BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

Generalization of Posner's Theorems

¹Ahmed A. M. Kamal and ²Khalid H. Al-Shaalan

¹Department of Mathematics, Faculty of Sciences, Cairo University, Giza, Egypt
¹Department of Mathematics, College of Science, King Saud University, Riyadh 2455, Kingdom of Saudi Arabia
²Science Department, King Abdul-Aziz Military Academy, Kingdom of Saudi Arabia
¹aamkamal_9@hotmail.com, ²khshaalan@gmail.com

Abstract. In this paper we generalize Posner's first theorem to a 3-prime near-ring with a (σ, τ) -derivation. We prove that a prime ring with a non-zero (σ, τ) -derivation is commutative if $\sigma(x)d(x) = d(x)\tau(x)$ for all $x \in U$ where U is a suitable subset of R. Also, we generalize Posner's second theorem completely to a prime ring with a (σ, σ) -derivation and partially to a prime ring with a (σ, τ) -derivation.

2010 Mathematics Subject Classification: 16W25, 16Y30

Keywords and phrases: Posner's theorems, (σ, τ) -derivations, primeness, commutativity.

1. Introduction

Throughout this paper R will be a ring or a left near-ring. Z(R) will be its multiplicative center and σ, τ two endomorphisms from R to R. We say that R is prime (3-prime for nearrings) if, for all $x, y \in R$, $xRy = \{0\}$ implies x = 0 or y = 0. We say that U is a semigroup right (left) ideal of R, if U is a non-empty subset of R satisfies $UR \subset U$ ($RU \subset U$). We say that U is a semigroup ideal if it is both a semigroup right and left ideal. For all $x, y \in R$, we write [x, y] = xy - yx for the multiplicative commutator, $[x, y]_{\sigma \tau} = \sigma(x)y - y\tau(x)$ and (x,y) = x + y - x - y for the additive commutator. A map $d: R \to R$ is called a (σ, τ) derivation if d is additive and $d(xy) = \sigma(x)d(y) + d(x)\tau(y)$ for all $x, y \in R$. If $\tau = 1_R$, then *d* is called a σ -derivation. If $\sigma = \tau = 1_R$, then *d* is the usual derivation. An element $x \in R$ is called a left (right) zero divisor in R if there exists a non-zero element $y \in R$ such that xy = 0(yx = 0). A zero divisor is either a left or a right zero divisor. By an integral near-ring, we mean a near-ring without non-zero divisors of zero. A near-ring R is called a constant near-ring, if xy = y for all $x, y \in R$ and is called a zero-symmetric near-ring, if 0x = 0 for all $x \in R$. For any group $(G, +), M_{\rho}(G)$ denotes the near-ring of all zero preserving maps from G to G with the two operations of addition and composition of maps. An abelian near-ring R is a near-ring such that (R, +) is abelian. We refer the reader to the books of Meldrum [15] and Pilz [17] for basic results of near-ring theory and its applications.

Communicated by Ang Miin Huey.

Received: August 18, 2011; Revised: December 12, 2011.

In this paper we use the commutator $[x,y]_{\sigma,\tau}$ to mean $\sigma(x)y - y\tau(x)$, but its usual form is $x\sigma(y) - \tau(y)x$ with using that $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$. According to the last form, Argac, Kaya and Kisir showed in [1] that a prime ring R admits a non-zero (σ, τ) -derivation such that $[d(x), x]_{\sigma,\tau} = 0$ for all $x \in I$ if and only if R is commutative and $\sigma = \tau$, where I is a non-zero right ideal of R. They also showed that a prime ring R of characteristic not 2 admits a non-zero (σ, τ) -derivation such that $[d(x), x]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $x \in I$ if and only if R is commutative and $\sigma = \tau$, where $C_{\sigma,\tau} = \{x \in R : x\sigma(y) = \tau(y)x$ for all $y \in R\}$. Also, Ashraf and Rehman showed in Theorem 1 in [2] that a 2-torsion free prime ring R is commutative if R admits a non-zero (σ, τ) -derivation such that $[d(x), x]_{\sigma,\tau} = 0$ for all $x \in R$. In [3], Aydin had extended that theorem to $[d(x), x]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $x \in R$. All above papers used that σ and τ are automorphisms on R. In the literature of studying commutativity of rings and near-rings, there are also some works studied the commutativity of rings and near-rings.

In Section 2 we give some well-known results and we add some new auxiliary results on a near-ring *R* admitting a non-zero (σ, τ) -derivation *d*, which will be useful in the sequel. In Section 3 we study the problem of Posner for the composition of two derivations, in the more general case the composition of a (σ, τ) -derivation and an (α, β) -derivation, where α is an automorphism and, σ, β and τ are epimorphisms on a near-ring *R*. Consequently, we generalize Posner's first theorem for (σ, τ) -derivations in Theorem 3.1 which generalizes results due to K. I. Beidar, Y. Fong and X. K. Wang; O. Golbasi and M. S. Samman.

Section 4 is devoted to study Posner's second theorem using (σ, τ) -derivations on prime rings. Consequently, we generalize Lemma 3 of [18] to (σ, τ) -derivations on prime rings. In Theorem 4.4 we study Posner's second theorem using (σ, τ) -derivations on prime rings. Theorem 4.5 is a generalization of Posner's second theorem to (σ, σ) -derivations on prime rings, where σ is an epimorphism on R. In the last of this section we study the condition $d(x^2) \in Z(R)$ for all $x \in R$, where d is a non-zero (σ, τ) -derivation on a prime ring R.

2. Preliminaries and some results

We need the following lemmas:

Lemma 2.1. [10, Lemma 1] An additive mapping d on a near-ring R is a (σ, τ) -derivation if and only if $d(xy) = d(x)\tau(y) + \sigma(x)d(y)$, for all $x, y \in R$.

Lemma 2.2. [10, Lemma 2] *Let R be a near-ring with a* (σ, τ) *-derivation d such that* τ *is an epimorphism. Then R satisfies the partial distributive law,* $(\sigma(x)d(y) + d(x)\tau(y))c = \sigma(x)d(y)c + d(x)\tau(y)c$ and $(d(x)\tau(y) + \sigma(x)d(y))c = d(x)\tau(y)c + \sigma(x)d(y)c$ for all $x, y, c \in R$.

Lemma 2.3. [7, Lemma 1.2(iii)] Let *R* be a 3-prime near-ring and $x \in Z(R) - \{0\}$. If either *yx* or *xy* in *Z*(*R*), then $y \in Z(R)$.

Lemma 2.4. [9, Lemma 3(i),(ii)] Let R be a 3-prime near-ring and $x \in Z(R) - \{0\}$. Then x is not a zero divisor in R.

Lemma 2.5. [10, Lemma 3] *Let d be a non-zero* (σ, τ) *-derivation on a 3-prime near-ring R.*

(i) If $d(R)x = \{0\}$ and τ is onto, then x = 0.

(ii) If $xd(R) = \{0\}$, R is zero-symmetric and σ is onto, then x = 0.

Lemma 2.6. [13, Proposition 2.7] A near-ring R is zero-symmetric if and only if R admits a (σ, τ) -derivation d such that σ, τ are endomorphisms and τ is either one-to-one or onto.

Lemma 2.7. Let *R* be a near-ring with a (σ, τ) -derivation *d* such that $2R = \{0\}$ and σ, τ commute with *d*. Then d^2 is a (σ^2, τ^2) -derivation on *R*.

Proof. For all $x, y \in R$, we have $d^2(x+y) = d^2(x) + d^2(y)$ since d is an additive mapping on R. Now, for all $x, y \in R$ we get

$$\begin{aligned} d^{2}(xy) &= d(d(xy)) = d(\sigma(x)d(y) + d(x)\tau(y)) \\ &= \sigma^{2}(x)d^{2}(y) + d\sigma(x)\tau d(y) + \sigma d(x)d\tau(y) + d^{2}(x)\tau^{2}(y) \\ &= \sigma^{2}(x)d^{2}(y) + d\sigma(x)d\tau(y) + d\sigma(x)d\tau(y) + d^{2}(x)\tau^{2}(y) \\ &= \sigma^{2}(x)d^{2}(y) + 2d\sigma(x)d\tau(y) + d^{2}(x)\tau^{2}(y) = \sigma^{2}(x)d^{2}(y) + d^{2}(x)\tau^{2}(y). \end{aligned}$$

Thus, $d^2(xy) = \sigma^2(x)d^2(y) + d^2(x)\tau^2(y)$ for all $x, y \in R$ and d^2 is a (σ^2, τ^2) -derivation on R.

Lemma 2.8. [7, Lemma 1.3(iii)] Let R be a 3-prime near-ring with a non-zero semigroup right ideal U of R. If there exists $x \in R$ which centralizes U, then $x \in Z(R)$. Moreover, if R is a prime ring and U is a semigroup left ideal, then $x \in Z(R)$.

Lemma 2.9. [11, Lemma 4] Let *R* be a 3-prime near-ring with a (σ, τ) -derivation *d*.

- (i) If R is zero-symmetric and U is a non-zero semigroup right ideal of R such that σ is an epimorphism, σ(U) ≠ {0} and d(U) = {0}, then d = 0.
- (ii) If U is a non-zero semigroup left ideal of R such that τ is an epimorphism, $\tau(U) \neq \{0\}$ and $d(U) = \{0\}$, then d = 0.

Lemma 2.10. [7, Lemma 1.5] Let R be a 3-prime near-ring with a non-zero semigroup right (left) ideal U such that $U \subseteq Z(R)$. Then R is a commutative ring.

Lemma 2.11. [7, Lemma 1.4] Let R be a 3-prime near-ring with a non-zero semigroup ideal U. If $x, y \in R$ and $xUy = \{0\}$, then x = 0 or y = 0.

Lemma 2.12. [13, Corollary 4.6] Let *R* be a 3-prime near-ring with a non-zero (σ, τ) -derivation *d* such that one of σ, τ is either a monomorphism or an epimorphism. If $d(R) \subseteq Z(R)$, then *R* is a commutative ring.

Lemma 2.13. [13, Theorem 5.4] Let *R* be a 3-prime near-ring with a non-zero (σ, τ) -derivation *d* such that τ is an automorphism and d(xy) = d(yx) for all $x, y \in R$. Then *R* is a commutative ring.

Lemma 2.14. [13, Theorem 5.9] Let *R* be a 3-prime near-ring with a non-zero (σ, τ) -derivation *d* such that d(xy) = -d(yx) for all $x, y \in R$. If τ is an automorphism on *R*, then *R* is a commutative ring of characteristic 2.

3. Posner's first theorem

In this section we generalize Posner's first theorem for (σ, τ) -derivations on near-rings. We need the following two lemmas to prove the first theorem in this section.

Lemma 3.1. Let R be a near-ring with a (σ, τ) -derivation d and θ be any endomorphism of R. Then

- (i) θd is a $(\theta \sigma, \theta \tau)$ -derivation on R.
- (ii) $d\theta$ is a $(\sigma\theta, \tau\theta)$ -derivation on R.

Proof. (i) Clearly the composition of two additive mappings on R is an additive mapping. Now, for all $x, y \in R$, we have $\theta d(xy) = \theta(d(xy)) = \theta(\sigma(x)d(y) + d(x)\tau(y)) =$ $\theta \sigma(x) \theta d(y) + \theta d(x) \theta \tau(y)$ and then θd is a $(\theta \sigma, \theta \tau)$ -derivation on R. I

(ii) The proof is similar to (i).

Lemma 3.2. Let R be a near-ring with a non-zero (σ, τ) -derivation d. Suppose one of the following two conditions holds:

- (i) *R* is a 3-prime near-ring and τ is onto, or
- (ii) There exists $a \in R$ such that d(a) is not a left zero divisor in R and τ is either one-to-one or onto.

Then $nR = \{0\}$ if and only if $nd(R) = \{0\}$.

Proof. Clearly if $nR = \{0\}$, then $nd(R) = \{0\}$. Conversely, suppose $nd(R) = \{0\}$. Then 0 = nd(b) = d(nb) for all $b \in R$. Now, for all $x, y \in R$

$$0 = d(n(yx)) = d(y(nx)) = \sigma(y)d(nx) + d(y)\tau(nx) = d(y)\tau(nx).$$

If R is 3-prime and τ is onto, then $d(R)\tau(nx) = \{0\}$ implies $\tau(nx) = 0$ for all $x \in R$ by Lemma 2.5(i). It follows that $\{0\} = \tau(nR) = n\tau(R) = nR$. If there exists $a \in R$ such that d(a) is not a left zero divisor in R, then $d(a)\tau(nx) = 0$ and then $\tau(nx) = 0$ for all $x \in R$. Therefore $\tau(nR) = \{0\}$. If τ is onto, then by the same way above $nR = \{0\}$ and if τ is one-to-one, then $\tau(nR) = \{0\}$ implies $nR = \{0\}$.

The conditions " τ is onto" in Lemma 3.2(i) and " τ is either one-to-one or onto" in Lemma 3.2(ii) are not redundant as the following example shows.

Example 3.1. Let (R, +) be the additive abelian group $(\mathbb{Z}_4, +)$ and define the multiplication to make R a constant near-ring. Then R is 3-prime. Suppose $\tau = 0$ and σ is any endomorphism on R, then any additive mapping d on R is a (σ, τ) -derivation. Define $d: R \to R$ by $d(\overline{x}) = \overline{x} + \overline{x}$ for all $\overline{x} \in R$. Then $d(\overline{x} + \overline{y}) = \overline{x} + \overline{y} + \overline{x} + \overline{y} = \overline{x} + \overline{x} + \overline{y} + \overline{y} = d(\overline{x}) + d(\overline{y})$ for all $\overline{x}, \overline{y} \in R$ and d is an additive endomorphism of R. So d is a (σ, τ) -derivation on R. Also, $d(\overline{1}) = \overline{1} + \overline{1} = \overline{2}$ is not a left zero divisor in *R* by the definition of the multiplication. Observe that $d(2\overline{x}) = d(\overline{x} + \overline{x}) = \overline{x} + \overline{x} + \overline{x} + \overline{x} = 4\overline{x} = \overline{0}$ for all $\overline{x} \in R$. Thus, $2d(R) = \{\overline{0}\}$. But $2R \neq \{\overline{0}\}$ as $2(\overline{1}) = \overline{1} + \overline{1} = \overline{2} \neq \overline{0}$.

The following theorem generalizes Theorem 1.1 of [4], Theorem 2.5 of [11] and the main Theorem of [19].

Theorem 3.1. Let R be a 3-prime near-ring with a (σ, τ) -derivation d and an (α, β) derivation D such that α commutes with β , α is an automorphism, σ , β , τ are epimorphisms and α, β, τ commute with D. If dD is a $(\sigma\alpha, \tau\beta)$ -derivation, then one of the following statements holds:

(i) d = 0(ii) D = 0(iii) $2R = \{0\}.$ *Proof.* Since τ is an epimorphism, we have *R* is zero-symmetric by Lemma 2.6. As *dD* is a $(\sigma\alpha, \tau\beta)$ -derivation, so $dD(ab) = \sigma\alpha(a)dD(b) + dD(a)\tau\beta(b)$ for all $a, b \in R$. On the other hand, *d* is a (σ, τ) -derivation and *D* is an (α, β) -derivation. Thus, $dD(ab) = d(\alpha(a)D(b) + D(a)\beta(b)) = \sigma\alpha(a)dD(b) + d(\alpha(a))\tau D(b) + \sigma(D(a))d(\beta(b)) + dD(a)\tau\beta(b)$. Comparing the previous two equations, we get

(3.1)
$$d(\alpha(a))\tau(D(b)) + \sigma(D(a))d(\beta(b)) = 0 \text{ for all } a, b \in R.$$

Replace *a* by *ac* where $c \in R$. So using the partial distributive law (Lemma 2.2), we have for all $a, b, c \in R$

$$\begin{aligned} 0 &= d(\alpha(ac))\tau D(b) + \sigma(D(ac))d(\beta(b)) = d(\alpha(a)\alpha(c))\tau D(b) + \sigma(D(ac))d(\beta(b)) \\ &= d\alpha(a)\tau\alpha(c)\tau D(b) + \sigma\alpha(a)d\alpha(c)\tau D(b) + \sigma(\alpha(a)D(c) + D(a)\beta(c))d(\beta(b)) \\ &= d\alpha(a)\tau\alpha(c)\tau D(b) + \sigma\alpha(a)d\alpha(c)\tau D(b) + (\sigma\alpha(a)\sigma D(c) + \sigma D(a)\sigma\beta(c))d(\beta(b)). \end{aligned}$$

Notice that σD is a $(\sigma \alpha, \sigma \beta)$ -derivation by Lemma 3.1. Since $\sigma \beta$ is onto, we can use the partial distributive law to obtain

$$\begin{split} 0 &= d\alpha(a)\tau\alpha(c)\tau D(b) + \sigma\alpha(a)d\alpha(c)\tau D(b) + \sigma\alpha(a)\sigma D(c)d(\beta(b)) \\ &+ \sigma D(a)\sigma\beta(c)d(\beta(b)) \\ &= d\alpha(a)\tau\alpha(c)\tau D(b) + \sigma\alpha(a)(d\alpha(c)\tau D(b) + \sigma D(c)d(\beta(b))) \\ &+ \sigma D(a)\sigma\beta(c)d(\beta(b)) \end{split}$$

for all $a, b, c \in R$. By using (3.1) with *c* instead of *a*, we get for all $a, b, c \in R$

(3.2)
$$d\alpha(a)\tau\alpha(c)\tau D(b) + \sigma D(a)\sigma\beta(c)d(\beta(b)) = 0.$$

As α is bijective, we obtain $d\alpha(a)\tau(r)\tau D(b) + \sigma D(a)\sigma\beta(\alpha^{-1}(r))d(\beta(b)) = 0$ for all $a, b, r \in R$ where $r = \alpha(c)$. Taking r = D(t) where $t \in R$, we obtain $d\alpha(a)\tau D(t)\tau D(b) + \sigma D(a)\sigma\beta\alpha^{-1}D(t)d(\beta(b)) = 0$ for all $a, b, t \in R$. Since $\beta\alpha^{-1}$ commutes with D, we have

(3.3)
$$d\alpha(a)\tau D(t)\tau D(b) + \sigma D(a)\sigma(D(\beta\alpha^{-1}(t))d(\beta(b)) = 0.$$

Replacing *a* by $\beta \alpha^{-1}(t)$ in equation (3.1), we deduce that $\sigma(D(\beta \alpha^{-1}(t))d(\beta(b)) = -d(\alpha(\beta \alpha^{-1}(t)))\tau D(b)$. Since α and β commute, we have $\sigma(D(\beta \alpha^{-1}(t))d(\beta(b)) = -d(\beta(t))\tau D(b)$ for all $t, b \in \mathbb{R}$. Therefore, (3.3) becomes $0 = d\alpha(a)\tau D(t)\tau D(b) + \sigma D(a)(-d(\beta(t))\tau D(b))$ which means

(3.4)
$$d\alpha(a)\tau D(t)\tau D(b) = \sigma D(a)d(\beta(t))\tau D(b) \text{ for all } a,b,t \in R.$$

Replacing *b* by *tk* in (3.1) where $t, k \in R$, we have

$$\begin{aligned} 0 &= d(\alpha(a))\tau D(tk) + \sigma(D(a))d(\beta(tk)) = d(\alpha(a))\tau D(tk) + \sigma(D(a))d(\beta(t)\beta(k)) \\ &= d\alpha(a)\tau(D(t)\beta(k) + \alpha(t)D(k)) + \sigma D(a)(\sigma\beta(t)d\beta(k) + d\beta(t)\tau(\beta(k))) \\ &= d\alpha(a)\tau D(t)\tau(\beta(k)) + d\alpha(a)\tau\alpha(t)\tau D(k) + \sigma D(a)\sigma\beta(t)d\beta(k) + \sigma D(a)d\beta(t)\tau(\beta(k)) \\ &= d\alpha(a)\tau D(t)\tau(\beta(k)) + \sigma D(a)d\beta(t)\tau(\beta(k)) \end{aligned}$$

as $d\alpha(a)\tau\alpha(t)\tau D(k) + \sigma D(a)\sigma\beta(t)d\beta(k) = 0$ by (3.2). Then $d\alpha(a)\tau D(t)\tau(r) + \sigma D(a)d\beta(t)\tau(r) = 0$ for all $a, t, r \in R$, since β is onto. Taking r = D(b) where $b \in R$ in the last equation, we obtain

(3.5)
$$d\alpha(a)\tau D(t)\tau D(b) + \sigma D(a)d\beta(t)\tau D(b) = 0 \text{ for all } a,b,t \in \mathbb{R}.$$

Substituting (3.4) in (3.5) and using $\tau D = D\tau$, we get for all $a, b, t \in R$

 $0 = d(\alpha(a))D\tau(t)D\tau(b) + d(\alpha(a))D\tau(t)D\tau(b) = d(\alpha(a))D(\tau(t))(2D(\tau(b))).$

Since α and τ are onto, we have $d(R)D(R)(2D(R)) = \{0\}$. Suppose $d \neq 0$. So $D(R)(2D(R)) = \{0\}$ by Lemma 2.5(i). If $D \neq 0$, then $2D(R) = \{0\}$ by Lemma 2.5(i) and hence $2R = \{0\}$ by Lemma 3.2(i)

The following corollary generalizes [20, Corollary 1].

Corollary 3.1. Let R be a 3-prime near-ring such that $2R \neq \{0\}$ with a (σ, τ) -derivation d such that σ commutes with τ , σ is an automorphism, τ is an epimorphism and σ , τ commute with d. If d^2 is a (σ^2, τ^2) -derivation, then d = 0.

The conditions $2R = \{0\}$ in Theorem 3.1 and $2R \neq \{0\}$ in Corollary 3.1 are essential as the following example shows.

Example 3.2. Let $R = \mathbb{Z}_2[x]$. Then *R* is an integral domain which means that *R* is a commutative prime ring. Also, we have $2R = \{0\}$. If we take *d* to be the usual derivative on $R = \mathbb{Z}_2[x]$, then *d* is a $(1_R, 1_R)$ -derivation on *R* which is non-zero. But d^2 is also a $(1_R, 1_R)$ -derivation on $R = \mathbb{Z}_2[x]$ by Lemma 2.7.

The following result generalizes [12, Proposition 4.8].

Proposition 3.1. Let *R* be a near-ring with a (σ, τ) -derivation *d* and an (α, β) -derivation *D* such that α commutes with β , α is an automorphism, σ, β, τ are epimorphisms and α, β, τ commute with *D*. If *dD* is a $(\sigma\alpha, \tau\beta)$ -derivation and there exist $x_o, y_o \in R$ such that $d(x_o), D(y_o)$ are not left zero divisors in *R*, then $2R = \{0\}$.

Proof. By the same way of the proof of Theorem 3.1, we will deduce that $d(R)D(R)(2D(R)) = \{0\}$. Since $d(x_o)$ is not a left zero divisor in R, we have $D(R)(2D(R)) = \{0\}$. Again, as $D(y_o)$ is not a left zero divisor in R, so $2D(R) = \{0\}$ which implies that $2R = \{0\}$ by Lemma 3.2(ii).

4. Posner's second theorem

In this section we generalized Posner's second theorem for (σ, τ) -derivations.

Lemma 4.1. Let R be a near-ring with a multiplicative epimorphism θ . If U is a non-zero semigroup right (left) ideal of R, then $\theta(U)$ is a semigroup right (left) ideal of R. Moreover, if θ is a multiplicative automorphism on R then $\theta(U)$ is a non-zero semigroup right (left) ideal of R.

Proof. Let *U* be a non-zero semigroup right ideal of *R* and $x \in R$. Since θ is onto, there exists $r \in R$ such that $\theta(r) = x$. Thus, $\theta(u)x = \theta(u)\theta(r) = \theta(ur) \in \theta(U)$ for all $u \in U$. Hence, $\theta(U)$ is a semigroup right ideal of *R*. If θ is a multiplicative automorphism, then $\theta(U) = \{0\}$ implies $U = \{0\}$, a contradiction. The proof is similar for semigroup left ideals.

The following result generalizes [2, Theorem 1] and [18, Lemma 3].

Theorem 4.1. Let *R* be a prime ring with a non-zero (σ, τ) -derivation *d* such that σ or τ is an automorphism and $\sigma(x)d(x) = d(x)\tau(x)$ for all $x \in U$, where *U* is a non-zero semigroup ideal of *R* which is closed under addition. Then *R* is a commutative ring.

954

Proof. Suppose τ is an automorphism. U is closed under addition implies $\sigma(x+y)d(x+y) = d(x+y)\tau(x+y)$ for all $x, y \in U$. So $\sigma(x)d(x) + \sigma(x)d(y) + \sigma(y)d(x) + \sigma(y)d(y) = d(x)\tau(x) + d(x)\tau(y) + d(y)\tau(x) + d(y)\tau(y)$. Using $\sigma(x)d(x) = d(x)\tau(x)$ and $\sigma(y)d(y) = d(y)\tau(y)$, we get

(4.1)
$$\sigma(x)d(y) + \sigma(y)d(x) = d(x)\tau(y) + d(y)\tau(x) \quad \text{for all} \quad x, y \in U.$$

Adding $d(x)\tau(y) + \sigma(y)d(x)$ to both sides of (4.1), we have $\sigma(x)d(y) + d(x)\tau(y) + 2\sigma(y)$ $d(x) = \sigma(y)d(x) + d(y)\tau(x) + 2d(x)\tau(y)$ which means $d(xy) + 2\sigma(y)d(x) = d(yx) + 2d(x)$ $\tau(y)$ and then for all $x, y \in U$, we get

(4.2)
$$d(xy) - d(yx) = 2d(x)\tau(y) - 2\sigma(y)d(x) = 2(d(x)\tau(y) - \sigma(y)d(x)).$$

Replacing *y* by *xy* in (4.2) and using $\sigma(x)d(x) = d(x)\tau(x)$ for all $x \in U$, we have

$$\begin{aligned} d(xxy) - d(xyx) &= 2(d(x)\tau(x)\tau(y) - \sigma(x)\sigma(y)d(x)) \\ &= 2(\sigma(x)d(x)\tau(y) - \sigma(x)\sigma(y)d(x)) \\ &= \sigma(x)(2(d(x)\tau(y) - \sigma(y)d(x))) = \sigma(x)(d(xy) - d(yx)), \end{aligned}$$

On the other hand, we have

$$d(xxy) - d(xyx) = d(x(xy - yx)) = \sigma(x)(d(xy) - d(yx)) + d(x)\tau(xy - yx)$$

Comparing the last equations, we obtain $d(x)\tau(xy-yx) = 0$, for all $x, y \in U$. Thus, we have the following

(4.3)
$$d(x)\tau(x)\tau(y) = d(x)\tau(y)\tau(x) \quad \text{for all} \quad x, y \in U.$$

Replacing *y* by *yz* and using (4.3), we get $d(x)\tau(y)\tau(x)\tau(z) = d(x)\tau(y)\tau(z) = d(x)\tau(y)$ $\tau(z)\tau(x)$ for all $x, y, z \in U$. So $d(x)\tau(y)(\tau(x)\tau(z) - \tau(z)\tau(x)) = 0$. Thus, $d(x)\tau(U)(\tau(x)\tau(z) - \tau(z)\tau(x)) = \{0\}$ for all $x, z \in U$. Using Lemma 4.1 and Lemma 2.11, we have for all $x \in U$ either d(x) = 0 or $\tau(x)\tau(z) - \tau(z)\tau(x) = \tau(xz - zx) = 0$ for all $z \in U$. If $d(U) = \{0\}$, then d = 0 by Lemma 2.9(ii), a contradiction. So there exists $a \in U$ such that $d(a) \neq 0$ and hence $\tau(az - za) = 0$ for all $z \in U$. But τ is an automorphism implies that az - za = 0 for all $z \in U$ and then *a* centralizes *U*. Therefore, $a \in Z(R)$ by Lemma 2.8. Replacing *y* by *ay* in (4.2), we get $d(xay) - d(ayx) = 2(d(x)\tau(a)\tau(y) - \sigma(a)\sigma(y)d(x))$ for all $x, y \in U$. But from (4.1), we have $\sigma(x)d(a) + \sigma(a)d(x) - d(a)\tau(x) = d(x)\tau(a)$. Substituting this in the last equation and using (4.2) and $a \in Z(R)$, it will be

$$\begin{aligned} d(xay) - d(ayx) &= 2(\sigma(a)d(x)\tau(y) + (\sigma(x)d(a) - d(a)\tau(x))\tau(y) - \sigma(a)\sigma(y)d(x)) \\ &= 2\sigma(a)(d(x)\tau(y) - \sigma(y)d(x)) + 2((\sigma(x)d(a) - d(a)\tau(x))\tau(y)) \\ &= \sigma(a)2(d(x)\tau(y) - \sigma(y)d(x)) + 2(\sigma(x)d(a) - d(a)\tau(x))\tau(y) \\ &= \sigma(a)(d(xy) - d(yx)) - (d(ax) - d(xa))\tau(y) \\ &= \sigma(a)(d(xy) - d(yx)) \end{aligned}$$

for all $x, y \in U$ since d(ax) - d(xa) = 0 for all $x \in U$. On the other hand, $d(xay) - d(ayx) = d(a(xy - yx)) = \sigma(a)(d(xy) - d(yx)) + d(a)\tau(xy - yx)$ for all $x, y \in U$. Comparing the last two equations, we get $d(a)\tau(xy - yx) = 0$ and then $d(a)\tau(x)\tau(y) = d(a)\tau(y)\tau(x)$ for all $x, y \in U$. Putting *xz* instead of *x* where $z \in U$, we get $d(a)\tau(x)\tau(z)\tau(y) = d(a)\tau(y)\tau(x)\tau(z) = d(a)\tau(x)\tau(y)\tau(z)$ for all $x, y, z \in U$. Therefore, $d(a)\tau(x)(\tau(z)\tau(y) - \tau(y)\tau(z)) = 0$ for all $x, y, z \in U$. Thus, $d(a)\tau(U)(\tau(z)\tau(y) - \tau(y)\tau(z)) = \{0\}$. Using $d(a) \neq 0$, Lemma 4.1 and Lemma 2.11, we have $\tau(z)\tau(y) - \tau(y)\tau(z) = \tau(zy - yz) = 0 = \tau(0)$ and then zy = yz for all

y,*z* ∈ *U*. By Lemma 2.8, we obtain $U \subseteq Z(R)$. Hence, *R* is a commutative ring by Lemma 2.10. The proof for σ is an automorphism is similar.

It is not true to replace the condition " $\sigma(x)d(x) = d(x)\tau(x)$ " in Theorem 4.1 by "xd(x) = d(x)x" as the following example shows.

Example 4.1. Let *R* be the prime ring $M_2(\mathbb{Z}_2)$. Take $d = \tau$ is the identity map on *R* and $\sigma = 0$ (or $d = \sigma$ is the identity map on *R* and $\tau = 0$). Then *d* is a non-zero (σ, τ) -derivation *d* on *R*. Clearly that $d(x)x = xd(x) = x^2$ for all $x \in R$. But *R* is not commutative.

Corollary 4.1. Let *R* be a prime ring with a non-zero σ -derivation *d* such that $\sigma(x)d(x) = d(x)x$ for all $x \in U$ where *U* is a non-zero semigroup ideal of *R* which is closed under addition. Then *R* is a commutative ring.

Lemma 4.2. Let R be an abelian near-ring with a non-zero (σ, τ) -derivation d such that σ and τ are epimorphisms. Then $d(\operatorname{dist}(R)) \subseteq \operatorname{dist}(R)$, where $\operatorname{dist}(R)$ is the set of distributive elements of R.

Proof. For all $x, y \in R, s \in \operatorname{dist}(R)$, we have d((x+y)s) = d(xs+ys). That means $\sigma(x+y)d(s) + d(x+y)\tau(s) = \sigma(x)d(s) + d(x)\tau(s) + \sigma(y)d(s) + d(y)\tau(s)$. Since τ is onto, we get $\tau(s) \in \operatorname{dist}(R)$. It follows that $(\sigma(x) + \sigma(y))d(s) + d(x)\tau(s) + d(y)\tau(s) = \sigma(x)d(s) + \sigma(y)d(s) + d(x)\tau(s) + d(y)\tau(s) = \sigma(x)d(s) + \sigma(y)d(s) + \sigma(y)d(s) = \sigma(x)d(s) + \sigma(y)d(s)$. So $d(s) \in \operatorname{dist}(R)$.

Theorem 4.2. Let *R* be an integral near-ring with a non-zero (σ, τ) -derivation *d* such that σ and τ are automorphisms and $\sigma(x)d(x) = d(x)\tau(x)$ for all $x \in R$. Then *d* is a (σ, σ) -derivation on dist(*R*) and either d(dist(R)) = 0 or dist(*R*) is a commutative ring. Moreover, if $d(\text{dist}(R)) \neq 0$, then $\sigma(s) = \tau(s)$ for all $s \in \text{dist}(R)$.

Proof. For all $x, y \in R$, we have $d(x(x+y)) = d(x^2 + xy)$. So

$$d(x(x+y)) = \sigma(x)d(x+y) + d(x)\tau(x+y)$$

= $\sigma(x)d(x) + \sigma(x)d(y) + d(x)\tau(x) + d(x)\tau(y)$
= $\sigma(x)d(x) + \sigma(x)d(y) + \sigma(x)d(x) + d(x)\tau(y)$

as $d(x)\tau(x) = \sigma(x)d(x)$. On the other hand

$$\begin{aligned} d(x^2 + xy) &= d(x^2) + d(xy) = \sigma(x)d(x) + d(x)\tau(x) + \sigma(x)d(y) + d(x)\tau(y) \\ &= \sigma(x)d(x) + \sigma(x)d(x) + \sigma(x)d(y) + d(x)\tau(y). \end{aligned}$$

After cancellation we get $\sigma(x)d(y) + \sigma(x)d(x) = \sigma(x)d(x) + \sigma(x)d(y)$ for all $x, y \in R$. Thus, $0 = \sigma(x)(d(y) + d(x) - d(y) - d(x)) = \sigma(x)d(y + x - y - x)$ for all $x, y \in R$. Since R is without zero divisors and σ is an automorphism, either x = 0 or d(y + x - y - x) = 0 for all $0 \neq x \in R$ and for all $y \in R$. But if x = 0, then d(y + x - y - x) = d(y - y) = d(0) = 0. So d((x,y)) = 0 for all $x, y \in R$. Since z(x,y) = (zx,zy) for all $x, y, z \in R$, we have d(z(x,y)) = 0 and then $0 = d(z(x,y)) = \sigma(z)d((x,y)) + d(z)\tau(x,y) = d(z)\tau(x,y)$. Since $d \neq 0$, there exists $z \in R$ such that $d(z) \neq 0$ and then $\tau(x,y) = 0$ for all $x, y \in R$. It follows that (R, +) is an abelian group. So R is an abelian near-ring. Thus, dist(R) is a subnear-ring of R which is an integral ring. Also, $d(\operatorname{dist}(R)) \subseteq \operatorname{dist}(R)$ by Lemma 4.2. Therefore, $d(\operatorname{dist}(R)) = 0$ or dist(R) is a commutative ring by Theorem 4.1. Now, If $d(\operatorname{dist}(R)) = 0$, then d is a (σ, σ) -derivation on dist(R). Suppose that $d(\operatorname{dist}(R)) \neq 0$. So $\sigma(s)d(s) = d(s)\tau(s)$ for all $s \in \operatorname{dist}(R)$. Thus, $d(s)(\sigma(s) - \tau(s)) = 0$ and either d(s) = 0 or $\sigma(s) = \tau(s)$. That means if $d(s) \neq 0$, then $\sigma(s) = \tau(s)$. Since $d(\operatorname{dist}(R)) \neq 0$, there exists $t \in \operatorname{dist}(R)$ such that $d(t) \neq 0$. So for all $s \in \operatorname{dist}(R) - \{0\}$ such that d(s) = 0, we get $\sigma(ts)d(ts) = d(ts)\tau(ts)$. It follows that $\sigma(t)\sigma(s)d(t)\tau(s) = d(t)\tau(s)\tau(t)\tau(s)$. As $\operatorname{dist}(R)$ is a commutative integral ring, τ is an automorphism and $\sigma(t) = \tau(t)$ where $d(t) \neq 0$ and $t \in \operatorname{dist}(R)$, we have $\sigma(s) = \tau(s)$ for all $s \in \operatorname{dist}(R)$. Also, σ is an automorphism on R implies that σ is an automorphism on $\operatorname{dist}(R)$. Therefore, d is a non-zero (σ, σ) -derivation on $\operatorname{dist}(R)$.

The following result generalizes [1, Theorem 1].

Theorem 4.3. Let *R* be a prime ring with a non-zero (σ, τ) -derivation *d* such that σ, τ are epimorphisms and $\sigma(x)d(x) = d(x)\tau(x)$ for all $x \in U$ where *U* is a non-zero right (left) ideal of *R*. Then $\tau(U) = \{0\}$ or $\sigma(U) = \{0\}$ or (*R* is a commutative ring and $\sigma = \tau$).

Proof. Suppose U is a non-zero right ideal. The first part of the proof is similar to the first part of the proof of Theorem 4.1 up to equation (4.3)

$$d(x)\tau(x)\tau(y) = d(x)\tau(y)\tau(x)$$
 for all $x, y \in U$.

Replacing *y* by *yz* and using (4.3), we have $d(x)\tau(y)\tau(x)\tau(z) = d(x)\tau(x)\tau(y)\tau(z) = d(x)\tau(y)$ $\tau(z)\tau(x)$ for all $x, y, z \in U$, which means $d(x)\tau(y)(\tau(x)\tau(z) - \tau(z)\tau(x)) = 0$. Thus, $d(x)\tau(U)$ $(\tau(x)\tau(z) - \tau(z)\tau(x)) = \{0\}$ for all $x, z \in U$. By Lemma 4.1, either $\tau(U) = \{0\}$ or $d(x)\tau(U)$ $R(\tau(x)\tau(z) - \tau(z)\tau(x)) = \{0\}$. If $\tau(U) \neq \{0\}$, then for each $x \in U$ either $d(x)\tau(U) = \{0\}$ or $\tau(xz) = \tau(zx)$ for all $z \in U$. Let $A = \{x \in U : d(x)\tau(U) = \{0\}\}$ and $B = \{x \in U : \tau(xz) = \tau(zx)$ for all $z \in U\}$. Then *A* and *B* are subgroups of (U, +) and $A \cup B = U$. Thus, A = Uor B = U. In other words, $d(U)\tau(U) = \{0\}$ or $\tau(U) \subseteq Z(R)$. Suppose $d(U)\tau(U) = \{0\}$. So (4.1) will be $\sigma(x)d(y) + \sigma(y)d(x) = 0$ for all $x, y \in U$. Since $d(xy) = \sigma(x)d(y), d(yx) = \sigma(y)d(x)$, we have

(4.4)
$$d(xy+yx) = 0 \quad \text{for all} \quad x, y \in U.$$

Replacing *x*, *y* by *z*, (xy + yx) respectively in (4.4), we get d(z(xy + yx) + (xy + yx)z) = 0 for all $x, y, z \in U$. It follows that

(4.5)
$$0 = \sigma(z)d(xy + yx) + d(z)\tau(xy + yx) + \sigma(xy + yx)d(z) + d(xy + yx)\tau(z)$$

for all $x, y, z \in U$. Observe that $d(xy + yx)\tau(z) = d(z)\tau(xy + yx) = 0$ from $d(U)\tau(U) = \{0\}$ and $\sigma(z)d(xy+yx) = 0$ from (4.4). Thus, (4.5) will be $\sigma(xy+yx)d(z) = 0$. Replacing y by yz, it yields $0 = \sigma(xyz + yzx)d(z) = \sigma(x)\sigma(y)\sigma(z)d(z) + \sigma(y)\sigma(z)\sigma(x)d(z) =$ $\sigma(y)\sigma(z)\sigma(x)d(z)$ for all $x, y, z \in U$ since $\sigma(z)d(z) = d(z)\tau(z) = 0$. Replacing y by yr where $r \in R$, we get $\sigma(y)\sigma(r)\sigma(z)\sigma(x)d(z) = 0$. As R is prime and σ is onto, either $\sigma(U) = \{0\}$ or $\sigma(z)\sigma(x)d(z) = 0$ for all $x, z \in U$. If $\sigma(U) \neq \{0\}$, then $\sigma(z)\sigma(x)d(z) = 0$ for all $x, z \in U$. Putting xr instead of x, we conclude that $\sigma(z)\sigma(x)Rd(z) = \{0\}$ and then for every $z \in U$ either d(z) = 0 or $\sigma(z)\sigma(x) = \sigma(zx) = 0$. Let $A = \{u \in U : d(u) = 0\}$ and $B = \{u \in U : \sigma(ux) = 0 \text{ for all } x \in U\}$. So A and B are subgroups of (U, +). Moreover, $U = A \cup B$. Thus, either A = U or B = U. If A = U, then $d(U) = \{0\}$ and hence d = 0by Lemma 2.9(i), a contradiction with the hypothesis. If B = U, then $\sigma(U^2) = \{0\}$ which implies $\sigma(U)\sigma(U) = \{0\}$. But $\sigma(U)$ is a non-zero semigroup right ideal of R by Lemma 4.1 and $\sigma(U) \neq \{0\}$. So $\sigma(U)\sigma(U) \neq \{0\}$, a contradiction. Hence, $d(U)\tau(U) \neq \{0\}$ if $\sigma(U) \neq \{0\}$. Therefore, $\tau(U) \subseteq Z(R)$. But $\tau(U) \neq \{0\}$ is a non-zero semigroup right ideal of R, so R is a commutative ring by Lemma 2.10. It follows that $\sigma(x)d(x) = d(x)\tau(x)$ implies $d(x)(\sigma(x) - \tau(x)) = 0$ for all $x \in U$. Since R is a commutative prime ring, it doesn't have non-zero zero divisors by Lemma 2.4. Thus, either d(x) = 0 or $\sigma(x) = \tau(x)$.

Let $A = \{x \in U | d(x) = 0\}$ and $B = \{x \in U | \sigma(x) = \tau(x)\}$. Then A and B are subgroups of U whose union is U. As $d(U) \neq 0$, we have B = U and $\sigma(x) = \tau(x)$ for all $x \in U$. Hence, $\sigma(ux) = \tau(ux)$ for all $u \in U$ and $x \in R$. That implies $\sigma(u)(\sigma(x) - \tau(x)) = 0$. Since $\sigma(U) \neq \{0\}$, we get $\sigma(x) = \tau(x)$ for all $x \in R$ and $\sigma = \tau$. The proof when U is a non-zero left ideal is similar.

If a 3-prime near-ring *R* with a (σ, σ) -derivation *d* such that $\sigma(x)d(x) = d(x)\sigma(x)$ for all $x \in R$, then *R* need not be a ring as the following example shows:

Example 4.2. Let $R = I \times I$ as a set, where *I* is any integral ring with identity which has at least three elements. Define the addition and the multiplication on *R* by (a,b) + (c,d) = (a+c,b+d) and (a,b)(c,d) = (ac,bc+d) if $(a,b) \neq (0,0)$ and (0,0)(c,d) = (0,0). Then *R* is a zero-symmetric abelian near-ring with identity (1,0) which is not a ring. Let *D* be a non-zero derivation on *I* and σ the endomorphism defined on *R* by $\sigma((a,b)) = (a,0)$ for all $(a,b) \in R$. Define $d : R \to R$ by d((a,b)) = (D(a),0). Then *d* is a non-zero (σ,σ) -derivation on *R* by simple calculations.

Observe that *R* is 3-prime. Indeed, assume that (a,b)R(c,d) = (0,0) with $(a,b) \neq (0,0)$. If $a \neq 0$, then (a,b)(1,0)(c,d) = (0,0). That means (a,b)(c,d) = (ac,bc+d) = (0,0). Thus, c = 0 and hence d = 0. Now, suppose a = 0 and $b \neq 0$. It follows that (0,0) = (0,b)(0,1)(c,d) = (0,1)(c,d) = (0,c+d) and then c = -d. It follows that (0,0) = (0,b)(0,y)(-d,d) = (0,-yd+d) = (0,(-y+1)d) for all $y \in I - \{0\}$. If $d \neq 0$, then y = 1 and $I = \{0,1\}$ which is a contradiction with the number of elements of *I*. Therefore, d = 0 and (c,d) = (0,0). Hence, *R* is a 3-prime near-ring.

Now, choose *I* to be the integral domain $\mathbb{R}[x]$ where \mathbb{R} is the field of real numbers and choose *D* to be usual derivative on $\mathbb{R}[x]$. Observe that we have $\sigma(a,b)d((a,b)) = d((a,b))\sigma(a,b)$ for all $(a,b) \in R$, but *R* is not a ring.

Proposition 4.1. Let R be a prime ring.

- (i) If nx = 0 for some $x \in R$ and a positive integer n, then either $nR = \{0\}$ or x = 0.
- (ii) If $nR \neq \{0\}$ for some positive integer *n* and $nx \in Z(R)$ for some $x \in R$, then $x \in Z(R)$.

Proof. (i) For all $y, z \in R$, we have 0 = yz(nx) = n(yzx) = (ny)zx. From the primeness of *R*, we have either $nR = \{0\}$ or x = 0.

(ii) If $Z(R) = \{0\}$, then nx = 0 and hence x = 0 by using (i). If $Z(R) \neq \{0\}$, then there exists $z \in Z(R) - \{0\}$. Observe that $ny \neq 0$ for all $y \in R - \{0\}$ from (i). Now, $z(nx) \in Z(R)$. Observe that $z(nx) = n(zx) = (nz)x \in Z(R)$. But $nz \in Z(R) - \{0\}$. Therefore, $x \in Z(R)$ by Lemma 2.3.

The following example shows that the hypothesis "prime ring" in Proposition 4.1 can't be replaced by "3-prime near-ring".

Example 4.3. Let $R = M_o(G)$, where *G* is the abelian group $(\mathbb{Z}_4, +)$. Then $M_o(G)$ is 3-prime. Take $f \in M_o(G)$ such that xf = 2x for all $x \in G$. Then 2f = 0, but neither $2M_o(G) = \{0\}$ nor f = 0. Observe that $2f \in Z(M_o(G))$ and $2M_o(G) \neq \{0\}$, but $f \notin Z(M_o(G))$ since $fg \neq gf$, where $g \in M_o(G)$ is defined by $\{0, 1, 3\}g = \{0\}$ and 2g = 1.

Lemma 4.3. Let *R* be a ring and σ and τ are endomorphisms of *R*. Then for all $x, y, z \in R$, we have the following relations:

- (i) $[x, y \pm z]_{\sigma,\tau} = [x, y]_{\sigma,\tau} \pm [x, z]_{\sigma,\tau}$.
- (ii) $[x \pm y, z]_{\sigma,\tau} = [x, z]_{\sigma,\tau} \pm [y, z]_{\sigma,\tau}$.

- (iii) $[xy,z]_{\sigma,\tau} = \sigma(x)[y,z]_{\sigma,\tau} + [x,z]_{\sigma,\tau}\tau(y).$
- (iv) $[x, yz]_{\sigma,\tau} = y[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\sigma}z$.

Proof. (i) For all $x, y, z \in R$, we have $[x, y \pm z]_{\sigma,\tau} = \sigma(x)(y \pm z) - (y \pm z)\tau(x) = \sigma(x)y \pm \sigma(x)z - y\tau(x) \pm (-z\tau(x)) = \sigma(x)y - y\tau(x) \pm (\sigma(x)z - z\tau(x)) = [x, y]_{\sigma,\tau} \pm [x, z]_{\sigma,\tau}$.

(ii) For all $x, y, z \in R$, we have $[x \pm y, z]_{\sigma,\tau} = \sigma(x \pm y)z - z\tau(x \pm y) = \sigma(x)z \pm \sigma(y)z - z\tau(x) \pm (-z\tau(y)) = \sigma(x)z - z\tau(x) \pm (\sigma(y)z - z\tau(y)) = [x, z]_{\sigma,\tau} \pm [y, z]_{\sigma,\tau}$.

(iii) For all $x, y, z \in R$, we have $[xy, z]_{\sigma, \tau} = \sigma(xy)z - z\tau(xy) = \sigma(x)\sigma(y)z - z\tau(x)\tau(y) = \sigma(x)\sigma(y)z + (-\sigma(x)z\tau(y) + \sigma(x)z\tau(y)) - z \tau(x)\tau(y) = \sigma(x)(\sigma(y)z - z\tau(y)) + (\sigma(x)z - z\tau(x))\tau(y) = \sigma(x)[y, z]_{\sigma, \tau} + [x, z]_{\sigma, \tau}\tau(y).$

(iv) For all $x, y, z \in R$, we have $[x, yz]_{\sigma,\tau} = \sigma(x)yz - yz\tau(x) = \sigma(x)yz + (-y\sigma(x)z + y\sigma(x)z) - yz\tau(x) = (\sigma(x)y - y\sigma(x))z + y(\sigma(x)z - z\tau(x)) = [x, y]_{\sigma,\sigma}z + y[x, z]_{\sigma,\tau} = y[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\sigma}z$.

It is not true in general that $[x, yz]_{\sigma,\tau} = y[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}z$ as the following example shows.

Example 4.4. Let *R* be a ring. Choose $\sigma = 1_R$ and $\tau = 0$. Then for all $x, y, z \in R$, we have $[x, yz]_{\sigma,\tau} = \sigma(x)yz - yz\tau(x) = xyz$ and $y[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}z = y(\sigma(x)z - z\tau(x)) + (\sigma(x)y - y\tau(x))z = yxz + xyz$.

Lemma 4.4. Let *R* be a ring with (σ, τ) -derivations *d* and *D*. Then

- (i) [13, Example 3.1] $\delta : R \to R$ such that $\delta(x) = \sigma(x)a a\tau(x)$ for all $x \in R$ is a (σ, τ) -derivation on R for all $a \in R$.
- (ii) $g: R \to R$ such that g(x) = ad(x) for all $x \in R$ is a (σ, τ) -derivation on R, where $a \in Z(R)$.
- (iii) d + D is a (σ, τ) -derivation on R.

Proof. (ii) For all $x, y \in R$, we have g(x+y) = ad(x+y) = a(d(x)+d(y)) = ad(x) + ad(y) = g(x) + g(y). Also, $g(xy) = ad(xy) = a(\sigma(x)d(y) + d(x)\tau(y)) = \sigma(x)ad(y) + ad(x)\tau(y) = \sigma(x)g(y) + g(x)\tau(y)$.

(iii) Clearly that d + D is additive mapping. Now,

$$\begin{aligned} (d+D)(xy) &= d(xy) + D(xy) = \sigma(x)d(y) + d(x)\tau(y) + \sigma(x)D(y) + D(x)\tau(y) \\ &= \sigma(x)(d(y) + D(y)) + (d(x) + D(x))\tau(y) \\ &= \sigma(x)(d+D)(y) + (d+D)(x)\tau(y). \end{aligned}$$

Therefore, d + D is also a (σ, τ) -derivation on R.

Theorem 4.4. Let *R* be a prime ring with a non-zero (σ, τ) -derivation *d*, σ and τ are epimorphisms of *R*. If $\sigma(x)d(x) - d(x)\tau(x) \in Z(R)$, for all $x \in R$, then *R* is a commutative ring or $d(Z(R)) = \{0\}$.

Proof. Observe that $\sigma(x)d(x) - d(x)\tau(x) = [x,d(x)]_{\sigma,\tau}$ for all $x \in R$. From $[x+y,d(x+y)]_{\sigma,\tau} \in Z(R)$ for all $x, y \in R$ and using Lemma 4.3, we have $[x,d(x)]_{\sigma,\tau} + [x,d(y)]_{\sigma,\tau} + [y,d(y)]_{\sigma,\tau} \in Z(R)$. Using $[x,d(x)]_{\sigma,\tau} \in Z(R)$, $[y,d(y)]_{\sigma,\tau} \in Z(R)$ and that Z(R) is a subring of R, we get

$$(4.6) [x,d(y)]_{\sigma,\tau} + [y,d(x)]_{\sigma,\tau} \in Z(R) for all x,y \in R.$$

If $Z(R) = \{0\}$, then $\sigma(x)d(x) - d(x)\tau(x) = 0$ for all $x \in R$ and hence *R* is a commutative ring by Theorem 4.3. So $R = Z(R) = \{0\}$ and d = 0, a contradiction. Therefore, $Z(R) \neq \{0\}$. We divide the proof into two cases:

(i) *R* is not of characteristic 2. Then there exists $c \in Z(R) - \{0\}$ such that $[x, d(c)]_{\sigma,\tau} + [c, d(x)]_{\sigma,\tau} \in Z(R)$ for all $x \in R$ by (4.6). Write $d_1(x) = [x, d(c)]_{\sigma,\tau}$ and $d_2(x) = [c, d(x)]_{\sigma,\tau}$. Observe that d_1, d_2 and $d_1 + d_2$ are (σ, τ) -derivations by Lemma 4.4. If $d_1 + d_2 \neq 0$, then $(d_1 + d_2)(R) \subseteq Z(R)$ implies that *R* is a commutative ring by Lemma 2.12. If $d_1 + d_2 = 0$, then $[x, d(c)]_{\sigma,\tau} + [c, d(x)]_{\sigma,\tau} = 0$ for all $x \in R, c \in Z(R)$. It follows that $0 = [c, d(c)]_{\sigma,\tau} + [c, d(c)]_{\sigma,\tau} = 2[c, d(c)]_{\sigma,\tau} = d(c)(\sigma(c) - \tau(c)) = 0$. Thus, for all $c \in Z(R)$, either d(c) = 0 or $\sigma(c) = \tau(c)$. If $\sigma(c) \neq \tau(c)$ and d(c) = 0 for some $c \in Z(R)$, then $d_1 = 0$ which implies $d_2 = 0$. Thus, $(\sigma(c) - \tau(c))d(x) = 0$ for all $x \in R$ and d = 0 by Lemma 2.4, a contradiction. So if $d(Z(R)) = \{0\}$, then $\sigma(a) = \tau(a)$ for all $a \in Z(R)$. If d(c) = 0 and $\sigma(c) = \tau(c)$ for some $c \in Z(R)$, then $d_2 = 0$. So $d_1(x) = \sigma(x)d(c) - d(c)\tau(x) = 0$ for all $x \in R$. If there exists $a \in Z(R)$ such that $\sigma(a) \neq \tau(a)$, then $d(c)(\sigma(a) - \tau(a)) = 0$ and d(c) = 0, a contradiction. So if $d(c) \neq 0$ for some $c \in Z(R)$, then $\sigma(a) = \tau(a)$ for all $a \in Z(R)$. Now, we have the following case: $d_1 = d_2 = 0$, $d(Z(R)) \neq \{0\}$ and $\sigma(a) = \tau(a)$ for all $a \in Z(R)$. Replacing *y* in (4.6) by *zy* and using Lemma 4.3(i), (iii) and (iv), we get for all $x, y, z \in R$

$$\begin{split} &[x,d(zy)]_{\sigma,\tau} + [zy,d(x)]_{\sigma,\tau} \\ &= [x,\sigma(z)d(y) + d(z)\tau(y)]_{\sigma,\tau} + [zy,d(x)]_{\sigma,\tau} \\ &= [x,\sigma(z)d(y)]_{\sigma,\tau} + [x,d(z)\tau(y)]_{\sigma,\tau} + \sigma(z)[y,d(x)]_{\sigma,\tau} + [z,d(x)]_{\sigma,\tau}\tau(y) \\ &= \sigma(z)[x,d(y)]_{\sigma,\tau} + [x,\sigma(z)]_{\sigma,\sigma}d(y) + d(z)[x,\tau(y)]_{\sigma,\tau} + [x,d(z)]_{\sigma,\sigma}\tau(y) \\ &+ \sigma(z)[y,d(x)]_{\sigma,\tau} + [z,d(x)]_{\sigma,\tau}\tau(y) \\ &= \sigma(z)([x,d(y)]_{\sigma,\tau} + [y,d(x)]_{\sigma,\tau}) + ([x,d(z)]_{\sigma,\sigma} + [z,d(x)]_{\sigma,\tau})\tau(y) \\ &+ [x,\sigma(z)]_{\sigma,\sigma}d(y) + d(z)[x,\tau(y)]_{\sigma,\tau}. \end{split}$$

Putting $z = c \in Z(R)$, using $d_2 = 0$ and (4.6), we deduce that $[x, d(c)]_{\sigma,\sigma}\tau(y) + d(c)[x, \tau(y)]_{\sigma,\tau} \in Z(R)$ for all $x, y \in R$. Then $\sigma(x)d(c)\tau(y) - d(c)\sigma(x)\tau(y) + d(c)\sigma(x)\tau(y) - d(c)\tau(y)\tau(x) = \sigma(x)d(c)\tau(y) - d(c)\tau(y)\tau(x) \in Z(R)$ for all $x, y \in R$. Suppose $d(c) \neq 0$ for some $c \in Z(R)$ and assume that

(4.7)
$$\sigma(x)d(c)\tau(y) = d(c)\tau(y)\tau(x) \quad \text{for all} \quad x, y \in R.$$

Multiplying both sides by $\tau(z)$ from the right, we obtain

(4.8)
$$\sigma(x)d(c)\tau(y)\tau(z) = d(c)\tau(y)\tau(x)\tau(z) \quad \text{for all} \quad x, y, z \in R.$$

Replacing y by yz in (4.7), we have

(4.9)
$$\sigma(x)d(c)\tau(y)\tau(z) = d(c)\tau(y)\tau(z)\tau(x) \quad \text{for all} \quad x, y, z \in R.$$

From (4.8) and (4.9), we conclude $d(c)\tau(y)(\tau(z)\tau(x) - \tau(x)\tau(z)) = 0$ for all $x, y, z \in R$. Since *R* is prime and $d(c) \neq 0$, we obtain that *R* is commutative. Now, assume that $\tau(a) \neq 0$ for some $a \in R$ such that $\sigma(x)d(c)\tau(a) \neq d(c)\tau(a)\tau(x)$. It follows that $\delta(x) = \sigma(x)d(c)\tau(a) - d(c)\tau(a)\tau(x) \in Z(R)$ for all $x \in R$ is a non-zero inner (σ, τ) -derivation and *R* is a commutative ring by Lemma 2.12.

(ii) *R* is of characteristic 2. Adding $d(x)\tau(y) + d(y)\tau(x) - d(x)\tau(y) - d(y)\tau(x) = 0$ to (4.6), we have $\sigma(x)d(y) + d(x)\tau(y) - 2d(x)\tau(y) + \sigma(y)d(x) + d(y)\tau(x) - 2d(y)\tau(x) \in Z(R)$ which means

(4.10)
$$d(xy+yx) \in Z(R) \quad \text{for all} \quad x, y \in R.$$

Now, suppose $d(Z(R)) \neq \{0\}$ and there exists $c \in Z(R) - \{0\}$ such that $d(c) \neq 0$. Replace y by yc in (4.10). Then $d(xyc + ycx) = d(c(xy + yx)) \in Z(R)$ for all $x, y \in R$. It follows that $\sigma(c)d(xy+yx) + d(c)\tau(xy+yx) \in Z(R)$. Since $\sigma(c)d(xy+yx) \in Z(R)$, we have $d(c)\tau(xy+yx) \in Z(R)$. $yx \in Z(R)$ and then $d(c)(uv + vu) \in Z(R)$ for all $u, v \in R$ as τ is onto. Firstly, suppose that d(c)(xy + yx) = 0 for all $x, y \in R$. So d(c)xy = d(c)yx for all $x, y \in R$. Replacing x by xz in the last equation, we get d(c)xzy = d(c)yzz = d(c)xyz and hence d(c)x(zy - yz) = 0 for all $x, y, z \in R$. The primeness of R and $d(c) \neq 0$ imply that R is commutative. Now, suppose $d(c)(st+ts) \in Z(R) - \{0\}$ for some $s, t \in R$. Using $d(c)(xy+yx) \in Z(R)$ for all $x, y \in R$ and replacing x by [s,t]x and y by [s,t]y, we have $d(c)([s,t]x[s,t]y+[s,t]y[s,t]x) \in Z(R)$. Thus, $d(c)[s,t](x[s,t]y+y[s,t]x) \in Z(R)$. Since $d(c)[s,t] \in Z(R) - \{0\}$, it is not a zero divisor by Lemma 2.4. It follows that $(x[s,t]y + y[s,t]x) \in Z(R)$ for all $x, y \in R$. Replacing x by c and putting a = [s,t], we obtain $c(ay + ya) \in Z(R)$. Again, by Lemma 2.3, we have $ay + ya \in Z(R)$ for all $y \in R$. Define $d_a : R \to R$ by $d_a(y) = ay + ya$ for all $y \in R$. Then d_a is an inner derivation on R and $d_a(R) \subseteq Z(R)$. If d_a is non-zero, then R is commutative by Lemma 2.12. If $d_a = 0$, then $a = [s,t] \in Z(R) - \{0\}$. Using Lemma 2.3, we get $d(c) \in Z(R) - \{0\}$. Thus, $d(c)(xy + yx) \in Z(R)$ for all $x, y \in R$ implies $xy + yx \in Z(R)$ for all $x, y \in R$. If there exists $b \in R$ such that $by + yb \neq 0$ for some $y \in R$, then d_b is a non-zero derivation on R and $d_h(R) \subseteq Z(R)$ which implies R to be a commutative ring by Lemma 2.12 and hence by + yb = 0, a contradiction. Thus, xy + yx = 0 and then R is a commutative ring.

Corollary 4.2. Let *R* be a prime ring of characteristic 2 with a non-zero (σ, τ) -derivation *d* such that σ and τ are automorphisms and commute with *d*. If $\sigma(x)d(x) + d(x)\tau(x) \in Z(R)$ for all $x \in R$, then *R* is a commutative ring or $d^2 = 0$.

Proof. Using Theorem 4.4, *R* is a commutative ring or $d(Z(R)) = \{0\}$. If $d(Z(R)) = \{0\}$, then $d^2(xy) = d^2(yx)$ for all $x, y \in R$ from (4.10) in the proof of Theorem 4.4. Using Lemma 2.7, d^2 is a (σ^2, τ^2) -derivation on *R*. So by Lemma 2.13, *R* is a commutative ring or $d^2 = 0$.

The following result generalizes Theorem 1 (in its part of derivations) of [14] and [8, Theorem 4].

Theorem 4.5. Let *R* be a prime ring with a non-zero (σ, σ) -derivation *d* such that σ is an epimorphism and $\sigma(x)d(x) - d(x)\sigma(x) \in Z(R)$ for all $x \in U$, where *U* is a non-zero right (left) ideal of *R*. Then *R* is a commutative ring or $\sigma(U) = \{0\}$.

Proof. From $[x+y, d(x+y)]_{\sigma,\sigma} \in Z(R)$ for all $x, y \in U$, we have

(4.11)
$$[x,d(y)]_{\sigma,\sigma} + [y,d(x)]_{\sigma,\sigma} \in Z(R) \text{ for all } x, y \in U.$$

We divide the proof into two cases:

(i) *R* is not of characteristic 2. Replacing y in (4.11) by x^2 and using Lemma 4.3, we get

$$\begin{split} & [x,d(xx)]_{\sigma,\sigma} + [xx,d(x)]_{\sigma,\sigma} \\ &= [x,\sigma(x)d(x) + d(x)\sigma(x)]_{\sigma,\sigma} + [xx,d(x)]_{\sigma,\sigma} \\ &= [x,\sigma(x)d(x)]_{\sigma,\sigma} + [x,d(x)\sigma(x)]_{\sigma,\sigma} + \sigma(x)[x,d(x)]_{\sigma,\sigma} + [x,d(x)]_{\sigma,\sigma}\sigma(x) \\ &= \sigma(x)[x,d(x)]_{\sigma,\sigma} + [x,d(x)]_{\sigma,\sigma}\sigma(x) + 2\sigma(x)[x,d(x)]_{\sigma,\sigma} = 4\sigma(x)[x,d(x)]_{\sigma,\sigma} \end{split}$$

and hence $4\sigma(x)[x,d(x)]_{\sigma,\sigma} \in Z(R)$. It follows that $\sigma(x)[x,d(x)]_{\sigma,\sigma} \in Z(R)$ by Proposition 4.1(ii). If $[x,d(x)]_{\sigma,\sigma} \neq 0$, then $\sigma(x) \in Z(R)$ by using Lemma 2.3. But that means

 $[x,d(x)]_{\sigma,\sigma} = 0$, a contradiction. Thus, $[x,d(x)]_{\sigma,\sigma} = 0$ for all $x \in U$. Therefore, *R* is a commutative ring or $\sigma(U) = \{0\}$ by Theorem 4.3.

(ii) *R* is of characteristic 2. Using Lemma 4.3(ii), (iii) and $[x, d(x)]_{\sigma, \sigma} \in Z(R)$, we have for all $x, y \in U$

$$\begin{split} &[xy + yx, d(x)]_{\sigma,\sigma} + [x^2, d(y)]_{\sigma,\sigma} \\ &= [xy, d(x)]_{\sigma,\sigma} + [yx, d(x)]_{\sigma,\sigma} + [x^2, d(y)]_{\sigma,\sigma} \\ &= \sigma(x)[y, d(x)]_{\sigma,\sigma} + [x, d(x)]_{\sigma,\sigma} \sigma(y) + \sigma(y)[x, d(x)]_{\sigma,\sigma} + [y, d(x)]_{\sigma,\sigma} \sigma(x) \\ &+ \sigma(x)[x, d(y)]_{\sigma,\sigma} + [x, d(y)]_{\sigma,\sigma} \sigma(x) \\ &= \sigma(x)[y, d(x)]_{\sigma,\sigma} + \sigma(x)[x, d(y)]_{\sigma,\sigma} + [y, d(x)]_{\sigma,\sigma} \sigma(x) + [x, d(y)]_{\sigma,\sigma} \sigma(x) \\ &= \sigma(x)([y, d(x)]_{\sigma,\sigma} + [x, d(y)]_{\sigma,\sigma}) + ([y, d(x)]_{\sigma,\sigma} + [x, d(y)]_{\sigma,\sigma} \sigma(x) = 0 \end{split}$$

using (4.11). So

(4.12)
$$[xy+yx,d(x)]_{\sigma,\sigma}+[x^2,d(y)]_{\sigma,\sigma}=0 \quad \text{for all} \quad x,y\in U.$$

Using
$$d(x)\sigma(y) + d(y)\sigma(x) - d(x)\sigma(y) - d(y)\sigma(x) = 0$$
 for all $x, y \in U$ and (4.11), we have

$$\sigma(x)d(y) + d(x)\sigma(y) - 2d(x)\sigma(y) + \sigma(y)d(x) + d(y)\sigma(x) - 2d(y)\sigma(x) \in Z(R)$$

and consequently, we get

$$(4.13) d(xy+yx) \in Z(R) for all x, y \in U.$$

Replacing y by xy + yx in (4.12) and using (4.13), we have

$$0 = [x(xy+yx) + (xy+yx)x, d(x)]_{\sigma,\sigma} + [x^2, d(xy+yx)]_{\sigma,\sigma}$$
$$= [xxy+xyx+xyx+yxx, d(x)]_{\sigma,\sigma} = [xxy+yxx, d(x)]_{\sigma,\sigma}.$$

Replacing y by xy in the last equation and using Lemma 4.3(iii), we get

$$0 = [xxxy + xyxx, d(x)]_{\sigma,\sigma} = [x(xxy + yxx), d(x)]_{\sigma,\sigma}$$

= $\sigma(x)[xxy + yxx, d(x)]_{\sigma,\sigma} + [x, d(x)]_{\sigma,\sigma} \sigma(xxy + yxx)$
= $[x, d(x)]_{\sigma,\sigma} \sigma(xxy + yxx).$

If there exists $a \in U$ such that $[a,d(a)]_{\sigma,\sigma} \neq 0$, then $\sigma(U) \neq \{0\}$ and $0 = \sigma(a^2y + ya^2) = [a^2,d(y)]_{\sigma,\sigma}$ for all $y \in U$. Thus, $\sigma(a^2) \in Z(R)$ by Lemma 4.1 and Lemma 2.8. So Substituting *x* by *a* in (4.12), we get $[ay + ya, d(a)]_{\sigma,\sigma} = 0$ for all $y \in U$. Putting *ay* instead of *y*, we obtain

$$0 = [a(ay+ya), d(a)]_{\sigma,\sigma} = \sigma(a)[ay+ya, d(a)]_{\sigma,\sigma} + [a, d(a)]_{\sigma,\sigma}\sigma(ay+ya)$$
$$= [a, d(a)]_{\sigma,\sigma}\sigma(ay+ya).$$

Since, $[a,d(a)]_{\sigma,\sigma}$ is not a zero divisor, we have $\sigma(a)\sigma(y) - \sigma(y)\sigma(a) = 0$ for all $y \in U$. It follows that $\sigma(a)$ centralizes $\sigma(U) \neq \{0\}$. Lemma 4.1 and Lemma 2.8 implies $\sigma(a) \in Z(R)$. But that implies $[a,d(a)]_{\sigma,\sigma} = 0$, a contradiction. Therefore, $[x,d(x)]_{\sigma,\sigma} = 0$ for all $x \in U$ and *R* is commutative by Theorem 4.3.

The proof when U is a non-zero left ideal of R is similar.

We finish this section by studying the commutativity of a prime ring *R* admitting a non-zero (σ, τ) -derivation *d* and satisfying the condition $d(x^2) \in Z(R)$ for all $x \in R$.

Proposition 4.2. Let *R* be a prime ring with a non-zero (σ, τ) -derivation *d* such that τ is an automorphism and $d(x^2) = 0$ for all $x \in R$. Then *R* is a commutative ring of characteristic 2.

Proof. From $d((x+y)^2) = 0$, we have $\sigma(x+y)d(x+y) = -d(x+y)\tau(x+y)$ for all $x, y \in R$. So $\sigma(x)d(x) + \sigma(x)d(y) + \sigma(y)d(x) + \sigma(y)d(y) = -d(x)\tau(x) - d(x)\tau(y) - d(y)\tau(x) - d(y)\tau(y)$. Using $\sigma(x)d(x) = -d(x)\tau(x)$ and $\sigma(y)d(y) = -d(y)\tau(y)$, we get $\sigma(x)d(y) + \sigma(y)d(x) = -d(x)\tau(y) - d(y)\tau(x)$ and then

$$d(xy) = -d(yx)$$
 for all $x, y \in R$.

Therefore, R is a commutative ring of characteristic 2 by Lemma 2.14.

Theorem 4.6. Let *R* be a prime ring with $2R \neq \{0\}$ and a non-zero (σ, τ) -derivation *d* such that σ and τ are automorphisms and $d(x^2) \in Z(R)$ for all $x \in R$. Then *R* is a commutative ring.

Proof. From $d((x + y)^2) = \sigma(x + y)d(x + y) + d(x + y)\tau(x + y) \in Z(R)$ for all $x, y \in R$, we have $\sigma(x)d(x) + \sigma(x)d(y) + \sigma(y)d(x) + \sigma(y)d(y) + d(x)\tau(x) + d(x)\tau(y) + d(y)\tau(x) + d(y)\tau(y) \in Z(R)$. Using $\sigma(x)d(x) + d(x)\tau(x) \in Z(R)$, $\sigma(y)d(y) + d(y)\tau(y) \in Z(R)$ and that Z(R) is a subring of R, we get $\sigma(x)d(y) + d(x)\tau(y) + \sigma(y)d(x) + d(y)\tau(x) \in Z(R)$ for all $x, y \in R$. It follows that $d(xy) + d(yx) \in Z(R)$ for all $x, y \in R$. If $Z(R) = \{0\}$, then R is a commutative ring of characteristic 2 by Lemma 2.14 and then $R = \{0\}$ and d = 0, a contradiction. So there exists $c \in Z(R) - \{0\}$ such that $d(cy) + d(yc) = 2d(cy) \in Z(R)$ for all $y \in Z(R)$. Thus,

(4.14)
$$d(cy) \in Z(R)$$
 for all $y \in R$ and for all $c \in Z(R) - \{0\}$

by Proposition 4.1(ii). It follows that $d(ccc) = \sigma(c)d(cc) + d(c)\tau(cc) \in Z(R)$. Since $\sigma(c)d(cc) \in Z(R)$, we have $d(c)\tau(cc) \in Z(R)$ as Z(R) is a subring of R. Using Lemma 2.3, Lemma 2.4 and τ is an automorphism, we get that $d(c) \in Z(R)$ for all $c \in Z(R) - \{0\}$.

If $d(Z(R)) \neq \{0\}$, then there exists $c \in Z(R) - \{0\}$ such that $d(c) \in Z(R) - \{0\}$. From (4.14), we have $d(ccy) = \sigma(c)d(cy) + d(c)\tau(cy) \in Z(R)$. But $\sigma(c)d(cy) \in Z(R)$, so $d(c)\tau(cy) \in Z(R)$ for all $y \in R$. Using that $d(c), \tau(c) \in Z(R) - \{0\}$ and Lemma 2.3, we obtain $\tau(R) \subseteq Z(R)$. Therefore, *R* is a commutative ring since τ is onto.

If $d(Z(R)) = \{0\}$, then for all $c \in Z(R) - \{0\}$, (4.14) implies

$$d(cy) = \sigma(c)d(y) + d(c)\tau(y) = \sigma(c)d(y) \in Z(R)$$
 for all $y \in R$.

Since σ is an automorphism, we have $d(R) \subseteq Z(R)$ by Lemma 2.3. Therefore, *R* is a commutative ring by Lemma 2.12.

References

- N. Argaç, A. Kaya and A. Kisir, (σ, τ)-derivations in prime rings, *Math. J. Okayama Univ.* 29 (1987), 173– 177 (1988).
- [2] M. Ashraf and Nadeem-ur-Rehman, On (σ, τ) -derivations in prime rings, Arch. Math. (Brno) **38** (2002), no. 4, 259–264.
- [3] N. Aydin, A note on (σ, τ) -derivations in prime rings, *Indian J. Pure Appl. Math.* **39** (2008), no. 4, 347–352.
- [4] K. I. Beidar, Y. Fong and X. K. Wang, Posner and Herstein theorems for derivations of 3-prime near-rings, *Comm. Algebra* 24 (1996), no. 5, 1581–1589.
- [5] H. E. Bell, A commutativity theorem for near-rings, Canad. Math. Bull. 20 (1977), no. 1, 25–28.
- [6] H. E. Bell, On commutativity and structure of periodic rings, Math. J. Okayama Univ. 27 (1985), 1-3.

- [7] H. E. Bell, On derivations in near-rings. II, in *Nearrings, Nearfields and K-loops (Hamburg, 1995)*, 191–197, Math. Appl., 426 Kluwer Acad. Publ., Dordrecht.
- [8] H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, *Canad. Math. Bull.* 30 (1987), no. 1, 92–101.
- H. E. Bell and G. Mason, On derivations in near-rings, in *Near-rings and Near-fields (Tübingen, 1985)*, 31–35, North-Holland Math. Stud., 137 North-Holland, Amsterdam.
- [10] Ö. Gölbaşi and N. Aydin, Results on prime near-ring with (σ, τ) -derivation, *Math. J. Okayama Univ.* **46** (2004), 1–7.
- [11] Ö. Gölbaşi and N. Aydin, On near-ring ideals with (σ, τ) -derivation, Arch. Math. (Brno) 43 (2007), no. 2, 87–92.
- [12] A. A. M. Kamal and K. H. Al-Shaalan, Commutativity of near-rings with derivations, Algebra Colloquium, to appear.
- [13] A. A. M. Kamal and K. H. Al-Shaalan, Commutativity of near-rings with (σ, τ) -derivations, An. Stiint. Univ. "Ovidius" Constanța Ser. Mat. **21** (2013), no. 1, 121–142.
- [14] J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), no. 1, 122–126.
- [15] J. D. P. Meldrum, Near-rings and Their Links with Groups, Research Notes in Mathematics, 134, Pitman, Boston, MA, 1985.
- [16] P. Nandakumar, On weakly π -subcommutative near-rings, *Bull. Malays. Math. Sci. Soc.* (2) **32** (2009), no. 2, 131–136.
- [17] G. Pilz, *Near-rings*, second edition, North-Holland Mathematics Studies, 23, North-Holland, Amsterdam, 1983.
- [18] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [19] M. S. Samman, Existence and Posner's theorem for α-derivations in prime near-rings, Acta Math. Univ. Comenian. (N.S.) 78 (2009), no. 1, 37–42.
- [20] X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc. 121 (1994), no. 2, 361–366.