
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(4) (2013), 855–864

Spectral Synthesis for the Operator Space Projective
Tensor Product of C∗-Algebras

1RANJANA JAIN AND 2AJAY KUMAR
1Department of Mathematics, Lady Shri Ram College for Women, New Delhi-110024, India

2Department of Mathematics, University of Delhi, Delhi-110007, India
1ranjanaj 81@rediffmail.com, 2akumar@maths.du.ac.in

Abstract. We study the spectral synthesis for the Banach ∗-algebra A⊗̂B, the operator
space projective tensor product of C∗-algebras A and B. It is shown that if A or B has
finitely many closed ideals, then A⊗̂B obeys spectral synthesis. The Banach algebra A⊗̂A
with the reverse involution is also studied.

2010 Mathematics Subject Classification: 46L06, 46L07, 47L25, 43A45

Keywords and phrases: C∗-algebras, operator space projective tensor norm, spectral syn-
thesis, hull-kernel topology.

1. Introduction and notations

For operator spaces V and W , and u ∈V ⊗W , the operator space projective tensor norm is
defined as

‖u‖∧ = inf{‖α‖‖v‖‖w‖‖β‖ : u = α(v⊗w)β},
where α ∈ M1,pq,β ∈ Mpq,1,v ∈ Mp(V ) and w ∈ Mq(W ), p,q ∈ N being arbitrary, and
v⊗w = (vi j ⊗wkl)(i,k),( j,l) ∈ Mpq(V ⊗W ). The operator space projective tensor product
V ⊗̂W is the completion of V ⊗W under ‖ · ‖∧-norm. The algebraic tensor product V ⊗W
is complete with respect to ‖ · ‖∧-norm if and only if either V or W is finite dimensional.
Also, it is known that for C∗-algebras A and B, A⊗̂B is a Banach ∗-algebra under natural
involution [14].

The notion of spectral synthesis has been studied extensively for commutative and unital
Banach algebras, for L1-group algebras and for Banach ∗-algebras [20, 6, 7, 13]. Spec-
tral synthesis for Banach space projective tensor product of commutative Banach algebras
and for the Haagerup tensor product of C∗-algebras has also been explored [13, 8, 1, 7].
Roughly speaking spectral synthesis holds for a Banach ∗-algebra X if every closed ideal of
X is the intersection of primitive ideals containing it. Spectral synthesis for Banach space
projective tensor product of commutative Banach algebras has already been explored [13].
For commutative C∗-algebras A and B, the natural contractive homomorphism of A⊗̂B into
A⊗h B is an isomorphism whose inverse has norm equal to Grothendieck constant. Thus,
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for countable locally compact Hausdorff spaces X and Y , C0(X)⊗̂C0(Y ) has spectral syn-
thesis. However, for Cantor set or any infinite compact group D, C(D)⊗̂C(D) does not have
spectral synthesis [8, 11.2.1], [13].

In Section 2, we define the concept of spectral ideals in A⊗̂B, and prove that the Banach
∗- algebra A⊗̂B satisfies spectral synthesis if and only if each closed ideal of A⊗̂B is spectral.
This result is then used to produce plenty of spectral ideals in A⊗̂B. We also discuss few
cases where A⊗̂B obeys spectral synthesis. In particular, we prove that if A or B has finitely
many closed ideals, then A⊗̂B has spectral synthesis. Thus, the Banach ∗-algebras like
C0(X)⊗̂B(H), B(H)⊗̂K (H) and B(H)⊗̂B(H) all obey spectral synthesis, X being a
locally compact topological space and H being an infinite dimensional separable Hilbert
space. In Section 3, the algebra A⊗̂A with the reverse involution is discussed. It is shown
that with this involution the algebra is symmetric and ∗-semisimple only in the trivial cases.

For a Banach algebra X , we denote the set of closed (two-sided) ideals of X by Id(X),
the set of proper closed ideals of X by Id′(X) and the set of all prime ideals by Prime(X). If
X is a Banach ∗-algebra, then Prim(X) stands for the set of primitive ideals of X , that is, the
set of all kernels of irreducible ∗-representations of X on Hilbert space. There is a topology
τw on Id(X) which is generated by the sub-basic open sets of the form

ZJ := {I ∈ Id(X) : I + J}, J ∈ Id(X).

We throughout use the notation qJ for the quotient map qJ : A→ A/J. Recall that, for closed
ideals M and N of C∗-algebras A and B, the map qM⊗qN : A⊗B→ A/M⊗B/N extends to
quotient maps qM⊗̂qN : A⊗̂B→ A/M⊗̂B/N and qM⊗min qN : A⊗min B→ A/M⊗min B/N.

Let A and B be C∗-algebras. Define a map Φ : Id(A)× Id(B)→ Id(A⊗̂B) as

Φ(M,N) = A⊗̂N +M⊗̂B.

The map Φ is well defined by [12, Proposition 3.2]. It satisfies many nice topological
properties listed as below:

Proposition 1.1. Let A and B be C∗-algebras and Φ : Id(A)× Id(B)→ Id(A⊗̂B) be defined
as above. Then

(i) Φ maps Prime(A)×Prime(B) onto Prime(A⊗̂B).
(ii) Φ maps Prim(A)× Prim(B) into Prim(A⊗̂B). If A and B are separable, then Φ

maps Prim(A)×Prim(B) onto Prim(A⊗̂B).
(iii) Φ maps Id′(A)× Id′(B) into Id′(A⊗̂B) injectively.
(iv) The mapping Φ is τw-continuous.
(v) The restriction of Φ to Id′(A)× Id′(B) is a homeomorphism onto its image in

Id′(A⊗̂B).
(vi) The restriction of Φ to Prime(A)×Prime(B) is a homeomorphism onto Prime(A⊗̂B).

Proof. (i) and (ii) follow from Theorems 3.1 and 3.2 of [11], respectively.
For (iii), note that, for proper closed ideals M and N of A and B, the isomorphism of

A/M⊗̂B/N onto (A⊗̂B)/(A⊗̂N +M⊗̂B) [11, Lemma 2.2] assures that A⊗̂N +M⊗̂B is also
proper in A⊗̂B. Further, for M1,M2 ∈ Id′(A),N1,N2 ∈ Id′(B), A⊗̂N1 + M1⊗̂B ⊆ A⊗̂N2 +
M2⊗̂B if and only if M1 ⊆ M2,N1 ⊆ N2. To see this, consider an m ∈ M1, so that for an
arbitrary b∈ B, m⊗b∈ ker(qM1⊗̂qN1)⊆ ker(qM2⊗̂qN2), giving qM2(m) = 0, that is m∈M2,
and similarly N1 ⊆ N2. Thus, Φ is injective.
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(iv)–(vi) can be proved exactly on the same lines of their counterparts in Haagerup tensor
product as discussed in Lemma 1.4 and Theorem 1.5 of [2].

Throughout this paper A and B represent C∗-algebras, until otherwise specified.

2. Spectral synthesis

We first give the standard definition of spectral synthesis for a Banach ∗-algebra that appear
in the literature. Let X be a Banach ∗-algebra. For each E ⊆ Prim(X), we define a closed
ideal kernel of E as

k(E) := ∩P∈EP.
Also, for each M ⊆ X , hull of M is defined as

hX (M) := {P ∈ Prim(X) : P⊇M}.
We shall denote the hull of M by h(M), when there is no confusion with X . Equip Prim(X)
with the hull-kernel topology (or, hk-topology), where for every E ⊆ Prim(X), its closure
is E = h(k(E)). Similarly, one can talk about the hk-topology on Prime(X). Note that, if
E ⊆ Prime(X), then the relative τw-topology on E coincides with the hull-kernel topology.

Definition 2.1. A closed subset E of Prim(X) is called spectral if k(E) is the only closed
ideal in X with hull equal to E. A Banach ∗-algebra X is said to satisfy spectral synthesis if
every closed subset of Prim(X) is spectral.

A closed ideal of Banach ∗-algebra X is said to be semisimple if it is the intersection of
all the primitive ideals of X containing it. Recall that a Banach ∗-algebra is said to have
Wiener property if every proper closed two-sided ideal of X is annihilated by an irreducible
∗-representation [17].

Proposition 2.1. Let X be a Banach ∗-algebra having Wiener property. Then X satisfies
spectral synthesis if and only if for every J ∈ Id(X), J = k(h(J)), or, in other words, every
closed ideal of X is semisimple.

Proof. Let us consider a proper closed ideal J of X . Since X has Wiener property, there
exists an irreducible ∗-representation, say π , of X which annihilates J, that is, J ⊆ kerπ , so
that E = h(J) is non empty. We claim that E is closed in the hk-topology. Let Q ∈ E =
h(k(E)), then k(E) ⊆ Q. Since J ⊆ P for all P ∈ E we have J ⊆ k(E) ⊆ Q, so that Q ∈ E.
which gives that E is closed. Since X obeys spectral synthesis, and E = h(J), we have
J = k(E), that is, J is the intersection of primitive ideals containing it. Also, note that since
X has Wiener property, the empty set φ is spectral, so that X = k(h(X)).

Converse follows easily from the given condition.

Corollary 2.1. Let X be a Banach ∗-algebra having Wiener property. Then X satisfies
spectral synthesis if and only if there is a one-one correspondence between the closed ideals
of X and the τw-open subsets of Prim(X) (or, Prime(X)).

Proof. Let X satisfy spectral synthesis. For J ∈ Id(X), recall ZJ := {P ∈ Prim(X) : P +
J} = Prim(X) \ h(J) is an open subset of Prim(X) under the relative τw-topology, so that
we have a well defined correspondence J 7→ ZJ between the closed ideals of X and τw-open
subsets of Prim(X). For K,L ∈ Id(X), it is clear from Proposition 2.1 that K = k(h(K)), and
L = k(h(L)). Thus, it can be easily seen that

K ⊆ L if and only if ZK ⊆ ZL,
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which shows that the correspondence in one-one. Now consider a τw-open subset G of
Prim(X), and set J := k(Prim(X) \G). Since Prim(X) \G is closed under the hull-kernel
topology,

ZJ = Prim(X)\h(k(Prim(X)\G)) = Prim(X)\ (Prim(X)\G) = G,

which proves that this correspondence is surjective.
Conversely, for every closed ideal I of X , since h(I) = h(k(h(I)), we have ZI = Zk(h(I)).

Using the given condition, this gives I = k(h(I)). Result now follows from Proposition
2.1.

Remark 2.1. For C∗-algebras A and B, since A⊗̂B has Wiener property [12, Theorem 4.1],
A⊗̂B satisfies spectral synthesis if and only if every closed ideal J of A⊗̂B is semisimple.
In particular, if A⊗̂B satisfies spectral synthesis then every closed ideal J of A⊗̂B is the
intersection of prime ideals containing J.

The next two results connect the spectral synthesis of a Banach ∗-algebra with that of its
ideal and the corresponding quotient algebra. The first result follows on the similar lines as
that in [7, Proposition 1.16]. However, we present here a proof for the sake of completion.

Proposition 2.2. Let X be a Banach ∗-algebra with Wiener property, and J be a proper
closed ∗-ideal of X having bounded approximate identity and Wiener property. If J and X/J
both satisfy spectral synthesis (as Banach ∗-algebras), then X satisfies spectral synthesis.

Proof. By Corollary 2.1, it is sufficient to show that for I,K ∈ Id(X), I = K, whenever
hX (I) = hX (K). Note that, since X has Wiener property, X/J also has Wiener property, so
by Proposition 2.1, every closed ideal of J and X/J is semisimple. For P ∈ hX/J(qJ(I)),
P = kerπ with π(qJ(I)) = {0}, π : X/J → B(H) being an irreducible ∗-representation.
Then π0 := π ◦ qJ is an irreducible ∗-representation of X on H with π0(I) = 0. Since
hX (I) = hX (K), kerπ0 ∈ hX (K), which further gives P ∈ hX/J(qJ(K)). Thus, hX/J(qJ(I)) =
hX/J(qJ(K)). Since J has an approximate identity, by [5, Proposition 2.4], I + J and K + J
are closed in X , so that qJ(I) and qJ(K) are closed ideals of X/J. Since X/J obeys spectral
synthesis, by Proposition 2.1, qJ(I) = qJ(K). Further, for any closed ideal L of J, it is rou-
tine to check that there is a one-one correspondence between the sets {P ∈ hX (L) : J * P}
and hJ(L) via P 7→ P∩ J. Xlso, hX (I ∩ J) = hX (I)∪ hX (J) = hX (K)∪ hX (J) = hX (K ∩ J).
Thus, it can be easily seen that hJ(I∩J) = hJ(K∩J). Since J satisfy spectral synthesis, this
gives, I∩ J = K∩ J.

Now, consider x ∈ I, then qJ(x) = qJ(y) for some y ∈ K, so that a := x− y ∈ J. Let Ja
be the smallest closed ideal of J containing a. Since J obeys spectral synthesis, Ja = ∩{P ∈
Prim(J) : Ja ⊆ P}. Clearly JaJ ⊆ Ja. Now consider P ∈ Prim(J) such that JaJ ⊆ P. Since
P is prime being primitive, this gives a ∈ P which shows that Ja ⊆ P. Thus JaJ = ∩{P ∈
Prim(J) : JaJ ⊆ P}= ∩{P ∈ Prim(J) : Ja ⊆ P}= Ja. So

x− y ∈ J(x− y)J ⊆ JxJ− JyJ ⊆ JIJ− JKJ ⊆ I∩ J−K∩ J = K∩ J.

So, x = y− (y− x) ∈ K +(K ∩ J) = K, which gives I ⊆ K. Similarly, K ⊆ I, which proves
the claim.

In fact, the converse of the above statement is also true as presented below.

Proposition 2.3. Let X be a Banach ∗-algebra with a closed ∗-ideal J such that X and J
both possess Wiener property. If X obeys spectral synthesis, then so does J and X/J.
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Proof. By Proposition 2.1, it is enough to check that for a closed ideal L of J, L = k(hJ(L)).
Since every closed ideal of X is semisimple, and every primitive ideal is prime, from [7,
Proposition 1.14], L is also a closed ideal of X , so that by Proposition 2.1, L = k(hX (L)). It
can be easily verified that there is a one-one correspondence between the sets {P ∈ hX (L) :
J * P} and hJ(L) via P 7→ P∩ J. So, we have

L = L∩ J =
⋂

P∈hX (L)

(P∩ J) =
( ⋂

P∈hX (L)
J*P

(P∩ J)
)
∩
( ⋂

P∈hX (L)
J⊆P

(P∩ J)
)

=
( ⋂

P′∈hJ(L)

P′
)
∩ J = k(hJ(L)).

Thus, J obeys spectral synthesis.
Next, consider a closed ideal K of X/J. Since X/J has Wiener property, it is enough

to check that K ⊇ k(hX/J(K)). Consider an element x ∈ k(hX/J(K)), where x = y + J ∈
X/J. Note that K = I/J for some closed ideal I of X containing J. Using the one-one
correspondence between Prim(X/J) and {P ∈ Prim(X) : J ⊆ P}, one can check that y ∈
k(hX (I)). Since X obeys spectral synthesis, I = k(hX (I)), so that y ∈ I, which shows that
x ∈ K. Hence the result.

We are now prepared to discuss spectral synthesis for operator space projective tensor
product A⊗̂B of C∗-algebras A and B. Allen, Sinclair and Smith, in [1], defined the concept
of spectral synthesis for the Haagerup tensor product of C∗-algebras in a somewhat different
flavor. In the same spirit, using the terminologies of [1], we give another definition for the
spectral synthesis of A⊗̂B. It is known that for any C∗-algebras A and B, the canonical
∗-homomorphism i : A⊗̂B→ A⊗min B is injective [10, Corollary 1], so that we can regard
A⊗̂B as a ∗-subalgebra of A⊗min B. Consider a closed ideal J of A⊗̂B and let Jmin be the
closure of i(J) in A⊗min B, in other words, Jmin is the min-closure of J in A⊗min B. Now we
associate two closed ideals, namely the upper and the lower ideals, with J as:

Jl = closure of span of all elementary tensors ofJ inA⊗̂B,

Ju = Jmin∩ (A⊗̂B).

Clearly Jl ⊆ J ⊆ Ju for any closed ideal J of A⊗̂B.

Definition 2.2. A closed ideal J of A⊗̂B is said to be spectral if Jl = J = Ju.

The main aim of this section is to show that A⊗̂B satisfies spectral synthesis if and only if
its every closed ideal is spectral. We first characterize the upper ideals in terms of primitive
ideals.

Lemma 2.1. For closed ideals M and N of A and B,

ker(qM⊗̂qN) = ker(qM⊗min qN)∩A⊗̂B.

Proof. For z ∈ A⊗̂B, let {zn} be a sequence in A⊗B such that limn ‖zn− z‖∧ = 0, then

‖(qM⊗̂qN)(zn)− (qM⊗̂qN)(z)‖min ≤ ‖qM⊗̂qN‖‖zn− z‖∧,
which shows that the sequence {(qM⊗̂qN)(zn)} is convergent to (qM⊗̂qN)(z) in A/M⊗min

B/N. Also, ‖zn− z‖min ≤ ‖zn− z‖∧, so that limn ‖zn− z‖min = 0, which further gives

(qM⊗min qN)(zn)
min−→ (qM⊗min qN)(z).
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Since both the mappings qM⊗̂qN and qM ⊗min qN agree on A⊗B, by continuity, we have
(qM⊗min qN)(z) = (qM⊗̂qN)(z), and this is true for all z ∈ A⊗̂B, proving the given relation.

Proposition 2.4. For a closed ideal J of A⊗̂B, J = Ju if and only if J is semisimple.

Proof. Let us first assume that J = Ju. Since, in a C∗-algebra every closed ideal is semisim-
ple, Jmin = ∩{ker π̃α : Jmin ⊆ ker π̃α}, where each π̃α is an irreducible ∗-representation
of A⊗min B on some Hilbert space. Set πα := π̃α ◦ i, then each πα is an irreducible ∗-
representation of A⊗̂B annihilating J. Using some routine calculations, and the fact that
J = Ju one can prove that J =∩kerπα . Note that, although the collection {P∈ Prim(A⊗̂B) :
J ⊆ P} is larger than {kerπα : πα = π̃α ◦ i}, it is easy to check that J is actually the inter-
section of all the primitive ideals of A⊗̂B containing J.

Conversely, let J = ∩J⊆Pα
Pα , Pα being primitive ideals of A⊗̂B. Let, if possible, there

exist an element x ∈ Ju such that x /∈ J. Then x /∈ Pα for some α . Since Pα is primi-
tive, by [11, Theorem 3.2], there exist closed (prime) ideals M and N in A and B, respec-
tively, such that Pα = A⊗̂N +M⊗̂B. Now, consider the bounded homomorphisms qM⊗̂qN :
A⊗̂B→ A/M⊗̂B/N, and qM⊗min qN : A⊗min B→ A/M⊗min B/N with ker(qM⊗̂qN) = Pα

[12, Proposition 3.5]. By Lemma 2.1, x /∈ ker(qM ⊗min qN), which by Hahn Banach The-
orem gives a φ ∈ (A⊗min B)∗ such that φ(x) 6= 0, and φ(ker(qM ⊗min qN)) = {0}. The
relation J ⊆ Pα ⊆ ker(qM⊗min qN) gives Jmin ⊆ ker(qM⊗min qN), which further shows that
φ(Jmin) = 0. Thus x /∈ Jmin, which gives a contradiction to the fact that x ∈ Ju. Hence the
result.

Using Propositions 2.1 and 2.4, we have a following characterization for spectral synthe-
sis in terms of upper ideals.

Theorem 2.1. The Banach ∗-algebra A⊗̂B satisfies spectral synthesis if and only if J = Ju,
for every closed ideal J of A⊗̂B.

We now prove that the Banach ∗-algebra A⊗̂B satisfies spectral synthesis if and only if
every closed ideal of A⊗̂B is spectral. We borrow some ideas from [15] to prove the same.
We first need an elementary result.

Lemma 2.2. Let Ji and Ki be closed ideals of C∗-algebras Ai, i = 1,2. Then J1⊗̂J2 ⊆
A1⊗̂K2 +K1⊗̂A2 if and only if either J1 ⊆ K1 or J2 ⊆ K2.

Theorem 2.2. For C∗-algebras A and B, the Banach ∗-algebra A⊗̂B obeys spectral synthe-
sis if and only if every closed ideal of A⊗̂B is spectral.

Proof. We just need to prove that for every closed ideal J of A⊗̂B, J = Jl , if A⊗̂B satisfies
spectral synthesis. Using Corollary 2.1, it is sufficient to show that ZJ ⊆ ZJl , where ZJ :=
{P ∈ Prime(A⊗̂B) : P + J}. Set X := Prime(A⊗̂B) and consider an element P of ZJ . Since
ZJ is an open subset of X and Φ : Prime(A)×Prime(B)→ X is continuous, there exist open
subsets U1, U2 of Prime(A) and Prime(B) such that Φ(U1×U2)⊆ ZJ and P ∈Φ(U1×U2).
Let J1 ∈ Id(A), J2 ∈ Id(B) be the corresponding closed ideals such that Ui = ZJi , i = 1,2.
We claim that ZJ1⊗̂J2

= Φ(U1 ×U2) = Φ(ZJ1 × ZJ2). For any Q ∈ ZJ1⊗̂J2
, by definition,

J1⊗̂J2 * Q. Since Q ∈ X , and Φ is onto (Proposition 1.1), there exists Q1 ∈ Prime(A),
Q2 ∈ Prime(B) such that A⊗̂Q2 + Q1⊗̂B = Φ(Q1,Q2) = Q. By Lemma 2.2, J1 * Q1 and
J2 * Q2. This implies that Qi ∈ ZJi = Ui, so that Q = Φ(Q1,Q2) ∈ Φ(U1×U2). Thus,
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ZJ1⊗̂J2
⊆Φ(U1×U2). For the other containment, consider Φ(K1,K2) ∈Φ(ZJ1×ZJ2). Since

Ki ∈ ZJi , we have Ji * Ki, so by Lemma 2.2, J1⊗̂J2 * Φ(K1,K2). Note that Φ(K1,K2) ∈ X ,
thus by the definition, Φ(K1,K2) ∈ ZJ1⊗̂J2

. So, ZJ1⊗̂J2
⊆ ZJ , which further gives, J1⊗̂J2 ⊆ J.

But, the definition of Jl says that J1⊗̂J2 ⊆ Jl . This means that ZJ1⊗̂J2
⊆ ZJl . Since, P ∈

Φ(U1×U2) = ZJ1⊗̂J2
, this gives P ∈ ZJl . Thus ZJ ⊆ ZJl , which proves that J ⊆ Jl , and hence

the result.

Remark 2.2. In other words, if A⊗̂B obeys spectral synthesis, then every closed ideal J of
A⊗̂B is the closure of the sum of all product ideals J1⊗̂J2 ⊆ J, where J1 ∈ Id(A), J2 ∈ Id(B).

The Banach ∗-algebra A⊗̂B contains plenty of spectral ideals as demonstrated in the
following and some later examples.

Proposition 2.5. For I ∈ Id(A) and J ∈ Id(B), the closed ideal A⊗̂J + I⊗̂B of A⊗̂B is
spectral. In particular, every closed maximal ideal, primitive ideal and prime ideal of A⊗̂B
is spectral.

Proof. Set K := A⊗̂J + I⊗̂B = ker(qI⊗̂qJ), then it is clear from the definition that K = Kl .
Consider an element u∈Ku. Let, if possible, u /∈K, then by Lemma 2.1, u /∈ ker(qI⊗min qJ).
Now, K ⊆ ker(qI⊗min qJ) implies Kmin ⊆ ker(qI⊗min qJ), giving u /∈ Kmin, a contradiction.
Thus K is spectral. Rest follows from the fact that every maximal, primitive and prime ideal
can be expressed as an ideal of this form [12, Theorem 3.10], [11, Theorem 3.1, 3.2].

Next, we prepare the ingredients to prove that for an infinite dimensional separable
Hilbert space H, B(H)⊗̂B(H) obeys spectral synthesis. We first need some elementary
results regarding the lower and upper ideals of a closed ideal.

Proposition 2.6. For closed ideals J and K in A⊗̂B, we have:

(a) Jl ⊆ Kl and Ju ⊆ Ku, if J ⊆ K;
(b) (JK)l = JlKl = Jl ∩Kl = (J∩K)l , if Jl or Kl has a bounded approximate identity;
(c) (J∩K)u ⊆ Ju∩Ku, with equality if J = Ju,K = Ku.

Proof. (a) is trivial. For (b), we first show that Jl ∩Kl ⊆ JlKl . Let x ∈ Jl ∩Kl and assume
that Jl has bounded approximate identity. By Cohen’s Factorization Theorem, there exist
y,z ∈ Jl such that x = yz and z belongs to the closed left ideal generated by x in Jl . Clearly,
z ∈ Jl ∩Kl , so that x ∈ JlKl . Thus, Jl ∩Kl ⊆ JlKl . Now, for an elementary tensor x in
J ∩K, clearly x ∈ Jl ∩Kl , giving (J ∩K)l ⊆ Jl ∩Kl . Also, for a = ∑

n
i=1 xi⊗ yi ∈ Jl and

b = ∑
m
j=1 z j⊗w j ∈ Kl , clearly ab ∈ (JK)l , being an elementary tensor of JK. Since Jl and

Kl are both generated by elementary tensors, routine calculations show that JlKl ⊆ (JK)l .
Thus, we have

(J∩K)l ⊆ Jl ∩Kl ⊆ JlKl ⊆ (JK)l ⊆ (J∩K)l ,

which gives the required equality. For (c), using the fact that (J∩K)min ⊆ Jmin ∩Kmin, we
get

(J∩K)u ⊆ Jmin∩Kmin∩A⊗̂B = Ju∩Ku.

Following are some direct consequences of the above proposition.

Corollary 2.2. If I and J are closed ideals of A⊗̂B with at least one of them having bounded
approximate identity, then I∩ J is spectral, whenever I and J are spectral.
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Corollary 2.3. Every product ideal of A⊗̂B is spectral. In particular, for closed ideals I
and J of A and B, I⊗̂J = (I⊗min J)∩A⊗̂B.

Proof. For a product ideal I⊗̂J of A⊗̂B, using [11, Proposition 2.4], we can write I⊗̂J =
(A⊗̂J)∩ (I⊗̂B). Also, from [12, Lemma 3.1], A⊗̂J and I⊗̂B both possess bounded approx-
imate identities. Thus, from Proposition 2.5 and Corollary 2.2, I⊗̂J is spectral. Clearly,

I⊗̂J = (I⊗̂J)u = (I⊗̂J)min∩A⊗̂B = (I⊗min J)∩A⊗̂B.

Corollary 2.4. If either A or B is a simple C∗-algebra, then A⊗̂B obeys spectral synthesis.

Proof. Let A be simple. By [12, Theorem 3.8], every closed ideal of A⊗̂B is a product
ideal and thus is spectral by Corollary 2.3. Using Theorem 2.2, we get A⊗̂B obeys spectral
synthesis.

In particular, for any C∗-algebra A, the Banach ∗-algebras A⊗̂C∗r (F2), A⊗̂A∞ and A⊗̂K (H)
obey spectral synthesis, where C∗r (F2) is the C∗-algebra associated to the left regular repre-
sentations of the free group F2 on two generators, A∞ is the Glimm algebra [18] and K (H)
is the C∗-algebra of compact operators on an infinite dimensional separable Hilbert space
H.

Theorem 2.3. For an infinite dimensional separable Hilbert space H, the Banach ∗-algebra
B(H)⊗̂B(H) obeys spectral synthesis.

Proof. From [12, Theorem 3.11], we know that the only non trivial closed ideals of B(H)⊗̂
B(H) are K (H)⊗̂K (H), B(H)⊗̂K (H),K (H)⊗̂B(H) and B(H)⊗̂K (H) + K (H)
⊗̂B(H). Using Proposition 2.5 and Corollary 2.3, we can see that all the proper closed
ideals of B(H)⊗̂B(H) are spectral. The result now follows from Theorem 2.2.

Proposition 2.7. Let A and B be C∗-algebras such that A or B has finitely many closed
ideals. Then A⊗̂B obeys spectral synthesis.

Proof. Without loss of generality, we may assume that B has finitely many closed ideals say
n, where n≥ 2. We prove the result by induction on n. For n = 2, B is simple and the result
follows from Corollary 2.4. Let the result be true for all C∗-algebras with at most (n− 1)
ideals. Let B have n > 2 closed ideals. Since there are finitely many closed ideals of B, there
exists a minimal (non-trivial) closed ideal, say K, of B, which is clearly simple. Consider
the closed ∗-ideal J := A⊗̂K of X := A⊗̂B. Since K is simple, using Corollary 2.4, it is clear
that J satisfies spectral synthesis. Note that, by [11, Lemma 2.2(1)], X/J is isomorphic to
A⊗̂(B/K) and the latter has spectral synthesis by induction hypothesis, since B/K has at
most (n− 1) closed ideal. So, X/J also satisfies spectral synthesis. Moreover, J and X/J
both have Wiener property [11, Theorem 4.1], and J has bounded approximate identity [12,
Lemma 3.1], the result now follows from Proposition 2.2.

Thus, for any C∗-algebra A, A⊗̂B(H) obeys spectral synthesis, where H is a separa-
ble infinite dimensional Hilbert space. In particular, C0(X)⊗̂B(H), B(H)⊗̂B(H) and
B(H)⊗̂K (H) obey spectral synthesis, where X is a locally compact Hausdorff space. For
more examples of C∗-algebras with finitely many closed ideals, see [16].

Corollary 2.5. If A and B both have finite number of closed ideals, then every closed ideal
of A⊗̂B is a finite sum of product ideals.

Proof. It follows from Proposition 2.7 and Remark 2.2.
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Remark 2.3. Let A and B be C∗-algebras. Consider the Gelfand-Naimark semi norm on A⊗
B defined as γ(x) = sup{‖T (x)‖}, where the supremum runs over all the ∗-representations
T of A⊗B on Hilbert spaces. Since the ‖ · ‖γ -norm on A⊗B is continuous with respect to
‘∧′-norm, it can be extended to A⊗̂B, and thus A⊗B is ‖ · ‖γ -dense in (A⊗̂B,‖ · ‖γ). By
[17, Proposition 10.5.20], A⊗̂B is ∗-regular, whenever A⊗B is so. Since A is nuclear, being
subhomogeneous, by [9, Corollary 2.7], A⊗̂B is ∗-regular. It is also Hermitian [11, Theorem
4.6] and is ∗-semisimple (follows from [11, Theorem 4.1]). Hence, the definition of spectral
synthesis in [6] is equivalent to our definition in this case.

In the case of commutative separable C∗-algebras the ideals which are not singly gener-
ated fail to be spectral. A similar result also holds true in the non-commutative situation.
The following can be proved exactly on the same lines of [1, Theorem 6.12].

Proposition 2.8. Let A and B be separable C∗-algebras, and J be a non-zero closed ideal
of A⊗̂B. Then J is singly generated if it is spectral.

3. Reverse involution

Let A be a C∗-algebra. On the Banach algebra A⊗A (with usual multiplication), define the
involution as (a⊗b)∗ = b∗⊗a∗ for all a,b∈ A. Then it extends to an isometric involution on
A⊗̂A and A⊗̂A forms a Banach ∗-algebra with this involution, which we denote by A⊗̂rA.
Regarding the closed ∗-ideals of A⊗̂rA, note that the closed ideals of A⊗̂rA coincide with
the ones in A⊗̂A; however, the closed ∗-ideals differ. We do not know whether a closed ideal
of A⊗̂A is a ∗-ideal or not, but in A⊗̂rA a closed ideal need not be a ∗-ideal. For example,
in the space B(H)⊗̂rB(H), the closed ideals K (H)⊗̂B(H) and B(H)⊗̂K (H) are not
∗-ideals. In fact, it has only two non-trivial closed ∗-ideals, namely K (H)⊗̂rK (H) and
B(H)⊗̂K (H)+K (H)⊗̂B(H).

We know that with natural involution A⊗̂A has a faithful ∗-representation and is always
∗-semisimple for any C∗-algebra A. However, we show that this is not the case with A⊗̂rA.

Proposition 3.1. Let A be a unital C∗-algebra. Then, A⊗̂rA has a faithful ∗-representation
if and only if A = CI, I being the unity of A.

Proof. Let π be a faithful ∗-representation of A⊗̂rA on a Hilbert space H. Define π1(a) :=
π(1⊗a) and π2(a) := π(a⊗1) for all a ∈ A. Then π1 and π2 are both bounded representa-
tions of A on B(H), with π(b⊗a) = π1(a)π2(b) = π2(b)π1(a) for all a,b ∈ A. Also

(3.1) π1(a∗) = π(1⊗a∗) = π((a⊗1)∗) = (π(a⊗1))∗ = π2(a)∗

for all a ∈ A. It is known that an element h ∈ A is self adjoint if and only if ‖exp ith‖ = 1
for all t ∈ R. For a self adjoint element h ∈ A, using the facts that π is contractive and that
‖ · ‖∧-norm is a cross norm, we have

‖exp itπ1(h)‖= ‖π(exp it(h⊗1))‖ ≤ ‖exp it(h⊗1)‖∧ = lim
m

∥∥∥ m

∑
n=1

intn(hn⊗1)
n!

∥∥∥
∧

= lim
m

∥∥∥( m

∑
n=1

intnhn

n!

)
⊗1
∥∥∥
∧

= lim
m

∥∥∥ m

∑
n=1

intnhn

n!

∥∥∥= ‖exp ith‖= 1,

and this is true for all t ∈ R. Thus, ‖exp itπ1(h)‖= 1 for all t ∈ R, which shows that π1(h)
is a self adjoint element of B(H). This, combined with equation (3.1), gives π1(h) = π2(h),
that is π(1⊗h) = π(h⊗1). Since π is faithful, 1⊗h = h⊗1. So, for any φ ∈ A∗, φ(1)h =
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φ(h)1, which further gives h ∈CI, and this is true for any self adjoint element h of A. Since
any a ∈ A can be written as a = h + ik, h and k being self adjoint elements of A, we obtain
the required result.

Corollary 3.1.
(i) A⊗̂rA is ∗-semisimple if and only if A = CI.

(ii) A⊗̂rA is symmetric if and only if A = CI

Proof. (i) Follows easily from the fact that a semisimple Banach ∗-algebra possesses a
faithful ∗-representation [19, Corollary 4.7.16]. (ii) Let A⊗̂rA be symmetric. Using the
same argument as in [1, Proposition 5.16], one can show that the radical of A⊗̂rA is {0}.
By [19, Theorem 4.7.15], ∗-radical of A⊗̂rA coincides with its radical. Thus A⊗̂rA is ∗-
semisimple, which using above part implies A = CI.
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