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Abstract. In this paper we generalize Posner’s first theorem to a 3-prime near-ring with
a (o, 7)-derivation. We prove that a prime ring with a non-zero (o, T)-derivation is com-
mutative if o(x)d(x) = d(x)t(x) for all x € U where U is a suitable subset of R. Also, we
generalize Posner’s second theorem completely to a prime ring with a (o, 0)-derivation and
partially to a prime ring with a (o, 7)-derivation.
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1. Introduction

Throughout this paper R will be a ring or a left near-ring. Z(R) will be its multiplicative
center and o, T two endomorphisms from R to R. We say that R is prime (3-prime for near-
rings) if, for all x,y € R, xRy = {0} implies x = 0 or y = 0. We say that U is a semigroup
right (left) ideal of R, if U is a non-empty subset of R satisfies UR C U (RU C U). We say
that U is a semigroup ideal if it is both a semigroup right and left ideal. For all x,y € R,
we write [x,y] = xy — yx for the multiplicative commutator, [x,y]s: = 0(x)y — y7(x) and
(x,y) = x+y—x—y for the additive commutator. A map d : R — R is called a (0, 7)-
derivation if d is additive and d(xy) = o(x)d(y) + d(x)t(y) for all x,y € R. If T = 1g, then
d is called a o-derivation. If 0 = T = 1, then d is the usual derivation. An element x € R is
called a left (right) zero divisor in R if there exists a non-zero element y € R such that xy =0
(yx = 0). A zero divisor is either a left or a right zero divisor. By an integral near-ring,
we mean a near-ring without non-zero divisors of zero. A near-ring R is called a constant
near-ring, if xy =y for all x,y € R and is called a zero-symmetric near-ring, if Ox = 0 for all
X € R. For any group (G, +), M,(G) denotes the near-ring of all zero preserving maps from
G to G with the two operations of addition and composition of maps. An abelian near-ring
R is a near-ring such that (R,+) is abelian. We refer the reader to the books of Meldrum
[15] and Pilz [17] for basic results of near-ring theory and its applications.
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In this paper we use the commutator [x,y]s, ; to mean ¢ (x)y — y7(x), but its usual form
is xo(y) — 7(y)x with using that d(xy) = d(x)o(y) + 7(x)d(y) for all x,y € R. According to
the last form, Argac, Kaya and Kisir showed in [1] that a prime ring R admits a non-zero
(o, T)-derivation such that [d(x),x]s r = O for all x € I if and only if R is commutative and
o = 7, where I is a non-zero right ideal of R. They also showed that a prime ring R of
characteristic not 2 admits a non-zero (o, 7)-derivation such that [d(x),x]s ¢ € Co ¢ for all
x € I'if and only if R is commutative and ¢ = 7, where Cs r = {x € R : x5 (y) = 7(y)x for all
y € R}. Also, Ashraf and Rehman showed in Theorem 1 in [2] that a 2-torsion free prime
ring R is commutative if R admits a non-zero (o, 7)-derivation such that [d(x),x]s: =0
for all x € R. In [3], Aydin had extended that theorem to [d(x),x|s ¢ € Co ¢ for all x € R.
All above papers used that o and 7 are automorphisms on R. In the literature of studying
commutativity of rings and near-rings, there are also some works studied the commutativity
of rings and near-rings without the use of derivations, for example see [5] and [6]. Also, see
[16] for subcommutativity in near-rings.

In Section 2 we give some well-known results and we add some new auxiliary results on
a near-ring R admitting a non-zero (o, T)-derivation d, which will be useful in the sequel.
In Section 3 we study the problem of Posner for the composition of two derivations, in the
more general case the composition of a (o, T)-derivation and an (¢, 8)-derivation, where
is an automorphism and, o, 8 and T are epimorphisms on a near-ring R. Consequently, we
generalize Posner’s first theorem for (o, 7)-derivations in Theorem 3.1 which generalizes
results due to K. I. Beidar, Y. Fong and X. K. Wang; O. Golbasi and M. S. Samman.

Section 4 is devoted to study Posner’s second theorem using (o, T)-derivations on prime
rings. Consequently, we generalize Lemma 3 of [18] to (0, T)-derivations on prime rings.
In Theorem 4.4 we study Posner’s second theorem using (o, 7)-derivations on prime rings.
Theorem 4.5 is a generalization of Posner’s second theorem to (o, 0)-derivations on prime
rings, where o is an epimorphism on R. In the last of this section we study the condition
d(x*) € Z(R) for all x € R, where d is a non-zero (o, T)-derivation on a prime ring R.

2. Preliminaries and some results
We need the following lemmas:

Lemma 2.1. [10, Lemma 1] An additive mapping d on a near-ring R is a (G, T)-derivation
if and only if d(xy) = d(x)t(y) + o(x)d(y), for all x,y € R.

Lemma 2.2. [10, Lemma 2] Let R be a near-ring with a (o, T)-derivation d such that T
is an epimorphism. Then R satisfies the partial distributive law, (o (x)d(y)+d(x)t(y))c =
o(x)d(y)e+d(x)t(y)c and (d(x)T(y) + 0 (x)d(y))c = d(x)T(y)c + 0 (x)d(y)c for all x,y,c €
R.

Lemma 2.3. [7, Lemma 1.2(iii)] Let R be a 3-prime near-ring and x € Z(R) — {0}. If either
yxorxyinZ(R), theny € Z(R).

Lemma 2.4. [9, Lemma 3(i),(ii)] Let R be a 3-prime near-ring and x € Z(R) — {0}. Then x
is not a zero divisor in R.

Lemma 2.5. [10, Lemma 3] Let d be a non-zero (6,7)-derivation on a 3-prime near-ring
R.

(i) Ifd(R)x = {0} and 7 is onto, then x = 0.
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(i) Ifxd(R) = {0}, R is zero-symmetric and © is onto, then x = 0.

Lemma 2.6. [13, Proposition 2.7] A near-ring R is zero-symmetric if and only if R admits
a (0,7)-derivation d such that 6,7 are endomorphisms and 7 is either one-to-one or onto.

Lemma 2.7. Let R be a near-ring with a (0, 7)-derivation d such that 2R = {0} and o,7
commute with d. Then d* is a (62, t%)-derivation on R.

Proof. For all x,y € R, we have d?(x+y) = d*(x) +d>(y) since d is an additive mapping
on R. Now, for all x,y € R we get

d*(xy) = d(d(xy)) = d(o(x)d(y) +d(x)T(y))
0*(x)d*(y) +do(x)d(y) + od(x)dT(y) +d*(
2( )d*(v) +do(x)dr(y) +do(x)dt(y) +d*(x)7*(y
= 02 (x)d*(y) +2do (x)dT(y) +d*(x)7*(y) = 0°

Thus, d?(xy) = 62(x)d*(y) +d*(x)t*(y) for all x,y € R and d? is a (02, 72)-derivation on
R. |

Lemma 2.8. [7, Lemma 1.3(iii)] Let R be a 3-prime near-ring with a non-zero semigroup
right ideal U of R. If there exists x € R which centralizes U, then x € Z(R). Moreover, if R
is a prime ring and U is a semigroup left ideal, then x € Z(R).

Lemma 2.9. [11, Lemma 4] Let R be a 3-prime near-ring with a (o, 7)-derivation d.

(1) If R is zero-symmetric and U is a non-zero semigroup right ideal of R such that ©
is an epimorphism, o(U) # {0} and d(U) = {0}, then d = 0.

(i) IfU is a non-zero semigroup left ideal of R such that T is an epimorphism, t(U) #
{0} and d(U) = {0}, then d = 0.

Lemma 2.10. [7, Lemma 1.5] Let R be a 3-prime near-ring with a non-zero semigroup
right (left) ideal U such that U C Z(R). Then R is a commutative ring.

Lemma 2.11. [7, Lemma 1.4] Let R be a 3-prime near-ring with a non-zero semigroup
ideal U. If x,y € R and xUy = {0}, then x =0 or y = 0.

Lemma 2.12. [13, Corollary 4.6] Let R be a 3-prime near-ring with a non-zero (G,7)-
derivation d such that one of 0,7 is either a monomorphism or an epimorphism. If d(R) C
Z(R), then R is a commutative ring.

Lemma 2.13. [13, Theorem 5.4] Let R be a 3-prime near-ring with a non-zero (G,7)-
derivation d such that T is an automorphism and d(xy) = d(yx) for all x,y € R. Then R is a
commutative ring.

Lemma 2.14. [13, Theorem 5.9] Let R be a 3-prime near-ring with a non-zero (G,7)-
derivation d such that d(xy) = —d(yx) for all x,y € R. If T is an automorphism on R, then
R is a commutative ring of characteristic 2.

3. Posner’s first theorem

In this section we generalize Posner’s first theorem for (o, 7)-derivations on near-rings. We
need the following two lemmas to prove the first theorem in this section.
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Lemma 3.1. Let R be a near-ring with a (G, t)-derivation d and 6 be any endomorphism
of R. Then

(i) 0disa (60,07)-derivation on R.

(ii) dO isa (00,10)-derivation on R.

Proof. (i) Clearly the composition of two additive mappings on R is an additive map-
ping. Now, for all x,y € R, we have 0d(xy) = 0(d(xy)) = 8(c(x)d(y) +d(x)t(y)) =
00 (x)0d(y) + 0d(x)07(y) and then 6d is a (0o, 07)-derivation on R.

(ii) The proof is similar to (i). 1

Lemma 3.2. Let R be a near-ring with a non-zero (0, 7)-derivation d. Suppose one of the
following two conditions holds:
(1) R is a 3-prime near-ring and 7T is onto, or
(ii) There exists a € R such that d(a) is not a left zero divisor in R and T is either
one-to-one or onto.

Then nR = {0} if and only if nd(R) = {0}.

Proof. Clearly if nR = {0}, then nd(R) = {0}. Conversely, suppose nd(R) = {0}. Then
0 =nd(b) = d(nb) for all b € R. Now, for all x,y € R
0=d(n(yx)) = d(y(nx)) = 6 (y)d(nx) +d(y)(nx) = d(y)t(nx).

If R is 3-prime and 7 is onto, then d(R)7(nx) = {0} implies 7(nx) = 0 for all x € R by
Lemma 2.5(i). It follows that {0} = 7(nR) = nt(R) = nR. If there exists a € R such that
d(a) is not a left zero divisor in R, then d(a)7t(nx) = 0 and then 7(nx) = 0 for all x € R.
Therefore T(nR) = {0}. If 7 is onto, then by the same way above nR = {0} and if 7 is
one-to-one, then t(nR) = {0} implies nR = {0}. i

The conditions “7 is onto” in Lemma 3.2(i) and “7 is either one-to-one or onto” in Lemma
3.2(ii) are not redundant as the following example shows.

Example 3.1. Let (R,+) be the additive abelian group (Z4, +) and define the multiplication
to make R a constant near-ring. Then R is 3-prime. Suppose T = 0 and ¢ is any endomor-
phism on R, then any additive mapping d on R is a (o, 7)-derivation. Define d : R — R
by d(X) =x+xforallx € R. Thend(X+y) =X+y+X+5=X+X+¥+y=d(X)+d(y)
for all X,y € R and d is an additive endomorphism of R. So d is a (o, 7)-derivation on R.
Also, d(1) = 1+1 =2 is not a left zero divisor in R by the definition of the multiplication.
Observe that d(2x) = d(X+X) = X+X+X+X = 4x = 0 for all X € R. Thus, 2d(R) = {0}.
But 2R # {0} as2(1) =1+ 1=2#0.

The following theorem generalizes Theorem 1.1 of [4], Theorem 2.5 of [11] and the main
Theorem of [19].

Theorem 3.1. Let R be a 3-prime near-ring with a (o,7)-derivation d and an (a,f3)-
derivation D such that o commutes with 3, o is an automorphism, G, 3, T are epimorphisms
and o, 3,7 commute with D. If dD is a (oo, T)-derivation, then one of the following
statements holds:
i) d=0
(i) D=0
(i) 2R = {0}.
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Proof. Since 7 is an epimorphism, we have R is zero-symmetric by Lemma 2.6. As dD is a
(oo, tf)-derivation, so dD(ab) = ca(a)dD(b) +dD(a)tf(b) for all a,b € R. On the other
hand, d is a (0, T)-derivation and D is an (a, )-derivation. Thus, dD(ab) = d(a(a)D(b) +
D(a)B(b)) = ca(a)dD(b)+d(a(a))tD(b)+ o (D(a))d(B(b))+dD(a)tB(b). Comparing
the previous two equations, we get

3. d(o(a))T(D(b))+0(D(a))d(B(b)) =0 forall a,beR.

Replace a by ac where ¢ € R. So using the partial distributive law (Lemma 2.2), we have
for all a,b,c € R

0= d(a(ac))TD(b) + o (D(ac))d(B(b)) = d(a(a)a(c))tD(b) + o (D(ac))d(B (b))
= da(a)ta(c)tD(b) + ca(a)da(c)tD(b) + o (a(a)D(c) + D(a)B(c))d(B (b))
=da(a)ta(c)tD(b) + oa(a)da(c)tD(b) + (ca(a)oD(c) + oD(a)oB(c))d(B(b))-

Notice that 6D is a (ca, 6 3)-derivation by Lemma 3.1. Since o8 is onto, we can use the
partial distributive law to obtain

0=da(a)ta(c)tD(b) +oa(a)da(c)tD(b) + ca(a)oD(c)d(B (D))

+0D(a)of(c)d(B (b))
=do(a)ta(c)tD(b)+ oala)(da(c)tD(b) + oD(c)d(B(b)))
+0D(a)of(c)d(B (b))
for all a,b,c € R. By using (3.1) with ¢ instead of a, we get for all a,b,c € R
(3.2) da(a)to(c)tD(b)+oD(a)oB(c)d(B(b)) = 0.

As « is bijective, we obtain do(a)t(r)TD(b) + oD(a)oB (a1 (r))d(B(b)) = 0 for all
a,b,r € R where r = a(c). Taking r = D(t) where ¢ € R, we obtain do.(a)tD(t)tD(b) +
oD(a)oBa'D(t)d(B(b)) =0 for all a,b,t € R. Since B~ ! commutes with D, we have
(3.3) da(a)tD(t)tD(b) 4+ oD(a)c(D(Ba " (t))d(B (b)) = 0.

Replacing a by Ba~!(¢) in equation (3.1), we deduce that o(D(Ba ™' (t))d(B (b ) —d(a
(Bae='(¢)))TD(b). Since & and B commute, we have o(D(Bo~!(t))d ([3( )) =
D(b) for all ¢t,b € R. Therefore, (3.3) becomes 0 = da(a)tD(t)tD(b) + (a)(
D(b)) which means

3.4) do(a)tD(t)tD(b) = oD(a)d(B(t))tD(b) forall a,b,t €R.

Replacing b by tk in (3.1) where ¢,k € R, we have

0=d(a(a))tD(tk) + o(D(a))d(B(tk)) = d(a(a))TD(tk) + o(D(a))d (B (1) B (k)
= da(a)t(D(1)B (k) + a(t)D(k)) + oD(a) (o B (t)dB (k) +dB (t)T(B(k)))
=da(a)tD(1)t(B(k)) +da(a)ta(t)tD(k) + oD(a)oB(t)dp (k) + oD(a)dB (1) T(B (k)
= da(a)tD(1)T(B (k) + oD(a)dB(t)T(B (k)

as da(a)to(t)tD(k) + oD(a)oB(r)dp (k) = 0 by (3.2). Then da(a)tD(t)t(r) + oD(a)d
B(t)t(r) =0 for all a,r,r € R, since B is onto. Taking r = D(b) where b € R in the last
equation, we obtain

(3.5) da(a)tD(t)tD(b) + oD(a)dB(t)tD(b) =0 forall a,b,t €R.
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Substituting (3.4) in (3.5) and using TD = D7, we get for all a,b,t € R
0=d(o(a))Dz(t)Dt(b)+d(0(a))Dz(t)Dt(b) = d(a(a))D(t(t))(2D(T(D))).

Since o and 7 are onto, we have d(R)D(R)(2D(R)) = {0}. Suppose d # 0. So D(R)(2D(R))

= {0} by Lemma 2.5(i). If D # 0, then 2D(R) = {0} by Lemma 2.5(i) and hence 2R = {0}

by Lemma 3.2(i) 1
The following corollary generalizes [20, Corollary 1].

Corollary 3.1. Let R be a 3-prime near-ring such that 2R # {0} with a (0, 7)-derivation d
such that 6 commutes with T, G is an automorphism, T is an epimorphism and &, T commute
with d. If d* is a (6%, 7%)-derivation, then d = 0.

The conditions 2R = {0} in Theorem 3.1 and 2R # {0} in Corollary 3.1 are essential as
the following example shows.

Example 3.2. Let R = Z;[x]. Then R is an integral domain which means that R is a com-
mutative prime ring. Also, we have 2R = {0}. If we take d to be the usual derivative on
R = Z,[x], then d is a (1g, 1g)-derivation on R which is non-zero. But d” is also a (1g, 1g)-
derivation on R = Z;[x] by Lemma 2.7.

The following result generalizes [12, Proposition 4.8].

Proposition 3.1. Let R be a near-ring with a (0, T)-derivation d and an (o, )-derivation
D such that @ commutes with B, o is an automorphism, &,B,T are epimorphisms and
o, 3,7 commute with D. If dD is a (oo, Tf3)-derivation and there exist x,,y, € R such that
d(x,),D(y,) are not left zero divisors in R, then 2R = {0}.

Proof. By the same way of the proof of Theorem 3.1, we will deduce that d(R)D(R)(2D(R))
= {0}. Since d(x,) is not a left zero divisor in R, we have D(R)(2D(R)) = {0}. Again, as
D(y,) is not a left zero divisor in R, so 2D(R) = {0} which implies that 2R = {0} by Lemma
3.2(ii). 1

4. Posner’s second theorem
In this section we generalized Posner’s second theorem for (o, 7)-derivations.

Lemma 4.1. Let R be a near-ring with a multiplicative epimorphism 0. If U is a non-zero
semigroup right (left) ideal of R, then 0(U) is a semigroup right (left) ideal of R. Moreover,
if 0 is a multiplicative automorphism on R then 0(U) is a non-zero semigroup right (left)
ideal of R.

Proof. Let U be a non-zero semigroup right ideal of R and x € R. Since 0 is onto, there
exists 7 € R such that 0(r) = x. Thus, 08(u)x = 0(u)0(r) = 0(ur) € O(U) for all u € U.
Hence, 6(U) is a semigroup right ideal of R. If 6 is a multiplicative automorphism, then
0(U) = {0} implies U = {0}, a contradiction. The proof is similar for semigroup left
ideals. 1

The following result generalizes [2, Theorem 1] and [18, Lemma 3].
Theorem 4.1. Let R be a prime ring with a non-zero (0, 7)-derivation d such that © or T is

an automorphism and ¢ (x)d(x) = d(x)t(x) for all x € U, where U is a non-zero semigroup
ideal of R which is closed under addition. Then R is a commutative ring.
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Proof. Suppose 7 is an automorphism. U is closed under addition implies & (x + y)d(x
y) =d(x+y)t(x+y) forall x,y € U. So o(x)d(x)+ o(x)d(y)+o(y)d(x)+oc(y)d(y)
d(x)7(x) +d(x)T(y) +d(y)t(x) +d(y)t(y). Using o(x)d(x) = d(x)7(x) and o (y)d(y)
d(y)(y), we get
4.1) o(xX)d(y)+o(y)d(x) =d(x)t(y) +d(y)t(x) forall x,yeU.
Adding d(x)t(y) + o(y)d(x) to both sides of (4.1), we have o(x)d(y) +d(x)T(y) +20(y)
d(x) = o(y)d(x) +d(y)T(x) +2d(x)t(y) which means d(xy) +20(y)d(x) = d(yx) + 2d(x)
7(y) and then for all x,y € U, we get
“4.2) d(xy) —d(yx) = 2d(x)t(y) =20 (y)d(x) = 2(d(x)7(y) — o (y)d(x)).
Replacing y by xy in (4.2) and using o (x)d(x) = d(x)7(x) for all x € U, we have
d(xxy) —d(xyx) = 2(d(x)t(x)7(y) — o (x)0(y)d(x))

=2(a(x)d(x)7(y) — o (x)o(y)d(

=0(x)(2(d(x)7(y) —o(y)d(x)))
On the other hand, we have

d(xxy) —d(xyx) = d(x(xy —yx)) = 0(x)(d(xy) — d(yx)) +d(x)7(xy — yx).
Comparing the last equations, we obtain d(x)t(xy — yx) = 0, for all x,y € U. Thus, we have
the following

(4.3) d(x)t(x)t(y) =d(x)t(y)t(x) forall x,yeU.

Replacing y by yz and using (4.3), we get d(x)T(y)t(x)7(z) =d(x)t(x)T(y)T(2) = d(x)T(y)
7(z)t(x) forall x,y,z € U. Sod(x)T(y)(t(x)7(z) — T(2)T(x)) = 0. Thus, d(x)t(U)(7(x)7(z)
—1(z)t(x)) = {0} forall x,z € U. Using Lemma 4.1 and Lemma 2.11, we have forall x € U
either d(x) =0 or 7(x)7(z) — 7(2)t(x) = T(xz —2x) =0 forall z € U. If d(U) = {0}, then
d = 0 by Lemma 2.9(ii), a contradiction. So there exists a € U such that d(a) # 0 and hence
T(az—za) =0 for all z € U. But 7 is an automorphism implies that az —za =0 forallz € U
and then a centralizes U. Therefore, a € Z(R) by Lemma 2.8. Replacing y by ay in (4.2),
we get d(xay) —d(ayx) =2(d(x)t(a)T(y) — o (a)o(y)d(x)) for all x,y € U. But from (4.1),
we have o(x)d(a) + 6(a)d(x) —d(a)T(x) = d(x)7(a). Substituting this in the last equation
and using (4.2) and a € Z(R), it will be

1+

~—

X

= 0(x)(d(xy) —d(yx)),

d(xay) —d(ayx) = 2(0(a)d(x)(y) + (0 (x)d(a) — d(a)T(x))T(y) — o(a)o(y)d(x))
=20(a)(d(x)1(y) —0()d(x)) +2((0(x)d(a) —d(a)T(x))T(y))
= 0(a)2(d(x)1(y) —0(y)d(x)) +2(c(x)d(a) — d(a)T(x))T(y)
= o(a)(d(xy) —d(yx)) - (d(ax) —d(xa))T(y)
= o(a)(d(

for all x,y € U since d(ax) —d(xa) = 0 for all x € U. On the other hand, d(xay) —d(ayx) =
d(a(xy —yx)) = o(a)(d(xy) —d(yx)) +d(a)t(xy — yx) for all x,y € U. Comparing the last
two equations, we get d(a)T(xy — yx) = 0 and then d(a)t(x)7(y) = d(a)(y)t(x) for all
x,y € U. Putting xz instead of x where z € U, we getd(a)t(x)T(2)t(y) =d(a)t(y)t(x)1(z) =
d(a)T(x)T(y)7(z) for all x,y,z € U. Therefore, d(a)t(x)(7(z)7(y) — T(¥)7(z)) = 0 for all
x,y,z € U. Thus, d(a)t(U)(t(z)7(y) — t(y)7(2)) = {0}. Usmg d(a) # 0, Lemma 4.1 and
Lemma 2.11, we have 7(z)7(y) — t(y)t(z) = t(zy —yz) = 7(0) and then zy = yz for all
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¥,z € U. By Lemma 2.8, we obtain U C Z(R). Hence, R is a commutative ring by Lemma
2.10. The proof for ¢ is an automorphism is similar. 1

It is not true to replace the condition “o (x)d(x) = d(x)t(x)” in Theorem 4.1 by “xd(x) =
d(x)x” as the following example shows.

Example 4.1. Let R be the prime ring M>(Z,). Take d = 7 is the identity map on R and
6 =0 (or d = 0 is the identity map on R and T = 0). Then d is a non-zero (o, T)-derivation
d on R. Clearly that d(x)x = xd(x) = x* for all x € R. But R is not commutative.

Corollary 4.1. Let R be a prime ring with a non-zero o-derivation d such that 6(x)d(x) =
d(x)x for all x € U where U is a non-zero semigroup ideal of R which is closed under
addition. Then R is a commutative ring.

Lemma 4.2. Let R be an abelian near-ring with a non-zero (o, t)-derivation d such that 6
and T are epimorphisms. Then d(dist(R)) C dist(R), where dist(R) is the set of distributive
elements of R.

Proof. For all x,y € R, s € dist(R), we have d((x+y)s) = d(xs+ys). That means o (x+

»)d(s) +d(x+y)t(s) = o(x)d(s) +d(x)t(s) + o(y)d(s) +d(y)t(s). Since T is onto, we

get 7(s) € dist(R). It follows that (o (x) 4+ o (y))d(s) + d(x)T(s) + d(y)t(s) = o(x)d(s) +

;((y))d(fi) Jr(d)(x)r(s) +d(y)t(s) and hence (o(x)+ o (y))d(s) = o(x)d(s) + o (y)d(s). S(;
s) € dist(R).

Theorem 4.2. Let R be an integral near-ring with a non-zero (0, t)-derivation d such that
o and T are automorphisms and ¢ (x)d(x) = d(x)t(x) for all x € R. Then d is a (0,0)-
derivation on dist(R) and either d(dist(R)) = 0 or dist(R) is a commutative ring. Moreover,
if d(dist(R)) # 0, then o(s) = t(s) for all s € dist(R).
Proof. For all x,y € R, we have d(x(x+)) = d(x* 4+ xy). So
d(x(x+y)) = o(x)d(x+y) +d(x)T(x+y)

= 0(x)d(x) +0(x)d(y) +d(x)T(x) +d(x)T(y)

= 0(x)d(x) +0(x)d(y) + o(x)d(x) +d(x)T(y)
as d(x)t(x) = o(x)d(x). On the other hand

d(x* +xy) = d(x*) +d(xy) = 6(x)d(x) +d(x)T(x) + o (x)d(y) + d(x)T(y)
=o(x)d(x) +o(x)d(x)+o(x)d(y) +d(x)T(y).

After cancellation we get o(x)d(y) + o(x)d(x) = o(x)d(x) + o(x)d(y) for all x,y € R.
Thus, 0 = o(x)(d(y) +d(x) —d(y) —d(x)) = o(x)d(y+x—y—x) for all x,y € R. Since R
is without zero divisors and o is an automorphism, either x = 0 or d(y +x —y —x) = 0 for
all0#£x€e Randforally € R. Butif x=0, thend(y+x—y—x)=d(y—y) =d(0) =0. So
d((x,y)) = 0forall x,y € R. Since z(x,y) = (zx,zy) for all x,y,z € R, we have d(z(x,y)) =0
and then 0 = d(z(x,y)) = 6(2)d((x,y)) +d(z)t(x,y) = d(z)T(x,y). Since d # 0, there exists
z € R such that d(z) # 0 and then 7(x,y) = 0 for all x,y € R. It follows that (R,+) is an
abelian group. So R is an abelian near-ring. Thus, dist(R) is a subnear-ring of R which
is an integral ring. Also, d(dist(R)) C dist(R) by Lemma 4.2. Therefore, d(dist(R)) =0
or dist(R) is a commutative ring by Theorem 4.1. Now, If d(dist(R)) = 0, then d is a
(0, 0)-derivation on dist(R). Suppose that d(dist(R)) # 0. So o (s)d(s) = d(s)7(s) for all
s € dist(R). Thus, d(s)(o(s) — t(s)) = 0 and either d(s) = 0 or 6(s) = 7(s). That means if
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d(s) #0, then o(s) = (s). Since d(dist(R)) # 0, there exists ¢ € dist(R) such that d(z) # 0.
So for all s € dist(R) — {0} such that d(s) = 0, we get o(rs)d(ts) = d(ts)T(ts). It follows
that 6(t)o(s)d(t)t(s) =d(t)t(s)t(¢)T(s). As dist(R) is a commutative integral ring, T is an
automorphism and o (r) = 7(z) where d(t) # 0 and ¢ € dist(R), we have o(s) = 7(s) for all
s € dist(R). Also, o is an automorphism on R implies that ¢ is an automorphism on dist(R).
Therefore, d is a non-zero (0, o )-derivation on dist(R). 1

The following result generalizes [1, Theorem 1].

Theorem 4.3. Let R be a prime ring with a non-zero (0, 7)-derivation d such that 6,7 are
epimorphisms and 6 (x)d(x) = d(x)t(x) for all x € U where U is a non-zero right (left) ideal
of R. Then ©(U) = {0} or 6(U) = {0} or (R is a commutative ring and ¢ = 7).

Proof. Suppose U is a non-zero right ideal. The first part of the proof is similar to the first
part of the proof of Theorem 4.1 up to equation (4.3)

d(x)t(x)t(y) =d(x)t(y)t(x) forall x,yeU.

Replacing y by yz and using (4.3), we have d(x)t(y)t(x)7(z) =d(x)t(x)T(y)7(z) = d(x)T(y)
7(z)7(x) for all x,y,z € U, which means d(x)t(y)(t(x)t(z) — T(z)7(x)) = 0. Thus, d(x)t(U)
(t(x)T(z) —7(2)7(x)) = {0} for all x,z € U. By Lemma 4.1, either 7(U) = {0} or d(x)t(U)
R(t(x)7(z) — 7(z)7(x)) = {0}. If 7(U) # {0}, then for each x € U either d(x)t(U) = {0}
or t(xz) =t(zx) forallze U. LetA={x € U : d(x)t(U) ={0}} and B={x € U : t(xz) =
7(zx) for all z € U}. Then A and B are subgroups of (U,+) and AUB =U. Thus, A =U
or B=U. In other words, d(U)t(U) = {0} or ©(U) C Z(R). Suppose d(U)T(U) = {0}.
So (4.1) will be o(x)d(y) + o (y)d(x) =0 for all x,y € U. Since d(xy) = o(x)d(y),d(yx) =
o (y)d(x), we have

4.4) d(xy+yx)=0 forall x,yeU.

Replacing x,y by z, (xy + yx) respectively in (4.4), we get d(z(xy +yx) + (xy+yx)z) = 0 for
all x,y,z € U. It follows that

4.5) 0=o0(2)d(xy+yx)+d(2)t(xy+yx)+ o (xy+yx)d(z) +d(xy+yx)T ( )

for all x,y,z € U. Observe that d(xy +yx)7(z) = d(z)T(xy +yx) = 0 from d(U)7(U) = {0}
and o(z)d(xy +yx) = 0 from (4.4). Thus, (4.5) will be o(xy+ yx)d(z) = O Replac-
ing y by yz, it yields 0 = o(xyz + yzx)d(z) = o(x)o(y)o(z)d(z) + o(y)o(z)o(x)d(z) =
o(y)o(z)o(x)d(z) for all x,y,z € U since 0(z)d(z) = d(z)t(z) = 0. Replacing y by yr
where r € R, we get o(y)o(r)o(z)o(x)d(z) =0. As R is prime and o is onto, either
o(U) ={0} or 6(z)o(x)d(z) =0 for all x,z € U. If o(U) # {0}, then o(z)c(x)d(z) =0
for all x,z € U. Putting xr instead of x, we conclude that 6(z)c(x)Rd(z) = {0} and then
for every z € U either d(z) =0 or 6(z)0(x) = 6(zx) =0. Let A={u € U : d(u) =0} and
B={ucU:o(ux)=0forall x € U}. So A and B are subgroups of (U,+). Moreover,
U =AUB. Thus, either A=U or B=U. If A=U, then d(U) = {0} and hence d =0
by Lemma 2.9(i), a contradiction with the hypothesis. If B = U, then 6(U?) = {0} which
implies o(U)o(U) = {0}. But o(U) is a non-zero semigroup right ideal of R by Lemma
4.1 and 6(U) # {0}. So o(U)o(U) # {0}, a contradiction. Hence, d(U)t(U) # {0} if
o (U) # {0}. Therefore, T(U) C Z(R). But 7(U) # {0} is a non-zero semigroup right ideal
of R, so R is a commutative ring by Lemma 2.10. It follows that o (x)d(x) = d(x)7(x)
implies d(x)(o(x) — t(x)) = 0 for all x € U. Since R is a commutative prime ring, it
doesn’t have non-zero zero divisors by Lemma 2.4. Thus, either d(x) = 0 or 6(x) = 7(x).



958 A. A. M. Kamal and K. H. Al-Shaalan

Let A= {x € Uld(x) =0} and B= {x € U|lo(x) = 7(x)}. Then A and B are subgroups
of U whose union is U. As d(U) # 0, we have B=U and o(x) = t(x) for all x € U.
Hence, 6 (ux) = t(ux) for all u € U and x € R. That implies 6(u)(o(x) —7(x)) = 0. Since
o(U) # {0}, we get 6(x) = 7(x) for all x € R and o = 7. The proof when U is a non-zero
left ideal is similar. 1

If a 3-prime near-ring R with a (o, 0)-derivation d such that o (x)d(x) = d(x)o(x) for
all x € R, then R need not be a ring as the following example shows:

Example 4.2. Let R =1 x I as a set, where [ is any integral ring with identity which has
at least three elements. Define the addition and the multiplication on R by (a,b) + (¢,d) =
(a+c¢,b+d) and (a,b)(c,d) = (ac,bc+d) if (a,b) # (0,0) and (0,0)(c,d) = (0,0). Then
R is a zero-symmetric abelian near-ring with identity (1,0) which is not a ring. Let D be a
non-zero derivation on I and ¢ the endomorphism defined on R by o((a,b)) = (a,0) for all
(a,b) €R. Defined : R — Rby d((a,b)) = (D(a),0). Then d is a non-zero (o, c)-derivation
on R by simple calculations.

Observe that R is 3-prime. Indeed, assume that (a,b)R(c,d) = (0,0) with (a,b) #
(0,0). If a # 0, then (a,b)(1,0)(c,d) = (0,0). That means (a,b)(c,d) = (ac,bc +d) =
(0,0). Thus, ¢ = 0 and hence d = 0. Now, suppose a = 0 and b # 0. It follows that
(0,0)=(0,b)(0,1)(c,d) = (0,1)(c,d) = (0,c+d) and then ¢ = —d. It follows that (0,0) =
(0,6)(0, y)( d,d) = (07y)(—d,d) = (0,—yd +d) = (0,(—y+ 1)d) forall y e I — {0}. If
d#0,theny=1and I ={0,1} which is a contradiction with the number of elements of /.
Therefore, d = 0 and (c¢,d) = (0,0). Hence, R is a 3-prime near-ring.

Now, choose I to be the integral domain R[x] where R is the field of real numbers
and choose D to be usual derivative on R[x]. Observe that we have o(a,b)d((a,b)) =
d((a,b))o(a,b) for all (a,b) € R, but R is not a ring.

Proposition 4.1. Let R be a prime ring.

(i) If nx =0 for some x € R and a positive integer n, then either nR = {0} or x = 0.
(i) IfnR # {0} for some positive integer n and nx € Z(R) for some x € R, then x € Z(R).

Proof. (i) For all y,z € R, we have 0 = yz(nx) = n(yzx) = (ny)zx. From the primeness of R,
we have either nR = {0} or x =0.

(ii) If Z(R) = {0}, then nx = 0 and hence x = 0 by using (i). If Z(R) # {0}, then there
exists z € Z(R) — {0}. Observe that ny # 0 for all y € R — {0} from (i). Now, z(nx) € Z(R).
Observe that z(nx) = n(zx) = (nz)x € Z(R). But nz € Z(R) — {0}. Therefore, x € Z(R) by
Lemma 2.3. 1

The following example shows that the hypothesis “prime ring” in Proposition 4.1 can’t
be replaced by “3-prime near-ring”.

Example 4.3. Let R = M,(G), where G is the abelian group (Z4,+). Then M,(G) is 3-
prime. Take f € M, (G) such that xf = 2x for all x € G. Then 2f = 0, but neither 2M,(G) =
{0} nor f = 0. Observe that 2f € Z(M,(G)) and 2M,(G) # {0}, but f ¢ Z(M,(G)) since
fg # gf, where g € M,(G) is defined by {0,1,3}g = {0} and 2g = 1.

Lemma 4.3. Let R be a ring and ¢ and T are endomorphisms of R. Then for all x,y,z € R,
we have the following relations:

(1) [xay:l:z]o',f = [xay]O',T:t [x7z]0',r-
(ii) [Xiyvz]o‘,r = [x7z]0‘,‘t + b’az]d,r-
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(iii) [xy,Z]c,r = G(x) [yaZ]G,T + [va]G.TT(y)'
(iv) [xayZ]O',‘C = )’[xa Z]G,‘L’ + [xa)’]c,al

(iii) For all x,y,z € R, we have [xy,z]6 1 = O(xy)z—
o(x)o(y)z+ (-0 (x)z2(y) + o(x)z2(y)) — 2 T(x)T(y)
21(x))7(y) = 6 (X) [y, 2lo.c + [, 2o, T(y).

(iv) For all x,y,z € R, we have [x,yz]s: = 0(x)yz — yzT(x) = o(x)yz + (—yo(x)z +
y0(x)2) —yzt(x) = (0 (x)y —yo (x))z+y(0(x)2—27(x)) = [x,yl6. 02+ ¥ 5, 2o =yx, oo+
[X»Y]G,GZ- 1

It is not true in general that [x,yz]s r = Y[x,2]6.r + [¥,]c c2 as the following example
shows.

Example 4.4. Let R be aring. Choose 6 = 1g and T = 0. Then for all x,y,z € R, we have
[, yZo,r = 0(x)yz — yz7(x) = xyz and y[x,2]o.c + [x,V]o,c2 = y(0 (x)z — 27(x)) + (O (x)y —
yT(x))z = yxz+xyz.
Lemma 4.4. Let R be a ring with (0, 7T)-derivations d and D. Then
(i) [13, Example 3.1] 6 : R — R such that 8(x) = o(x)a —at(x) for all x € R is a
(0,7)-derivation on R for all a € R.
(ii) g: R — R such that g(x) = ad(x) for all x € R is a (0,7)-derivation on R, where
a€Z(R).

(iii) d+ D is a (0,7)-derivation on R.

Proof. (ii) Forall x,y € R, we have g(x+y) =ad(x+y) =a(d(x)+d(y)) = ad(x)+ad(y) =
8(x) +8(y). Also, g(xy) = ad(xy) = a(a(x)d(y) +d(x)1(y)) = o(x)ad(y) + ad(x)7(y) =
o(x)g(y) +8(x)7(y).

(iii) Clearly that d + D is additive mapping. Now,

(d+D)(xy) = d(xy) + D(xy) = 0(x)d(y) +d(x)T(y) + (x)D(y) + D(x)7(y)
= 0(x)(d(y)+D(y)) + (d(x)+D(x))7(y)
= 0(x)(d+D)(y) + (d+D)(x)T(y).
Therefore, d + D is also a (o, T)-derivation on R. 1

Theorem 4.4. Let R be a prime ring with a non-zero (0,7T)-derivation d, ¢ and T are
epimorphisms of R. If o(x)d(x) —d(x)t(x) € Z(R), for all x € R, then R is a commutative
ring or d(Z(R)) = {0}.

Proof. Observe that o(x)d(x) — d(x)t(x) = [x,d(x)]s¢ for all x € R. From [x+ y,d(x+
¥)]o,z € Z(R) for all x,y € R and using Lemma 4.3, we have [x,d(x)]s¢ + [x,d(¥)]o.z +
b, d(x)]e,c+ [y, d(y)le,c € Z(R). Using [x,d(x)]6.z € Z(R), [y,d(¥)]o,z € Z(R) and that Z(R)
is a subring of R, we get

(4.6) x,d()]o.c+ [y,d(x)]6c €Z(R) forall x,y€R.

If Z(R) = {0}, then o (x)d(x) —d(x)7(x) = 0 for all x € R and hence R is a commutative
ring by Theorem 4.3. So R=Z(R) = {0} and d =0, a contradiction. Therefore, Z(R) # {0}.
We divide the proof into two cases:
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(1) R is not of characteristic 2. Then there exists ¢ € Z(R) — {0} such that [x,d(c)]s.r +
[c,d(x)]6,r € Z(R) for all x € R by (4.6). Write d; (x) = [x,d(c)]¢,r and da(x) = [c,d (x)]5 ¢
Observe that di, dp and d; + d; are (0, T)-derivations by Lemma 4.4. If d| +d, # 0, then
(d\ +d»)(R) C Z(R) implies that R is a commutative ring by Lemma 2.12. If d| +d, =0,
then [x,d(c)]s,z + [c,d(x)]s,r = 0 for all x € R,c € Z(R). It follows that 0 = [¢,d(¢)]s,c +
[c,d(c)]o,r =2[c,d(c)]s,r and hence [c,d(c)]sr = 0 by Proposition 4.1(1). As o(c),T(c) €
Z(R), we obtain [c¢,d(c)]s,: =d(c)(o(c) —t(c)) =0. Thus, for all ¢ € Z(R), either d(c) =0
or o(c) =1(c). If o(c) # t(c) and d(c) = 0 for some ¢ € Z(R), then d; = 0 which implies
dy =0. Thus, (o(c) —(c))d(x) =0 for all x € R and d = 0 by Lemma 2.4, a contradiction.
So if d(Z(R)) = {0}, then 6(a) = t(a) for all a € Z(R). If d(c) # 0 and o(c) = 7(c) for
some ¢ € Z(R), thend, =0. Sod;(x) = 6(x)d(c) —d(c)T(x) =0 for all x € R. If there exists
a € Z(R) such that 6(a) # ©(a), then d(c)(c(a) — t(a)) = 0 and d(c) = 0, a contradiction.
So if d(c) # 0 for some ¢ € Z(R), then o(a) = t(a) for all @ € Z(R). Now, we have the
following case: dj =dy =0, d(Z(R)) # {0} and o (a) = 7(a) for all a € Z(R). Replacing y
in (4.6) by zy and using Lemma 4.3(i), (iii) and (iv), we get for all x,y,z € R

[x,d(z29)]6.c + [29,d(X)] 6.0

=[x, 0(2)d(y) +d(2)T(V)]os +[2y,d(¥)]o.c
[ 0(2)d(Y)lo+[xd(2)T(¥)]or+0 (), d(x)]6r + [2,d(x)]6,T(y)
()[x7 Wo.r+ X 0(@)ood(y) +d(2)xT(V)o s + [x,d(2)]o.0T(y)

d )
+0(2),d)]os +[2,d(¥)]oT(y)
o (@) (xdWlox+1dX)oc) + (I, d(2)]o,0 + [2,d(0)]6,1)T(y)
+x0(@)lood(y) +d(2)x,T(y)]o -

Putting z=c € Z(R), using d, = 0 and (4.6), we deduce that [x,d(c)]s.6T(y) +d(c)[x,T(¥)]6,z €

Z(R) for all x,y € R. Then & (x)d(c)t(y) — d(c)o(x)T(y) +d(c)o(x)T(y) —d(c)T(y)T(x) =
o(x)d(c)t(y) —d(c)t(y)T(x) € Z(R) for all x,y € R. Suppose d(c) # 0 for some ¢ € Z(R)
and assume that

4.7 o(x)d(c)t(y) =d(c)t(y)r(x) forall x,y€R.
Multiplying both sides by 7(z) from the right, we obtain

(4.8) o(x)d(c)t(y)t(z) =d(c)t(y)r(x)t(z) forall x,y,z€R.
Replacing y by yz in (4.7), we have

4.9) o(x)d(c)t(y)t(z) =d(c)t(y)t(z)t(x) forall x,y,z€R.

From (4.8) and (4.9), we conclude d(c)7(y)(t(z)7(x) — 7(x)7(z)) = 0 for all x,y,z € R.
Since R is prime and d(c) # 0, we obtain that R is commutative. Now, assume that 7(a) # 0
for some a € R such that 6 (x)d(c)t(a) #d(c)t(a)t(x). It follows that § (x) = o (x)d(c)T(a) —
d(c)t(a)t(x) € Z(R) for all x € R is a non-zero inner (o, 7)-derivation and R is a commu-
tative ring by Lemma 2.12.

(ii) R is of characteristic 2. Adding d(x)t(y) +d(y)t(x) —d(x)T(y) —d(y)T(x) =0 to
(4.6), we have G(x)d(y) +d(x)T(y) —2d()(») + 6()d(x) +d () 7(x)
which means

(4.10) d(xy+yx) € Z(R) forall x,y€R.
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Now, suppose d(Z(R)) # {0} and there exists ¢ € Z(R) — {0} such that d(c) # 0. Replace
y by yc in (4.10). Then d(xyc+ ycx) = d(c(xy+yx)) € Z(R) for all x,y € R. It follows that
o(c)d(xy+yx)+d(c)t(xy+yx) € Z(R). Since o(c)d(xy+yx) € Z(R), we have d(c)T(xy +
yx) € Z(R) and then d(c)(uv +vu) € Z(R) for all u,v € R as 7 is onto. Firstly, suppose that
d(c)(xy+yx) =0 for all x,y € R. So d(c)xy = d(c)yx for all x,y € R. Replacing x by xz in
the last equation, we get d(c)xzy = d(c)yxz = d(c)xyz and hence d(c)x(zy — yz) = 0 for all
x,¥,Z € R. The primeness of R and d(c) # 0 imply that R is commutative. Now, suppose
d(c)(st +ts) € Z(R) — {0} for some s,z € R. Using d(c)(xy+yx) € Z(R) for all x,y € R and
replacing x by [s,#]x and y by [s, ]y, we have d(c)([s,?]x[s,t]y + [s,t]y[s,?]x) € Z(R). Thus,
d(c)[s,t](x[s,t]y + y[s,t]x) € Z(R). Since d(c)[s,t] € Z(R) — {0}, it is not a zero divisor
by Lemma 2.4. It follows that (x[s,t]y + y[s,t]x) € Z(R) for all x,y € R. Replacing x by
¢ and putting a = [s,t], we obtain c(ay + ya) € Z(R). Again, by Lemma 2.3, we have
ay+ya € Z(R) forall y € R. Defined, : R— Rby d,(y) =ay+yaforally € R. Thend, is an
inner derivation on R and d,(R) C Z(R). If d, is non-zero, then R is commutative by Lemma
2.12. If d; = 0, then a = [s5,t] € Z(R) — {0}. Using Lemma 2.3, we get d(c) € Z(R) — {0}.
Thus, d(c)(xy+yx) € Z(R) for all x,y € R implies xy + yx € Z(R) for all x,y € R. If there
exists b € R such that by + yb # 0 for some y € R, then d}, is a non-zero derivation on R
and dp(R) C Z(R) which implies R to be a commutative ring by Lemma 2.12 and hence
by+yb = 0, a contradiction. Thus, xy 4+ yx = 0 and then R is a commutative ring. 1

Corollary 4.2. Let R be a prime ring of characteristic 2 with a non-zero (0, T)-derivation d
such that 6 and T are automorphisms and commute with d. If o(x)d(x) +d(x)t(x) € Z(R)
for all x € R., then R is a commutative ring or d> =0

Proof. Using Theorem 4.4, R is a commutative ring or d(Z(R)) = {0}. If d(Z(R)) = {0},
then d(xy) = d?(yx) for all x,y € R from (4.10) in the proof of Theorem 4.4. Using Lemma
2.7, d? is a (62, 7%)-derivation on R. So by Lemma 2.13, R is a commutative ring or d> =
0. |

The following result generalizes Theorem 1 (in its part of derivations) of [14] and [8,
Theorem 4].

Theorem 4.5. Let R be a prime ring with a non-zero (0,0 )-derivation d such that o is an
epimorphism and o (x)d(x) —d(x)o(x) € Z(R) for all x € U, where U is a non-zero right
(left) ideal of R. Then R is a commutative ring or 6(U) = {0}.

Proof. From [x+y,d(x+Y)]s.c € Z(R) for all x,y € U, we have

4.11) X, d(y)]s,c + d(x)]e,c € Z(R) forallx,y € U.

We divide the proof into two cases:

(i) R is not of characteristic 2. Replacing y in (4.11) by x> and using Lemma 4.3, we get
[x,d (xx)]o,0 + [xx,d(x)]6.6
= [, 0(x)d(x) +d(x)0(¥)]o,0 + ¥, d(x)]s.0
=[x,0(x)d(x)]6,6 + [x,d(x)0(x)]6,6 + O(¥)[x,d(x¥)]6,6 + [x,d(¥)]6,60(x)
=0, d(¥)lo.c + [x,d(x)]6.00(x) +20(x)[x,d(x)l.c =40 (x)[x,d(¥)]o.c
)

o
and hence 40 (x)[x,d(x)]s.c € Z(R). It follows that o(x)[x,d(x)]s.c € Z(R) by Proposi-
tion 4.1(ii). If [x,d(x)]¢,c # O, then o(x) € Z(R) by using Lemma 2.3. But that means

;0
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[x,d(x)]s,c = 0, a contradiction. Thus, [x,d(x)]s,c = 0 for all x € U. Therefore, R is a
commutative ring or 6(U) = {0} by Theorem 4.3.
(i) R is of characteristic 2. Using Lemma 4.3(ii), (iii) and [x,d(x)]s,c € Z(R), we have
forallx,ye U
[xy+yx,d(x)}67g + [x{d(y)]mc
= [, d(®)]o.0 + D d(0)]oo+ [F,d0)]oo
= G( )d(¥)]o6 +[x,d(X)]6.c0(y) + 0 ()X d(x)]6.0 + [ d(x)]6.00(x)
o(x)[x,d(y)]o.c+[x,d(y)]6.00(x)
= 0( ) d(¥)lo. +0x)[x,dY)loo +[1dx)]6o0(x) +[x.d(y)]6.c0(x)
= o) (dWlo.o +xd¥)o.c) + (v, d(¥)lo.o + [x,d(¥)]6.0)o(x) = 0
using (4.11). So
(4.12) [xy+ yx,d(x )]Gc—i-[x ,d(¥)]e,c =0 forall x,yeU.
Using d(x)o(y) +d(y)o(x) —d(x)o(y) —d(y)o(x) =0 for all x,y € U and (4.11), we have
S()d0) +d(x)0 () ~24()5(y) + S()(x) +d()(x) ~2d()6(x) € Z(R)
and consequently, we get
(4.13) d(xy+yx) €Z(R) forall x,yeU.
Replacing y by xy 4 yx in (4.12) and using (4.13), we have

0 = [x(xy +yx) + (1 +y0)x,d ()] 0,0 + [, d(xy +y3)] o,
= [xxy +xyx + xyx 4+ yxx,d(x)] 6,6 = [xxy +yxx,d(X)]o.6
Replacing y by xy in the last equation and using Lemma 4.3(iii), we get

0 = [oxxy +xyxx,d(x)] 6.6 = [x(xxy +yxx),d (x)] 6.0
= o (x)[xxy +yxx,d(x)]6,6 + [x,d(x)] 5,60 (xxy + yxx)
= [x,d(x)]¢,0 0 (xxy + yxx).

If there exists a € U such that [a,d(a)]s.c # 0, then 6(U) # {0} and 0 = o(a®y +ya®) =
[a%,d(y)]s. for all y € U. Thus, 6(a®) € Z(R) by Lemma 4.1 and Lemma 2.8. So Substi-
tuting x by a in (4.12), we get [ay +ya,d(a)]s,c = 0 for all y € U. Putting ay instead of y,
we obtain

0= [a(ay+ya),d(a)|s,c = o(a)lay+ya,d(a)]s s +[a,d(a)]s,c0(ay +ya)
= [a,d(a)]6,c0(ay +ya).

Since, [a,d(a)]s.¢ is not a zero divisor, we have o(a)o(y) —o(y)o(a) =0forally e U. It
follows that o (a) centralizes 6(U) # {0}. Lemma 4.1 and Lemma 2.8 implies o (a) € Z(R).
But that implies [a,d(a)]s,6 = 0, a contradiction. Therefore, [x,d(x)]s,c = 0 for all x € U
and R is commutative by Theorem 4.3.

The proof when U is a non-zero left ideal of R is similar. 1

We finish this section by studying the commutativity of a prime ring R admitting a non-
zero (o, T)-derivation d and satisfying the condition d(x*) € Z(R) for all x € R.
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Proposition 4.2. Let R be a prime ring with a non-zero (0, 7)-derivation d such that T is an
automorphism and d(x*) = 0 for all x € R. Then R is a commutative ring of characteristic
2.

Proof. From d((x+y)?) =0, we have o(x+y)d(x+y) = —d(x+y)t(x+y) for all x,y €
R. So 0(x)d(x) + 0 (x)d(y) + 6 (y)d(x) + 0(y)d(y) = —d(x)7 ) (x) —d(x)T(y) —d(y)T(x) -
d(y)t(y). Using o(x)d(x) = —d(x)7(x) and 6 (y)d(y) = —d(y)T(y), we get o(x)d(y) +
o(y)d(x) = —d(x)t(y) — d(y)7(x) and then

d(xy) = —d(yx) forall x,y€R.
Therefore, R is a commutative ring of characteristic 2 by Lemma 2.14. 1

Theorem 4.6. Let R be a prime ring with 2R # {0} and a non-zero (0, 7)-derivation d such
that & and T are automorphisms and d(x*) € Z(R) for all x € R. Then R is a commutative
ring.

Proof. From d((x+y)?) = o(x+y)d(x+y) +d(x+y)t(x+y) € Z(R) for all x,y € R,
we have 6(x)d(x) + G(0d(y) + 0 ()d(x) + G(1)d(y) +d(x)(x) +d(x)7() +d(3)T(x) +
d(y)t(y) € Z(R). Using 0(x)d(x) + d(x)(x) € Z(R), 6()d(y) +d(y)t(y) € Z(R) and that
Z(R) is a subring of R, we get o(x)d(y) +d(x)t(y) + o(y)d(x) +d(y)t(x) € Z(R) for all
x,y € R. Tt follows that d(xy) + d(yx) € Z(R) for all x,y € R. If Z(R) = {0}, then R is a
commutative ring of characteristic 2 by Lemma 2.14 and then R = {0} and d = 0, a con-
tradiction. So there exists ¢ € Z(R) — {0} such that d(cy) +d(yc) = 2d(cy) € Z(R) for all
y € Z(R). Thus,

(4.14) d(cy)€Z(R) forall yeR andforall ce€Z(R)—{0}

by Proposition 4.1(ii). It follows that d(ccc) = o(c)d(cc) +d(c)t(cc) € Z(R). Since
o(c)d(cc) € Z(R), we have d(c)t(cc) € Z(R) as Z(R) is a subring of R. Using Lemma
2.3, Lemma 2.4 and 7 is an automorphism, we get that d(c) € Z(R) for all ¢ € Z(R) — {0}.

If d(Z(R)) # {0}, then there exists ¢ € Z(R) — {0} such that d(c) € Z(R) — {0}. From
(4.14), we have d(ccy) = o(c)d(cy) +d(c)t(cy) € Z(R). But 6(c)d(cy) € Z(R),so d(c)t(cy) €
Z(R) for all y € R. Using that d(c),7(c) € Z(R) — {0} and Lemma 2.3, we obtain 7(R) C
Z(R). Therefore, R is a commutative ring since 7 is onto.

If d(Z(R)) = {0}, then for all ¢ € Z(R) — {0}, (4.14) implies

d(cy)=0(c)d(y)+d(c)t(y) =0o(c)d(y) € Z(R) forall yeR.

Since o is an automorphism, we have d(R) C Z(R) by Lemma 2.3. Therefore, R is a
commutative ring by Lemma 2.12. 1
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