.18 -2.19 1.20 0.11 0.01 1.18
1-2 Conditions 0.33 0.07 1.40 1.22 1.60 0.78 0.12 2.18 1.73 2.74
3+ Conditions 0.71 0.12 2.03 1.61 2.57 1.81 0.15 6.11 4.51 8.26
Low Income 0.12 0.10 1.12 0.93 1.36 0.72 0.15 2.06 1.53 2.78
Medium Income 0.12 0.09 1.13 0.95 1.33 0.32 0.14 1.37 1.04 1.81
Duration -0.55 0.02 0.58 0.56 0.60 -0.43 0.02 0.65 0.62 0.68
Age*Gender 0.04 0.01 1.05 1.02 1.07 0.04 0.02 1.04 1.00 1.08

Reverse Transitions Transition to Death
0->1->0 0->1->2

Intercept 17.24 1.81 6.85 2.48
Age -0.13 0.03 0.88 0.83 0.93 -0.03 0.04 0.97 0.90 1.05
Gender -7.11 2.84 0.00 0.00 0.21 -3.70 3.57 0.03 0.00 27.10
1-2 Conditions -0.16 0.17 0.86 0.62 1.19 0.32 0.27 1.38 0.82 2.33
3+ Conditions -0.30 0.24 0.74 0.46 1.18 1.39 0.32 4.03 2.17 7.48
Low Income -0.20 0.22 0.82 0.53 1.27 1.02 0.37 2.79 1.36 5.69
Medium Income -0.10 0.21 0.91 0.61 1.35 0.37 0.36 1.45 0.72 2.92
Duration -1.04 0.05 0.35 0.32 0.39 -1.01 0.06 0.37 0.32 0.41
Age*Gender 0.11 0.05 1.11 1.02 1.21 0.07 0.06 1.07 0.96 1.19

Repeated Transitions Reverse Transition and Transition to Death
0->1->0->1 0->1->0->2

Intercept 8.25 1.23 -0.18 3.01
Age -0.12 0.02 0.88 0.85 0.92 -0.07 0.05 0.93 0.85 1.03
Gender -0.58 2.18 0.56 0.01 39.71 2.44 4.07 11.51 0.00 33428.11
1-2 Conditions 0.38 0.13 1.46 1.13 1.88 0.79 0.32 2.21 1.18 4.13
3+ Conditions 0.71 0.19 2.03 1.41 2.92 1.50 0.38 4.50 2.14 9.45
Low Income 0.35 0.18 1.42 1.00 2.01 2.77 0.73 15.99 3.80 67.40
Medium Income 0.13 0.17 1.14 0.82 1.57 1.56 0.74 4.74 1.12 20.13
Duration -0.23 0.02 0.79 0.76 0.83 -0.18 0.04 0.83 0.77 0.91
Age*Gender 0.01 0.04 1.01 0.94 1.08 -0.02 0.07 0.98 0.86 1.11
Model Chi-square 6643.49 (d.f=48, p-value=0.000)
BIC 14476.41




