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Abstract. By using critical point theory, we investigate the existence of homoclinic trav-
elling waves in an one-dimensional infinite lattice with nearest-neighbor interactions and a
on-site potential (density) f . The system is described by the infinite system of second-order
differential equations:

q̈ j + f ′(q j(t)) = V ′(q j+1(t)−q j(t))−V ′(q j(t)−q j−1(t)), t ∈ R, j ∈ Z,

where f ,V ∈C1(R,R). We establish three new criteria ensuring the existence of non-trivial
homoclinic travelling wave solutions, for any given speed c bigger (or smaller) than some
constant depending on f and V . Relevant results in the literatures are extended.
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1. Introduction

In this paper, we consider an one-dimensional infinite lattice with nearest-neighbor interac-
tions and a potential f :

(1.1) q̈ j + f ′(q j(t)) = V ′(q j+1(t)−q j(t))−V ′(q j(t)−q j−1(t)), t ∈ R, j ∈ Z,

where f ,V ∈ C1(R,R). The above lattice system with the on-site potential f (x) = K(1−
cosx),K > 0 is sometimes called the Frenkel-Kontorova model, even if V is not harmonic,
i.e. V (x) 6= εx2/2. If f ≡ 0, (1.1) becomes the usual lattice equation which is called the
Fermi-Pasta-Ulam (FPU) lattice. We are interested in travelling wave solutions to (1.1), that
is, solutions of the form

(1.2) q j(t) = u( j− ct), j ∈ Z,

where u: R→R is the wave profile and c > 0 is the wave speed. For this ansatz (1.2), (1.1)
becomes the following second-order forward-backward differential equation:

(1.3) c2ü−V ′(u(t +1)−u(t))+V ′(u(t)−u(t−1))+ f ′(u) = 0,
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where t ∈ R, f ,V ∈ C1(R,R). We say that a nontrivial solution u of (1.3) is homoclinic
to zero if u ∈ C2(R,R),u(t) 6≡ 0,u(t)→ 0 and u̇(t)→ 0 as |t| → ∞. In a suitable setting,
equation (1.3) is the Euler-Lagrange equation of the action functional

(1.4) I(u) =
∫

R

[
c2

2
|u̇(t)|2−V (u(t +1)−u(t))− f (u(t))

]
dt.

There have been many papers on the study of the existence of travelling waves, periodic
motions and chains of oscillators for FPU by using all kinds of methods, such as bifurcation
theory, numerical methods, the exp-function method, variational techniques, and so on.
We refer the readers to see [1, 2, 6, 13–15]. Many authors have also studied the Frenkel-
Kontorova model (see [3, 5, 7, 9]). However, the use of variational methods is quite recent
on the study of homoclinic travelling waves of these models. By using the mountain pass
theorem, Makita [10] investigated the existence of nonconstant periodic travelling waves
and homoclinic travelling waves for (1.1) under growth conditions V (u) = αu2/2 +W (u)
and f (u) =−ωu2/2+g(u). In particular, if g and W satisfy the following so-called global
Ambrosetti-Rabinowitz condition: there is a constant µ > 2 such that

(1.5) 0 < µW (u)≤ (u,W ′(u))

and

(1.6) 0 < µg(u)≤ (u,g′(u))

for u ∈ R \ {0}, where (·, ·) : R×R→ R denotes the standard inner product and | · | is
the induced norm in R, existence of homoclinic travelling waves is obtained as a limit of
periodic waves by letting the period go to infinity. This method is very classical on the study
of homoclinic orbits in Hamiltonian systems (see [8, 12, 17, 20–22]).

The aim of this paper is to investigate the existence of homoclinic travelling waves for
(1.1), which is equivalent to the study of homoclinic solutions of (1.3). With the lack of
global compactness due to unboundedness of domain, the Sobolev compact embedding of
H1(R,R) in L2(R,R) is unreasonable. To overcome this difficulty, we use a variant version
of the mountain pass theorem without (PS) condition. Under some reasonable assumptions
about V and f , by using variable structure, which is different from [10] (see also [16,18,19,
23, 24]), we obtain three results on the existence of homoclinic solutions to equation (1.3)
(namely, Theorems 1.1, 1.2, and 1.3). Firstly, in Theorem 1.1, we give negative sign on g,
which is very different from [10, Theorem 1.2]. Secondly, if V is asymptotically quadratic,
we establish Theorem 1.2 to guarantee the existence of of homoclinic solutions for (1.3).
Thirdly, under more relaxed assumptions on g and V , Theorem 1.3 generalizes [10, Theorem
1.2].

We now state our main results.

Theorem 1.1. Assume that V (u) = c2
0u2/2 +W (u) and f (u) = −d1u2/2− g(u), where

c0 ≥ 0, d1 > 0, W and g satisfy the following conditions:
(H1): There exists a constant µ > 2 such that (1.5) holds for all x ∈ R\{0}.
(H2): g(0) = 0, µg(u)≥ (u,g′(u)) and g(u)≥ 0 for all u ∈ R. Moreover, there exist

positive constants T and θ ∈ [1,µ−1) such that g′(u)≤ T |u|θ for all u ∈ R.
If

min{c2,d1}− c2
0−2M ≥ 1

2
, M := max{W (u) : |u|= 1}
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and d1 is large enough, then problem (1.3) possesses a nontrivial homoclinic solution.

In the assumptions of Theorem 1.1, inequality (1.5) holds but (1.6) does not hold. Hence,
this theorem is a complement of the results of Makita [10].

Theorem 1.2. Assume that f (u) =−d1u2/2 and V (u) satisfy the following conditions:
(H ′

1 ): V (0) = 0, V (u) > 0, and if u 6= 0, V ′(u) = o(|u|) as |u| → 0, then there exists
some constant C > 0 such that

|V ′(u)|
|u|

≤C, u ∈ R.

(H3): There exists some constant d > emax{c2,d1}/(e−2) such that

|V ′(u)−du|
|u|

→ 0, as |u| →+∞, where lne = 1.

(H4): Let K(u) = (V ′(u),u)/2−V (u) and assume that K(u) > 0, and if u 6= 0, K(u)→
+∞ as |u| →+∞, and for any fixed 0 < b1 < b2 < +∞,

inf
b1≤|u|≤b2

K(u)
|u|2

> 0,

then problem (1.3) has at least a nontrivial homoclinic solution.

Theorem 1.3. Assume that V (u) = c2
0u2/2 +W (u) and f (u) = −d1u2/2 + g(u), where

c0 ≥ 0, d1 > 0, W ′(u) = o(u) as |u| → 0 and for any 0 < r0 ≤ 1, (1.5) holds for |u| ≥ r0,
Besides, g satisfies the following condition:

(H5): g(0) = 0,g(u)≥ 0,u∈R and g′(u) = o(|u|) as u→ 0. Moreover, for any a0 > 0,
there exist κ,γ > 0 and γ1 < 2 such that

0≤
(

2+
1

κ + γ|u|γ1

)
g(u)≤ (u,g′(u)), |u| ≥ a0.

If
min{c2,d1}− c2

0 > 0
and d1 is large enough, then problem (1.3) possesses a nontrivial homoclinic solution.

Remark 1.1. Indeed, respectively, in the proof of nontrivial solutions in Theorems 1.1 and
1.3, we can deduce that d1 in Theorems 1.1 and 1.3 is bounded below.

Remark 1.2. Assumption (H1) implies that W (u) = o(|u|2) as u → 0, and W (0) = 0.
Moreover, by (H ′

1 ), we have

(1.7) 0≤V (u) =
∫ 1

0
(V ′(ζ u),u)dζ ≤C|u|2,u ∈ R

and, for any given ξ > 0, there exists some rξ > 0 such that

(1.8) 0≤V (u)≤ ξ |u|2, |u| ≤ rξ .

Remark 1.3. If (1.6) holds, then g(u)= o(|u|2) as u→ 0 and by choosing κ > 1/(µ−2),γ >
0,0 < γ1 < 2,

0≤
(

2+
1

κ + γ|u|γ1

)
g(u)≤ µg(u)≤ (u,g′(u)), u ∈ R.
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This shows that (1.6) implies (H5). In addition, (1.5) implies the assumptions of W in
Theorem 1.3. Therefore, Theorem 1.3 generalizes [10, Theorem 1.2] by relaxing (1.5) and
(1.6).

The following three examples is to illustrate our results.

Example 1.1. In (1.3), one can easily check that if

W (u) =

{
u4, |u| ≤ 1,
6
7 u

14
3 + 1

7 , |u|> 1,

and

g(u) =

{
u4, |u| ≤ 1,
6
5 u

10
3 − 1

5 , |u|> 1,

for T = µ = 4, θ = 7/3, then all the assumptions of Theorem 1.1 hold.

Example 1.2. In (1.3), let

V (u) = d′|u|2
(

1− 1
ln(e+ |u|)

)
,

where d′ > emax{c2,d1}/2(e−2). By an easy calculation, we have

V ′(u) = 2d′
(

1− 1
ln(e+ |u|)

)
u+

d′|u|u
(e+ |u|) ln2(e+ |u|)

and

K(u) =
d′|u|3

2(e+ |u|) ln2(e+ |u|)
.

Let d = 2d′, then it is clear that all the assumptions of Theorem 1.2 hold.

Example 1.3. In (1.3), take
g(u) = |u|2 ln(1+ |u|).

By an easy calculation, we have

(g′(u),u) = 2|u|2 ln(1+ |u|)+
|u|3

1+ |u|
≥
(

2+
1

1+ |u|

)
g(u).

This shows that (H5) holds with κ = γ = γ1 = 1. It is clear that the assumptions of Theorem
1.3 hold when W (u) = u4.

This paper is organized as follows. In Section 2, we present some preliminaries. Section
3 is devoted to the proof of our main results.

2. Preliminaries

In this section, we present some definitions and lemmas that will be used in the proof of our
main results. Let

E = {u ∈ H1(R,R) :
∫

R
(|u̇|2 + |u|2)dt < +∞}.

Then the space E is a Hilbert space with the inner product

〈u,v〉=
∫

R
[(u̇(t), v̇(t))+(u(t),v(t))]dt
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and the corresponding norm ‖u‖2 = 〈u,u〉. Note that E is continuously embedded in Lk(R,R)
for all k ∈ [2,+∞]. Therefore, there exists a constant Dk > 0 such that

(2.1) ‖u‖k ≤ Dk‖u‖, ∀u ∈ E.

Here, Lk(R,R) denotes the Banach space of functions on R with values in R under the norm

‖u‖k := (
∫

R
|u(t)|kdt)

1
k

and L∞(R,R) is the Banach space of essentially bounded functions equipped with the norm

‖u‖∞ := esssup{|u(t)| : t ∈ R}.
On E, we define the linear operator

A(u(t)) := u(t +1)−u(t).

Lemma 2.1. The operator A is continuous from E to L2(R,R)
⋂

L∞(R,R) and ‖A(u)‖∞ ≤
‖u‖,‖A(u)‖2 ≤ (

∫
R |u̇|2dt)2 ≤ ‖u‖.

The proof of Lemma 2.1 is similar to [14, Proposition 1] and so omitted.

Lemma 2.2. Under the conditions of Theorem 1.1, if uk → u in E, then g′(uk)→ g′(u) in
L2(R,R).

Proof. Assume that uk→ u in E. It follows from (H2) that

(2.2)
|g′(uk(t))−g′(u(t))| ≤ T (|uk(t)|θ + |u(t)|θ )

≤ T [2θ−1|uk(t)−u(t))|θ +(2θ−1 +1)|u(t)|θ ].

In view of the Banach-Steinhaus Theorem and (2.1), we have

(2.3) sup
k∈N
‖uk‖∞ ≤ D, ‖u‖∞ ≤ D,

where D > 0 is a constant. Since uk→ u in L2(R,R), passing to a subsequence if necessary,
it can be assumed that

∞

∑
k=1
‖uk−u‖2 < +∞.

But this implies that uk→ u for almost every t ∈ R and

(2.4)
∞

∑
k=1
|uk(t)−u(t)| := ν(t) ∈ L2(R,R).

By (2.2), (2.3) and (2.4), we obtain

|g′(uk(t))−g′(u(t))| ≤ T [2θ−1(2D)θ−1|ν(t)|+(2θ−1 +1)Dθ−1|u(t)|],
which yields that

|g′(uk(t))−g′(u)(t)|2 ≤ 2T 2[22θ−2(2D)2θ−2|ν(t)|2 +(2θ−1 +1)2D2θ−2|u(t)|2].
From the above inequality, we have∫

R
|g′(uk(t))−g′(u(t))|2dt ≤

∫
R

2T 2[22θ−2(2D)2θ−2|ν(t)|2 +(2θ−1 +1)2D2θ−2|u(t)|2]dt

≤ T 222θ−1(2D)2θ−2‖ν‖2
2 +2T 2(2θ−1 +1)2D2θ−2D2

2‖u‖2.

Using the Lebesgue dominated convergence theorem, g′(uk)→ g′(u) in L2(R,R). This
completes the proof of Lemma 2.2.
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Under the conditions of Theorem 1.1, the action functional I in (1.4) becomes

(2.5) I(u) =
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2−V (Au(t))+g(u(t))

]
dt.

Lemma 2.3. Under the conditions of Theorem 1.1, I ∈C1(E,R) and

I′(u)v

=
∫

R
[c2(u̇(t), v̇(t))+d1(u(t),v(t))− (V ′(Au(t)),Av(t))]dt +

∫
R
(g′(u(t)),v(t))dt

(2.6)

for any u,v ∈ E, which yields

I′(u)u =
∫

R
[c2(u̇(t), u̇(t))+d1(u(t),u(t))− (V ′(Au(t)),Au(t))]dt +

∫
R
(g′(u(t)),u(t))dt.

Moreover, any critical point u of I on E is a classical solution for (1.3) satisfying u ∈
C2(R,R),u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

Proof. We first show that I ∈C1(E,R). Rewrite I as

I = I1− I2 + I3,

where

I1 :=
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2

]
dt, I2 :=

∫
R

V (Au(t))dt, I3 :=
∫

R
g(u(t))dt.

It is easy to check that I1 ∈C1(E,R) and

I′1(u)v =
∫

R
[c2(u̇(t), v̇(t))+d1(u(t),v(t))]dt, v ∈ E.

Moreover, it follows from (H1) and [10, Proposition 4.1] that I2 ∈C1(E,R) and

I′2(u)v =
∫

R
(V ′(Au(t)),Av(t))dt, v ∈ E.

Therefore, it suffices to show that I3 ∈C1(E,R). At first, we will see that

(2.7) I′3(u)v =
∫

R
(g′(u(t)),v(t)))dt, u,v ∈ E.

For any given u ∈ E, we define J(u) : E→ R as follows

J(u)v =
∫

R
(g′(u(t)),v(t))dt, v ∈ E.

It is obvious that J(u) is linear. Now we show that J(u) is bounded. Indeed, for any given
u ∈ E, by (2.1) and the Hölder inequality, one gets

(2.8)
|J(u)v|= |

∫
R
(g′(u(t)),v(t))dt| ≤

∫
R
|g′(u(t))||v(t)|dt ≤

∫
R

T |u(t)|θ |v(t)|dt

≤ T‖u‖θ
2θ ||v‖2 ≤ T D2Dθ

2θ‖u‖θ ||v‖.

Moreover, for u,v ∈ E, by the mean value theorem, we have∫
R

g(u(t)+ v(t))dt−
∫

R
g(u(t))dt =

∫
R
(g′(u(t)+ψtv(t)),v(t))dt,
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where ψt ∈ (0,1). Therefore, by Lemma 2.2 and the Hölder inequality, we have∫
R
(g′(u(t)+ψtv(t)),v(t))dt−

∫
R
(g′(u(t)),v(t))dt

=
∫

R
(g′(u(t)+ψt(t)v(t))−g′(u(t)),v(t))dt→ 0,

(2.9)

as v→ 0 in E. Combining (2.8) and (2.9), we see that (2.7) holds.
It remains to prove that I′3 is continuous. Suppose that u→ u0 in E and note that

sup
‖v‖=1

|I′3(u)v− I′3(u0)v|= sup
‖v‖=1

|
∫

R
(g′(u(t))−g′(u0(t)),v(t))dt|

≤ sup
‖v‖=1

‖g′(u(·))−g′(u0(·))‖2‖v‖2 ≤ D2‖g′(u(·))−g′(u0(·))‖2.

By Lemma 2.2, we have I′3(u)v− I′3(u0)v→ 0 as u→ u0 uniformly with respect to v, which
implies I′3 is continuous and I ∈ C1(E,R). Finally, similar to the discussion in the proof
of [24, Lemma 3.1], we see that the critical points of I on E are classical solutions to
equation (1.3) with u ∈ C2(R,R),u(t)→ 0 and u̇(t)→ 0 as |t| → ∞. This completes the
proof of Lemma 2.3.

Obviously, under the conditions of Theorem 1.2, the action functional I in (1.4) becomes

(2.10) I(u) =
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2−V (Au(t))

]
dt.

Lemma 2.4. Under the conditions of Theorem 1.2, I ∈C1(E,R) and

(2.11) I′(u)v =
∫

R
[c2(u̇(t), v̇(t))+d1(u(t),v(t))− (V ′(Au(t)),Av(t))]dt

for any u,v ∈ E, which yields

I′(u)u =
∫

R
[c2|u̇(t)|2 +d1|u(t)|2]dt−

∫
R

V ′(Au(t)),Au(t))dt.

Moreover, any critical point u of I on E is a classical solution for (1.3) satisfying u ∈
C2(R,R), u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

Proof. By Remark 1.1, we have

V (u) = o(|u|2), u→ 0,

and A is a bounded operator. By [10, Proposition 4.1], we know that I ∈ C1(E,R) and
(2.11) holds. Moreover, by [10, Lemma 4.2], then any critical point u of I on E is a classical
solution for (1.3)) satisfying u ∈C2(R,R), u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

In the following, under the conditions of Theorem 1.3, the action functional I in (1.4)
becomes

(2.12) I(u) =
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2−V (Au(t))−g(u(t))

]
dt.

Lemma 2.5. Under the conditions of Theorem 1.3, I ∈C1(E,R) and

I′(u)v

=
∫

R
[c2(u̇(t), v̇(t))+d1(u(t),v(t))− (V ′(Au(t)),Av(t))]dt−

∫
R
(g′(u(t)),v(t))dt

(2.13)
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for any u,v ∈ E. which yields

I′(u)u =
∫

R
[c2(u̇(t), u̇(t))+d1(u(t),u(t))− (V ′(Au(t)),Au(t))]dt−

∫
R
(g′(u(t)),u(t))dt.

Moreover, and any critical point of I on E is a classical solution for (1.3) satisfying u ∈
C2(R,R), u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

Proof. By Remark 1.1 and (H5), we have

W (u) = o(|u|2), g(u) = o(|u|2), u→ 0,

and A is a bounded operator. By [10, Proposition 4.1], we know that I ∈ C1(E,R) and
(2.13) holds. Moreover, by [10, Lemma 4.2], then any critical point u of I on E is a classical
solution for (1.3) satisfying u ∈C2(R,R),u(t)→ 0 and u̇(t)→ 0 as |t| → ∞.

By the assumption (H1), we will give the following lemma, which is similar to the proof
of [8, Fact (2.1)].

Lemma 2.6. The following inequalities hold for assumption (H1):

W (u)≤W
(

u
|u|

)
|u|µ if 0 < |u| ≤ 1,(2.14)

W (u)≥W
(

u
|u|

)
|u|µ if |u| ≥ 1.(2.15)

To prove this fact, it suffices to show that for every u 6= 0, the map (0,+∞)3 ζ→W (ζ−1u)ζ µ

is nonincreasing. It is an immediate consequence of (H1).

In order to obtain the nontrivial critical points of the functional corresponding to (1.3),
Cerami sequence is employed to instead of (PS) sequence in our situation. A sequence
{u j} j∈N ⊂ E is called a Cerami sequence at level a if I(u j)→ a and

(1+‖u j‖E)‖I′(u j)‖E∗ → 0, j→+∞,

where E∗ is the dual space of E.

Theorem 2.1 (Mountain Pass Lemma). [4] Let E be a real Banach space with its dual space
E∗ and suppose that I ∈C1(E,R) satisfies

max{I(0), I(e)} ≤ η < α ≤ inf
‖u‖=ρ

I(u),

for some η < α,ρ > 0 and e ∈ E with ‖e‖> ρ . Let a≥ α be characterized by

a = inf
p∈Γ

max
s∈[0,1]

I(p(s)),

where Γ = {p ∈C([0,1],E)|p(0) = 0, p(1) = e} is the set of continuous paths joining 0 and
e, then there exists {uk} ⊂ E such that I(uk)→ a and

(1+‖uk‖E)‖I′(uk)‖E∗ → 0, k→+∞.
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3. Proof of main results

Proof of Theorem 1.1. Under the conditions of Theorem 1.1, we are going to complete the
proof for the result in four steps.

Step 1. We show that there exist constants ρ,α > 0 such that I satisfies the assumptions of
Theorem 2.1 with these constants. In view of Lemma 2.1, if 0 < ‖u‖ ≤ 1, then 0 < ‖Au‖∞ ≤
1. It follows from (2.14) that∫

R
W (Au(t))dt ≤

∫
{t∈R:|Au(t)|6=0}

W
(

Au(t)
|Au(t)|

)
|Au(t)|µ dt ≤M

∫
R
|Au(t)|2dt ≤M‖u‖2.

This, together with (2.5), implies

I(u)≥
∫

R

(
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2

)
dt−M‖u‖2−

∫
R

c2
0

2
|Au(t)|2dt

≥ 1
2
(min{c2,d1}− c2

0−2M)‖u‖2 ≥ 1
4
‖u‖2.

(3.1)

Set ρ = 1, thus, it follows from (3.1) that

inf
‖u‖=ρ

I(u)≥ α :=
1
4

ρ
2.

Step 2. We shall show that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0. In view of
Lemma 2.1, if ‖Au‖∞ ≥ 1 then ‖u‖ ≥ 1. Choosing v ∈ E \ {0} such that ‖Av‖∞ > 0 and
meas{t ∈ R : |Av(t)| ≥ b1} ≥ b2, which b1 and b2 are positive constants. By (H2), (2.15)
and (2.5), we have

I(λv)

≤ λ 2

2
max{c2,d1}‖v‖2−

∫
R

W (Aλv(t))dt−
∫

R

c2
0

2
(Aλv(t))2dt +

∫
R

g(λv(t))dt

≤ λ 2

2
max{c2,d1}‖v‖2−λ

µ

∫
{t∈R:|Av(t)|≥b1}

W
(

Aλv(t)
|Aλv(t)|

)
|Av(t)|µ dt +

∫
R

T
2
|λv(t)|θ+1dt

≤ λ 2

2
max{c2,d1}‖v‖2−λ

µ M′b2bµ

1 +
T λ θ+1

2
Dθ+1

θ+1‖v‖
θ+1

for λ ≥ 1/b1, M′ := min{W (u) : |u| = 1}. Since µ > 2 and µ > θ + 1, there exists e :=
λ0v∈ E with λ0 ≥ 1/b1 such that ‖e‖> ρ and I(e)≤ 0. In addition, it is clear that I(0) = 0.

Step 3. Based on Steps 1 and 2, Theorem 2.1 implies that there is a sequence {uk} ⊂ E
such that I(uk)→ a≥ α > 0 and

(3.2) (1+‖uk‖)‖I′(uk)‖E∗ → 0, k→+∞.

We now prove the sequence {uk} is bounded. It follows from (3.2), (2.5) and (2.6) that there
exist positive constants C1 and C2 such that

C1 ≥ 2I(uk)− (I′(uk),uk)

=
∫

R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt +

∫
R
[2g(uk(t))− (g′(uk(t)),uk(t))]dt(3.3)

and

(3.4) I(uk(t))≤C2.
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Then it follows from (2.5), (3.3), (3.4), Lemma 2.1, (H1) and (H2) that
1
2
(min{c2,d1}− c2

0)‖uk‖2 ≤ I(uk(t))+
∫

R
W (Auk(t))dt−

∫
R

g(uk(t))dt

≤C2 +
1

µ−2

∫
R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt

+
1

µ−2

∫
R
[2g(uk(t))− (g′(uk(t)),uk(t))]dt

≤C2 +
C1

µ−2
.

Hence, it is easy to see that {‖uk‖} is bounded. So we may assume that, up to a subsequence,
uk ⇀ u weakly in E as k→+∞ for some u ∈ E.

Step 4. For any fixed ν ∈C∞
0 (R,R), assume that some R > 0 such that supp(ν)⊂ [−R,R].

It follows that

I′(uk)ν =
∫ R

−R
[c2(u̇k(t), ν̇(t))+d1(uk(t),ν(t))− (V ′(Auk(t)),Aν(t))+(g′(uk(t)),ν(t))]dt.

It is obvious that the operator defined by S : E→ H1([−R−1,R+1],R) : u→ u|[−R−1,R+1]

is a linear continuous map. Therefore, uk ⇀ u in H1([−R−1,R+1],R). Sobolev’s theorem
(see [11]) implies that uk→ u uniformly on [−R−1,R+1]. So, we have∫ R

−R
[c2(u̇k(t), ν̇(t))+d1(uk(t),ν(t))dt →

∫ R

−R
[c2(u̇(t), ν̇(t))+d1(u(t),ν(t))dt∫ R

−R
[−(V ′(Auk(t)),Aν(t))+(g′(uk(t)),ν(t))]dt →

∫ R

−R
[−V ′(Au(t)),Aν(t))+(g′(u(t)),ν(t))]dt

as k→ +∞. Thus I′(uk)ν → I′(u)ν as k→ +∞, and, in consequence, I′(u)ν = 0. Since
C∞

0 (R,R) is dense in E, we get I′(u) = 0.
We are now in the position to prove that u is a nontrivial solution. Since uk → u in

L∞
loc(R,R), uk→ u in L2([−R′,R′],R) for all 0 < R′ < +∞. Hence, it suffices to show there

is a R′ > 0 such that uk 9 0 in L2([−R′,R′],R). We proceed arguing by contradiction.
Assuming that uk→ 0 in L2([−R′,R′],R) for all R′ > 0. Then there exists a constant m > 0,
such that

(3.5) limsup
k→∞

‖uk‖2
L2(R,R) ≤

m
d1

.

Indeed, we let

η(uk) =
(∫

R
[c2|u̇k(t)|2 +d1|uk(t)|2]dt

) 1
2
.

Then it follows from (H1), (H2), Lemma 2.1, (2.5) and (2.6) that(
1− 2

µ

)∫
R

d1u2
kdt ≤ 2I(uk)−

2
µ

(I′(uk),uk).

Since (3.4) and (3.2) are satisfied, the above inequality implies that {η(uk)} is bounded
independently of d1 . Set m = supk η2(uk). Consequently,

‖uk‖2
L2(R,R) =

∫ R′

−R′
|uk(t)|2dt +

∫
R\[−R′,R′]

|uk(t)|2dt
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=
∫ R′

−R′
|uk(t)|2dt +

1
d1

∫
R\[−R′,R′]

d1|uk(t)|2dt ≤
∫ R′

−R′
|uk(t)|2dt +

m
d1

.

By letting k→ ∞, (3.5) holds. Set

ϖ = sup
k
‖uk‖∞.

It follows from (H2) that |g′(u)| ≤ T |u| for all |u| ≤ 1. Moreover, we know that |g(u)| ≤
T |u|2,∀|u| ≤ 1. Therefore,

|2g(u)− (g′(u),u)| ≤ 2|g(u)|+ |g′(u)||u| ≤ 3T |u|2, ∀|u| ≤ 1.

If ϖ > 1, then

|2g(u)− (g′(u),u)| ≤ 2|g(u)|+ |g′(u)||u| ≤ (2+ϖ)M2|u|2

for 1 < |u| ≤ ϖ , where M2 = max|u|≤ϖ (|g(u)|+ |g′(u)|). These lead to

(3.6) |2g(u)− (g′(u),u)| ≤M3|u|2

for |u| ≤ ϖ , where M3 = 3T +(2+ϖ)M2.
Since W ′(u) = o(u) as |u| → 0, there is ρ0 > 0 such that

|(W ′(u),u)−2W (u)| ≤ |W ′(u)||u|+ |2W (u)| ≤ 3|u|2

for |u| ≤ ρ0. If 2ϖ > ρ0, we let M4 = max|u|≤2ϖ |W ′(u)|+ |W (u)|. Hence, one has

|(W ′(u),u)−2W (u)| ≤ |W ′(u)||u|+ |2W (u)| ≤ 2M4(ϖ +1)ρ−2
0 |u|

2

for ρ0 < |u| ≤ 2ϖ . Therefore, there exists M5 > 0 such that

(3.7) |(W ′(u),u)−2W (u)| ≤M5|u|2, |u| ≤ 2ϖ ,

where M5 = 3+2M4(ϖ +1). By (3.2), (3.3), (3.5), (3.6) and (3.7), one has

2a = lim
k→∞

2I(uk)− (I′(uk),uk)

= lim
k→∞

∫
R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt +

∫
R
[2g(uk(t))− (g′(uk(t)),uk(t))]dt

≤ (M3 +4M5) limsup
k→∞

‖uk‖2
L2(R,R) ≤

m(M3 +4M5)
d1

.

This contradicts d1 is large enough. Hence, there exists a R′ > 0 such that uk 9 0 in
L2([−R′,R′],R), that is, u 6= 0.

So we know that I possesses at least one nontrivial critical point. Therefore, (1.3)
possesses at least one nontrivial homoclinic solution. The proof of Theorem 1.1 is com-
pleted.

In order to prove Theorem 1.2, we firstly give Lemmas 3.1 and 3.2, which ensure that
the functional I has what is called the mountain pass geometry.

Lemma 3.1. Under the conditions of Theorem 1.2, there exist ρ > 0 and α > 0 such that

inf{I(u) : u ∈ E with ‖u‖= ρ}> α.
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Proof. Choose ‖u‖ = rξ , where rξ > 0 is defined in (1.8). Then, by Lemma 2.1, we have
‖Au‖∞ ≤ rξ . It follows from Lemma 2.1, (2.10) and (1.8) that

I(u) =
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
|u(t)|2

]
dt−

∫
R

V (Au(t))dt ≥ 1
2

min{c2,d1}‖u‖2−
∫

R
V (Au(t))dt

≥ 1
2

min{c2,d1}‖u‖2−ξ‖Au‖2
2 ≥

1
2

min{c2,d1}‖u‖2−ξ‖u‖2

= [
1
2

min{c2,d1}−ξ ]‖u‖2.

Hence, by fixing ξ ∈ (0,(1/2)min{c2,d1}) and letting ‖u‖= ρ := rξ > 0 small enough, it
is easy to see that there is α > 0 such that the conclusion of this lemma holds. The proof is
completed.

Lemma 3.2. Under the conditions of Theorem 1.2, then there exists some ‖e‖> ρ such that
I(e)≤ 0.

Proof. Define

R(u) = V (u)− 1
2

d|u|2.

It follows from (1.7) and (H3) that

(3.8) R(u)≤ (C +d)|u|2, lim
|u|→+∞

R(u)
|u|2

= 0.

Define E1 := {ae−|t| : a ∈ R} ⊂ E , which is a finite-dimensional subspace of E. An easy
computation shows that

(3.9) ‖u‖2 ≤ e
e−2

‖Au‖2
2, u ∈ E1.

In the following, we show that, for fixed u ∈ E1 with ‖u‖ = 1, I(hu)→ −∞ as h→ +∞.
Assume on the contrary that for some sequence {hk} with hk → +∞ as k → +∞, there
exists M > 0 such that I(hku)≥−M for all k. By (2.10), we have

(3.10)
−M
h2

k
≤ I(hku)

h2
k

=
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
u2(t)

]
dt−

∫
R

V (A(hku(t)))
h2

k
dt.

It is clear that there exists some constant ρ ∈ [min{c2,d1},max{c2,d1}] such that∫
R

[
c2

2
|u̇(t)|2 +

d1

2
u2(t)

]
dt =

1
2

ρ‖u‖2.

Combining the above equality with (3.10), we get

(3.11)
−M
h2

k
≤ I(hku)

h2
k

=
ρ

2
− 1

2

∫
R

d|Au(t)|2dt−
∫

R

R(A(hku(t)))
h2

k
dt.

Since u ∈C(R,R), by (3.8) and Lemma 2.1 we have

R(A(hku(t)))
h2

k
≤ (C +d)|Au(t)|2

and
|R(A(hku(t)))|

4h2
k

≤ |R(A(hku(t)))|
h2

k‖Au‖2 ≤ D2
∞|R(A(hku(t)))|

h2
k‖Au‖2

∞

≤ D2
∞|R(A(hku(t)))|
|A(hku(t))|2

→ 0
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as k→+∞, which yields that

R(A(hku(t)))
h2

k
→ 0, k→+∞.

It follows from the Lebesgue dominated convergence theorem that∫
R

R(A(hku(t)))
h2

k
dt→ 0, k→+∞.

Hence, by (3.9), (3.11) and (H3), we have

o(1) =
−M
h2

k
≤ ρ

2
−d

e−2
2e

< 0, k→+∞,

which is a contradiction. The proof is completed.
Based on Lemma 3.1 and 3.2, Theorem 2.1 implies that, under the conditions of Theorem

1.2, there is a sequence {uk} ⊂ E such that I(uk)→ a≥ α > 0 and

(3.12) (1+‖uk‖)‖I′(uk)‖E∗ → 0, k→+∞.

Lemma 3.3. Assume that the conditions of Theorem 1.2 are satisfied, Then the sequence
{uk} given in (3.12) is bounded.

Proof. It follows from (2.10), (2.11) and (3.12) that there exists C3 > 0 such that

C3 ≥ I(uk)−
1
2

I′(uk)uk =
∫

R
K(Auk(t))dt.

This implies that

(3.13) C3 ≥
∫

Ψk(0,c1)
K(Auk(t))dt +

∫
Ψk(c1,c2)

K(Auk(t))dt +
∫

Ψk(c2,+∞)
K(Auk(t))dt,

where Ψk(c1,c2) = {t ∈ R : c1 ≤ |Auk(t)| ≤ c2} for 0 < c1 < c2. In fact, assume on the
contrary that ‖uk‖ → +∞ as k → +∞. Obviously, η(uk)→ +∞ as k → +∞. Set vk =
uk/η(uk), then ‖vk‖ ∈ [1/

√
max{c2,d1},1/

√
min{c2,d1}]. Note that, by (2.11) and (3.12),

(1+‖uk‖)‖I′(uk)‖E∗ ≥ |I′(uk)uk|= η
2(uk)|1−

∫
R

(V ′(Auk(t)),Auk(t))
η2(uk)

dt| ≥ 0,

which yields that

(3.14)
∫

R

(V ′(Auk(t)),Avk(t))
|Auk(t)|

|Avk(t)|dt =
∫

R

(V ′(Auk(t)),Auk(t))
η2(uk)

dt→ 1, k→+∞.

Let 0 < ε < 1/3. By H ′
1 , there existsαε > 0 such that

|V ′(Au)|< ε min{c2,d1}|Au|, |Au| ≤ αε .

Consequently, since ‖vk‖ ≤ 1/
√

min{c2,d1}, by Lemma 2.1 we have

(3.15)
∫

Ψk(0,αε )

|V ′(Auk(t))|
|Auk(t)|

|Avk(t)|2dt ≤
∫

Ψk(0,αε )
ε min{c2,d1}|Avk(t)|2dt ≤ ε.

For r ≥ 0, set
φ(r) := inf{K(Au(t))|t ∈ R and |Au(t)| ≥ r}.
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By (H4), φ(r)→+∞ as r→+∞. According to (3.13), we have

(3.16) meas(Ψk(β ,+∞))≤ C3

φ(β )
→ 0, β →+∞.

Therefore, we can take βε large enough such that∫
Ψk(βε ,+∞)

|Avk(t)|2dt <
ε

C
.

Hence, by (H ′
1 ) we get

(3.17)
∫

Ψk(βε ,+∞)

|V ′(Auk(t))|
|Auk(t)|

|Avk(t)|2dt ≤C
∫

Ψk(βε ,+∞)
|Avk(t)|2dt < ε.

Next, we set

cε := inf
{

K(Au(t))
|Au(t)|2

: t ∈ R with αε ≤ |Au(t)| ≤ βε

}
and

dε := max
{

V ′(Au(t))
|Au(t)|

: t ∈ R with αε ≤ |Au(t)| ≤ βε

}
.

By (H4), we know that cε > 0 and K(Auk(t))≥ cε |Auk(t)|2 for all t ∈Ψk(αε ,βε). It follows
from (3.13) that∫

Ψk(αε ,βε )
|Avk(t)|2dt =

1
η2(uk)

∫
Ψk(αε ,βε )

|Auk(t)|2dt ≤ C3

cε η2(uk)
→ 0, k→+∞,

which implies that∫
Ψk(αε ,βε )

|V ′(Auk(t))|
|Auk(t)|

|Avk(t)|2dt ≤ dε

∫
Ψk(αε ,βε )

|Avk(t)|2dt→ 0, k→+∞.

Thus there is k0 such that

(3.18)
∫

Ψk(αε ,βε )

|V ′(Auk(t))|
|Auk(t)|

|Avk(t)|2dt ≤ ε, k ≥ k0.

Now the combination of (3.15), (3.17), and (3.18) implies that for k ≥ k0∫
R

(V ′(Auk(t)),Avk(t))
|Auk(t)|

|Avk(t)|dt ≤
∫

R

|V ′(Auk(t))|
|Auk(t)|

|Avk(t)|2dt ≤ 3ε,

which contradicts (3.14). The proof is completed.
Now we are in the position to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Obviously, I(0) = 0. Similar to Step 4 in the proof of Theorem 1.1,
we know that uk ⇀ u in E as k→+∞ for some u ∈ E and I′(u) = 0.

We claim that u is a nontrivial solution. To complete the proof of this conclusion, we at
first show that J′1(u) :=

∫
RV (Au(t))dt is weakly continuous, that is, if un ⇀ u∗ weakly in E,

then J′1(un)→ J′1(u∗) in E∗. To this aim, any choose ϕ ∈ E, for fixed ι > 0 and let Rι > 0
be so large that ∫

|t|>Rι

ϕ
2(t)dt < ι

2.

Since un ⇀ u∗ weakly in E, un is bounded in E, i.e., there exists R1 > 0 such that ‖un‖L2(R,R)
≤ R1 and ‖u∗‖L2(R,R) ≤ R1. Then by (H ′

1 ) and the Hölder inequality, we have

|(J′1(un)− J′1(u∗))ϕ|
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= |
∫

R
(V ′(Aun(t))−V ′(Au∗(t)),Aϕ(t))dt|

≤ |
∫ Rι +1

−Rι−1
(V ′(Aun(t))−V ′(Au∗(t)),Aϕ(t))dt|

+ |
∫
|t|≥Rι +1

(V ′(Aun(t))−V ′(Au∗(t)),Aϕ(t))dt|

≤
∫ Rι +1

−Rι−1
|V ′(Aun(t))−V ′(Au∗(t))||Aϕ(t)|dt +C

∫
|t|≥Rι +1

(|Aun(t)|+ |Au∗(t)|)|Aϕ(t)|dt

≤
∫ Rι +1

−Rι−1
|V ′(Aun(t))−V ′(Au∗(t))||Aϕ(t))|dt +2ιC(

∫
|t|≥Rι +1

(|un(t)|+ |Au∗(t)|)2dt)
1
2 .

The first integral tends to zero as n→+∞, because un→ u∗ strongly in L∞
loc(R); the second

integral is bounded independently of n. The fact that ι is arbitrary concludes J′1 is weakly
continuous.

In what follows, we show that u is nontrivial. Obviously, I′(uk)→ 0 as uk ⇀ u and
I′(u) = 0. By the definition of I and I′, we obtain that

(I′(uk)− I′(u),uk−u) =
∫

R
[c2|uk(t)−u(t)|2 +d1|uk(t)−u(t)|2]dt

−
∫

R
(V ′(Auk(t))−V ′(Au(t)),Auk(t)−Au(t))dt

≥min{c2,d1}‖uk−u‖2− (J′1(uk)− J′1(u),uk−u).

Combining this with the compactness of J′1, we deduce that ‖uk−u‖ → 0 as k→ ∞, that is
uk→ u in E, So I(u)≥ α > 0. Therefore, u is nontrivial.

Combining the above with Lemmas 3.1, 3.2, 3.3, and Theorem 2.1, we have that I pos-
sesses at least one nontrivial critical point. Therefore, (1.3) possesses at least one nontrivial
homoclinic solution. The proof is completed.

Proof of Theorem 1.3. Similar to the proof of Theorem 1.1, the proof of Theorem 1.3 will
be carried out in four steps.

Step 1. We now show that there exist constants ρ,α > 0 such that I satisfies the assumptions
of Theorem 2.1 with these constants. In view of (H5), for any given σ > 0, there exists
rσ > 0 such that

(3.19) |g(u)| ≤ σ |u|2, |u| ≤ rσ .

Since W ′(u) = o(u) as u→ 0, for the above σ , there exists sσ > 0 such that

(3.20) |W (u)| ≤ σ |u|2, |u| ≤ sσ .

Combining (3.19) with (3.20), we get that

(3.21) |W (u)| ≤ σ |u|2, |g(u)| ≤ σ |u|2, |u| ≤min{rσ ,sσ}.

Choose ‖u‖ = min{rσ ,sσ}/(1+D∞). Then, by Lemma 2.1 and (2.1), we have ‖u‖∞ ≤
min{rσ ,sσ},‖Au‖∞ ≤min{rσ ,sσ}. It follows from Lemma 2.1, (2.12) and (3.21) that

I(u) =
∫

R

[
c2

2
|u̇(t)|2 +

d1

2
u2
]

dt−
∫

R
V (Au(t))dt−

∫
R

g(u(t))dt
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≥ 1
2

min{c2,d1}‖u‖2−
∫

R

[
c2

0
2
|Au(t)|2 +W (A(u(t)))

]
dt−σ

∫
R
|u(t)|2dt

≥ 1
2
(min{c2,d1}− c2

0)‖u‖2−σ‖Au‖2
2−σ‖u‖2

2

≥ 1
2
(min{c2,d1}− c2

0)‖u‖2− (1+D2
2)σ‖u‖2

=
[

1
2
(min{c2,d1}− c2

0)− (1+D2
2)σ
]
‖u‖2.

Hence, by fixing σ ∈ (0,(min{c2,d1}− c2
0)/2(1+D2

2)) and letting ‖u‖= ρ := min{rσ ,sσ}/
(1+D∞) > 0 small enough, it is easy to see that there is α > 0 such that

inf
‖u‖=ρ

I(u)≥ α.

Step 2. We show that there exists e ∈ E such that ‖e‖ > ρ and I(e) ≤ 0. Obviously,
I(0) = 0. Choosing v ∈ E \{0}, we have ‖Av‖∞ > 0 and meas{t ∈ R : |Av(t)| ≥ b3} ≥ b4,
which b3 and b4 are positive constants. By Lemma 2.6 and (2.12), we can get the following
inequality

I(λv)≤ λ 2

2
max{c2,d1}‖v‖2−

∫
R

W (Aλv(t))dt−
∫

R

c2
0

2
(Aλv(t))2dt−

∫
R

g(λv(t))dt

≤ λ 2

2
max{c2,d1}‖v‖2−λ

µ

∫
{t∈R |Av(t)|≥b3}

W
(

Aλv(t)
|Aλv(t)|

)
|Av(t)|µ dt +

c2
0λ 2

2
‖v‖2

≤ λ 2

2
max{c2,d1}‖v‖2−λ

µ M′b4bµ

3 +
c2

0λ 2

2
‖v‖2

for λ > 1/b3,λ ∈ R. Since µ > 2, there exists e := λ1v ∈ E,λ1 > 1/b3 such that ‖e‖ ≥ ρ

and I(e)≤ 0.

Step 3. Based on Steps 1 and 2, Theorem 2.1 implies that there is a sequence {uk} ⊂ E
such that I(uk)→ a≥ α > 0 and

(3.22) (1+‖uk‖)‖I′(uk)‖E∗ → 0, k→+∞.

We now prove the sequence {uk} is bounded. It follows from (3.22) that there exist
positive constants C4 and C5 such that

C4 ≥ 2I(uk)− (I′(uk),uk)

=
∫

R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt +

∫
R
[(g′(uk(t)),uk(t))−2g(uk(t))]dt(3.23)

and

(3.24) I(uk(t))≤C5.

It follows from the conditions of Theorem 1.3 that, for any given σ ′ > 0, (3.21) holds. By
(H5)

(3.25) (g′(u),u)≥ 2g(u)≥ 0,

and

(3.26) g(u)≤ (κ + γ|u|γ1)[(g′(u),u)−2g(u)], |u| ≥min{rσ ′ ,sσ ′}.
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Then it follows from (2.12), (3.23), (3.24), (3.25), (3.26), (3.21) and Lemma 2.1 that

1
2
(min{c2,d1}− c2

0)‖uk‖2

≤ 1
2

η
2(uk)−

1
2

c2
0‖uk‖2 ≤ I(uk)+

∫
R

W (Auk(t))dt +
∫

R
g(uk(t))dt

≤C5 +
∫
{t∈R:|Auk(t)|≤min{r

σ ′ ,sσ ′}}
W (Auk(t))dt +

∫
{t∈R:|Auk(t)|≥min{r

σ ′ ,sσ ′}}
W (Auk(t))dt

+
∫
{t∈R:|uk(t)|≥min{r

σ ′ ,sσ ′}}
g(uk(t))dt +

∫
{t∈R:|uk(t)|≤min{r

σ ′ ,sσ ′}}
g(uk(t))dt

≤C5 +(1+D2
2)σ

′‖uk‖2 +
1

µ−2

∫
R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt

+
∫

R
(κ + γ|uk(t)|γ1)[(g′(uk(t)),u(t))−2g(uk(t))]dt

≤C5 +max
{

1
µ−2

,(κ + γ‖uk‖γ1
∞ )
}{∫

R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt

+
∫

R
[(g′(uk(t)),uk(t))−2g(uk(t))]dt

}
+(1+D2

2)σ
′‖uk‖2

≤C5 +(1+D2
2)σ

′‖uk‖2 +max
{

1
µ−2

,(κ + γDγ1
∞ ‖uk‖γ1)

}
C4.

(3.27)

Hence, by fixing σ ′ ∈ (0,(min{c2,d1}− c2
0)/2(1+D2

2)), it is easy to see that {‖uk‖} is
bounded. So we may assume that, up to a subsequence, uk ⇀ u weakly in E as k→+∞ for
some u ∈ E.

Step 4. Similarly to Step 4 in the proof of Theorem 1.1, we know that uk ⇀ u in E as
k→+∞ for some u ∈ E and I′(u) = 0.

We claim that u is a nontrivial solutions. To complete the proof of this conclusion,
we show that for R′ sufficiently large, uk 9 0 in L2([−R′,R′],R). We proceed arguing by
contradiction. Assuming that uk → 0 in L2([−R′,R′],R) for all R′ > 0. Then there exists
constant m1 > 0, such that

(3.28) limsup
k→∞

‖uk‖2
L2(R,R) ≤

m1

d1
.

In fact, since {uk} is bounded, (3.27) implies that {η(uk)} is bounded independently of d1.
Set m1 = supk η2(uk) and ϖ1 = supk ‖uk‖∞. Therefore,

‖uk‖2
L2(R,R) =

∫ R′

−R′
|uk(t)|2dt +

∫
R\[−R′,R′]

|uk(t)|2dt ≤
∫ R′

−R′
|uk(t)|2dt +

m1

d1
.

By letting k→ ∞, (3.28) holds. Since W ′(u) = o(u) and g′(u) = o(u) as |u| → 0, similarly
to Step 4 in the proof of Theorem 1.1, one has that

(3.29) |g′(u)u−2g(u)| ≤M6|u|2, |u| ≤ ϖ1,

(3.30) |W ′(u)u−2W (u)| ≤M7|u|2, |u| ≤ 2ϖ1,
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where M6 and M7 are two positive constants independently of d1. By using (3.23), (3.28),
(3.29) and (3.30), one has

2a = lim
k→∞

2I(uk)− (I′(uk),uk)

= lim
k→∞

∫
R
[(W ′(Auk(t)),Auk(t))−2W (Auk(t))]dt +

∫
R
[(g′(uk(t)),uk(t))−2g(uk(t))]dt

≤ (M6 +4M7) limsup
k→∞

‖uk‖2
L2(R,R) ≤

m1(M6 +4M7)
d1

.

This contradicts d1 is large enough. Hence, there exists a R′ > 0 such that uk 9 0 in
L2([−R′,R′],R), that is, u 6= 0.

Combining the above with Steps 1–3 and Theorem 2.1, we have that I possesses at least
one nontrivial critical point. Therefore, (1.3) possesses at least one nontrivial homoclinic
solution. The proof is completed.
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