
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(3) (2013), 657–670

Asymptotic Distributions of the Generalized
and the Dual Generalized Extremal Quotient

1H. M. BARAKAT, 2E. M. NIGM AND 3A. M. ELSAWAH
1,2,3 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

1hbarakat2@hotmail.com, 2s nigm@yahoo.com, 3A Elsawah85@yahoo.com

Abstract. Necessary and sufficient conditions for the weak convergence of the general-
ized and the dual generalized extremal quotient are obtained. The class of possible non-
degenerate limit distribution functions of quotient of generalized and its dual extreme order
statistics is characterized. Some illustrative examples are obtained.

2010 Mathematics Subject Classification: 62G30

Keywords and phrases: Weak convergence, generalized order statistics, dual generalized
order statistics, extremal quotient.

1. Introduction

Consider a sequence of independent and identically distributed random variables (rv’s) {Xn :
n≥ 1}with distribution function (df) F. Let Mn = max{X1, ...,Xn} and Ln = min{X1, ...,Xn}.
The extremal quotient is defined by qn = Mn/Ln (see, Galambos and Simonelli [10]). This
statistic is obviously not affected by a change of scale. Therefore, its use may be of interest
in cases where the scale plays no role, e.g., in climatic study (see Canard [7]). The extremal
quotient has used in several fields, most notably in industrial quality control, life testing,
small-area variation analysis and the classical heterogeneity of variance situation. For ex-
ample, a quality engineer might use this statistic as a basic measurement in controlling the
roundness of a circular component in a production process. Also, Wong and Wong [17]
used the extremal quotient to test the hypothesis that the population of a sample has an ex-
ponential df. The same authors [16] used this statistic for testing the shape parameter of the
Weibull df. The limit laws for the extremal quotient were fully characterized by Barakat [5].
Cramer and Kamps [8] have used the extremal quotient in the framework of sequential order
statistics. Moreover, some additional relevant references of this statistic are given these.

Generalized order statistics (gos) have been introduced by Kamps [12] as a unifica-
tion of several models of ascendingly ordered rv’s. The gos X(1,n, m̃,k),X(2,n, m̃,k),
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...,X(n,n, m̃,k) based on a df F are defined by their probability density function (pdf)

f (m̃,k)
1,2,...,n:n(x1, ...,xn) = k

(
n−1

∏
i=1

γi

)(
n−1

∏
i=1

(1−F(xi))mi

)
(1−F(xn))k−1

(
n

∏
i=1

f (xi)

)
,

on the cone {(x1, ...,xn) : x0 = F−1(0) < x1 ≤ ... ≤ xn < F−1(1) = x0}, where x0 = inf{x :
F(x) > 0} ≥ −∞ and x0 = sup{x : F(x) < 1} ≤ ∞. The parameters γ1, ...,γn are defined by
γn = k > 0 and γr = k +n− r +∑

n−1
j=r m j > 0, r = 1,2, ...,n−1, where m̃ = (m1, ...,mn−1) ∈

ℜn−1. Particular choice of the parameters γ1, ...,γn leads to different models, e.g., ordinary
order statistics (oos) (m1 = m2 = ... = mn−1 = 0,k = 1); order statistics with non-integral
sample size (m1 = m2 = ... = mn−1 = 0,k = α − n + 1, and α > n−1); kth record values
(m1 = m2 = ... = mn−1 = −1 and k is any positive integer) and sequential order statistics
(sos) (mi = (n− i+1)αi− (n− i)αi+1−1,1≤ i≤ n−1,k = αn and α1,α2, ...,αn > 0).

The concept of dual generalized order statistics (dgos) is introduced in Burkschat et al.
[6] to enable a common approach to descendingly ordered rv’s like reversed order statistics
and lower records models. The dgos Xd(1,n, m̃,k),Xd(2,n, m̃,k), ...,Xd(n,n, m̃,k) based on
a df F are defined by their pdf

f d(m̃,k)
1,2,...,n.n(x1, ...,xn) = k

(
n−1

∏
i=1

γi

)(
n−1

∏
i=1

Fmi(xi)

)
(Fk−1(xn))

(
n

∏
i=1

f (xi)

)
,

where x0 = F−1(1) > x1 ≥ ...≥ xn > F−1(0) = x0.
In this work, we consider a wide subclass of gos (dgos), by assuming γ j − γ j+1 =

m + 1 ≥ 0. This subclass is known as m-gos (m-dgos). Clearly, many important practi-
cal models of m-gos are included such as oos, order statistics with non-integer sample size,
upper record values and sos. The marginal df’s of the rth and (n− r + 1)th m-gos (c.f.
Nasri-Roudsari [13], see also Barakat [3]) are represented by Φ

(m,k)
r:n (x) = IG(x)(r,N− r +1)

and Φ
(m,k)
n−r+1:n(x) = IG(x)(N−R+1,R), respectively, where Ix(n,m) = 1/B(n,m)

∫ x
0 tn−1(1−

t)m−1dt is the incomplete beta ratio function, G(x) = 1− (1−F(x))m+1,N = ` + n− 1,
R = `+r−1 and ` = k/(m+1). Similarly, by using the results of Kamps [12] and Burkschat
et al. [6], the marginal df’s of the rth and (n− r + 1)th m-dgos are given by Φ

(m,k)
d,r:n (x) =

IFm+1(x)(N− r +1,r) and Φ
(m,k)
d,n−r+1:n(x) = IFm+1(x)(R,N−R+1), respectively.

The central result of the classical extreme value theory is that the class of possible limit
df’s of each of the lower and upper extreme order statistics is restricted to essentially three
different types. Namely, for some suitable normalizing constants αn,an > 0 and βn,bn ∈ℜ,
we have

(1.1) Φ
(0,1)
r:n (αnx+βn) = IF(αnx+βn)(r,n− r +1) w−→n 1−Γr(Ui,α(x)), i ∈ {1,2,3},

if, and only if, nF(αnx+βn)→Ui,α(x), as n→ ∞, and

(1.2) Φ
(0,1)
n−r+1:n(anx+bn) = IF(anx+bn)(n− r +1,r) w−→n Γr(Vj,β (x)), j ∈ {1,2,3},

if, and only if, n(1−F(anx + bn)→ Vj,β (x)), as n→ ∞, where w−→n denotes the weak
convergence, as n→ ∞, Γr(x) = 1/(Γ(r))

∫
∞

x tr−1e−tdt,

Type I : U1,α(x)=
{

(−x)−α , x < 0,α > 0,
∞, x≥ 0,

Type II : U2,α(x)=
{

xα , x≥ 0,α > 0,
0, x < 0,
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(1.3) Type III : U3,0(x) = ex, ∀x,

and

Type I : V1,β (x)=
{

x−β , x > 0,β > 0,
∞, x≤ 0,

Type II : V2,β (x)=
{

(−x)β , x≤ 0,β > 0,
0, x > 0,

.

(1.4) Type III : V3,0(x) = e−x, ∀x.

The following two theorems, due to Nasri-Roudsari [13] and Nasri-Roudsari and Cramer
[14] (see also Barakat [3]), extend the above result to the X(r,n,m,k), Xd(n− r +1,n,m,k),
X(n− r +1,n,m,k) and Xd(r,n,m,k).

Theorem 1.1. Let m1 = m2 = ... = mn−1 = m > −1 and r be fixed integer with respect to
n. Then, there exist normalizing constants αn,m, α̃n,m > 0 and βn,m, β̃n,m, for which

(1.5) Φ
(m,k)
r:n (αn,mx+βn,m) w−→n H(m,k)

i,α (x)

and

(1.6) Φ
(m,k)
d,n−r+1:n(α̃n,mx+ β̃n,m) w−→n Hd(m,k)

i,α (x),

where H(m,k)
i,α (x) and Hd(m,k)

i,α (x) are non-degenerate df’s if, and only if, (1.1) is satisfied.

In this case, H(m,k)
i,α (x) = H(0,1)

i,α (x) = 1− Γr(Ui,α(x)) and Hd(m,k)
i,α (x) = 1− ΓR(Um+1

i,α (x))

(and we say that the df F belongs to the domain of attraction of each of the limits H(m,k)
i,α

and Hd(m,k)
i,α , written F ∈ D(H(m,k)

i,α ) and F ∈ D(Hd(m,k)
i,α ), respectively). Moreover, the nor-

malizing constants can be chosen such that αn,m = αφ(n),βn,m = βφ(n), α̃n,m = αψ(n) and
β̃n,m = βψ(n), where φ(n) = n(m + 1) and ψ(n) = n1/(m+1). Finally, equivalent necessary
and sufficient conditions for (1.5) and (1.6) to be satisfied are NG(αn,mx+βn,m)→Ui,α(x)
and N Fm+1(α̃n,mx+ β̃n,m)→Um+1

i,α (x), as n→ ∞, respectively.

Theorem 1.2. Let m1 = m2 = ... = mn−1 = m > −1 and r be fixed integer with respect to
n. Then, there exist normalizing constants an,m, ãn,m > 0 and bn,m, b̃n,m, for which

(1.7) Φ
(m,k)
n−r+1:n(an,mx+bn,m) w−→n H(m,k)

j,β (x)

and

(1.8) Φ
(m,k)
d,r:n (ãn,mx+ b̃n,m) w−→n Hd(m,k)

j,β (x),

where H(m,k)
j,β (x) and Hd(m,k)

j,β (x) are non-degenerate df’s if, and only if, (1.2) is satisfied. In

this case, H(m,k)
j,β (x) = ΓR(V m+1

j,β (x)) and Hd(m,k)
j,β (x) = Hd(0,1)

j,β (x) = Γr(Vj,β (x)) (and we say

that the df F belongs to the domain of attraction of each of the limits H(m,k)
j,β and Hd(m,k)

j,β ,

written F ∈ D(H(m,k)
j,β ) and F ∈ D(Hd(m,k)

j,β ), respectively). Moreover, the normalizing con-

stants can be chosen such that an,m = aψ(n),bn,m = bψ(n), ãn,m = aφ(n) and b̃n,m = bφ(n).
Finally, equivalent necessary and sufficient conditions for (1.7) and (1.8) to be satisfied are
N(1−G(an,mx + bn,m))→ V m+1

j,β (x) and N(1−Fm+1(ãn,mx + b̃n,m))→ Vj,β (x), as n→ ∞,

respectively.
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The normalizing constants in Theorems 1.1 and 1.2 can be determined by the following
lemma, see Barakat [5].

Lemma 1.1. The normalizing constants an,bn,αn and βn can be chosen such as:
Type I: an = |γ(n)|,bn = 0 and αn = |γ(n)|,βn = 0, where x0 = −x0 = ∞, γ(t) = inf{x :
F(x)≥ 1−1/t} ↑ x0, and γ(t) = sup{x : F(x)≤ 1/t} ↓ x0, as n→ ∞.

Type II: an = |x0− γ(n)|,bn = x0 and αn = |x0− γ(n)|,βn = x0,where−∞<x0 <x0 <∞.

Type III: an = g(bn),bn = |γ(n)| and αn = g(bn),βn = |γ(n)|, where g(t)= 1/(1−F(t))
∫ x0

t (1−
F(y))dy, t < x0 ≤ ∞, and g(t) = 1/(F(t))

∫ t
x0

F(y)dy,−∞≤ x0 < t.

Our aim in this paper is to derive the class of possible non-trivial and trivial limit df’s
of the suitably normalized generalized and dual generalized extremal quotient q∗n(m,k) =
A−1

n,m(qn(m,k)− Bn,m) and q∗d,n(m,k) = Ã−1
n,m(qd,n(m,k)− B̃n,m), respectively, where An,m,

Ãn,m > 0, Bn,m, B̃n,m ∈ℜ, qn(m,k)= Mn(m,k)/Ln(m,k)= X(n,n,m,k)/X(1,n,m,k), qd,n(m,
k) = Md,n(m,k)/Ld,n(m,k) = Xd(n,n,m,k)/Xd(1,n,m,k) and the trivial convergence takes
place, when one of the extremes outweighs the other (see de Haan [9]). Since, any result
of dgos can be easily deduced from the corresponding result of gos (as Burkschat et al. [6],
and Theorems 1.1, 1.2 have shown), the emphasis of our study will be mainly on gos.

2. The generalized extremal quotient (the case m >−1)

In this section and in the sequel the limit df’s H(m,k)
i,α and H(m,k)

i,β ( Hd(m,k)
i,β and Hd(m,k)

i,α ),
i = 1,2,3, are considered as the limit df’s of the minimum and maximum gos (dgos), respec-
tively, e.g., in the sequel the limit df’s H(m,k)

i,α and H(m,k)
i,β , i = 1,2,3, are defined in Theorems

1.1 and 1.2, with r = 1. The following two theorems fully characterize the possible non-
trivial and trivial limit df’s of q∗n(m,k).

Theorem 2.1. (Non-trivial types).
Part 1. If F ∈ D(H(m,k)

1,α ) and F ∈ D(H(m,k)
1,β ), then

P(q∗n(m,k)≤ q) w−→n Q(m,k)
1,1,β ,α(q) =

{
1, q≥ 0,

1−
∫

∞

0 Γ` ((|q|y−1/α)−(m+1)β )e−ydy, q < 0.

Moreover, If F ∈ D(H(m,k)
1,α ), F ∈ D(H(m,k)

2,β ) and x0 = 0, then

P(q∗n(m,k)≤ q) w−→n Q(m,k)
2,1,β ,α(q) =

{
0, q < 0,

1−
∫

∞

0 Γ` ((|q|y−1/α)(m+1)β )e−ydy, q≥ 0.

Finally, if F ∈ D(H(m,k)
2,α ), F ∈ D(H(m,k)

1,β ) and x0 = 0, then

P(q∗n(m,k)≤ q) w−→n Q(m,k)
1,2,β ,α(q) =

{
0, q < 0,∫

∞

0 Γ` ((qy1/α)−(m+1)β )e−ydy, q≥ 0.

In the above three cases, we can take An,m = an,m/αn,m and Bn,m = 0.

Part 2. Let F ∈ D(H(m,k)
2,α ) and F ∈ D(H(m,k)

2,β ), where x0,x0 6= 0 and α = β (m + 1). Then,
the df of q∗n(m,k) converges weakly to a non-degenerate df if, and only if,

(2.1) η = lim
n→∞

an,m

αn,m
exists,with 0≤ η ≤ ∞.
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The convergence is non-trivial if, and only if, 0 < η < ∞. In this case we can take An,m =
an,m/|βn,m| and Bn,m = bn,m/βn,m. The non-trivial types are

Type I: Q(m,k):1
2,2,β ,α(q) =

∫
∞

−∞
(H(m,k)

2,α (η |x0/x0|(q− z))) d(1−H(m,k)
2,β (−z)), if x0 < 0.

Type II: 1−Q(m,k):1
2,2,β ,α(−q), if x0 > 0.

Type III: Q(m,k):3
2,2,β ,α(q) = 1−Q(m,k):2

2,2,β ,α(−q), if x0 < 0 < x0,

where Q(m,k):2
2,2,β ,α(q) =

∫
∞

−∞
(H(m,k)

2,α (η | x0/x0 | (q− z)))dH(m,k)
2,β (z).

Part 3. Let F ∈ D(H(m,k)
3,0 ) and F ∈ D(H(m,k)

3,0 ). In order that q∗n(m,k) converges weakly to a
non-degenerate df, it is necessary and sufficient that

(2.2) ζ = lim
n→∞

a−1
n,m αn,m | bn,mβ

−1
n,m |

exists, with 0≤ ζ ≤ ∞. The convergence is non-trivial if, and only if, 0 < ζ < ∞. The limit
type in this case is given by Q(m,k)

3 (q) = H(m,k)
3 (ζ−1q) ∗H(m,k)

3 (q), where “∗”denotes the
convolution operator,

H(m,k)
3 (q) =

{
H(m,k)

3,0 (q), x0 ≥ 0,

1−H(m,k)
3,0 (−q), x0 < 0,

and H(m,k)
3 (q) =

{
H(m,k)

3,0 (q), x0 ≤ 0,

1−H(m,k)
3,0 (−q), x0 > 0.

Corollary 2.1. Let F ∈D(H(m,k)
3,0 ), F ∈D(H(m,k)

3,0 ) and x0,x0 ∈ (−∞,∞)|{0}. Then q∗n(m,k)
converges weakly to a non-degenerate df if, and only if, the condition (2.1) is satisfied. In
this case, we can take An,m = an,m/|βn,m| and Bn,m = bn,m/βn,m. Moreover, the non-trivial
types are
Type I: Q(m,k):1

3 (q) =
∫

∞

−∞
(H(m,k)

3,0 (η | x0/x0 | (q− z)))d(1−H(m,k)
3,0 (−z)), if x0 < 0.

Type II: 1−Q(m,k):1
3 (−q), if x0 > 0.

Type III: Q(m,k):3
3 (q) = 1−Q(m,k):2

3 (−q), if x0 < 0 < x0,

where Q(m,k):2
3 (q) =

∫
∞

−∞
(H(m,k)

3,0 (η | x0/x0 | (q− z)))d(H(m,k)
3,0 (z)).

Theorem 2.2 (Trivial types). Part 1. If F ∈ D(H(m,k)
3,0 ) and F ∈ D(H(m,k)

1,β ), then

P(q∗n(m,k)≤ q) w−→n Q(m,k)
1,3,β ,0(q) =

{
H(m,k)

1,β (q), x0 > 0,

1−H(m,k)
1,β (−q), x0 < 0.

Moreover, if F ∈ D(H(m,k)
2,α ),F ∈ D(H(m,k)

1,β ) and x0 6= 0, then the df of q∗n(m,k) converges

weakly to the trivial df Q(m,k)
1,2,β ,α(q) = Q(m,k)

1,3,β ,0(q). Finally, the normalizing constants in the

above two cases can be chosen as An,m = an,m
|βn,m| andBn,m = 0.

Part 2. If F ∈ D(H(m,k)
1,α ) and F ∈ D(H(m,k)

3,0 ), then

P(q∗n(m,k)≤ q) w−→n Q(m,k)
3,1,0,α(q) =

{
(1− e−qα

)I[0,∞)(q), x0 < 0,

e−|q|
α

I(−∞,0)(q)+ I[0,∞)(q), x0 > 0.

Moreover, if F ∈ D(H(m,k)
1,α ), F ∈ D(H(m,k)

2,β ) and x0 6= 0, then the df of q∗n(m,k) converges

weakly to the trivial df Q(m,k)
2,1,β ,α(q) = Q(m,k)

3,1,0,α(q). In the above two cases we can take An,m =
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|bn,m|
αn,m

and Bn,m = 0.

Part 3. Let F ∈ D(H(m,k)
3,0 ) and F ∈ D(H(m,k)

2,β ). Then the df of q∗n(m,k) converges weakly to
the trivial df

Q(m,k)
2,3,β ,0(q) =


1−H(m,k)

2,β (−q), if x0 = 0, with An,m = an,m
|βn,m| , Bn,m = 0,

H(m,k)
3,0 (q), if x0 < 0, with An,m = |bn,m|αn,m

|βn,m|2
, Bn,m = bn,m

βn,m
,

1−H(m,k)
3,0 (−q), if x0 > 0, with An,m = |bn,m|αn,m

|βn,m|2
, Bn,m = bn,m

βn,m
.

Part 4. Let F ∈ D(H(m,k)
2,α ) and F ∈ D(H(m,k)

3,0 ). Then the df of q∗n(m,k) converges weakly to
the trivial df

Q(m,k)
3,2,0,α(q) =


e−q−α

I[0,∞)(q), if x0 = 0, with An,m = bn,m
αn,m

, Bn,m = 0,

1−H(m,k)
3,0 (−q), if x0 < 0, with An,m = an,m

|βn,m| , Bn,m = bn,m
βn,m

,

H(m,k)
3,0 (q), if x0 > 0, with An,m = an,m

|βn,m| , Bn,m = bn,m
βn,m

.

Part 5. Let F ∈ D(H(m,k)
2,α ) and F ∈ D(H(m,k)

2,β ). Then the df of q∗n(m,k) converges weakly to
the trivial df

Q(m,k)
2,2,β ,α(q)=



e−q−α

I[0,∞)(q), if x0 = 0, withAn,m = |bn,m|
αn,m

,Bn,m =0,

1−H(m,k)
2,β (−q), if x0 = 0, withAn,m = an,m

|βn,m| ,Bn,m =0,

H(m,k)
2,β (q), if x0 > 0,β (m+1) > α, withAn,m = an,m

|βn,m| ,Bn,m = bn,m
βn,m

,

1−H(m,k)
2,β (−q), if x0 < 0,β (m+1) > α, withAn,m = an,m

|βn,m| ,Bn,m = bn,m
βn,m

,

H(m,k)
2,α (q), if x0 < 0,β (m+1)<α, withAn,m = |bn,m|αn,m

|βn,m|2
,Bn,m = bn,m

βn,m
,

1−H(m,k)
2,α (−q), if x0 > 0,β (m+1)<α, withAn,m = |bn,m|αn,m

|βn,m|2
,Bn,m = bn,m

βn,m
.

2.1. Proofs

The proof of the preceding two theorems depends on the following lemmas.

Lemma 2.1. Let F ∈ D(H(m,k)
3,0 ),F ∈ D(H(m,k)

3,0 ) and q∗n(m,k) converges weakly to a non-
degenerate df Q, then a−1

n,mαn,m|bn,mβ−1
n,m| → ζ , as n→ ∞,0≤ ζ ≤ ∞.

Proof. Suppose that the df of q?
n(m,k) converges weakly to a non-degenerate limit df. Take

An,m = an,m/|βn,m| and Bn,m = bn,m/βn,m. Then

q?
n(m,k) =

M?
n(m,k)− (a−1

n,mαn,mbn,mβ−1
n,m) L?

n(m,k)
|βn,m|−1Ln(m,k)

,

where M?
n(m,k) = a−1

n,m(Mn(m,k)−bn,m) and L?
n(m,k) = α−1

n,m(Ln(m,k)−βn,m). On the other
hand, we have bn,m ↑ x0 and βn,m ↓ x0, as n→ ∞ (c.f. Gnedenko [11]). Thus, on account of
Lemma 3.3 in Barakat [5], |βn,m|−1Ln(m,k) p−→n 1, if x0 ≥ 0, |βn,m|−1Ln(m,k) p−→n − 1,

if x0 < 0, where p−→n denotes the convergence in probability, as n→ ∞.

After some algebra, we get, for sufficiently large n, the following representation

q?
n(m,k) w=n S0(

Mn(m,k)−bn,m

an,m
)+S0(a−1

n,m αn,m | bn,mβ
−1
n,m |)(

Ln(m,k)−βn,m

αn,m
), (I)
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where “Xn
w=n Yn”means that the rv’s Xn and Yn have the same limit df,

S0 =
{
−1, x0 > 0,
+1, x0 ≤ 0,

and S0 =
{

1, x0 ≥ 0,
−1, x0 < 0.

Now, in view of Theorems 1.1 and 1.2, we have F ∈D(H(0,1)
3,0 ) and F ∈D(H(0,1)

3,0 ). Therefore,
by replacing n in (αn,βn) and (an,bn) respectively by φ(n) and ψ(n), we can easily see that
the remaining part of the proof is the same as the proof of Lemma 3.4 in Barakat [5].

Remark 2.1. In the proof of Lemma 2.1, if we take An,m = | bn,m |αn,m/β 2
n,m and Bn,m =

bn,m/βn,m, we get the asymptotic relation

q?
n(m,k) w=n S0(| b−1

n,m βn,m | an,mα
−1
n,m)(

Mn(m,k)−bn,m

an,m
)+S0(

Ln(m,k)−βn,m

αn,m
). (II)

Remark 2.2. If F ∈ D(H(m,k)
2,α ), F ∈ D(H(m,k)

2,β ) and x0,x0 6= 0, the asymptotic representa-
tions (I) and (II) hold with βn,m = x0 and bn,m = x0.

Lemma 2.2. For any ε > 0, as n→ ∞, we have

(i) If F ∈ D(H(m,k)
1,β ), then an,mn−(β (m+1))−1+ε −→ ∞ and an,mn−(β (m+1))−1−ε −→ 0;

(ii) If F ∈ D(H(m,k)
1,α ), then αn,mn−(α)−1+ε −→ ∞ and αn,mn−(α)−1−ε −→ 0;

(iii) If F ∈ D(H(m,k)
2,β ), then an,mn(β (m+1))−1+ε −→ ∞ and an,mn(β (m+1))−1−ε −→ 0;

(iv) If F ∈ D(H(m,k)
2,α ), then αn,mn(α)−1+ε −→ ∞ and αn,mn(α)−1−ε −→ 0;

(v) If F ∈ D(H(m,k)
3,0 ), then an,mn+ε −→ ∞ and an,mn−ε −→ 0;

(vi) If F ∈ D(H(m,k)
3,0 ), then αn,mn+ε −→ ∞ and αn,mn−ε −→ 0.

Proof. In view of Theorems 1.1 and 1.2 and by replacing n in αn and an respectively by
φ(n) and ψ(n), we can easily see that the proof of this lemma is exactly the same as the
proof of Lemma 3.5 in Barakat [5].

Lemma 2.3. For any ε > 0, as n→ ∞, we have

(i) If F ∈ D(H(m,k)
3,0 ), then dn,mn+ε → ∞ and dn,mn−ε → 0, where dn,m = an,m/|bn,m|.

(ii) If F ∈D(H(m,k)
3,0 ), then dn,mn+ε →∞ and dn,mn−ε → 0, where dn,m = αn,m/|βn,m|.

Proof. Again since F ∈ D(H(m,k)
3,0 ) and F ∈ D(H(m,k)

3,0 ), then in view of Theorems 1.1, 1.2,

we get F ∈ D(H(0,1)
3,0 ) and F ∈ D(H(0,1)

3,0 ). Therefore, by using Lemma 3.6 in Barakat [5],
we get dnn+ε → ∞; dnn−ε → 0 and dnn+ε → ∞; dnn−ε → 0, where, dn = an/|bn| and
dn = αn/|βn|. Then by replacing n1/(m+1) and n(m+1) instead of n we get the result.
Proof of Theorem 2.1. The proof of Part 1 follows, after some algebra, by using Lemma
1.1, Lemma 3.1 in Barakat [5] and Khinchine’s convergence to types theorem. To prove
Part 2, we use Remark 2.2 with Lemma 2.1 and the result of de Haan [9, Theorem 2]). In
this case, it is easy to show that q∗n(m,k) converges to a non-degenerate df if, and only if,
(2.1) is satisfied with 0 < η < ∞. Finally, to prove Part 3, we use Lemmas 2.1, 2.3 and the
result of de Haan [9, Theorem 2]. It is easy in this case to show that q∗n(m,k) converges to a
non-degenerate df if, and only if, (2.2) is satisfied, with 0 < ζ < ∞.
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Proof of Corollary 2.1. Under the assumption of the corollary, we have lim
n→∞

an,m/αn,m = η .

Therefore, the proof follows by using the representation (I) and by applying the result of
Theorem 2.1, Part 3.

Proof of Theorem 2.2. Under the assumptions of Parts 1 and 2 and by using Lemma 1.1,
Lemma 3.3 in Barakat [5], we get after some algebra the two representations

q?
n(m,k) w=n

{
(Mn(m,k)

an,m
), x0 > 0,

−(Mn(m,k)
an,m

), x0 < 0.
and q?

n(m,k) w=n

{
(Ln(m,k)

αn,m
)−1, x0 > 0,

−(Ln(m,k)
αn,m

)−1, x0 < 0,

respectively. The proof of the first two parts follows by using the above two representations.
The proof of Part 3 follows, by virtue of Lemmas 1.1, 2.2, 2.3 and the representation in (II),
if x0 6= 0, or by virtue of the relation q?

n(m,k) w=n − (Mn(m,k)/an,m), if x0 = 0. The proof
of Part 4 follows, by virtue of Lemmas 1.1, 2.2, 2.3 and the representation in (I), if x0 6= 0,

or by virtue the relation q?
n(m,k) w=n (Ln(m,k)/αn,m)−1, if x0 = 0. Finally, the proof of Part

5 can be obtained after some algebra from the asymptotic representations (I) (or (II)) by
choosing the normalizing constants, as stated in this part.

The class of possible non-trivial and trivial limit df’s of q∗d,n(m,k) can be obtained in a
simple way as Theorems 2.1 and 2.2, e.g.,

Theorem 2.3 (Non-trivial types for q∗d,n(m,k)). Part 1. Let F ∈ D(Hd(m,k)
1,β ) and F ∈

D(Hd(m,k)
1,α ). Then the df of P(q∗d,n(m,k)≤ q) w−→n Q(m,k)

1,1,α,β (q), Ãn,m = α̃n,m/ãn,m and B̃n,m =

0. Moreover, if F ∈ D(Hd(m,k)
1,β ), F ∈ D(Hd(m,k)

2,α ) and x0 = 0, then P(q∗d,n(m,k) ≤ q) w−→n
Q(m,k)

2,1,α,β (q). Finally, if F ∈ D(Hd(m,k)
2,β ), F ∈ D(Hd(m,k)

1,α ) and x0 = 0. then P(q∗d,n(m,k) ≤

q) w−→n Q(m,k)
1,2,α,β (q).

In the above three cases, we can take Ãn,m = α̃n,m/ãn,m and B̃n,m = 0.

Part 2. Let F ∈ D(Hd(m,k)
2,α ), F ∈ D(Hd(m,k)

2,β ), where x0,x0 6= 0 and β = α(m + 1). Then
q∗d,n(m,k) converges weakly to a non-degenerate df, it is necessary and sufficient that τ =
limn−→∞ ãn,m/α̃n,m exists, with 0 ≤ τ ≤ ∞. The convergence is non-trivial if, and only if,
0 < τ < ∞. Moreover, we can take Ãn,m = ãn,m|β̃n,m|/|b̃n,m|2 and B̃n,m = |β̃n,m/b̃n,m|. The
non-trivial types are
Type I: Qd(m,k):1

2,2,α,β (q) =
∫

∞

−∞
Hd(m,k)

2,α (τ|x0/x0|(q− z))d(1−Hd(m,k)
2,β (−z)), if x0 > 0.

Type II: 1−Qd(m,k):1
2,2,α,β (−q), if x0 < 0.

Type III: Qd(m,k):3
2,2,α,β (q) = 1−Qd(m,k):2

2,2,α,β (−q), if x0 < 0 < x0,

where Qd(m,k):2
2,2,α,β (q) =

∫
∞

−∞
(Hd(m,k)

2,α (τ|x0/x0|(q− z)))dHd(m,k)
2,β (z).

Part 3. Let F ∈ D(Hd(m,k)
3,0 ) and F ∈ D(Hd(m,k)

3,0 ). In order that q∗d,n(m,k) converges weakly
to a non-degenerate df, it is necessary and sufficient that ξ = limn↓∞ ã−1

n,mα̃n,m|b̃n,mβ̃−1
n,m|

exists, with 0 ≤ ξ ≤ ∞. The convergence is non-trivial if, and only if, 0 < ξ < ∞. More-
over, the limit type in this case is given by Qd(m,k)

3 (q) = Hd(m,k)
3 (ξ−1q) ∗Hd(m,k)

3 (q), where

Hd(m,k)
3 (q)=

{
Hd(m,k)

3,0 (q), x0 ≤ 0,

1−Hd(m,k)
3,0 (−q), x0 > 0,

and Hd(m,k)
3 (q)=

{
H(m,k)

3,0 (q), x0 ≥ 0,

1−Hd(m,k)
3,0 (−q), x0 < 0.
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3. The generalized extremal quotient (the case m =−1, i.e., record values)

The upper (lower) record model can be obtained as a special case of gos (dgos) model by
putting m = −1 and k = 1. In this section we consider the limit behavior of the statistic
q∗n(−1,1) = C−1

n (qn(−1,1)−Dn), where Cn > 0 and Dn are suitable sequences of normal-
izing constants. Beside the definition of the record values based on the concept of the gos,
the upper record values (or simply a record) can be defined as an observation X j, such that
X j > max(X1, ...,X j−1). By convention X1 is a record value. The indices at which record
values occur are given by the rv’s Tn = min{ j : j > Tn−1, X j > X j−1, n > 1} and T1 = 1.
Thus, the record value sequence {Rn} is then defined by Rn = XTn , n≥ 1. Consequently, the
record extremal quotient is defined by qn(−1,1) = Rn/R1 = Rn/X1. Therefore, we expect
that the limit df of q?

n will be depend on the population df F(x). The explicit form of the df
of Rn is given by

P(Rn ≤ x) =
{

1−Γn(H(x)), if n > 1,
F(x), if n = 1,

where H(x) =− log(1−F(x)) is the hazard function of the df F (see Arnold et al. [2]).
Resnick [15] showed that the possible limiting record value distributions of the suitably

normalized record R?
n = c−1

n (Rn−dn), cn > 0, dn ∈ℜ, are

H(−1,1)
i,β (x) = N (− log(− logH(0,1)

i,β (x))) = N (− log(Vi,β (x))), i = 1,2,3,

where N (.) is the standard normal distribution, H(0,1)
i,β is an maximum value distribution

and the functions Vi,β , i = 1,2,3, are defined in (1.4). In this case we say that F is in the

domain of record attract of H(−1,1)
i,β and write F ∈ DR(H(−1,1)

i,β ). The following theorem due
to Resnick [15] (see Arnold et al., [2]) is a basic tool of our study in this section.

Theorem 3.1 (Duality Theorem). If an associated df Fa is defined by Fa = 1−exp(−
√

H(x))
and ΨF(n) = inf{y : F(y) > 1− e−n} = F−1(1− e−n)→ x0, as n→ ∞, then the following
limit implications hold:

(i) F ∈ DR(H(−1,1)
1,α ) if, and only if, Fa ∈ D(H(0,1)

1,α/2) and in this case we may use as
normalizing constants cn = ΨF(n) and dn = 0;

(ii) F ∈ DR(H(−1,1)
2,α ) if, and only if, Fa ∈ D(H(0,1)

2,α/2). In this case F−1(1) = x0

is necessarily finite (see Lemma 1.1) and we may use as normalizing constants
cn = x0−ΨF(n) and dn = x0;

(iii) F ∈ DR(H(−1,1)
3,0 ) if, and only if, Fa ∈ D(H(0,1)

3,0 ) and in this case we may use as
normalizing constants cn = ΨF(n+

√
n)−ΨF(n) and dn = ΨF(n).

The following theorem fully characterizes the possible limit df’s of q?
n(−1,1).

Theorem 3.2. Let Cn > 0 and Dn be suitable normalizing constants. Furthermore, let
q?

n(−1,1) = C−1
n (qn(−1,1)−Dn). Then, we have the following implications:

(i) If F ∈ DR(H(−1,1)
1,α ), then

P(q?
n(−1,1)≤ q) w→n

{
F(0)+

∫
∞

0 N (α logqx))dF(x), if q≥ 0,

F(0)−
∫ 0
−∞

N (α logqx))dF(x), if q≤ 0,

with Cn = cn = ΨF(n) and Dn =−1.
(ii) If
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(a) F ∈ DR(H(−1,1)
2,α ), x0 > 0 or

(b) F ∈ DR(H(−1,1)
3,0 ), 0 < x0 < ∞ or

(c) F ∈ DR(H(−1,1)
3,0 ), x0 = ∞, ΨF (n+

√
n)

ΨF (n) → 1, as n→ ∞, then

P(q?
n(−1,1)≤ q) w→n P(W ≤ q+1),

where W = 1/X1, with Cn = dn and Dn = dn.

Proof. First, we notice that the condition x0 > 0, in Part (ii), guarantees that the scale nor-
malizing constant Cn = dn will be positive (at least for large n, namely, dn = x0 > 0, in Part
(a) and Cn = dn = ΨF(n)→ x0 > 0, as n→ ∞, in Part (b)). Now, it is easy to check the
validity of the representation

(3.1) q?
n(−1,1) w=n

{ R?
n

X1
, if Cn = cn, Dn = dn = 0,

cn d−1
n R?

n−(X1−1)
X1

, if Cn = dn, Dn = dn,

where R?
n = c−1

n (Rn−dn). The implication (i) follows from the first part of (3.1), Theorem
3.1, Lemma 3.1 in Barakat [5] and from the independency between Rr and Rs, if s−r→∞,
as n→ ∞ (see Barakat [4]). The implication (ii) follows from the second part of (3.1) and
Theorem 3.1 (note that Theorem 3.1 implies cn d−1

n → 0, as n→ ∞, in Parts (a) and (b),
while the condition (ΨF(n +

√
n))/ΨF(n)→ 1, as n→ ∞, implies cn d−1

n → 0, as n→ ∞,
in Part (c)).

Example 3.1. For the Weibull, F1(x) = P(X1 ≤ x) = 1− e−xc
, x > 0, and the Logistic

F2(x) = P(X2 ≤ x) = ex/(1 + ex), ∀x, distributions, we can easily show that ΨF1(u) =
u1/c and ΨF2(u) = log(eu − 1), respectively. Therefore (ΨF1(n +

√
n))/ΨF1(n) = (1 +

1/
√

n)1/c→ 1, as n→∞, and (ΨF2(n+
√

n))/ΨF2(n) = (log(en+
√

n−1))/(log(en−1))→
1, as n→ ∞. Thus, for both distributions, we get P(q?

n(−1,1) ≤ q) w→n P(Wi ≤ q + 1),
where Wi = 1/Xi, i = 1,2.

4. Applications

In this section, within some illustrative examples, we show that the domains of attraction
of the non-trivial types of the generalized extremal quotient are non-empty. Some of these
examples individually express intersecting facts. In all the following examples, the normal-
izing constants can be found in Table 4.1.

Example 4.1 (Standard Cauchy Distribution). It can be shown that a−1
n (Mn − bn) and

α−1
n (Ln − βn) weakly converge to H(0,1)

1,1 and H(0,1)
1,1 , respectively. Therefore, in view of

Theorems 1.1, 1.2 and 2.1, Part 1, we get

P(q∗n(m,k)≤ q) w−→n Q(m,k)
1,1,1,1(q) =

{
1, q≥ 0,
1−

∫
∞

0 Γ`((
y
|q| )

m+1)e−y dy, q < 0.

Example 4.2 (Pareto Distribution). It can be shown that, for the Pareto distribution F(x) =
(1− x−σ )I[1,∞)(x),σ > 0, a−1

n (Mn− bn) and α−1
n (Ln−βn) weakly converge to H(0,1)

1,σ and

H(0,1)
1,1 , respectively. Therefore, in view of Theorems 1.1, 1.2 and 2.1, Part 1, we get

P(q∗n(m,k)≤ q) w−→n Q(m,k)
1,1,σ ,1(q) =

{
1, q≥ 0,

1−
∫

∞

0 Γ`((
y
|q| )

(m+1)σ )e−y dy, q < 0.
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Example 4.3 (Uniform Distribution). For the uniform (−θ ,θ ), (−θ ,0) and (0,θ ) distribu-
tions, it can be shown that a−1

n (Mn− bn) and α−1
n (Ln−βn) weakly converge to H(0,1)

2,1 and

H(0,1)
2,1 , respectively. Therefore, for the uniform (−θ ,θ ) distribution, in view of Theorems

1.1, 1.2, we can easily show that

η = lim
n→∞

an,m

αn,m
=
{

1, if m = 0,
∞, if m > 0.

Thus, by using Theorem 2.1, Part 2, we get the non-trivial convergence P(q∗n(0,k) ≤
q) w−→n Q(0,k):3

2,2,1,1(q)= 1−Q(0,k):2
2,2,1,1(−q), where Q(0,k):2

2,2,1,1(q)=
∫

∞

−∞
(H(0,k)

2,1 (q−z)dH(0,k)
2,1 (z). More-

over, for the uniform (−θ ,0) and (0,θ ) distributions, by using Theorem 2.2, Part 5, the df of
the statistic q∗n(m,k) weakly converges to the trivial types 1−H(m,k)

2,1 (−q) and e−q−1
I[0,∞)(q),

respectively.

Example 4.4 (Beta(α,β ) Distribution). For the beta distribution F(x;α,β ),0≤ x≤ 1,α,β >

0, it can be shown that a−1
n (Mn− bn) and α−1

n (Ln− βn), weakly converge to H(0,1)
2,β and

H(0,1)
2,α , respectively. Therefore, in view of Theorems 1.1, 1.2 and 2.2, Part 5 (i), we have

the trivial convergence (since x0 = 0) P(q∗n(m,k)≤ q) w−→n e−q−α

I[0,∞)(q). Clearly, the same
result holds for the power distribution F(x;α,1).

Example 4.5 (Standard Normal, Logistic, Laplace and Log-Normal Distributions). It is
known that (see Ahsanullah and Nevzorov [1]), for the above four distributions, we have
a−1

n (Mn−bn) and α−1
n (Ln−βn) weakly converge to H(0,1)

3,0 and H(0,1)
3,0 , respectively. There-

fore, in view of Theorems 1.1 and 1.2, and after some algebra, we get
(4.1)

ζ = lim
n→∞

a−1
n,m αn,m | bn,mβ

−1
n,m |=


4+M logM

4M , for the normal distribution,
1
M , for the logistic and Laplace distributions,

1√
M

, for the log-normal distribution,

where M = m+1. Thus, in view of Theorem 2.1, Part 3, we get P(q∗n(m,k)≤ q) w−→n (1−
H(m,k)

3 (−ζ−1q)) ∗ (1−H(m,k)
3 (−q)), where ζ is given by (4.1). This example reveals the

following interesting facts:
1. The extremal quotient for the logistic and Laplace distributions weakly converges to the
same limit df.
2. In the case of ordinary order statistics, i.e., m = 0,k = 1, the extremal quotient, for the
normal, logistic, Laplace and log-normal distributions, weakly converges to the same limit
df, as the limit df of the sample range, i.e., H(0,1)

3 (q)∗H(0,1)
3 (q).

Example 4.6 (Exponential(σ )). It can be shown that a−1
n (Mn − bn) and α−1

n (Ln − βn)
weakly converge to H(0,1)

3,0 and H(0,1)
2,1 , respectively. Therefore, in view of Theorems 1.1, 1.2

and 2.2, Part 4, we get the trivial convergence (since x0 = 0) P(q∗n(m,k)≤ q) w−→n e−q−1
I[0,∞)(q).

Example 4.7 (Rayleigh(σ )). For the Rayleigh distribution F(x) = (1− e−x2/σ2
)I[0,∞)(x),

σ > 0, it can be shown that a−1
n (Mn−bn) and α−1

n (Ln−βn) weakly converge to H(0,1)
3,0 and
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H(0,1)
2,2 , respectively. Therefore, in view of Theorems 1.1, 1.2 and 2.2, Part 4, we get the

trivial convergence (since x0 = 0) P(q∗n(m,k)≤ q) w−→n e−q−2
I[0,∞)(q).

Example 4.8 (The sos Model). Consider a sos X(r,n,1,1) (in this case m = k = 1,γi =
1 + 2(n− i), i ∈ {1,2, ...,n− 1},γn = k = 1 and ` = 1/2), with αi = 2−1/(n− i+1), i ∈
{1,2, ...,n−1}. Thus, Theorems 2.1, Part 1, and 3.1, Part 1 yield, the implications:
If F ∈ D(H(1,1)

1,α ),D(H(1,1)
1,β ), and F ∈ D(Hd(1,1)

1,β ),D(H(1,1)
1,α ), then

P(q∗n(1,1)≤ q) w−→n Q(1,1)
1,1,β ,α(q) =

{
1, q≥ 0,

−1+2
∫

∞

0 N (
√

2 |q|−β yβ/α) e−ydy, q < 0,

and

P(q∗d,n(1,1)≤ q) w−→n Qd(1,1)
1,1,β ,α(q) =

{
1, q≥ 0,

−1+2
∫

∞

0 N (
√

2|q|−α yα/β )e−ydy, q < 0,

respectively. Moreover, if x0 = 0, F ∈D(H(1,1)
1,α ),D(H(1,1)

2,β ) and F ∈D(Hd(1,1)
1,β ),D(Hd(1,1)

2,α ),
x0 = 0, then

P(q∗n(1,1)≤ q) w−→n Q(1,1)
2,1,β ,α(q) =

{
0, q < 0,

−1+2
∫

∞

0 N (
√

2|q|β y−β/α)e−ydy, q≥ 0,

and

P(q∗d,n(1,1)≤ q) w−→n Qd(1,1)
1,2,β ,α(q) =

{
0, q < 0,

−1+2
∫

∞

0 N (
√

2 |q|α y−α/β ) e−y dy , q≥ 0,

respectively. Finally, if x0 = 0, F ∈ D(H(1,1)
2,α ),D(H(1,1)

1,β ) and F ∈ D(Hd(1,1)
2,β ),D(Hd(1,1)

1,α ),
x0 = 0, then

P(q∗n(1,1)≤ q) w−→n Q(1,1)
1,2,β ,α(q) =

{
0, q < 0,

2−2
∫

∞

0 N (
√

2 |q|−β y−β/α)e−ydy, q≥ 0,

and

P(q∗d,n(1,1)≤ q) w−→n Qd(1,1)
2,1,β ,α(q) =

{
0, q < 0,

2−2
∫

∞

0 N (
√

2|q|−α y−α/β )e−ydy, q≥ 0,

respectively.
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Table 1. The normalizing constants of some popular distributions.

Distribution (an, bn) (αn, βn) (An,m, Bn,m)
Standard Cauchy (n/π, 0) (cotπ/n, 0) (an,m/bn,m, 0)

Pareto
(

n1/σ , 0
) (

(n/(n+1))1/σ , 0
)

(an,m/bn,m, 0)

Beta(α,β )
(
(β/(cn))1/β , 1

) (
((cα)/n)1/α , 0

)
(|bn,m|/an,m, 0)

Power(α)
(

n−1/α , 1
)

(1/(αn), 0) (|bn,m|/an,m, 0)

Standard Normal (τn, ρn) (τn, −ρn) (an,m/|βn,m|, bn,m/βn,m)
τn = 1/

√
2logn,

ρn = 1/τn− (τnDn)/2,
Dn = log logn+ log4π

Logistic (1, logn) (1, − logn) (an,m/|βn,m|, bn,m/βn,m)
Laplace (1, logn/2) (1, − logn/2) (an,m/|βn,m|, bn,m/βn,m)

log-Normal (τneρn , eρn)
(
τne−ρn , e−ρn

)
(an,m/|βn,m|, bn,m/βn,m)

Exponential(σ ) (1/σ , 1/σ logn) (1/nσ , 0) (bn,m/an,m, 0)

Rayleigh(σ )
(

σ/2(logn)−1/2, σ(logn)1/2
)

(σ/
√

n, 0) (bn,m/an,m, 0)

Uniform (−θ ,θ ) (2θ/n, θ) (2θ/n, −θ) (an,m/|βn,m|, bn,m/βn,m)
Uniform (0,θ ) (θ/n, θ) (θ/n, 0) (|bn,m|/αn,m, 0)

Uniform (−θ ,0) (θ/n, 0) (θ/n, −θ) (an,m/|βn,m|, 0)
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