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Abstract. In this paper we generalize Posner’s first theorem to a 3-prime near-ring with
a (σ ,τ)-derivation. We prove that a prime ring with a non-zero (σ ,τ)-derivation is com-
mutative if σ(x)d(x) = d(x)τ(x) for all x ∈U where U is a suitable subset of R. Also, we
generalize Posner’s second theorem completely to a prime ring with a (σ ,σ)-derivation and
partially to a prime ring with a (σ ,τ)-derivation.
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1. Introduction

Throughout this paper R will be a ring or a left near-ring. Z(R) will be its multiplicative
center and σ ,τ two endomorphisms from R to R. We say that R is prime (3-prime for near-
rings) if, for all x,y ∈ R, xRy = {0} implies x = 0 or y = 0. We say that U is a semigroup
right (left) ideal of R, if U is a non-empty subset of R satisfies UR⊆U (RU ⊆U). We say
that U is a semigroup ideal if it is both a semigroup right and left ideal. For all x,y ∈ R,
we write [x,y] = xy− yx for the multiplicative commutator, [x,y]σ ,τ = σ(x)y− yτ(x) and
(x,y) = x + y− x− y for the additive commutator. A map d : R→ R is called a (σ ,τ)-
derivation if d is additive and d(xy) = σ(x)d(y)+d(x)τ(y) for all x,y ∈ R. If τ = 1R, then
d is called a σ -derivation. If σ = τ = 1R, then d is the usual derivation. An element x ∈ R is
called a left (right) zero divisor in R if there exists a non-zero element y∈ R such that xy = 0
(yx = 0). A zero divisor is either a left or a right zero divisor. By an integral near-ring,
we mean a near-ring without non-zero divisors of zero. A near-ring R is called a constant
near-ring, if xy = y for all x,y ∈ R and is called a zero-symmetric near-ring, if 0x = 0 for all
x ∈ R. For any group (G,+), Mo(G) denotes the near-ring of all zero preserving maps from
G to G with the two operations of addition and composition of maps. An abelian near-ring
R is a near-ring such that (R,+) is abelian. We refer the reader to the books of Meldrum
[15] and Pilz [17] for basic results of near-ring theory and its applications.
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In this paper we use the commutator [x,y]σ ,τ to mean σ(x)y− yτ(x), but its usual form
is xσ(y)− τ(y)x with using that d(xy) = d(x)σ(y)+ τ(x)d(y) for all x,y ∈ R. According to
the last form, Argac, Kaya and Kisir showed in [1] that a prime ring R admits a non-zero
(σ ,τ)-derivation such that [d(x),x]σ ,τ = 0 for all x ∈ I if and only if R is commutative and
σ = τ , where I is a non-zero right ideal of R. They also showed that a prime ring R of
characteristic not 2 admits a non-zero (σ ,τ)-derivation such that [d(x),x]σ ,τ ∈Cσ ,τ for all
x ∈ I if and only if R is commutative and σ = τ , where Cσ ,τ = {x ∈ R : xσ(y) = τ(y)x for all
y ∈ R}. Also, Ashraf and Rehman showed in Theorem 1 in [2] that a 2-torsion free prime
ring R is commutative if R admits a non-zero (σ ,τ)-derivation such that [d(x),x]σ ,τ = 0
for all x ∈ R. In [3], Aydin had extended that theorem to [d(x),x]σ ,τ ∈ Cσ ,τ for all x ∈ R.
All above papers used that σ and τ are automorphisms on R. In the literature of studying
commutativity of rings and near-rings, there are also some works studied the commutativity
of rings and near-rings without the use of derivations, for example see [5] and [6]. Also, see
[16] for subcommutativity in near-rings.

In Section 2 we give some well-known results and we add some new auxiliary results on
a near-ring R admitting a non-zero (σ ,τ)-derivation d, which will be useful in the sequel.
In Section 3 we study the problem of Posner for the composition of two derivations, in the
more general case the composition of a (σ ,τ)-derivation and an (α,β )-derivation, where α

is an automorphism and, σ ,β and τ are epimorphisms on a near-ring R. Consequently, we
generalize Posner’s first theorem for (σ ,τ)-derivations in Theorem 3.1 which generalizes
results due to K. I. Beidar, Y. Fong and X. K. Wang; O. Golbasi and M. S. Samman.

Section 4 is devoted to study Posner’s second theorem using (σ ,τ)-derivations on prime
rings. Consequently, we generalize Lemma 3 of [18] to (σ ,τ)-derivations on prime rings.
In Theorem 4.4 we study Posner’s second theorem using (σ ,τ)-derivations on prime rings.
Theorem 4.5 is a generalization of Posner’s second theorem to (σ ,σ)-derivations on prime
rings, where σ is an epimorphism on R. In the last of this section we study the condition
d(x2) ∈ Z(R) for all x ∈ R, where d is a non-zero (σ ,τ)-derivation on a prime ring R.

2. Preliminaries and some results

We need the following lemmas:

Lemma 2.1. [10, Lemma 1] An additive mapping d on a near-ring R is a (σ ,τ)-derivation
if and only if d(xy) = d(x)τ(y)+σ(x)d(y), for all x,y ∈ R.

Lemma 2.2. [10, Lemma 2] Let R be a near-ring with a (σ ,τ)-derivation d such that τ

is an epimorphism. Then R satisfies the partial distributive law, (σ(x)d(y)+ d(x)τ(y))c =
σ(x)d(y)c+d(x)τ(y)c and (d(x)τ(y)+σ(x)d(y))c = d(x)τ(y)c+σ(x)d(y)c for all x,y,c∈
R.

Lemma 2.3. [7, Lemma 1.2(iii)] Let R be a 3-prime near-ring and x∈ Z(R)−{0}. If either
yx or xy in Z(R), then y ∈ Z(R).

Lemma 2.4. [9, Lemma 3(i),(ii)] Let R be a 3-prime near-ring and x ∈ Z(R)−{0}. Then x
is not a zero divisor in R.

Lemma 2.5. [10, Lemma 3] Let d be a non-zero (σ ,τ)-derivation on a 3-prime near-ring
R.

(i) If d(R)x = {0} and τ is onto, then x = 0.
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(ii) If xd(R) = {0}, R is zero-symmetric and σ is onto, then x = 0.

Lemma 2.6. [13, Proposition 2.7] A near-ring R is zero-symmetric if and only if R admits
a (σ ,τ)-derivation d such that σ ,τ are endomorphisms and τ is either one-to-one or onto.

Lemma 2.7. Let R be a near-ring with a (σ ,τ)-derivation d such that 2R = {0} and σ ,τ
commute with d. Then d2 is a (σ2,τ2)-derivation on R.

Proof. For all x,y ∈ R, we have d2(x + y) = d2(x)+ d2(y) since d is an additive mapping
on R. Now, for all x,y ∈ R we get

d2(xy) = d(d(xy)) = d(σ(x)d(y)+d(x)τ(y))

= σ
2(x)d2(y)+dσ(x)τd(y)+σd(x)dτ(y)+d2(x)τ2(y)

= σ
2(x)d2(y)+dσ(x)dτ(y)+dσ(x)dτ(y)+d2(x)τ2(y)

= σ
2(x)d2(y)+2dσ(x)dτ(y)+d2(x)τ2(y) = σ

2(x)d2(y)+d2(x)τ2(y).

Thus, d2(xy) = σ2(x)d2(y)+ d2(x)τ2(y) for all x,y ∈ R and d2 is a (σ2,τ2)-derivation on
R.

Lemma 2.8. [7, Lemma 1.3(iii)] Let R be a 3-prime near-ring with a non-zero semigroup
right ideal U of R. If there exists x ∈ R which centralizes U, then x ∈ Z(R). Moreover, if R
is a prime ring and U is a semigroup left ideal, then x ∈ Z(R).

Lemma 2.9. [11, Lemma 4] Let R be a 3-prime near-ring with a (σ ,τ)-derivation d.
(i) If R is zero-symmetric and U is a non-zero semigroup right ideal of R such that σ

is an epimorphism, σ(U) 6= {0} and d(U) = {0}, then d = 0.
(ii) If U is a non-zero semigroup left ideal of R such that τ is an epimorphism, τ(U) 6=
{0} and d(U) = {0}, then d = 0.

Lemma 2.10. [7, Lemma 1.5] Let R be a 3-prime near-ring with a non-zero semigroup
right (left) ideal U such that U ⊆ Z(R). Then R is a commutative ring.

Lemma 2.11. [7, Lemma 1.4] Let R be a 3-prime near-ring with a non-zero semigroup
ideal U. If x,y ∈ R and xUy = {0}, then x = 0 or y = 0.

Lemma 2.12. [13, Corollary 4.6] Let R be a 3-prime near-ring with a non-zero (σ ,τ)-
derivation d such that one of σ ,τ is either a monomorphism or an epimorphism. If d(R)⊆
Z(R), then R is a commutative ring.

Lemma 2.13. [13, Theorem 5.4] Let R be a 3-prime near-ring with a non-zero (σ ,τ)-
derivation d such that τ is an automorphism and d(xy) = d(yx) for all x,y ∈ R. Then R is a
commutative ring.

Lemma 2.14. [13, Theorem 5.9] Let R be a 3-prime near-ring with a non-zero (σ ,τ)-
derivation d such that d(xy) = −d(yx) for all x,y ∈ R. If τ is an automorphism on R, then
R is a commutative ring of characteristic 2.

3. Posner’s first theorem

In this section we generalize Posner’s first theorem for (σ ,τ)-derivations on near-rings. We
need the following two lemmas to prove the first theorem in this section.
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Lemma 3.1. Let R be a near-ring with a (σ ,τ)-derivation d and θ be any endomorphism
of R. Then

(i) θd is a (θσ ,θτ)-derivation on R.
(ii) dθ is a (σθ ,τθ)-derivation on R.

Proof. (i) Clearly the composition of two additive mappings on R is an additive map-
ping. Now, for all x,y ∈ R, we have θd(xy) = θ(d(xy)) = θ(σ(x)d(y) + d(x)τ(y)) =
θσ(x)θd(y)+θd(x)θτ(y) and then θd is a (θσ ,θτ)-derivation on R.

(ii) The proof is similar to (i).

Lemma 3.2. Let R be a near-ring with a non-zero (σ ,τ)-derivation d. Suppose one of the
following two conditions holds:

(i) R is a 3-prime near-ring and τ is onto, or
(ii) There exists a ∈ R such that d(a) is not a left zero divisor in R and τ is either

one-to-one or onto.
Then nR = {0} if and only if nd(R) = {0}.

Proof. Clearly if nR = {0}, then nd(R) = {0}. Conversely, suppose nd(R) = {0}. Then
0 = nd(b) = d(nb) for all b ∈ R. Now, for all x,y ∈ R

0 = d(n(yx)) = d(y(nx)) = σ(y)d(nx)+d(y)τ(nx) = d(y)τ(nx).

If R is 3-prime and τ is onto, then d(R)τ(nx) = {0} implies τ(nx) = 0 for all x ∈ R by
Lemma 2.5(i). It follows that {0} = τ(nR) = nτ(R) = nR. If there exists a ∈ R such that
d(a) is not a left zero divisor in R, then d(a)τ(nx) = 0 and then τ(nx) = 0 for all x ∈ R.
Therefore τ(nR) = {0}. If τ is onto, then by the same way above nR = {0} and if τ is
one-to-one, then τ(nR) = {0} implies nR = {0}.

The conditions “τ is onto” in Lemma 3.2(i) and “τ is either one-to-one or onto” in Lemma
3.2(ii) are not redundant as the following example shows.

Example 3.1. Let (R,+) be the additive abelian group (Z4,+) and define the multiplication
to make R a constant near-ring. Then R is 3-prime. Suppose τ = 0 and σ is any endomor-
phism on R, then any additive mapping d on R is a (σ ,τ)-derivation. Define d : R→ R
by d(x) = x + x for all x ∈ R. Then d(x + y) = x + y + x + y = x + x + y + y = d(x)+ d(y)
for all x,y ∈ R and d is an additive endomorphism of R. So d is a (σ ,τ)-derivation on R.
Also, d(1) = 1+1 = 2 is not a left zero divisor in R by the definition of the multiplication.
Observe that d(2x) = d(x + x) = x + x + x + x = 4x = 0 for all x ∈ R. Thus, 2d(R) = {0}.
But 2R 6= {0} as 2(1) = 1+1 = 2 6= 0.

The following theorem generalizes Theorem 1.1 of [4], Theorem 2.5 of [11] and the main
Theorem of [19].

Theorem 3.1. Let R be a 3-prime near-ring with a (σ ,τ)-derivation d and an (α,β )-
derivation D such that α commutes with β , α is an automorphism, σ ,β ,τ are epimorphisms
and α,β ,τ commute with D. If dD is a (σα,τβ )-derivation, then one of the following
statements holds:

(i) d = 0
(ii) D = 0

(iii) 2R = {0}.
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Proof. Since τ is an epimorphism, we have R is zero-symmetric by Lemma 2.6. As dD is a
(σα,τβ )-derivation, so dD(ab) = σα(a)dD(b)+dD(a)τβ (b) for all a,b∈ R. On the other
hand, d is a (σ ,τ)-derivation and D is an (α,β )-derivation. Thus, dD(ab) = d(α(a)D(b)+
D(a)β (b)) = σα(a)dD(b)+d(α(a))τD(b)+σ(D(a))d(β (b))+dD(a)τβ (b). Comparing
the previous two equations, we get

(3.1) d(α(a))τ(D(b))+σ(D(a))d(β (b)) = 0 for all a,b ∈ R.

Replace a by ac where c ∈ R. So using the partial distributive law (Lemma 2.2), we have
for all a,b,c ∈ R

0 = d(α(ac))τD(b)+σ(D(ac))d(β (b)) = d(α(a)α(c))τD(b)+σ(D(ac))d(β (b))

= dα(a)τα(c)τD(b)+σα(a)dα(c)τD(b)+σ(α(a)D(c)+D(a)β (c))d(β (b))

= dα(a)τα(c)τD(b)+σα(a)dα(c)τD(b)+(σα(a)σD(c)+σD(a)σβ (c))d(β (b)).

Notice that σD is a (σα,σβ )-derivation by Lemma 3.1. Since σβ is onto, we can use the
partial distributive law to obtain

0 = dα(a)τα(c)τD(b)+σα(a)dα(c)τD(b)+σα(a)σD(c)d(β (b))

+σD(a)σβ (c)d(β (b))

= dα(a)τα(c)τD(b)+σα(a)(dα(c)τD(b)+σD(c)d(β (b)))

+σD(a)σβ (c)d(β (b))

for all a,b,c ∈ R. By using (3.1) with c instead of a, we get for all a,b,c ∈ R

(3.2) dα(a)τα(c)τD(b)+σD(a)σβ (c)d(β (b)) = 0.

As α is bijective, we obtain dα(a)τ(r)τD(b) + σD(a)σβ (α−1(r))d(β (b)) = 0 for all
a,b,r ∈ R where r = α(c). Taking r = D(t) where t ∈ R, we obtain dα(a)τD(t)τD(b)+
σD(a)σβα−1D(t)d(β (b)) = 0 for all a,b, t ∈ R. Since βα−1 commutes with D, we have

(3.3) dα(a)τD(t)τD(b)+σD(a)σ(D(βα
−1(t))d(β (b)) = 0.

Replacing a by βα−1(t) in equation (3.1), we deduce that σ(D(βα−1(t))d(β (b)) =−d(α
(βα−1(t)))τD(b). Since α and β commute, we have σ(D(βα−1(t))d(β (b)) =−d(β (t))τ
D(b) for all t,b ∈ R. Therefore, (3.3) becomes 0 = dα(a)τD(t)τD(b)+σD(a)(−d(β (t))τ
D(b)) which means

(3.4) dα(a)τD(t)τD(b) = σD(a)d(β (t))τD(b) for all a,b, t ∈ R.

Replacing b by tk in (3.1) where t,k ∈ R, we have

0 = d(α(a))τD(tk)+σ(D(a))d(β (tk)) = d(α(a))τD(tk)+σ(D(a))d(β (t)β (k))

= dα(a)τ(D(t)β (k)+α(t)D(k))+σD(a)(σβ (t)dβ (k)+dβ (t)τ(β (k)))

= dα(a)τD(t)τ(β (k))+dα(a)τα(t)τD(k)+σD(a)σβ (t)dβ (k)+σD(a)dβ (t)τ(β (k))

= dα(a)τD(t)τ(β (k))+σD(a)dβ (t)τ(β (k))

as dα(a)τα(t)τD(k)+ σD(a)σβ (t)dβ (k) = 0 by (3.2). Then dα(a)τD(t)τ(r)+ σD(a)d
β (t)τ(r) = 0 for all a, t,r ∈ R, since β is onto. Taking r = D(b) where b ∈ R in the last
equation, we obtain

(3.5) dα(a)τD(t)τD(b)+σD(a)dβ (t)τD(b) = 0 for all a,b, t ∈ R.
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Substituting (3.4) in (3.5) and using τD = Dτ , we get for all a,b, t ∈ R

0 = d(α(a))Dτ(t)Dτ(b)+d(α(a))Dτ(t)Dτ(b) = d(α(a))D(τ(t))(2D(τ(b))).

Since α and τ are onto, we have d(R)D(R)(2D(R)) = {0}. Suppose d 6= 0. So D(R)(2D(R))
= {0} by Lemma 2.5(i). If D 6= 0, then 2D(R) = {0} by Lemma 2.5(i) and hence 2R = {0}
by Lemma 3.2(i)

The following corollary generalizes [20, Corollary 1].

Corollary 3.1. Let R be a 3-prime near-ring such that 2R 6= {0} with a (σ ,τ)-derivation d
such that σ commutes with τ , σ is an automorphism, τ is an epimorphism and σ ,τ commute
with d. If d2 is a (σ2,τ2)-derivation, then d = 0.

The conditions 2R = {0} in Theorem 3.1 and 2R 6= {0} in Corollary 3.1 are essential as
the following example shows.

Example 3.2. Let R = Z2[x]. Then R is an integral domain which means that R is a com-
mutative prime ring. Also, we have 2R = {0}. If we take d to be the usual derivative on
R = Z2[x], then d is a (1R,1R)-derivation on R which is non-zero. But d2 is also a (1R,1R)-
derivation on R = Z2[x] by Lemma 2.7.

The following result generalizes [12, Proposition 4.8].

Proposition 3.1. Let R be a near-ring with a (σ ,τ)-derivation d and an (α,β )-derivation
D such that α commutes with β , α is an automorphism, σ ,β ,τ are epimorphisms and
α,β ,τ commute with D. If dD is a (σα,τβ )-derivation and there exist xo,yo ∈ R such that
d(xo),D(yo) are not left zero divisors in R, then 2R = {0}.

Proof. By the same way of the proof of Theorem 3.1, we will deduce that d(R)D(R)(2D(R))
= {0}. Since d(xo) is not a left zero divisor in R, we have D(R)(2D(R)) = {0}. Again, as
D(yo) is not a left zero divisor in R, so 2D(R) = {0}which implies that 2R = {0} by Lemma
3.2(ii).

4. Posner’s second theorem

In this section we generalized Posner’s second theorem for (σ ,τ)-derivations.

Lemma 4.1. Let R be a near-ring with a multiplicative epimorphism θ . If U is a non-zero
semigroup right (left) ideal of R, then θ(U) is a semigroup right (left) ideal of R. Moreover,
if θ is a multiplicative automorphism on R then θ(U) is a non-zero semigroup right (left)
ideal of R.

Proof. Let U be a non-zero semigroup right ideal of R and x ∈ R. Since θ is onto, there
exists r ∈ R such that θ(r) = x. Thus, θ(u)x = θ(u)θ(r) = θ(ur) ∈ θ(U) for all u ∈U .
Hence, θ(U) is a semigroup right ideal of R. If θ is a multiplicative automorphism, then
θ(U) = {0} implies U = {0}, a contradiction. The proof is similar for semigroup left
ideals.

The following result generalizes [2, Theorem 1] and [18, Lemma 3].

Theorem 4.1. Let R be a prime ring with a non-zero (σ ,τ)-derivation d such that σ or τ is
an automorphism and σ(x)d(x) = d(x)τ(x) for all x ∈U, where U is a non-zero semigroup
ideal of R which is closed under addition. Then R is a commutative ring.
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Proof. Suppose τ is an automorphism. U is closed under addition implies σ(x + y)d(x +
y) = d(x + y)τ(x + y) for all x,y ∈U . So σ(x)d(x)+ σ(x)d(y)+ σ(y)d(x)+ σ(y)d(y) =
d(x)τ(x) + d(x)τ(y) + d(y)τ(x) + d(y)τ(y). Using σ(x)d(x) = d(x)τ(x) and σ(y)d(y) =
d(y)τ(y), we get

(4.1) σ(x)d(y)+σ(y)d(x) = d(x)τ(y)+d(y)τ(x) for all x,y ∈U .

Adding d(x)τ(y)+ σ(y)d(x) to both sides of (4.1), we have σ(x)d(y)+ d(x)τ(y)+ 2σ(y)
d(x) = σ(y)d(x)+d(y)τ(x)+2d(x)τ(y) which means d(xy)+2σ(y)d(x) = d(yx)+2d(x)
τ(y) and then for all x,y ∈U , we get

(4.2) d(xy)−d(yx) = 2d(x)τ(y)−2σ(y)d(x) = 2(d(x)τ(y)−σ(y)d(x)).

Replacing y by xy in (4.2) and using σ(x)d(x) = d(x)τ(x) for all x ∈U , we have

d(xxy)−d(xyx) = 2(d(x)τ(x)τ(y)−σ(x)σ(y)d(x))

= 2(σ(x)d(x)τ(y)−σ(x)σ(y)d(x))

= σ(x)(2(d(x)τ(y)−σ(y)d(x))) = σ(x)(d(xy)−d(yx)),

On the other hand, we have

d(xxy)−d(xyx) = d(x(xy− yx)) = σ(x)(d(xy)−d(yx))+d(x)τ(xy− yx).

Comparing the last equations, we obtain d(x)τ(xy−yx) = 0, for all x,y ∈U . Thus, we have
the following

(4.3) d(x)τ(x)τ(y) = d(x)τ(y)τ(x) for all x,y ∈U .

Replacing y by yz and using (4.3), we get d(x)τ(y)τ(x)τ(z) = d(x)τ(x)τ(y)τ(z) = d(x)τ(y)
τ(z)τ(x) for all x,y,z∈U . So d(x)τ(y)(τ(x)τ(z)−τ(z)τ(x)) = 0. Thus, d(x)τ(U)(τ(x)τ(z)
−τ(z)τ(x)) = {0} for all x,z∈U . Using Lemma 4.1 and Lemma 2.11, we have for all x∈U
either d(x) = 0 or τ(x)τ(z)− τ(z)τ(x) = τ(xz− zx) = 0 for all z ∈U . If d(U) = {0}, then
d = 0 by Lemma 2.9(ii), a contradiction. So there exists a∈U such that d(a) 6= 0 and hence
τ(az− za) = 0 for all z ∈U . But τ is an automorphism implies that az− za = 0 for all z ∈U
and then a centralizes U . Therefore, a ∈ Z(R) by Lemma 2.8. Replacing y by ay in (4.2),
we get d(xay)−d(ayx) = 2(d(x)τ(a)τ(y)−σ(a)σ(y)d(x)) for all x,y ∈U . But from (4.1),
we have σ(x)d(a)+σ(a)d(x)−d(a)τ(x) = d(x)τ(a). Substituting this in the last equation
and using (4.2) and a ∈ Z(R), it will be

d(xay)−d(ayx) = 2(σ(a)d(x)τ(y)+(σ(x)d(a)−d(a)τ(x))τ(y)−σ(a)σ(y)d(x))

= 2σ(a)(d(x)τ(y)−σ(y)d(x))+2((σ(x)d(a)−d(a)τ(x))τ(y))

= σ(a)2(d(x)τ(y)−σ(y)d(x))+2(σ(x)d(a)−d(a)τ(x))τ(y)

= σ(a)(d(xy)−d(yx))− (d(ax)−d(xa))τ(y)

= σ(a)(d(xy)−d(yx))

for all x,y ∈U since d(ax)−d(xa) = 0 for all x ∈U . On the other hand, d(xay)−d(ayx) =
d(a(xy− yx)) = σ(a)(d(xy)−d(yx))+d(a)τ(xy− yx) for all x,y ∈U . Comparing the last
two equations, we get d(a)τ(xy− yx) = 0 and then d(a)τ(x)τ(y) = d(a)τ(y)τ(x) for all
x,y∈U . Putting xz instead of x where z∈U , we get d(a)τ(x)τ(z)τ(y)= d(a)τ(y)τ(x)τ(z)=
d(a)τ(x)τ(y)τ(z) for all x,y,z ∈U . Therefore, d(a)τ(x)(τ(z)τ(y)− τ(y)τ(z)) = 0 for all
x,y,z ∈U . Thus, d(a)τ(U)(τ(z)τ(y)− τ(y)τ(z)) = {0}. Using d(a) 6= 0, Lemma 4.1 and
Lemma 2.11, we have τ(z)τ(y)− τ(y)τ(z) = τ(zy− yz) = 0 = τ(0) and then zy = yz for all
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y,z ∈U . By Lemma 2.8, we obtain U ⊆ Z(R). Hence, R is a commutative ring by Lemma
2.10. The proof for σ is an automorphism is similar.

It is not true to replace the condition “σ(x)d(x) = d(x)τ(x)” in Theorem 4.1 by “xd(x) =
d(x)x” as the following example shows.

Example 4.1. Let R be the prime ring M2(Z2). Take d = τ is the identity map on R and
σ = 0 (or d = σ is the identity map on R and τ = 0). Then d is a non-zero (σ ,τ)-derivation
d on R. Clearly that d(x)x = xd(x) = x2 for all x ∈ R. But R is not commutative.

Corollary 4.1. Let R be a prime ring with a non-zero σ -derivation d such that σ(x)d(x) =
d(x)x for all x ∈ U where U is a non-zero semigroup ideal of R which is closed under
addition. Then R is a commutative ring.

Lemma 4.2. Let R be an abelian near-ring with a non-zero (σ ,τ)-derivation d such that σ

and τ are epimorphisms. Then d(dist(R))⊆ dist(R), where dist(R) is the set of distributive
elements of R.

Proof. For all x,y ∈ R,s ∈ dist(R), we have d((x + y)s) = d(xs + ys). That means σ(x +
y)d(s) + d(x + y)τ(s) = σ(x)d(s) + d(x)τ(s) + σ(y)d(s) + d(y)τ(s). Since τ is onto, we
get τ(s) ∈ dist(R). It follows that (σ(x)+ σ(y))d(s)+ d(x)τ(s)+ d(y)τ(s) = σ(x)d(s)+
σ(y)d(s)+ d(x)τ(s)+ d(y)τ(s) and hence (σ(x)+ σ(y))d(s) = σ(x)d(s)+ σ(y)d(s). So
d(s) ∈ dist(R).

Theorem 4.2. Let R be an integral near-ring with a non-zero (σ ,τ)-derivation d such that
σ and τ are automorphisms and σ(x)d(x) = d(x)τ(x) for all x ∈ R. Then d is a (σ ,σ)-
derivation on dist(R) and either d(dist(R)) = 0 or dist(R) is a commutative ring. Moreover,
if d(dist(R)) 6= 0, then σ(s) = τ(s) for all s ∈ dist(R).

Proof. For all x,y ∈ R, we have d(x(x+ y)) = d(x2 + xy). So

d(x(x+ y)) = σ(x)d(x+ y)+d(x)τ(x+ y)

= σ(x)d(x)+σ(x)d(y)+d(x)τ(x)+d(x)τ(y)

= σ(x)d(x)+σ(x)d(y)+σ(x)d(x)+d(x)τ(y)

as d(x)τ(x) = σ(x)d(x). On the other hand

d(x2 + xy) = d(x2)+d(xy) = σ(x)d(x)+d(x)τ(x)+σ(x)d(y)+d(x)τ(y)

= σ(x)d(x)+σ(x)d(x)+σ(x)d(y)+d(x)τ(y).

After cancellation we get σ(x)d(y)+ σ(x)d(x) = σ(x)d(x)+ σ(x)d(y) for all x,y ∈ R.
Thus, 0 = σ(x)(d(y)+d(x)−d(y)−d(x)) = σ(x)d(y+ x− y− x) for all x,y ∈ R. Since R
is without zero divisors and σ is an automorphism, either x = 0 or d(y + x− y− x) = 0 for
all 0 6= x ∈ R and for all y ∈ R. But if x = 0, then d(y+x−y−x) = d(y−y) = d(0) = 0. So
d((x,y)) = 0 for all x,y ∈ R. Since z(x,y) = (zx,zy) for all x,y,z ∈ R, we have d(z(x,y)) = 0
and then 0 = d(z(x,y)) = σ(z)d((x,y))+d(z)τ(x,y) = d(z)τ(x,y). Since d 6= 0, there exists
z ∈ R such that d(z) 6= 0 and then τ(x,y) = 0 for all x,y ∈ R. It follows that (R,+) is an
abelian group. So R is an abelian near-ring. Thus, dist(R) is a subnear-ring of R which
is an integral ring. Also, d(dist(R)) ⊆ dist(R) by Lemma 4.2. Therefore, d(dist(R)) = 0
or dist(R) is a commutative ring by Theorem 4.1. Now, If d(dist(R)) = 0, then d is a
(σ ,σ)-derivation on dist(R). Suppose that d(dist(R)) 6= 0. So σ(s)d(s) = d(s)τ(s) for all
s ∈ dist(R). Thus, d(s)(σ(s)− τ(s)) = 0 and either d(s) = 0 or σ(s) = τ(s). That means if
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d(s) 6= 0, then σ(s) = τ(s). Since d(dist(R)) 6= 0, there exists t ∈ dist(R) such that d(t) 6= 0.
So for all s ∈ dist(R)−{0} such that d(s) = 0, we get σ(ts)d(ts) = d(ts)τ(ts). It follows
that σ(t)σ(s)d(t)τ(s) = d(t)τ(s)τ(t)τ(s). As dist(R) is a commutative integral ring, τ is an
automorphism and σ(t) = τ(t) where d(t) 6= 0 and t ∈ dist(R), we have σ(s) = τ(s) for all
s∈ dist(R). Also, σ is an automorphism on R implies that σ is an automorphism on dist(R).
Therefore, d is a non-zero (σ ,σ)-derivation on dist(R).

The following result generalizes [1, Theorem 1].

Theorem 4.3. Let R be a prime ring with a non-zero (σ ,τ)-derivation d such that σ ,τ are
epimorphisms and σ(x)d(x) = d(x)τ(x) for all x∈U where U is a non-zero right (left) ideal
of R. Then τ(U) = {0} or σ(U) = {0} or (R is a commutative ring and σ = τ).

Proof. Suppose U is a non-zero right ideal. The first part of the proof is similar to the first
part of the proof of Theorem 4.1 up to equation (4.3)

d(x)τ(x)τ(y) = d(x)τ(y)τ(x) for all x,y ∈U .

Replacing y by yz and using (4.3), we have d(x)τ(y)τ(x)τ(z)= d(x)τ(x)τ(y)τ(z)= d(x)τ(y)
τ(z)τ(x) for all x,y,z∈U , which means d(x)τ(y)(τ(x)τ(z)−τ(z)τ(x)) = 0. Thus, d(x)τ(U)
(τ(x)τ(z)−τ(z)τ(x)) = {0} for all x,z∈U . By Lemma 4.1, either τ(U) = {0} or d(x)τ(U)
R(τ(x)τ(z)− τ(z)τ(x)) = {0}. If τ(U) 6= {0}, then for each x ∈U either d(x)τ(U) = {0}
or τ(xz) = τ(zx) for all z ∈U . Let A = {x ∈U : d(x)τ(U) = {0}} and B = {x ∈U : τ(xz) =
τ(zx) for all z ∈U}. Then A and B are subgroups of (U,+) and A∪B = U . Thus, A = U
or B = U . In other words, d(U)τ(U) = {0} or τ(U) ⊆ Z(R). Suppose d(U)τ(U) = {0}.
So (4.1) will be σ(x)d(y)+σ(y)d(x) = 0 for all x,y ∈U . Since d(xy) = σ(x)d(y),d(yx) =
σ(y)d(x), we have

(4.4) d(xy+ yx) = 0 for all x,y ∈U .

Replacing x,y by z,(xy+yx) respectively in (4.4), we get d(z(xy+yx)+(xy+yx)z) = 0 for
all x,y,z ∈U . It follows that

(4.5) 0 = σ(z)d(xy+ yx)+d(z)τ(xy+ yx)+σ(xy+ yx)d(z)+d(xy+ yx)τ(z)

for all x,y,z ∈U . Observe that d(xy+ yx)τ(z) = d(z)τ(xy+ yx) = 0 from d(U)τ(U) = {0}
and σ(z)d(xy + yx) = 0 from (4.4). Thus, (4.5) will be σ(xy + yx)d(z) = 0. Replac-
ing y by yz, it yields 0 = σ(xyz + yzx)d(z) = σ(x)σ(y)σ(z)d(z) + σ(y)σ(z)σ(x)d(z) =
σ(y)σ(z)σ(x)d(z) for all x,y,z ∈ U since σ(z)d(z) = d(z)τ(z) = 0. Replacing y by yr
where r ∈ R, we get σ(y)σ(r)σ(z)σ(x)d(z) = 0. As R is prime and σ is onto, either
σ(U) = {0} or σ(z)σ(x)d(z) = 0 for all x,z ∈U . If σ(U) 6= {0}, then σ(z)σ(x)d(z) = 0
for all x,z ∈U . Putting xr instead of x, we conclude that σ(z)σ(x)Rd(z) = {0} and then
for every z ∈U either d(z) = 0 or σ(z)σ(x) = σ(zx) = 0. Let A = {u ∈U : d(u) = 0} and
B = {u ∈U : σ(ux) = 0 for all x ∈U}. So A and B are subgroups of (U,+). Moreover,
U = A∪B. Thus, either A = U or B = U . If A = U , then d(U) = {0} and hence d = 0
by Lemma 2.9(i), a contradiction with the hypothesis. If B = U , then σ(U2) = {0} which
implies σ(U)σ(U) = {0}. But σ(U) is a non-zero semigroup right ideal of R by Lemma
4.1 and σ(U) 6= {0}. So σ(U)σ(U) 6= {0}, a contradiction. Hence, d(U)τ(U) 6= {0} if
σ(U) 6= {0}. Therefore, τ(U)⊆ Z(R). But τ(U) 6= {0} is a non-zero semigroup right ideal
of R, so R is a commutative ring by Lemma 2.10. It follows that σ(x)d(x) = d(x)τ(x)
implies d(x)(σ(x)− τ(x)) = 0 for all x ∈ U . Since R is a commutative prime ring, it
doesn’t have non-zero zero divisors by Lemma 2.4. Thus, either d(x) = 0 or σ(x) = τ(x).
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Let A = {x ∈ U |d(x) = 0} and B = {x ∈ U |σ(x) = τ(x)}. Then A and B are subgroups
of U whose union is U . As d(U) 6= 0, we have B = U and σ(x) = τ(x) for all x ∈ U .
Hence, σ(ux) = τ(ux) for all u ∈U and x ∈ R. That implies σ(u)(σ(x)− τ(x)) = 0. Since
σ(U) 6= {0}, we get σ(x) = τ(x) for all x ∈ R and σ = τ . The proof when U is a non-zero
left ideal is similar.

If a 3-prime near-ring R with a (σ ,σ)-derivation d such that σ(x)d(x) = d(x)σ(x) for
all x ∈ R, then R need not be a ring as the following example shows:

Example 4.2. Let R = I× I as a set, where I is any integral ring with identity which has
at least three elements. Define the addition and the multiplication on R by (a,b)+(c,d) =
(a+ c,b+d) and (a,b)(c,d) = (ac,bc+d) if (a,b) 6= (0,0) and (0,0)(c,d) = (0,0). Then
R is a zero-symmetric abelian near-ring with identity (1,0) which is not a ring. Let D be a
non-zero derivation on I and σ the endomorphism defined on R by σ((a,b)) = (a,0) for all
(a,b)∈R. Define d : R→R by d((a,b)) = (D(a),0). Then d is a non-zero (σ ,σ)-derivation
on R by simple calculations.

Observe that R is 3-prime. Indeed, assume that (a,b)R(c,d) = (0,0) with (a,b) 6=
(0,0). If a 6= 0, then (a,b)(1,0)(c,d) = (0,0). That means (a,b)(c,d) = (ac,bc + d) =
(0,0). Thus, c = 0 and hence d = 0. Now, suppose a = 0 and b 6= 0. It follows that
(0,0) = (0,b)(0,1)(c,d) = (0,1)(c,d) = (0,c+d) and then c =−d. It follows that (0,0) =
(0,b)(0,y)(−d,d) = (0,y)(−d,d) = (0,−yd + d) = (0,(−y + 1)d) for all y ∈ I−{0}. If
d 6= 0, then y = 1 and I = {0,1} which is a contradiction with the number of elements of I.
Therefore, d = 0 and (c,d) = (0,0). Hence, R is a 3-prime near-ring.

Now, choose I to be the integral domain R[x] where R is the field of real numbers
and choose D to be usual derivative on R[x]. Observe that we have σ(a,b)d((a,b)) =
d((a,b))σ(a,b) for all (a,b) ∈ R, but R is not a ring.

Proposition 4.1. Let R be a prime ring.
(i) If nx = 0 for some x ∈ R and a positive integer n, then either nR = {0} or x = 0.

(ii) If nR 6= {0} for some positive integer n and nx∈ Z(R) for some x∈R, then x∈ Z(R).

Proof. (i) For all y,z ∈ R, we have 0 = yz(nx) = n(yzx) = (ny)zx. From the primeness of R,
we have either nR = {0} or x = 0.

(ii) If Z(R) = {0}, then nx = 0 and hence x = 0 by using (i). If Z(R) 6= {0}, then there
exists z ∈ Z(R)−{0}. Observe that ny 6= 0 for all y ∈ R−{0} from (i). Now, z(nx) ∈ Z(R).
Observe that z(nx) = n(zx) = (nz)x ∈ Z(R). But nz ∈ Z(R)−{0}. Therefore, x ∈ Z(R) by
Lemma 2.3.

The following example shows that the hypothesis “prime ring” in Proposition 4.1 can’t
be replaced by “3-prime near-ring”.

Example 4.3. Let R = Mo(G), where G is the abelian group (Z4,+). Then Mo(G) is 3-
prime. Take f ∈Mo(G) such that x f = 2x for all x ∈G. Then 2 f = 0, but neither 2Mo(G) =
{0} nor f = 0. Observe that 2 f ∈ Z(Mo(G)) and 2Mo(G) 6= {0}, but f /∈ Z(Mo(G)) since
f g 6= g f , where g ∈Mo(G) is defined by {0,1,3}g = {0} and 2g = 1.

Lemma 4.3. Let R be a ring and σ and τ are endomorphisms of R. Then for all x,y,z ∈ R,
we have the following relations:

(i) [x,y± z]σ ,τ = [x,y]σ ,τ ± [x,z]σ ,τ .
(ii) [x± y,z]σ ,τ = [x,z]σ ,τ ± [y,z]σ ,τ .
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(iii) [xy,z]σ ,τ = σ(x)[y,z]σ ,τ +[x,z]σ ,τ τ(y).
(iv) [x,yz]σ ,τ = y[x,z]σ ,τ +[x,y]σ ,σ z.

Proof. (i) For all x,y,z ∈ R, we have [x,y± z]σ ,τ = σ(x)(y± z)− (y± z)τ(x) = σ(x)y±
σ(x)z− yτ(x)± (−zτ(x)) = σ(x)y− yτ(x)± (σ(x)z− zτ(x)) = [x,y]σ ,τ ± [x,z]σ ,τ .

(ii) For all x,y,z ∈ R, we have [x± y,z]σ ,τ = σ(x± y)z− zτ(x± y) = σ(x)z±σ(y)z−
zτ(x)± (−zτ(y)) = σ(x)z− zτ(x)± (σ(y)z− zτ(y)) = [x,z]σ ,τ ± [y,z]σ ,τ .

(iii) For all x,y,z ∈ R, we have [xy,z]σ ,τ = σ(xy)z− zτ(xy) = σ(x)σ(y)z− zτ(x)τ(y) =
σ(x)σ(y)z + (−σ(x)zτ(y) + σ(x)zτ(y))− z τ(x)τ(y) = σ(x)(σ(y)z− zτ(y)) + (σ(x)z−
zτ(x))τ(y) = σ(x)[y,z]σ ,τ +[x,z]σ ,τ τ(y).

(iv) For all x,y,z ∈ R, we have [x,yz]σ ,τ = σ(x)yz− yzτ(x) = σ(x)yz + (−yσ(x)z +
yσ(x)z)−yzτ(x)= (σ(x)y−yσ(x))z+y(σ(x)z−zτ(x))= [x,y]σ ,σ z+y[x,z]σ ,τ = y[x,z]σ ,τ +
[x,y]σ ,σ z.

It is not true in general that [x,yz]σ ,τ = y[x,z]σ ,τ + [x,y]σ ,τ z as the following example
shows.

Example 4.4. Let R be a ring. Choose σ = 1R and τ = 0. Then for all x,y,z ∈ R, we have
[x,yz]σ ,τ = σ(x)yz− yzτ(x) = xyz and y[x,z]σ ,τ +[x,y]σ ,τ z = y(σ(x)z− zτ(x))+ (σ(x)y−
yτ(x))z = yxz+ xyz.

Lemma 4.4. Let R be a ring with (σ ,τ)-derivations d and D. Then
(i) [13, Example 3.1] δ : R→ R such that δ (x) = σ(x)a− aτ(x) for all x ∈ R is a

(σ ,τ)-derivation on R for all a ∈ R.
(ii) g : R→ R such that g(x) = ad(x) for all x ∈ R is a (σ ,τ)-derivation on R, where

a ∈ Z(R).
(iii) d +D is a (σ ,τ)-derivation on R.

Proof. (ii) For all x,y∈R, we have g(x+y) = ad(x+y) = a(d(x)+d(y)) = ad(x)+ad(y) =
g(x)+ g(y). Also, g(xy) = ad(xy) = a(σ(x)d(y)+ d(x)τ(y)) = σ(x)ad(y)+ ad(x)τ(y) =
σ(x)g(y)+g(x)τ(y).

(iii) Clearly that d +D is additive mapping. Now,

(d +D)(xy) = d(xy)+D(xy) = σ(x)d(y)+d(x)τ(y)+σ(x)D(y)+D(x)τ(y)

= σ(x)(d(y)+D(y))+(d(x)+D(x))τ(y)

= σ(x)(d +D)(y)+(d +D)(x)τ(y).

Therefore, d +D is also a (σ ,τ)-derivation on R.

Theorem 4.4. Let R be a prime ring with a non-zero (σ ,τ)-derivation d, σ and τ are
epimorphisms of R. If σ(x)d(x)− d(x)τ(x) ∈ Z(R), for all x ∈ R, then R is a commutative
ring or d(Z(R)) = {0}.
Proof. Observe that σ(x)d(x)− d(x)τ(x) = [x,d(x)]σ ,τ for all x ∈ R. From [x + y,d(x +
y)]σ ,τ ∈ Z(R) for all x,y ∈ R and using Lemma 4.3, we have [x,d(x)]σ ,τ + [x,d(y)]σ ,τ +
[y,d(x)]σ ,τ +[y,d(y)]σ ,τ ∈ Z(R). Using [x,d(x)]σ ,τ ∈ Z(R), [y,d(y)]σ ,τ ∈ Z(R) and that Z(R)
is a subring of R, we get

(4.6) [x,d(y)]σ ,τ +[y,d(x)]σ ,τ ∈ Z(R) for all x,y ∈ R.

If Z(R) = {0}, then σ(x)d(x)−d(x)τ(x) = 0 for all x ∈ R and hence R is a commutative
ring by Theorem 4.3. So R = Z(R) = {0} and d = 0, a contradiction. Therefore, Z(R) 6= {0}.
We divide the proof into two cases:
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(i) R is not of characteristic 2. Then there exists c ∈ Z(R)−{0} such that [x,d(c)]σ ,τ +
[c,d(x)]σ ,τ ∈ Z(R) for all x ∈ R by (4.6). Write d1(x) = [x,d(c)]σ ,τ and d2(x) = [c,d(x)]σ ,τ .
Observe that d1, d2 and d1 + d2 are (σ ,τ)-derivations by Lemma 4.4. If d1 + d2 6= 0, then
(d1 + d2)(R) ⊆ Z(R) implies that R is a commutative ring by Lemma 2.12. If d1 + d2 = 0,
then [x,d(c)]σ ,τ +[c,d(x)]σ ,τ = 0 for all x ∈ R,c ∈ Z(R). It follows that 0 = [c,d(c)]σ ,τ +
[c,d(c)]σ ,τ = 2[c,d(c)]σ ,τ and hence [c,d(c)]σ ,τ = 0 by Proposition 4.1(i). As σ(c),τ(c) ∈
Z(R), we obtain [c,d(c)]σ ,τ = d(c)(σ(c)−τ(c)) = 0. Thus, for all c∈ Z(R), either d(c) = 0
or σ(c) = τ(c). If σ(c) 6= τ(c) and d(c) = 0 for some c ∈ Z(R), then d1 = 0 which implies
d2 = 0. Thus, (σ(c)−τ(c))d(x) = 0 for all x ∈ R and d = 0 by Lemma 2.4, a contradiction.
So if d(Z(R)) = {0}, then σ(a) = τ(a) for all a ∈ Z(R). If d(c) 6= 0 and σ(c) = τ(c) for
some c∈ Z(R), then d2 = 0. So d1(x) = σ(x)d(c)−d(c)τ(x) = 0 for all x∈R. If there exists
a ∈ Z(R) such that σ(a) 6= τ(a), then d(c)(σ(a)− τ(a)) = 0 and d(c) = 0, a contradiction.
So if d(c) 6= 0 for some c ∈ Z(R), then σ(a) = τ(a) for all a ∈ Z(R). Now, we have the
following case: d1 = d2 = 0, d(Z(R)) 6= {0} and σ(a) = τ(a) for all a ∈ Z(R). Replacing y
in (4.6) by zy and using Lemma 4.3(i), (iii) and (iv), we get for all x,y,z ∈ R

[x,d(zy)]σ ,τ +[zy,d(x)]σ ,τ

= [x,σ(z)d(y)+d(z)τ(y)]σ ,τ +[zy,d(x)]σ ,τ

= [x,σ(z)d(y)]σ ,τ +[x,d(z)τ(y)]σ ,τ +σ(z)[y,d(x)]σ ,τ +[z,d(x)]σ ,τ τ(y)
= σ(z)[x,d(y)]σ ,τ +[x,σ(z)]σ ,σ d(y)+d(z)[x,τ(y)]σ ,τ +[x,d(z)]σ ,σ τ(y)

+σ(z)[y,d(x)]σ ,τ +[z,d(x)]σ ,τ τ(y)
= σ(z)([x,d(y)]σ ,τ +[y,d(x)]σ ,τ)+([x,d(z)]σ ,σ +[z,d(x)]σ ,τ)τ(y)

+ [x,σ(z)]σ ,σ d(y)+d(z)[x,τ(y)]σ ,τ .

Putting z = c∈Z(R), using d2 = 0 and (4.6), we deduce that [x,d(c)]σ ,σ τ(y)+d(c)[x,τ(y)]σ ,τ ∈
Z(R) for all x,y ∈ R. Then σ(x)d(c)τ(y)−d(c)σ(x)τ(y)+d(c)σ(x)τ(y)−d(c)τ(y)τ(x) =
σ(x)d(c)τ(y)−d(c)τ(y)τ(x) ∈ Z(R) for all x,y ∈ R. Suppose d(c) 6= 0 for some c ∈ Z(R)
and assume that

(4.7) σ(x)d(c)τ(y) = d(c)τ(y)τ(x) for all x,y ∈ R.

Multiplying both sides by τ(z) from the right, we obtain

(4.8) σ(x)d(c)τ(y)τ(z) = d(c)τ(y)τ(x)τ(z) for all x,y,z ∈ R.

Replacing y by yz in (4.7), we have

(4.9) σ(x)d(c)τ(y)τ(z) = d(c)τ(y)τ(z)τ(x) for all x,y,z ∈ R.

From (4.8) and (4.9), we conclude d(c)τ(y)(τ(z)τ(x)− τ(x)τ(z)) = 0 for all x,y,z ∈ R.
Since R is prime and d(c) 6= 0, we obtain that R is commutative. Now, assume that τ(a) 6= 0
for some a∈R such that σ(x)d(c)τ(a) 6= d(c)τ(a)τ(x). It follows that δ (x)= σ(x)d(c)τ(a)−
d(c)τ(a)τ(x) ∈ Z(R) for all x ∈ R is a non-zero inner (σ ,τ)-derivation and R is a commu-
tative ring by Lemma 2.12.

(ii) R is of characteristic 2. Adding d(x)τ(y)+ d(y)τ(x)− d(x)τ(y)− d(y)τ(x) = 0 to
(4.6), we have σ(x)d(y)+d(x)τ(y)−2d(x)τ(y)+σ(y)d(x)+d(y)τ(x)−2d(y)τ(x)∈ Z(R)
which means

(4.10) d(xy+ yx) ∈ Z(R) for all x,y ∈ R.
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Now, suppose d(Z(R)) 6= {0} and there exists c∈ Z(R)−{0} such that d(c) 6= 0. Replace
y by yc in (4.10). Then d(xyc+ ycx) = d(c(xy+ yx)) ∈ Z(R) for all x,y ∈ R. It follows that
σ(c)d(xy+yx)+d(c)τ(xy+yx)∈ Z(R). Since σ(c)d(xy+yx)∈ Z(R), we have d(c)τ(xy+
yx) ∈ Z(R) and then d(c)(uv+ vu) ∈ Z(R) for all u,v ∈ R as τ is onto. Firstly, suppose that
d(c)(xy+ yx) = 0 for all x,y ∈ R. So d(c)xy = d(c)yx for all x,y ∈ R. Replacing x by xz in
the last equation, we get d(c)xzy = d(c)yxz = d(c)xyz and hence d(c)x(zy− yz) = 0 for all
x,y,z ∈ R. The primeness of R and d(c) 6= 0 imply that R is commutative. Now, suppose
d(c)(st + ts) ∈ Z(R)−{0} for some s, t ∈ R. Using d(c)(xy+yx) ∈ Z(R) for all x,y ∈ R and
replacing x by [s, t]x and y by [s, t]y, we have d(c)([s, t]x[s, t]y +[s, t]y[s, t]x) ∈ Z(R). Thus,
d(c)[s, t](x[s, t]y + y[s, t]x) ∈ Z(R). Since d(c)[s, t] ∈ Z(R)−{0}, it is not a zero divisor
by Lemma 2.4. It follows that (x[s, t]y + y[s, t]x) ∈ Z(R) for all x,y ∈ R. Replacing x by
c and putting a = [s, t], we obtain c(ay + ya) ∈ Z(R). Again, by Lemma 2.3, we have
ay+ya∈ Z(R) for all y∈R. Define da : R→R by da(y) = ay+ya for all y∈R. Then da is an
inner derivation on R and da(R)⊆ Z(R). If da is non-zero, then R is commutative by Lemma
2.12. If da = 0, then a = [s, t] ∈ Z(R)−{0}. Using Lemma 2.3, we get d(c) ∈ Z(R)−{0}.
Thus, d(c)(xy + yx) ∈ Z(R) for all x,y ∈ R implies xy + yx ∈ Z(R) for all x,y ∈ R. If there
exists b ∈ R such that by + yb 6= 0 for some y ∈ R, then db is a non-zero derivation on R
and db(R) ⊆ Z(R) which implies R to be a commutative ring by Lemma 2.12 and hence
by+ yb = 0, a contradiction. Thus, xy+ yx = 0 and then R is a commutative ring.

Corollary 4.2. Let R be a prime ring of characteristic 2 with a non-zero (σ ,τ)-derivation d
such that σ and τ are automorphisms and commute with d. If σ(x)d(x)+d(x)τ(x) ∈ Z(R)
for all x ∈ R., then R is a commutative ring or d2 = 0.

Proof. Using Theorem 4.4, R is a commutative ring or d(Z(R)) = {0}. If d(Z(R)) = {0},
then d2(xy) = d2(yx) for all x,y∈ R from (4.10) in the proof of Theorem 4.4. Using Lemma
2.7, d2 is a (σ2,τ2)-derivation on R. So by Lemma 2.13, R is a commutative ring or d2 =
0.

The following result generalizes Theorem 1 (in its part of derivations) of [14] and [8,
Theorem 4].

Theorem 4.5. Let R be a prime ring with a non-zero (σ ,σ)-derivation d such that σ is an
epimorphism and σ(x)d(x)− d(x)σ(x) ∈ Z(R) for all x ∈U, where U is a non-zero right
(left) ideal of R. Then R is a commutative ring or σ(U) = {0}.

Proof. From [x+ y,d(x+ y)]σ ,σ ∈ Z(R) for all x,y ∈U , we have

(4.11) [x,d(y)]σ ,σ +[y,d(x)]σ ,σ ∈ Z(R) for all x,y ∈U .

We divide the proof into two cases:
(i) R is not of characteristic 2. Replacing y in (4.11) by x2 and using Lemma 4.3, we get

[x,d(xx)]σ ,σ +[xx,d(x)]σ ,σ

= [x,σ(x)d(x)+d(x)σ(x)]σ ,σ +[xx,d(x)]σ ,σ

= [x,σ(x)d(x)]σ ,σ +[x,d(x)σ(x)]σ ,σ +σ(x)[x,d(x)]σ ,σ +[x,d(x)]σ ,σ σ(x)
= σ(x)[x,d(x)]σ ,σ +[x,d(x)]σ ,σ σ(x)+2σ(x)[x,d(x)]σ ,σ = 4σ(x)[x,d(x)]σ ,σ

and hence 4σ(x)[x,d(x)]σ ,σ ∈ Z(R). It follows that σ(x)[x,d(x)]σ ,σ ∈ Z(R) by Proposi-
tion 4.1(ii). If [x,d(x)]σ ,σ 6= 0, then σ(x) ∈ Z(R) by using Lemma 2.3. But that means
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[x,d(x)]σ ,σ = 0, a contradiction. Thus, [x,d(x)]σ ,σ = 0 for all x ∈ U . Therefore, R is a
commutative ring or σ(U) = {0} by Theorem 4.3.

(ii) R is of characteristic 2. Using Lemma 4.3(ii), (iii) and [x,d(x)]σ ,σ ∈ Z(R), we have
for all x,y ∈U

[xy+ yx,d(x)]σ ,σ +[x2,d(y)]σ ,σ

= [xy,d(x)]σ ,σ +[yx,d(x)]σ ,σ +[x2,d(y)]σ ,σ

= σ(x)[y,d(x)]σ ,σ +[x,d(x)]σ ,σ σ(y)+σ(y)[x,d(x)]σ ,σ +[y,d(x)]σ ,σ σ(x)
+σ(x)[x,d(y)]σ ,σ +[x,d(y)]σ ,σ σ(x)

= σ(x)[y,d(x)]σ ,σ +σ(x)[x,d(y)]σ ,σ +[y,d(x)]σ ,σ σ(x)+ [x,d(y)]σ ,σ σ(x)
= σ(x)([y,d(x)]σ ,σ +[x,d(y)]σ ,σ )+([y,d(x)]σ ,σ +[x,d(y)]σ ,σ )σ(x) = 0

using (4.11). So

(4.12) [xy+ yx,d(x)]σ ,σ +[x2,d(y)]σ ,σ = 0 for all x,y ∈U .

Using d(x)σ(y)+d(y)σ(x)−d(x)σ(y)−d(y)σ(x) = 0 for all x,y ∈U and (4.11), we have

σ(x)d(y)+d(x)σ(y)−2d(x)σ(y)+σ(y)d(x)+d(y)σ(x)−2d(y)σ(x) ∈ Z(R)

and consequently, we get

(4.13) d(xy+ yx) ∈ Z(R) for all x,y ∈U .

Replacing y by xy+ yx in (4.12) and using (4.13), we have

0 = [x(xy+ yx)+(xy+ yx)x,d(x)]σ ,σ +[x2,d(xy+ yx)]σ ,σ

= [xxy+ xyx+ xyx+ yxx,d(x)]σ ,σ = [xxy+ yxx,d(x)]σ ,σ .

Replacing y by xy in the last equation and using Lemma 4.3(iii), we get

0 = [xxxy+ xyxx,d(x)]σ ,σ = [x(xxy+ yxx),d(x)]σ ,σ

= σ(x)[xxy+ yxx,d(x)]σ ,σ +[x,d(x)]σ ,σ σ(xxy+ yxx)

= [x,d(x)]σ ,σ σ(xxy+ yxx).

If there exists a ∈U such that [a,d(a)]σ ,σ 6= 0, then σ(U) 6= {0} and 0 = σ(a2y + ya2) =
[a2,d(y)]σ ,σ for all y ∈U . Thus, σ(a2) ∈ Z(R) by Lemma 4.1 and Lemma 2.8. So Substi-
tuting x by a in (4.12), we get [ay + ya,d(a)]σ ,σ = 0 for all y ∈U . Putting ay instead of y,
we obtain

0 = [a(ay+ ya),d(a)]σ ,σ = σ(a)[ay+ ya,d(a)]σ ,σ +[a,d(a)]σ ,σ σ(ay+ ya)

= [a,d(a)]σ ,σ σ(ay+ ya).

Since, [a,d(a)]σ ,σ is not a zero divisor, we have σ(a)σ(y)−σ(y)σ(a) = 0 for all y ∈U . It
follows that σ(a) centralizes σ(U) 6= {0}. Lemma 4.1 and Lemma 2.8 implies σ(a)∈ Z(R).
But that implies [a,d(a)]σ ,σ = 0, a contradiction. Therefore, [x,d(x)]σ ,σ = 0 for all x ∈U
and R is commutative by Theorem 4.3.

The proof when U is a non-zero left ideal of R is similar.

We finish this section by studying the commutativity of a prime ring R admitting a non-
zero (σ ,τ)-derivation d and satisfying the condition d(x2) ∈ Z(R) for all x ∈ R.
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Proposition 4.2. Let R be a prime ring with a non-zero (σ ,τ)-derivation d such that τ is an
automorphism and d(x2) = 0 for all x ∈ R. Then R is a commutative ring of characteristic
2.

Proof. From d((x + y)2) = 0, we have σ(x + y)d(x + y) = −d(x + y)τ(x + y) for all x,y ∈
R. So σ(x)d(x)+ σ(x)d(y)+ σ(y)d(x)+ σ(y)d(y) = −d(x)τ(x)− d(x)τ(y)− d(y)τ(x)−
d(y)τ(y). Using σ(x)d(x) = −d(x)τ(x) and σ(y)d(y) = −d(y)τ(y), we get σ(x)d(y) +
σ(y)d(x) =−d(x)τ(y)−d(y)τ(x) and then

d(xy) =−d(yx) for all x,y ∈ R.

Therefore, R is a commutative ring of characteristic 2 by Lemma 2.14.

Theorem 4.6. Let R be a prime ring with 2R 6= {0} and a non-zero (σ ,τ)-derivation d such
that σ and τ are automorphisms and d(x2) ∈ Z(R) for all x ∈ R. Then R is a commutative
ring.

Proof. From d((x + y)2) = σ(x + y)d(x + y) + d(x + y)τ(x + y) ∈ Z(R) for all x,y ∈ R,
we have σ(x)d(x)+ σ(x)d(y)+ σ(y)d(x)+ σ(y)d(y)+ d(x)τ(x)+ d(x)τ(y)+ d(y)τ(x)+
d(y)τ(y) ∈ Z(R). Using σ(x)d(x)+d(x)τ(x) ∈ Z(R), σ(y)d(y)+d(y)τ(y) ∈ Z(R) and that
Z(R) is a subring of R, we get σ(x)d(y)+ d(x)τ(y)+ σ(y)d(x)+ d(y)τ(x) ∈ Z(R) for all
x,y ∈ R. It follows that d(xy)+ d(yx) ∈ Z(R) for all x,y ∈ R. If Z(R) = {0}, then R is a
commutative ring of characteristic 2 by Lemma 2.14 and then R = {0} and d = 0, a con-
tradiction. So there exists c ∈ Z(R)−{0} such that d(cy)+ d(yc) = 2d(cy) ∈ Z(R) for all
y ∈ Z(R). Thus,

(4.14) d(cy) ∈ Z(R) for all y ∈ R and for all c ∈ Z(R)−{0}

by Proposition 4.1(ii). It follows that d(ccc) = σ(c)d(cc) + d(c)τ(cc) ∈ Z(R). Since
σ(c)d(cc) ∈ Z(R), we have d(c)τ(cc) ∈ Z(R) as Z(R) is a subring of R. Using Lemma
2.3, Lemma 2.4 and τ is an automorphism, we get that d(c) ∈ Z(R) for all c ∈ Z(R)−{0}.

If d(Z(R)) 6= {0}, then there exists c ∈ Z(R)−{0} such that d(c) ∈ Z(R)−{0}. From
(4.14), we have d(ccy)= σ(c)d(cy)+d(c)τ(cy)∈Z(R). But σ(c)d(cy)∈Z(R), so d(c)τ(cy)∈
Z(R) for all y ∈ R. Using that d(c),τ(c) ∈ Z(R)−{0} and Lemma 2.3, we obtain τ(R) ⊆
Z(R). Therefore, R is a commutative ring since τ is onto.

If d(Z(R)) = {0}, then for all c ∈ Z(R)−{0}, (4.14) implies

d(cy) = σ(c)d(y)+d(c)τ(y) = σ(c)d(y) ∈ Z(R) for all y ∈ R.

Since σ is an automorphism, we have d(R) ⊆ Z(R) by Lemma 2.3. Therefore, R is a
commutative ring by Lemma 2.12.
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