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Abstract. This paper provides the estimation and test procedures for measures of associa-
tion in the correlated binary data. Several measures of association are proposed for bivari-
ate Bernoulli data during the past decades but the estimation and test procedures for most
of these measures are not developed yet. In this paper, the inferential procedures for the
measures of association are demonstrated. The generalized linear model approach (GLM) is
employed for bivariate Bernoulli variables and the measures of association are estimated and
appropriate test procedures are suggested. An alternative to the quadratic exponential form
(QEF) is proposed to improve the normalization process. In this paper, different methods
of measuring association between bivariate Bernoulli variables are compared. For compari-
son, we use a simulation procedure which indicates that all the measures of association and
their test procedures provide almost similar results. However, the GLM and the proposed
alternative quadratic exponential form (AQEF) models display slightly better performance.
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1. Introduction

The dependence in outcome variable in non-normal situations gained importance during the
recent past due to the wide range of applications to various fields of research. Some methods
had been proposed in the past to measure the association in correlated binary data.

Marshall and Olkin [19] explained how some bivariate distributions can be generated by
the bivariate Bernoulli distribution. Gourieroux et al. [11] showed the quadratic exponential
model to be unique in obtaining the maximum likelihood estimates of mean and covariance
parameters. For any member of the family, the estimators are consistent and asymptotically
normal under regularity conditions. This procedure is referred to as the pseudo-maximum
likelihood estimation to emphasize the distinction between the score generated and actual
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sampling of the likelihood functions. Dale [8] expressed the association between compo-
nents in terms of global cross-ratios, cross-product ratios of quadrant probabilities, for each
double dichotomy of the response table of probabilities into quadrants. The generalized
estimating equations (GEE) proposed by Liang and Zeger [16], Zeger and Liang [26] have
generated considerable attention in the last two decades and several extensions have been
developed. Bonney [4] expressed the likelihood of a set of binary dependent outcomes, with
or without explanatory variables, as a product of conditional probabilities each of which is
assumed to be logistic, this model is called the regressive logistic model. Zhao and Prentice
[27] employed a pseduo-maximum likelihood for analyzing correlated binary responses.
Their parametrization is based on a simple pairwise model in which the association be-
tween responses is modeled in terms of correlations. Fitzmaurice and Liard [9] discussed a
likelihood-based method, based on a multivariate model and used the conditional log odds-
ratios. With this approach, the higher-order associations can be incorporated in a natural
way. Cessi and Houwelingen [5] presented the logistic regression for binary data in such a
way that the marginal response probabilities are logistic too. They used the odds ratio and
tetrachoric correlation and compared between them as association measures for the depen-
dence between correlated observations. Cox and Wermuth [6] studied the joint distribution
of p binary variables in the quadratic exponential form containing only the mean effects and
two-factor interactions in the log probabilities. They have some approximate versions of
marginalized forms of the distribution. Glonek and McCullagh [10] have given a general
definition when data are comprised of several categorical responses together with categori-
cal or continuous predictors observed, particularly suitable for relating the joint distribution
of the responses to predictors. Also, they have used a computational scheme for performing
maximum likelihood estimation for data sets of moderate size. Heagerty [13] developed a
general parametric class of serial dependence models that permits the likelihood based mar-
ginal regression analysis of binary response data. Lovison [17] proposed a matrix-valued
Bernoulli distribution, based on the log linear representation introduced by Cox [7], for the
multivariate Bernoulli distribution with correlated components. Islam et al. [14] devel-
oped a new simple procedure to take account of the bivariate binary model with covariate
dependence. The model is based on the integration of conditional and marginal models.

This paper provides the estimation and test procedures for various measures of associa-
tion. A generalized linear model for bivariate Bernoulli data is proposed in this study and
is compared with the alternative procedures. For estimation, the likelihood and pseudo-
likelihood methods are used. Also, for testing the parameter for the measure of association,
we employ the likelihood ratio test (LRT). The goodness of fit of the proposed models are
compared using the deviance function.

In this paper, the major works on the measures of association stemming from the bivariate
Bernoulli data are presented in Sections 2 to 9. Each section includes joint probability
mass function, the log likelihood function, estimation of the association parameter, and the
testing of hypothesis for dependence in the bivariate Bernoulli outcomes. These estimation
and test procedures have been proposed under a general framework using the likelihood
methods. It is noteworthy that in Section 9, we introduce an alternative to the measure
based on the quadratic exponential form to make it more realistic in terms of defining the
underlying pseudo likelihood function by modifying the normalizing procedure. In Section
10, a numerical comparison among all the measures of association have been demonstrated
using a simulation study.
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2. The Marshall and Olkin measure

Marshall and Olkin [19] showed that some distributions can be generated by using the bi-
variate Bernoulli distribution. If there are two correlated binary variables Y1 and Y2 that
follow Bernoulli distributions, each of which taking the value of either 0 or 1, then it must
be that (y1,y2) can take only the four possible values (0,0),(0,1),(1,0),(1,1). Table below
displays notations for the joint, conditional and marginal distributions for correlated vari-
ables Y1 and Y2.

Table 1. Joint, conditional and marginal probabilities for correlated binary variables Y1, Y2

Outcomes Y2 = 0 Y2 = 1 Total
Y1 = 0 p00 p01 1− p1
Y1 = 1 p10 p11 p1
Total 1− p2 p2 1

From Table 1, we can express the joint probability mass function for the two variables Y1
and Y2 as

(2.1) f (y1,y2) = p(1−y1)(1−y2)
00 p(1−y1)y2

01 py1(1−y2)
10 py1y2

11 , y1,y2 = 0,1,

with the constraint ∑
1
r=0 ∑

1
s=0 prs = 1. It is evident from Table 1, the marginal probabilities

can be expressed as

(2.2) p1 = p10 + p11, p2 = p01 + p11.

The joint probabilities can be expressed in terms of the marginal and conditional probabili-
ties as follows

(2.3) Pr(Yi = s,Yj = r) = Pr(Yi = s | Yj = r)Pr(Yj = r), i, j = 1,2, r,s = 0,1,

or directly from Table 1, we have

(2.4) p10 = p1− p11, p01 = p2− p11, p00 = 1− p10− p01− p11.

Also, the conditional probabilities can be shown as

(2.5) Pr(Yi = s | Yj = r) =
Pr(Yi = s,Yj = r)

Pr(Yj = r)
, i, j = 1,2, r,s = 0,1.

We can define the covariance between Y1 and Y2 from Table 1 as

(2.6) Cov(Y1,Y2) = σ12 = p11− p1 p2 = p11 p00− p01 p10, −∞≤ σ12 ≤ ∞.

The correlation between Y1 and Y2, as a measure of association, is

(2.7) Corr(Y1,Y2) = ρ =
p11− p1 p2√

p1 p2(1− p1)(1− p2)
, −1≤ ρ ≤ 1.

where ρ takes 0, when σ12 = 0 or p11 = p1 p2, this means that Y1 and Y2 are independent.
For binary responses the cross-ratio reduces to the odds ratio. So, we can use the odds ratio
as measure of association. Using Table 1, the odds ratio can be defined as

(2.8) ψ =
Pr(Y2 = 1 | Y1 = 1)
Pr(Y2 = 1 | Y1 = 0)

=
p11

p10
÷ p01

p00
=

p00 p11

p10 p01
=

p11(1− p1− p2 + p11)
(p1− p11)(p2− p11)

, ψ ≥ 0.
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The variables Y1 and Y2 are independent if ψ = 1, positive association if ψ > 1 and negative
association if ψ < 1.
The relationship between the correlation ρ and the odds ratio ψ can be determined using
(2.7) and (2.8) as

(2.9)

ψ =
(p1 p2 +ρ

√
p1 p2(1− p1)(1− p2))(1− p1− p2 + p11)

(p1− p11)(p2− p11)
, ψ ≥ 0,

ρ =
ψ(p1− p11)(p2− p11)− p1 p2(1− p1− p2 + p11)

(1− p1− p2 + p11)
√

p1 p2(1− p1)(1− p2)
, −1≤ ρ ≤ 1.

From the equation (2.7), the joint probability p11 can be defined as

(2.10) p11 = p1 p2 +ρ
√

p1 p2(1− p1)(1− p2), p11 ≥ 0.

2.1. Estimation

Let us define the cell frequencies by nrs(r,s = 0,1) and the total sample size is n = ∑
1
r=0 ∑

1
s=0 nrs.

So, we can display these frequencies in Table 2 as:

Table 2. Observed cell frequencies from a bivariate Bernoulli distribution outcomes

Outcomes Y2 = 0 Y2 = 1 Total
Y1 = 0 n00 n01 n−n1
Y1 = 1 n10 n11 n1
Total n−n2 n2 n

In this section we use the invariant property of the maximum likelihood estimators. The
MLEs of marginal probabilities are

(2.11) p̂1 =
n1

n
, p̂2 =

n2

n
.

The MLEs of joint probabilities are

(2.12) p̂rs =
nrs

n
, p̂rs ≥ 0, r,s = 0,1.

If Y1 and Y2 are independent, then

(2.13) p̂11 = p̂1 p̂2 =
n1n2

n2 .

The MLE of correlation ρ is

(2.14) ρ̂ =
p̂11− p̂1 p̂2√

p̂1 p̂2(1− p̂1)(1− p̂2)
, −1≥ ρ̂ ≥ 1.

The MLE of odds ratio ψ is

(2.15) ψ̂ =
p̂11(1− p̂1− p̂2 + p̂11)
(p̂1− p̂11)(p̂2− p̂11)

, ψ̂ ≥ 0.
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As mentioned before, the independence between Y1 and Y2 can be observed if ψ̂ = 1.
We can take the natural logarithm of ψ̂ and take its expectation to get E(log ψ̂) = logψ .
Then, the asymptotic variance of log ψ̂ , (See Agresti [1]), is

(2.16) Var(log ψ̂) =
1

∑
r=0

1

∑
s=0

1
nrs

=
[ 1

n00
+

1
n01

+
1

n10
+

1
n11

]
.

So, log ψ̂ is approximately distributed as N[logψ,Var(log ψ̂)]. The normal approximation
can be used to obtain the confidence interval

(2.17) log ψ̂±Z α
2

√
Var(log ψ̂).

Then, we can exponentiate it to obtain a confidence interval for odds ratio ψ .

2.2. Test of hypothesis

In this subsection, we use three tests. The first one is for testing the independence or depen-
dence of the two variables Y1 and Y2 using the likelihood ratio test (LRT) and comparing it
with the Chi-square with one degree of freedom. The second one is for testing the adequacy
of the model using the deviance test and comparing it with the Chi-square with (n− p) de-
grees of freedom, where p is the number of parameters estimated. The third one is used to
estimate the dispersion parameter φ as a goodness of fit measure. In this case, we expect
this estimate close to one. But for Bernoulli data, the estimate ψ̂ can be more than one
indicating the over-dispersion. It can be shown from the exponential family form, and using
the following relationship

(2.18) Var(Y ) = Var(µ)φ , Var(Y ) = µ(1−µ),

if φ ≥ 1, then Var(Y )≥Var(µ), where, µ is E(Y ). So, using the joint function (2.1), we can
get, for n observations, the log-likelihood function as

(2.19) `(yi; p) =
n

∑
i=1

(
y00i log p00 + y01i log p01 + y10i log p10 + y11i log p11

)
.

Using the log-likelihood function (2.19) and the estimate p̂11 under H0 which could be
changed according to the value ρ0 from the equation (2.10), we can test the independence
or specified values of the correlation or odds ratio for the two variables Y1 and Y2. The
null hypothesis can be expressed as H0 : ρ = ρ0 or H0 : ψ = ψ0 against the alternative
hypothesis H1 : ρ 6= ρ0 or H1 : ψ 6= ψ0. Using the log-likelihood function (2.19), we can
use the likelihood ratio test (LRT) as

(2.20) LRT =−2
[
`(yi;ψ0,ρ0)− `(yi; ψ̂, ρ̂)

]
∼ χ

2
1 .

The deviance function as a way of assessing the goodness of fit for the model which was
proposed by McCullagh and Nelder [18], for the univariate case, we can extend it in the
bivariate case as follows:

D = 2
[
`(yi,yi)− `(yi; p̂)

]
= 2

n

∑
i=1

(
y00i log

y00i

p̂00
+ y01i log

y01i

p̂01
+ y10i log

y10i

p̂10
+ y11i log

y11i

p̂00

)
∼ χ

2
n−p(2.21)
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where,

`(yi;yi) =
n

∑
i=1

(
y00i logy00i + y01i logy01i + y10i logy10i + y11i logy11i

)
,

is the log-likelihood function for the saturated model evaluated at observed values yi, and

`(yi; p̂) =
n

∑
i=1

(
y00i log p̂00 + y01i log p̂01 + y10i log p̂10 + y11i log p̂11

)
,

is the log-likelihood function for the model of interest evaluated at maximum likelihood
estimates p̂rs(r,s = 0,1).
The estimate of dispersion parameter φ is

(2.22) φ̂ =
1

n− p

n

∑
i=1

2

∑
j=1

y ji− p̂ j

p̂ j(1− p̂ j)
, φ̂ ≥ 1.

The square root of the of the dispersion parameter φ is called the scale parameter.

3. The Dale measure

Based on the Marshall and Olkin measure [19], Dale [8] presented a flexible class of mea-
sure for the bivariate, discrete, ordered responses. The Global cross-ratio (GCR) models
exploit the ordering of the marginal response variables, since the association between them
is defined in terms of quadrant probabilities. The GCR may be interpreted as a ratio of
odds on conditional events. The joint probability mass function for the two variables, Y1
and Y2, as shown in (2.1). Using Table 1 and equation (2.8), the joint probability p11 can be
expressed in terms of p1, p2 and ψ as

(3.1) p11 =
ψ(p1− p11)(p2− p11)

1− p1− p2 + p11
=

ψ(p1 p2− p1 p11− p2 p11 + p2
11)

1− p1− p2 + p11
.

With some algebraic manipulation on (3.1), we have

(3.2) p2
11(1−ψ)+ p11[1+(p1 + p2)(ψ−1)]−ψ p1 p2 = 0,

setting

(3.3) A = 1−ψ, B = 1+(p1 + p2)(ψ−1), C =−ψ p1 p2,

using the relationship:
−B±

√
B2−4AC

2A
, we have

(3.4) p11 =
{

1
2 (ψ−1)−1[a−

√
a2 +b], ψ 6= 1

p1 p2, ψ 6= 1,

where, a = 1+(p1 + p2)(ψ−1) and b = 4ψ(1−ψ)p1 p2.
The other joint probabilities can be obtained as

(3.5) p10 = p1− p11, p01 = p2− p11, p00 = 1− p1− p2 + p11.

One of the drawbacks of such formulation (3.4), is that it employs a single root from a
quadratic equation of p11. The argument behind that is the value of p11 can never be negative
and odds ratio satisfies ψ ≥ 0. But the same assumptions are also true for some of the values
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of other root. Therefore it seems better to have the form that uses the possible root which
satisfies the same assumptions as

(3.6) p11 =
{

1
2 (ψ−1)−1[a±

√
a2 +b], ψ 6= 1

p1 p2, ψ 6= 1,

substituting by the values of a and b in the equation (3.4), we get

(3.7) p11 =


1
2 (ψ−1)−1[1+(p1 + p2)(ψ−1)

−
√

[1+(p1 + p2)(ψ−1)]2 +4ψ(1−ψ)p1 p2], ψ 6= 1
p1 p2, ψ 6= 1.

3.1. Estimation

The log-likelihood function, for n observations, is

(3.8) `(yi; p) =
n

∑
i=1

1

∑
r=0

1

∑
s=0

yrsi log prs, r,s = 0,1.

Taking the first order derivative of the log-likelihood function (3.8), with respect to p10, p01
and p11, and put and equating to zero, we have

c
∂`(yi; p)

∂ p10
=

n

∑
i=1

(y10i

p10
− y00i

p00

)
= 0,

∂`(yi; p)
∂ p01

=
n

∑
i=1

(y01i

p01
− y00i

p00

)
= 0,(3.9)

∂`(yi; p)
∂ p11

=
n

∑
i=1

(y11i

p11
− y10i

p10
− y01i

p01
+

y00i

p00

)
= 0.

Solving the estimating equations (3.9) and using the equation (3.5), the estimates p̂1, p̂2 and
p̂11 can be obtained, and then we can get the estimates p̂10 = p̂1− p̂11, p̂01 = p̂2− p̂11, p̂00 =
1− p̂1 − p̂2 + p̂11. The estimate ψ̂ can be determined using the equation (2.8). These
estimates are convenient for the correlation and odds ratio, just for the independence case,
specially for large samples. Alternatively, to avoid the effect of ignorance of differentiation
of the log-likelihood function (3.9) with respect to p00, and also because of the fact that the
model is related to the Marshall and Olkin procedure, we can get all the previous estimates
by the same procedure as of the Marshall and Olkin measure as shown before.

3.2. Test of hypothesis

We can use the equations (2.20) to test for the independence or specified values of odds
ratio as a measure of association for the two variables Y1 and Y2. The null hypothesis in this
case can be expressed as H0 : ψ = ψ0 against the alternative hypothesis H1 : ψ 6= ψ0. The
estimate p̂11 under H0 should be changed according to the value of ψ in the equations (3.7).
The equation (2.21) can be used for the deviance function similar to the Marshal and Olkin
measure. Finally, the equation (2.22) is also used to determine the estimate of dispersion
parameter φ .
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4. The Cessi and Houwelingen measure

Cessi and Houwelingen [5] proposed different measures of association for correlated binary
data such as tetrachoric correlation and odds ratio. The joint probability mass function for
the two variables Y1 and Y2 can be expressed as shown in the equation (2.1).

4.1. Estimation

The log-likelihood function for n observations is as shown in (3.8). Using the relationship
(3.5), we can differentiate the log-likelihood function with respect to p1, p2 and p11; this
yields

c
∂`(yi; p)

∂ p1
=

n

∑
i=1

( y10i

p1− p11
− y00i

1− p1− p2 + p11

)
= 0,

∂`(yi; p)
∂ p2

=
n

∑
i=1

( y01i

p2− p11
− y00i

1− p1− p2 + p11

)
= 0,(4.1)

∂`(yi; p)
∂ p11

=
n

∑
i=1

(y11i

p11
− y10

p1− p11
− y01i

p2− p11
+

y00i

1− p1− p2 + p11

)
= 0.

Solving the estimating equations (4.1), we can obtain directly the estimates p̂1, p̂2 and p̂11.
Alternatively, we can use the Marshall and Olkin procedure to estimate all parameters to
avoid the differentiation of the log-likelihood function with respect to p00.

4.2. Test of hypothesis

To test the independence or specified values of the odds ratio, by the null hypothesis H0 :
ψ = ψ0, we can use the LRT as in equation (2.20). The estimate p̂11 under H0 should
be changed according to ψ in the equations (2.8). The deviance function as in the equa-
tion (2.21) can be used to determine the adequacy of the model, the difference is made by
employing the relationship (3.5) to get the deviance function

D = 2
n

∑
i=1

(
y00i log

y00i

1− p̂1− p̂2 + p̂11
+ y01i log

y01i

p̂2− p̂11

+y10i log
y10i

p̂1− p̂11
+ y11i log

y11i

p̂11

)
∼ χ

2
n−p.(4.2)

Finally, we can use the equation (2.22) to estimate the dispersion parameter φ .
The dependence between two variables Y1 and Y2, can be quantified in different ways.

So, in the next three subsections we will explain the odds ratio, tetrachoric correlation as
measures of association and compare between them as shown in the following subsections.

4.3. Odds ratio

The first method is to characterize the association in Table 1 by the odds ratio. This measure
is used by, for example, Dale [8]. Since, the odds ratio as shown in (2.8) is restricted, ψ ≥ 0,
and we will take logψ = ψ12 to overcome this restriction. The joint probability p11 can be
expressed in terms of marginal probabilities p1, p2 and ψ as shown in the equation (3.7).



Estimation and Test of Measures of Association for Correlated Binary Data 993

The test statistic for testing whether or not ψ = 1 equivalently logψ = ψ12 = 0 is derived as

(4.3) W =

[
∑

n
i=1(y1i− p̂1)(y2i− p̂2)

]2

∑
n
i=1 p̂1 p̂2(1− p̂1)(1− p̂2)

∼ χ
2
1 .

If there is independence, we would expect W to be around one, whereas if there is no
independence, we expect W to be larger [See the results in Table 7]. The score statistic
W has a disadvantage that it is used only for the independence case, so the LRT is better
than the score statistic W , because the LRT deals with both the independence and non-
independence cases.

4.4. Tetrachoric correlation

The second method as a measure of association is a tetrachoric correlation. The use of
this measure goes back to Pearson [22]. The multivariate generalization was introduced
by Ashford and Sowden [2]. Cessi and Houwelingen [5] followed their approach but used
the logistic marginals instead of the probit marginals. The general idea assumes that the
outcomes (y1,y2) are realizations of a pair of latent (hidden) continuous variables Z1 and
Z2, where Z1 and Z2 are bivariate standard normal distributions with correlation ρ . The
variables Y1 and Y2 takes 1, if Z j < g j with g j = Φ−1(p j), j = 1,2, where Φ is the standard
normal cumulative distribution function. This means that

(4.4) p11 = Pr(Z1 < g1,Z2 < g2) =
∫ g1

−∞

∫ g2

−∞

f (t1, t2)dt2dt1,

where,

(4.5) f (t1, t2) =
1

2π
√

1−ρ2
exp
{
− 1

2(1−ρ2)
(t2

1 + t2
2 −2ρt1t2)

}
is the joint density function of the bivariate standard normal distribution, with tetrachoric
correlation ρ as a measure of dependence between Y1 and Y2. Stuart and Ord [23] showed
how p11 can be evaluated by Hermite polynomials, and the first-order derivative of p11 with
respect to ρ is f (g1,g2,ρ).

The score statistic to test whether or not ρ = 0, is quite easy, since
∂ p11

∂ρ
|ρ=0= f (g1) f (g2),

where f (g) is the univariate standard normal density function. This yields a score statistic

(4.6) U =
n

∑
i=1

(y1i− p̂1)(y2i− p̂2) f (g1) f (g2)
p̂1 p̂2(1− p̂1)(1− p̂2)

, with Var(U) =
n

∑
i=1

f 2(g1) f 2(g2)
p̂1 p̂2(1− p̂1)(1− p̂2)

.

Testing whether or not ρ = 0 can be done, (see Cessi and Houwelingen [5]), by a score
statistic

(4.7) M =
U2

Var(U)
∼ χ

2
1 .

Similar to the score statistic W , we expect that M should be around one, if there is inde-
pendence according to the expressions (4.6), whereas if there is lack of independence, we
expect M to be larger. The score statistic M also has the same disadvantage as the score
statistic W that both of them is used just for the independence case.
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4.5. Relationship between odds ratio and tetrachoric correlation

Comparing between the two measures of association in the last two subsections, by consid-
ering the estimate of ψ̃12 is approximately given by

(4.8) ψ̃12 =

(
∑

n
i=1(y1i− p̂1)(y2i− p̂2)

)
∑

n
i=1 p̂1 p̂2(1− p̂1)(1− p̂2)

.

Also, the estimate of tetrachoric ρ̃ is approximately given by

(4.9) ρ̃ =

(
∑

n
i=1(y1i− p̂1)(y2i− p̂2)w(p̂1)w(p̂2)

)
∑

n
i=1 p̂1 p̂2(1− p̂1)(1− p̂2)w2(p̂1)w2(p̂2)

, w(p̂ j) =
Φ−1(p̂ j)

p̂ j(1− p̂ j)
, j = 1,2.

Both approximations are weighted by the cross-products (y1i− p̂1)(y2i− p̂2). The approxi-
mate relationship between ρ̃ and ψ̃12 is given, [Cessi and Houwelingen [5]], by

(4.10) ψ̃12 = (1.7)2
ρ̃

This relationship in our study is true only in the independence case [see Table 7].

5. The Teugels measure

Based on the Marshall and Olkin measure [19], Teugels [24] established the multivariate
but vectorized versions for Bernoulli and the binomial distributions using the concept of
Kronecker product for matrix calculus. The multivariate Bernoulli distribution entails a pa-
rameterized model that provides an alternative to the traditional log-linear model for binary
variables. If Yj( j = 1,2) is a sequence of Bernoulli random variables, where

(5.1) Pr(Yj = 1) = p j and Pr(Yj = 0) = q j, 0≤ q j = 1− p j ≤ 1, j = 1,2.

The joint probabilities can be displayed same as in the equation (2.1). The expected values
of Y1 and Y2 are E(Y1) = p1, E(Y2) = p2, respectively. Also, the covariance between them
is σ12 = E

[
(Y1− p1)(Y2− p2)

]
. Also, we can use E(Y1Y2) = p11 = σ12 + p1 p2.

Solving for p00, p01, p10 and p11 we get the following relations

(5.2) p00 = q1q2 +σ12, p10 = p1q2−σ12, p01 = q1 p2−σ12, p11 = p1 p2 +σ12.

The correlation between Y1 and Y2 as a measure of association is

(5.3) ρ =
σ12√

p1 p2q1q2
, −1≤ ρ ≤ 1.

where ρ takes 0 when σ12 = 0, this means that Y1 and Y2 are independent. The odds ratio
can be expressed as shown below using the equations (2.8) and (5.2)

(5.4) ψ =
(q1q2 +σ12)(p1 p2 +σ12)
(p1q2−σ12)(q1 p2−σ12)

, ψ ≥ 0.

Substituting (5.3) in (5.4), we have the relationship between ρ and ψ as

(5.5) ψ =
(q1q2 +ρ

√
p1 p2q1q2)(p1 p2 +ρ

√
p1 p2q1q2)

(p1q2−ρ
√

p1 p2q1q2)(q1 p2−ρ
√

p1 p2q1q2)
, ψ ≥ 0.

From (5.5), it can be shown that the variables Y1 and Y2 are independent if ρ = 0 or ψ = 1.
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5.1. Estimation

For n observations, we can use the log-likelihood function (2.19), to derive the first deriva-
tives with respect to p1, p2 and p11, and put it equal to zero. Using the equation (5.2), we
have the following estimating

c
∂`(yi; p,σ12)

∂ p1
=

n

∑
i=1

( y10i

p1q2−σ12
− y00i

q1q2 +σ12

)
= 0,

∂`(yi; p,σ12)
∂ p2

=
n

∑
i=1

( y01i

q1 p2−σ12
− y00i

q1q2 +σ12

)
= 0,(5.6)

∂`(yi; p,σ12)
∂ p11

=
n

∑
i=1

( y11i

p1 p2 +σ12
− y10i

p1q2−σ12
− y01i

q1 p2−σ12
+

y00i

q1q2 +σ12

)
= 0.

Solving the score equations (5.6), the estimates p̂1, p̂2, q̂1, q̂1 and σ̂12 can be obtained and
then the estimates p̂11, p̂10, p̂01 and p̂00 can be determined using the relationship (5.2). These
estimates provide very good measures of the correlation and the odds ratio in the indepen-
dence case specially with large samples. Alternatively, the Marshall and Olkin procedure
can provide similar estimates as well.

5.2. Test of hypothesis

To test the independence or specified values of the association between two variables Y1 and
Y2 by the null hypothesis H0 : σ12 = σ0 against the alternative hypothesis H1 : σ12 6= σ0,
we can use the LRT as in equation (2.20). An estimate p̂11 under H0 should be changed
according to σ12 in the equations (5.2).
The deviance function as in the equation (2.21) can be used to determine the adequacy of
this model, the difference is made by employing the relationships (5.2) to obtain

(5.7)
D = 2

n

∑
i=1

(
y00i log

y00i

q̂1q̂2 + σ̂12
+ y01i log

y01i

q̂1 p̂2− σ̂12
+ y10i log

y10i

p̂1q̂2− σ̂12

+y11i log y11i
p̂1 p̂2+σ̂12

)
∼ χ2

n−p.

Finally, we can use the equation (2.22) to obtain the estimate of the dispersion parameter φ .

6. The Bonney’s Measure

The likelihood of a set of binary dependent outcomes, in Bonney’s measure [4], with or
without explanatory variables, is expressed as a product of conditional probabilities each
of which is assumed to be logistic function. The logistic regression model provides a sim-
ple but relatively unknown parametrization of the multivariate distribution. This model is
largely expository and is intended to motivate the development and usage of the regressive
logistic model. Let us define the following conditional log odds

(6.1) θ1 = η = log
p1

1− p1
, θ2 = η + γ1Z1, p1 =

eθ1

1+ eθ1
=

eη

1+ eη
.

where η and γ1 are well-known measures of dependence. These parameters η and γ1 can
take any values from −∞ to ∞ and Z1 = 2Y1− 1 coded Z1 = −1 if Y1 = 0 and Z1 = 1 if
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Y1 = 1. So, if γ1 = 0, then Y1 and Y2 are independent. The joint probability for the two
binary dependent variables Y1 and Y2 is

(6.2) f (y1,y2) =
2

∏
j=1

eθ jy j

1+ eθ j
.

Thus, the joint mass function of Y1 and Y2 can be expressed as products of ordinary logistic
functions. To see the relationship of the γ1 in this model to a well-known measures of
dependence (the odds ratio ψ), consider a pair of dependent binary observations (y1,y2)
without explanatory variables. From (6.1) and (6.2) we have

cp11 =
eη

1+η
× eη+γ1

1+ eη+γ1
,

p10 =
eη

1+ eη
× 1

1+ eη+γ1
,

p01 =
1

1+ eη
× eη−γ1

1+ eη−γ1
,(6.3)

p00 =
1

1+ eη
× 1

1+ eη−γ1
.

Using (6.3), and substituting in (2.8), then we have

(6.4) ψ = e2γ1 , γ1 =
1
2

log
p00 p11

p10 p01
=

1
2

logψ =
1
2

ψ12, η =
1
2

log
p11 p01

p00 p10
,

and, hence, γ1 is one-half the natural logarithm of the odds ratio ψ . Note that if γ1 = 0,
then Y1 and Y2 are independent. Note that for Cessi and Houwelingen measure [5], the
approximate relationship between ψ̃12 and ρ̃ is given by ψ̃12 = (1.7)2ρ̃ , then we can derive
the relation between ψ̃ and ρ̃ is ψ̃ = e(1.7)2ρ̃ . Also, for the measure based on the regressive
model, [4], the relationship between γ1 and ψ12 is γ1 = 1

2 ψ12, then we get ψ = e2γ1 and
also ψ12 = 2γ1. Finally, the relationship between γ1 and ρ̃ is γ1 = 1.445ρ̃ . According to
the conditional log odds interpretation for canonical parameters we have θ2 = θ1 + ψ12y1,
but for the measure based on regressive model, we have θ2 = θ1 + γ1(2y1− 1). So, for

γ1 =
1
2

ψ12, then θ2 = θ1 +ψ12(y1−
1
2
) = θ1 +ψ12y1− γ1.

6.1. Estimation

For n observations, using the joint probability function (6.2), the log-likelihood function is

(6.5) `(yi;η ,γ1) =
n

∑
i=1

2

∑
j=1

(
y jiθ ji− log(1+ eθ ji)

)
.

Substituting by Z1 = 2Y1 − 1 and the values θ1 and θ2 from (6.1) in the log-likelihood
function (6.5), and then taking the first derivative with respect to η and γ1, and put it equal
to zero, we have

(6.6)

∂`(yi;η ,γ1)
∂η

= ∑

(
y1i + y2i−

eη

1+ eη
− eη+γ1(2y1i−1)

1+ eη+γ1(2y1i−1)

)
= 0,

∂`(yi;η ,γ1)
∂γ1

= ∑

(
(2y1i−1)

(
y2i−

eη+γ1(2y1i−1)

1+ eη+γ1(2y1i−1)

))
= 0.
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The estimates η̂ and γ̂1 can be derived by solving the equations (6.6), and then using the
equations (6.3) to obtain the estimates p̂11, p̂10, p̂01 and p̂00. The estimate ψ̂ can be obtained
by the relationship (6.4).

6.2. Test of hypothesis

Under H0 : γ1 = γ0 the estimate p̂1 and then the estimate η̂ can be obtained using the first
equation of (6.6) as

(6.7) p̂1 =
1
n

n

∑
i=1

(y1i + y2i

2
− γ0(2y1i−1)

)
,

where, p̂1 =
eη̂

1+ eη̂
and η̂ = log

p̂1

1− p̂1
. To test the independence or specified values of the

association parameter of the variables Y1 and Y2, by the null hypothesis H0 : γ1 = γ0 against
the alternative hypothesis H1 : γ1 6= γ0, using the log-likelihood function (6.5), we can use
the LRT as

(6.8) LRT =−2
(
`(yi; η̂ ,γ0)− `(yi; η̂ , γ̂1)

)
∼ χ

2
1 .

The deviance function as a way of assessing the goodness of fit for the model can be ex-
pressed as

(6.9) D = 2
n

∑
i=1

(
y1i + y2i− θ̂1y1i− θ̂2y2i− log

(1+ ey1i)(1+ ey2i)

(1+ eθ̂1i)(1+ eθ̂2i)

)
∼ χ

2
n−p.

The estimate of dispersion parameter φ can be obtained as in (2.22).

7. The generalized linear model (GLM)

Let us define the two binary variables Y1 and Y2, and put the joint probability function of Y1
and Y2 in the form of the marginal and conditional probabilities such that

(7.1) f (y1,y2) = Pr(Y2 = y2 | Y1 = y1)×Pr(Y1 = y1).

Supposing that
(7.2)

θ1 = log
p1

1− p1
, θ2 = log

p2

1− p2
, θ3 = logψ, p1 =

eθ1

1+ eθ1
, p2 =

eθ2

1+ eθ2
, ψ = eθ3 ,

the marginal probability mass function of Y1 can be expressed as

(7.3) Pr(Y1 = y1) =
( eθ1

1+ eθ1

)y1
( 1

1+ eθ1

)1−y1
=

eθ1y1

1+ eθ1
.

According to the conditional log odds interpretation (Heagerty and Zeger[12] and Heagerty
[13]), the conditional probability of (Y2 = y2) given that (Y1 = y1) is

(7.4) Pr(Y2 = y2 | Y1 = y1) =
( eθ2+θ3y1

1+ eθ2+θ3y1

)y2
( 1

1+ eθ2+θ3y1

)1−y2
=

eθ2y2+θ3y1y2

1+ eθ2+θ3y1
,

where E(Y2 = y2 | Y1 = y1) =
eθ2+θ3y1

1+ eθ2+θ3y1
.

Then, using the equations (7.1),(7.3) and (7.4), the joint probability mass function of the
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two binary variables Y1 and Y2 is

(7.5) f (y1,y2) =
( p1

(1− p1)(1− p2 + p2ψ)

)y1
( p2

1− p2

)y2
ψ

y1y2(1− p1)(1− p2).

If ψ = 1, then we have complete independence.

7.1. Estimation

Using the notations of the expression (7.2), the expression (7.5) can be written in the expo-
nential family form

f (y1,y2) = exp
{

θ1y1 +θ2y2 +θ3y1y2− log[1+ eθ1 ]− log[1+ eθ2 ](7.6)

− y1(log[1+ eθ2+θ3 ]− log[1+ eθ2 ])
}

.

For n observations, the log-likelihood function can be written as

`(yi;θ1,θ2,θ3) =
n

∑
i=1

{
θ1y1i +θ2y2i +θ3y1iy2i− log[1+ eθ1 ]− log[1+ eθ2 ]

− y1i(log[1+ eθ2+θ3 ]− log[1+ eθ2 ])
}

.(7.7)

The MLEs of the parameters are obtained by setting the first derivative for (7.7) with respect
to the parameters θ1,θ2 and θ3, to zero and we have

∂`(yi;θ1,θ2,θ3)
∂θ1

=
n

∑
i=1

(
y1i−

eθ1

1+ eθ1

)
= 0,(7.8)

∂`(yi;θ1,θ2,θ3)
∂θ2

=
n

∑
i=1

(
y2i−

eθ2

1+ eθ2

)
−

n

∑
i=1

y1i

( eθ2+θ3

1+ eθ2+θ3
− eθ2

1+ eθ2

)
= 0,(7.9)

∂`(yi;θ1,θ2,θ3)
∂θ3

=
n

∑
i=1

(
y1iy2i− y1i

eθ2+θ3

1+ eθ2+θ3

)
= 0.(7.10)

Solving the equations (7.8), we get the estimate

(7.11) p̂1 =
1
n

n

∑
i=1

y1i.

Substituting by the estimate p̂1 in the equation (7.9), we have

(7.12)
∂`(yi;θ1,θ2,θ3)

∂θ2
=

n

∑
i=1

y2i−np2−
n

∑
i=1

y1iy2i + p2

n

∑
i=1

y1i = 0,

then we obtain the estimate

(7.13) p̂2 = ∑
n
i=1 y2i−∑

n
i=1 y1iy2i

n−∑
n
i=1 y1i

.

Also, the estimates θ̂1, θ̂2 and θ̂3 can be derived by solving the equations (7.8), (7.9) and

(7.10) directly. Alternatively, using (7.10) and the estimate θ̂2 = log
p̂2

1− p̂2
, we get the

estimate θ̂3 as

(7.14) θ̂3 = log
(1− p̂2)∑

n
i=1 y1iy2i

p̂2(∑n
i=1 y1i−∑

n
i=1 y1iy2i)

.
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Then, using (7.14) we can obtain the estimate ψ̂ = eθ̂3 . The estimate p̂11 can be obtained
using the equation (3.7), and the estimates of joint probabilities can be obtained as p̂10 =
p̂1− p̂11, p̂01 = p̂2− p̂11 and p̂00 = 1− p̂10− p̂01− p̂11.

7.2. Test of hypothesis

Under the null hypothesis H0 : θ3 = logψ0, the estimate p̂1 does not change as in the equa-
tion (7.11) but the estimate p̂2 can be determined by solving the equation (7.9). Substituting
by the value ψ0 into the equation (7.9), and solving it for p̂2 we have

(7.15) p̂2 =− 1
2a

(b−
√

b2 +4ac),

where,

a =
n

∑
i=1

y1i +ψ0(n−
n

∑
i=1

y1i)−n, b = n+(ψ0−1)(
n

∑
i=1

y1i−
n

∑
i=1

y2i), c =
n

∑
i=1

y2i,

then we obtain the estimate θ̃2 = log
p̃2

1− p̃2
. On the other hand, in the case of independence,

logψ0 = 0, also the estimate p̂1 does not change as in the equation (7.11), and using the

equation (7.9) to obtain the estimate p̂2 =
1
n ∑y2i.

To test for the independence or specified values of the odds ratio of the two variables Y1 and
Y2 by the null hypothesis H0 : θ3 = logψ0 against the alternative hypothesis H1 : θ3 6= logψ0
we can use the LRT as

(7.16) LRT =−2
(
`(yi; θ̂1, θ̃2, logψ0)− `(yi; θ̂1, θ̂2, θ̂3)

)
∼ χ

2
1 .

The deviance function may be employed to assess the goodness of fit for the model and we
can express it as

(7.17) D = 2
(
`(yi;yi)− `(yi; θ̂1, θ̂2, θ̂3)

)
∼ χ

2
n−p

where

`(yi; θ̂1, θ̂2, θ̂3) =
n

∑
i=1

{
θ̂1y1i + θ̂2y2i + θ̂3y1iy2i− log[1+ eθ̂1 ]− log[1+ eθ̂2 ]

− y1i(log[1+ eθ̂2+θ̂3 ]− log[1+ eθ̂2 ])
}

is the log-likelihood function for the model of interest evaluated at maximum likelihood
estimates θ̂ j( j = 1,2,3), and

`(yi;yi) =
n

∑
i=1

{
y1i + y2i + y1iy2i− log[1+ ey1i ]− log[1+ ey2i ]

− y1i(log[1+ ey2i+y1iy2i ]− log[1+ ey2i ])
}

denotes the log-likelihood function for the saturated model evaluated at observed value yi.
The estimate of the dispersion parameter φ as in the equation (2.22).
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8. The quadratic exponential form (QEF)

A model of quadratic exponential form is parameterized in terms of marginal means and
pairwise correlations for the regression analysis of correlated binary data. Zhao and Pren-
tice [27] used the pseudo-maximum likelihood method using a special case termed as the
multiplicative model. The score estimating functions for the mean and correlation param-
eters are expressed in simple form under the quadratic exponential family. The quadratic
exponential form of Y1 and Y2 can be written as

(8.1) f (y1,y2) =
1
∆

exp
(

θ1y1 +θ2y2 +θ3y1y2 + c(y)
)
, −∞≤ θ1,θ2,θ3 ≤ ∞,

where, ∆ = Σexp
(

θ1y1 +θ2y2 +θ3y1y2 +c(y)
)

is the normalizing constant. The summation
is over all four possible values of Y1 and Y2. The parameters θ1,θ2 and θ3 are canonical
parameters which can be specified as

(8.2)

θ1 = log
p1

1− p1
, p1 =

eθ1

1+ eθ1
,

θ2 = log
p2

1− p2
, p2 =

eθ2

1+ eθ2
,

θ3 = logψ, ψ = eθ3 .

The joint function of Y1 and Y2, with c(y) = 0, can be expressed as

(8.3) f (y1,y2) =
1
∆

exp
(

θ1y1 +θ2y2 +θ3y1y2

)
.

8.1. Estimation

The log-likelihood function, for n observation, is

(8.4) `(yi;θ1,θ2,θ3) =
n

∑
i=1

(
θ1y1i +θ2y2i +θ3y1iy2i− log∆

)
,

where, ∆ = ∑exp
(

θ1y1 +θ2y2 +θ3y1y2

)
. The marginal and joint parameters can be written,

using (8.3), as

p1 = ∑
y1,y2

y1

∆
exp
(

θ1y1 +θ2y2 +θ3y1y2

)
,

p2 = ∑
y1,y2

y2

∆
exp
(

θ1y1 +θ2y2 +θ3y1y2

)
,(8.5)

p11 = ∑
y1,y2

y1y2

∆
exp
(

θ1y1 +θ2y2 +θ3y1y2

)
, p11 = σ12 + p1 p2,σ12 = Cov(Y1,Y2).

Using the equation (8.5) and taking the first derivatives for the log-likelihood function (8.4)
with respect to θ1,θ2 and θ3, and put it equal to zero, we have

(8.6)
n

∑
i=1

y1i−np1 = 0,
n

∑
i=1

y2i−np2 = 0,
n

∑
i=1

y1iy2i−np11 = 0.
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From the equations (8.6), the maximum likelihood estimates p̂1, p̂2 and p̂11 can be obtained
as

(8.7) p̂1 =
1
n ∑y1i, p̂2 =

1
n ∑y2i, p̂11 =

1
n ∑y1iy2i.

The estimates of the odds are θ̂1 = log
p̂1

1− p̂1
and θ̂2 = log

p̂2

1− p̂2
and the estimate of the

covariance σ̂12 = p̂11− p̂1 p̂2. The other estimates of the joint probabilities can be obtained
as p̂10 = p̂1− p̂11, p̂01 = p̂2− p̂11 and p̂00 = 1− p̂10− p̂01− p̂11.

8.2. Test of hypothesis

Similar to the GLM procedure, we can test the independence or specified values of the
odds ratio of two variables, Y1 and Y2, by the null hypothesis H0 : θ3 = logψ0 against the
alternative hypothesis H1 : θ3 6= logψ0 using the LRT as

(8.8) LRT =−2
(
`(yi, θ̂1, θ̂2, logψ0)− `(yi, θ̂1, θ̂2, θ̂3)

)
∼ χ

2
1 .

The estimates p̂1, p̂2 and p̂11 under H0 cannot be changed according to (8.6) and (8.7). This
is considered as a disadvantage for this measure and will have effect on the results of the
LRT, especially with higher order associations (See Table 10). The deviance can be used to
assess the goodness of fit of the proposed model which can be expressed as

(8.9) D = 2
(
`(yi;yi)− `(yi; θ̂1, θ̂2, θ̂3)

)
∼ χ

2
n−p

where,

`(yi; θ̂1, θ̂2, θ̂3) =
n

∑
i=1

(
θ̂1y1i + θ̂2y2i + θ̂3y1iy2i− log∆

)
,

is the log-likelihood function for the model of interest evaluated at maximum likelihood
estimates θ̂ j( j = 1,2,3), ∆ = ∑exp

(
θ̂1y1 + θ̂2y2 + θ̂3y1y2

)
, the summation is over all four

possible values of Y1 and Y2, and

`(yi;yi) =
n

∑
i=1

(
y1i + y2i + y1iy2i− log∆y

)
,

denotes the log-likelihood function for the saturated model evaluated at observed values yi,
∆y = ∑exp

(
y1 + y2 + y1y2

)
, the summation is over all four possible values of Y1 and Y2.

The estimate of the dispersion parameter φ is same as in the equation (2.22).

9. The alternative quadratic exponential form (AQEF)

In this section, we propose a new form for the bivariate quadratic exponential form, called
the alternative quadratic exponential form (AQEF). This form overcomes some problems
with the existing form of the quadratic exponential form (QEF). Also, this new form can
use the ML procedure for estimation with a more natural way to express the normalization.
On the other hand, the QEF needs some assumptions for estimation. For this reason, the
pseudo-likelihood procedure is used in QEF for the estimation.
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To make the quadratic exponential form (QEF) more realistic and effective measure, let
us make the following modifications in the existing form (8.3). The joint function of Y1 and
Y2 can be put in the form

(9.1) f (y1,y2) = exp
(

θ1y1 +θ2y2 +θ3y1y2−A(θ1,θ2,θ3)
)
, −∞≤ θ1,θ2,θ3 ≤ ∞.

Since ∑
1
y1=0 ∑

1
y2=0 f (y1,y2) = 1, then we can obtain

A(θ1,θ2,θ3) = log(1+ eθ1 + eθ2 + eθ1+θ2+θ3).

So, the joint function (9.1) becomes

(9.2) f (y1,y2) = exp
(

θ1y1 +θ2y2 +θ3y1y2− log(1+ eθ1 + eθ2 + eθ1+θ2+θ3)
)
.

When Y1 and Y2 are independent, θ3 = 0, then the equation (9.2) is

(9.3) f (y1,y2) = exp
(

θ1y1 +θ2y2− log(1+ eθ1)− log(1+ eθ2)
)
.

where,

log(1+ eθ1 + eθ2 + eθ1+θ2) = log(1+ eθ1)+ log(1+ eθ2).

So, in this case, we consider the alternative quadratic exponential form (AQEF) as an special
case of GLM, when

c(y) = y1
[

log(1+ eθ2)− log(1+ eθ2+θ3)
]

= 0.

9.1. Estimation

For n observations, the log-likelihood function can be written as

(9.4) `(yi;θ1,θ2,θ3) =
n

∑
i=1

(
θ1y1i +θ2y2i +θ3y1iy2i− log[1+ eθ1 + eθ2 + eθ1+θ2+θ3 ]

)
.

Taking the first derivative for (9.4) with respect to θ1,θ2 and θ3, and putting it equal to zero,
respectively, we obtain

c
∂`(yi;θ1,θ2,θ3)

∂θ1
=

n

∑
i=1

(
y1i−

eθ1 + eθ1+θ2+θ3

1+ eθ1 + eθ2 + eθ1+θ2+θ3

)
= 0,

∂`(yi;θ1,θ2,θ3)
∂θ2

=
n

∑
i=1

(
y2i−

eθ2 + eθ1+θ2+θ3

1+ eθ1 + eθ2 + eθ1+θ2+θ3

)
= 0,(9.5)

∂`(yi;θ1,θ2,θ3)
∂θ3

=
n

∑
i=1

(
y1iy2i−

eθ1+θ2+θ3

1+ eθ1 + eθ2 + eθ1+θ2+θ3

)
= 0.

Solving equations (9.5), we get the estimates θ̂1, θ̂2 and θ̂3, then we can obtain the estimates

ψ̂ = eθ̂3 , p̂1 =
eθ̂1

1+ eθ̂1
, p̂2 =

eθ̂2

1+ eθ̂2
, p̂11 can be obtained using the equation (3.7) and the

other estimates of joint probabilities p̂10, p̂01 and p̂00 can be obtained as the QEF procedure.
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9.2. Test of hypothesis

Under H0 : θ3 = logψ0, we can solve the first two equations from the estimating equations
(9.5) for θ1 and θ2 to obtain the estimates θ̃1 and θ̃2 under H0. These estimates improve
the existing QEF procedure and we obtain deviance for first or higher associations more
effectively (See Table 11). Similar to the QEF procedure, we can test the independence
or specified values of the odds ratio of the two variables Y1 and Y2 by the null hypothesis
H0 : θ3 = logψ0 against the alternative hypothesis H1 : θ3 6= logψ0 and we can use the LRT
as

(9.6) LRT =−2
(
`(yi, θ̃1, θ̃2, logψ0)− `(yi, θ̂1, θ̂2, θ̂3)

)
∼ χ

2
1 .

The deviance function can be employed for assessing the goodness of fit of the proposed
model which can be expressed as

(9.7) D = 2
(
`(yi;yi)− `(yi; θ̂1, θ̂2, θ̂3)

)
∼ χ

2
n−p

where

`(yi; θ̂1, θ̂2, θ̂3) =
n

∑
i=1

(
θ̂1y1i + θ̂2y2i + θ̂3y1iy2i− log[1+ eθ̂1 + eθ̂2 + eθ̂1+θ̂2+θ̂3 ]

)
,

is the log-likelihood function for the model of interest evaluated at maximum likelihood
estimates θ̂ j( j = 1,2,3), and

`(yi;yi) =
n

∑
i=1

(
y1i + y2i + y1iy2i− log[1+ ey1i + ey2i + ey1i+y2i+y1iy2i ]

)
,

denotes the log-likelihood function for the saturated model evaluated at observed value yi,
The estimate of the dispersion parameter φ is same as in the equation (2.22).

10. Numerical examples

For numerical examples we use the Leisch et al. technique [15], with bindata package of
R program, to generate the multivariate binary data with given pairwise joint probabilities
for the correlated binary variables , Y1 and Y2. Depending on the parameter values in Table
3, these conditions must be satisfied: p11 ≤min(p1, p2) and p1 + p2− p11 ≤ 1, also p11 ≥
max(p1 + p2− 1,0). We will use different values of n = 50,500 with 500 replicates and
different values of the odds ratio ψ = 0.5,1,2. The estimates for the measure based on
regressive model and the alternative quadratic exponential form (AQEF) are solved using
R program with BBsolve or multiStart functions in BB package [25], for solving a large
system of non-linear equations with initial values 0’s for all estimates. The test statistics
for deviance are compared with χ2

n−p where p is the number of estimated parameters to
determine the most powerful model. Also the LRT is compared with χ2

1 to test for the
independence or specified value of the measure of association of the two variables Y1 and
Y2. For all tests, we used α = 0.05.

The estimates of the joint probabilities p̂rs(r,s = 0,1), the correlation ρ̂ and the odds ratio
ψ̂ for all measures are presented in Tables 4-11. The dispersion parameter ψ̂ is determined
to choose the best measure which has the lowest value of this estimate. The likelihood ratio
test (LRT) indicates the test for independence or specified values of the measure of associa-
tion via determining the number times out of 500 we accept H0. The deviance test shows the
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Table 3. Parameters values used to generate the correlated binary data

Odds Ratio p1 p2 p11
ψ = 0.5 0.6 0.4 0.2
ψ = 1 0.6 0.5 0.3
ψ = 2 0.6 0.6 0.4

adequacy of all models via how many times we accept the null hypotheses of good fit out of
500 for each measure. For the Cessi and Houwelingen measure (Table 7), we observed the
values of the score statistics, W and M, which should be around 1 if there is independence
and more than 1 if there is deviation from independence. Also the approximate relationship
between the odds ratio and tetrachoric correlation, ψ̃12 = (1.7)2ρ̃ , which is valid only in
the independence case. Hence, this is a trivial relationship which does not appear to hold in
case of dependence in the bivariate Bernoulli variables. For the measure based on regressive
model (Table 8), we can interpret, in addition to the other estimates, the estimates of depen-
dence measure (γ̂1). Finally, Table 11 demonstrates that we have some better results for the
alternative quadratic exponential form (AQEF) especially in the case of higher association
comparing with the results of an conventional quadratic exponential form (QEF).

Table 4. The results for Marshall and Olkin (M. O.) measure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

p̂11 0.1988 0.1994 0.3020 0.2989 0.4043 0.4004
p̂10 0.4046 0.4012 0.3012 0.3016 0.1979 0.2001
p̂01 0.1982 0.2009 0.1969 0.2010 0.1962 0.1997
p̂00 0.1984 0.1985 0.1999 0.1985 0.2016 0.1998
ρ̂ -0.1705 -0.1711 0.0045 -0.0052 0.1781 0.1668
ψ̂ 0.5715 0.4988 1.2459 0.9954 2.6433 2.0432

LRT 476 467 465 473 464 475
D. Test 500 500 500 500 500 500

φ̂ 1.2356 1.1670 1.2361 1.1671 1.2369 1.1671

Table 5. The results for Dale measure in the independence case

Estimates p̂11 p̂10 p̂01 p̂00 ρ̂ ψ̂ LRT D. Test φ̂

n = 50 0.2092 0.1991 0.2964 0.2953 0.0107 1.1368 496 476 15.2419
n = 500 0.2024 0.2006 0.2998 0.2972 0.00004 1.0077 495 500 1.4423

Table 6. The results for Teugels measure in the independence case

Estimates p̂11 p̂10 p̂01 p̂00 ρ̂ ψ̂ LRT D. Test φ̂

n = 50 0.1991 0.2005 0.3043 0.2961 -0.0088 1.0449 496 476 14.7686
n = 500 0.1996 0.2006 0.3006 0.2992 -0.0025 0.9963 498 500 1.4191
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Table 7. The results for Cessi and Houwelingen measure based on M.O. procedure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

ρ̃ -0.1737 -0.1711 0.0021 -0.0043 0.1204 0.1113
ψ̃12 -0.7287 -0.7143 0.0192 -0.0214 0.7579 0.6964

ψ̃12 = (1.7)2ρ̃ -0.5021 -0.4946 0.0062 -0.0124 0.3480 0.3216
W 2.4061 15.688 1.0742 1.0097 2.6072 14.9366
M 2.4061 15.688 1.0742 1.0097 2.6072 14.9366

Table 8. The results for Bonney measure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

p̂11 0.2095 0.2079 0.2943 0.2985 0.3998 0.3998
p̂10 0.2999 0.3026 0.2526 0.2526 0.1955 0.1933
p̂01 0.2965 0.2998 0.2504 0.2516 0.2069 0.2060
p̂00 0.1941 0.1897 0.2027 0.1971 0.1978 0.2009
ρ̂ -0.1970 -0.2057 -0.0195 -0.0197 0.1570 0.1682
ψ̂ 0.4838 0.4364 0.9868 0.9294 2.0710 2.0293
γ̂1 -0.3630 -0.4146 -0.0066 -0.0366 0.3640 0.3538

LRT 493 482 493 420 491 390
D. Test 500 500 500 500 500 500

φ̂ 1.3319 1.2529 1.3089 1.2261 1.2567 1.1784

Table 9. The results for GLM measure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

p̂11 0.2630 0.2604 0.2992 0.3009 0.3375 0.3411
p̂10 0.3406 0.3402 0.3034 0.2996 0.2647 0.2594
p̂01 0.2373 0.2428 0.1962 0.2023 0.1553 0.1589
p̂00 0.1591 0.1566 0.2012 0.1972 0.2425 0.2406
ρ̂ -0.1647 -0.1714 0.0039 -0.0052 0.1711 0.1672
ψ̂ 0.5715 0.4988 1.2459 0.9954 2.6433 2.0432

LRT 476 467 465 473 464 475
D. Test 500 500 500 500 500 500

φ̂ 1.3147 1.1759 1.3178 1.1733 1.3213 1.1735
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Table 10. The results for QEF measure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

p̂11 0.1988 0.1994 0.3020 0.2990 0.4043 0.4004
p̂10 0.4046 0.4012 0.3012 0.3015 0.1979 0.2001
p̂01 0.1982 0.2009 0.1969 0.2010 0.1962 0.1997
p̂00 0.1984 0.1985 0.1999 0.1985 0.2016 0.1998
ρ̂ -0.1705 -0.1711 0.0045 -0.0052 0.1781 0.1668
ψ̂ 0.5715 0.4988 1.2459 0.9954 2.6433 2.0432

LRT 439 329 500 500 387 279
D. Test 499 500 487 500 382 16

φ̂ 1.2356 1.1670 1.2361 1.1671 1.2369 1.1671

Table 11. The results for AQEF measure

Odds Ratio ψ = 0.5 ψ = 0.5 ψ = 1 ψ = 1 ψ = 2 ψ = 2
No. of Observations n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

p̂11 0.2706 0.2848 0.2898 0.2947 0.3126 0.3037
p̂10 0.3728 0.3717 0.2927 0.2978 0.2158 0.2123
p̂01 0.1875 0.2006 0.2003 0.1976 0.2175 0.2130
p̂00 0.1691 0.1429 0.2172 0.2099 0.2541 0.2710
ρ̂ -0.1076 -0.1440 0.0162 0.0118 0.1282 0.1477
ψ̂ 0.6557 0.5443 1.0996 1.0531 1.7527 1.8303

LRT 469 457 454 463 492 467
D. Test 496 500 492 500 497 436

φ̂ 1.2218 1.1284 1.2758 1.1755 1.3174 1.2342

11. Conclusions

It is evident from the results that all the measures of association considered in this study
and their test procedures provide almost similar results, but the generalized linear model
and the proposed alternative quadratic form approaches may be considered to have better
performance. From Table 4 to Table 11 we observe the following features of the measures
of bivariate Bernoulli variables based on their estimation and test results:

• For all measures, the estimates of joint probabilities, correlations and odds ratios
are almost close to their parameter values especially with large sample size.
• For the LRT, the results are similar for most of the measures and tend to accept H0.
• For the deviance test, the results are similar for all measures and indicate good fits.
• The deterestimates of dispersion parameter φ are similar for all measures, except

for Dale and Teugels mesures at n = 50 in the independence case ψ = 1, and all
estimates exceed one. This indicates the over dispersion case for the binary data.
The AQEF measure in Table 11 displays the lowest value of φ̂ with n = 50 and
ψ = 0.5.
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• For the Cessi and Houwelingen measure, the score statistics W and M are close to
1 if there is independence and this deals with the theoretical assumption, but the
approximate relationship between the log odds ratio and correlation could not be
demonstrated for all cases.
• A comparison between the quadratic exponential form (QEF) and the alternative

quadratic exponential form (AQEF) demonstrates that for higher values of the odds
ratio, the QEF is not a good measure as displayed by both the LRT and deviance
tests for large sample size but the AQEF overcomes this disadvantage as shown in
Table 11.
• For the measure based on the regressive approach, the results in Table 8 shows that

the LRT is good for n = 50, this is because the assumption for η that is fixed for
two parameters θ1 and θ2.

In sum, we may conclude that the GLM and proposed AQEF models display better perfor-
mance.
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