
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(4) (2013), 1041–1048

Finite Groups with Some M -Permutable Primary Subgroups

1HONGWEI BAO AND 2LONG MIAO
1Department of Mathematics and Physics, Bengbu College, Bengbu 233000, People’s Republic of China
2School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China

1big bao2003@163.com, 2lmiao@yzu.edu.cn

Abstract. Let d be the smallest generator number of a finite p-group P and M d(P) =
{P1,P2, · · ·Pd} be the set of maximal subgroups of P such that

⋂d
i=1 Pi = Φ(P). Then P is

called M -permutable in a finite group G, if there exists a subgroup B of G such that G = PB
and PiB < G for every Pi of Md(P). In this paper, we investigate the structure of finite
groups by some M -permutable subgroups of the Sylow p-subgroup. Some new results
about p-supersolvable groups and p-nilpotent groups are obtained.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords and phrases: p-supersolvable groups, p-nilpotent groups, M -permutable sub-
groups, finite groups.

1. Introduction

All groups considered in this paper will be finite. We shall adhere to the notation employed
in [4] and [17].

It seems that getting some critical information about some subgroups of Sylow subgroups
of a group G often helps us to understand the structure of finite groups. Many authors have
investigated the structure of a finite group when some subgroups of Sylow subgroups are
well situated in the group. For instance, Wang [20] introduced the concept of c-normal sub-
groups and proved that if every maximal subgroup of Sylow subgroup of G is c-normal in G,
then G is supersolvable. Afterwards this result was generalized [5–11,13,14]. In 2007, as an
interesting application of these generalizations, Skiba [18] fixed in every noncyclic Sylow
subgroup P of G a group D satisfying 1 < |D|< |P|, and then investigated the structure of G
under the assumption that all subgroups H with |H|= |D| are weakly s-permutable in G. Re-
cently, Miao and Lempken [15] considered M -supplemented subgroups and obtained some
new characterization of saturated formations containing all supersolvable groups. More
recently, Miao and Lempken [16] generalized the M -supplemented subgroups with M -
permutable subgroups and obtained some new results of supersolvable groups.

In this article, we continue to consider the p-nilpotency and p-supersolvability of finite
group by using some M -permutable primary subgroups.
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Definition 1.1. Let G be a group and p be a prime divisor of |G|. A p-subgroup P 6= 1
of G is called M -permutable in G if there exists a set Md(P) = {P1, · · · ,Pd} of maximal
subgroup Pi of P and a subgroup B of G such that

1)
⋂d

i=1 Pi = Φ(P) and |P : Φ(P)|= pd (so d is the smallest generator number of P);
2) G = PB and PiB = BPi < G for every Pi of Md(P).

Remark 1.1. Suppose that the prime p divides the order of a finite group G. Let P be a
Sylow p-subgroup of G. If G is a p-nilpotent group, then P is an M -permutable subgroup
of G. In fact, this is true if G is a p-supersolvable group.(see Lemma 2.11)

However, if, in addition, we assume that P is a cyclic group of order p2, then P has
exactly one maximal subgroup P1. Then P1 is not M -permutable in G.

Remark 1.2. In a finite group G, no p-subgroup of Φ(G) can be M -permutable in G.

Remark 1.3. Let G be a finite group. Consider an abelian minimal normal subgroup N of
G. Then we have the following.

1) No proper subgroup of N can be M -permutable in G.
2) If N is M -permutable in G, then N is cyclic and N∩Φ(G) = 1.

Recall that, a subgroup H is called M -supplemented in a finite group G, if there exists a
subgroup B of G such that G = HB and H1B is a proper subgroup of G for every maximal
subgroup H1 of H([15]). Obviously, if a p-subgroup H is M -supplemented in G, then H is
also M -permutable in G. The following example shows that the converse is not true.

Example 1.1. G =< s,a > × < t,b > where |a| = |b| = 3, |s| = |t| = 2 and < s,a >∼=<
t,b >∼= S3. Clearly, P =< a,b >∈ Syl3(G), d = 2 and M2(P) = {< a >,< b >}. Choose
B =< s, t >. < a > B = B < a >,< b > B = B < b >, but < ab > B 6= B < ab >. Therefore
we conclude that Sylow 3-subgroup of G is M -permutable in G, but is not M -supplemented
in G.

2. Preliminaries

Firstly, we list here some known results which will be useful in the sequel.

Lemma 2.1. [16, Lemma 2.1] Let G be a group and P 6= 1 be a p-subgroup of G for some
p ∈ π(G). Assume that P is M -permutable in G with respect to Md(P) and that L is a
normal subgroup of G contained in P. Then the following statements hold:

1) There exists a subgroup B of G such that G = PB and |G : PiB| = p for every
Pi ∈Md(P); moreover, P∩B = Pi∩B = Φ(P)∩B.

2) If P≤ H ≤ G, then P is M -permutable in H.
3) L≤Φ(G) if and only if L≤Φ(P).
4) If L≤Φ(P), then P/L is M -permutable in G/L.
5) If L is minimal normal in G and L � Φ(P), then |L|= p.
6) If K is a normal p′-subgroup, then PK/K is M -permutable in G/K.

Lemma 2.2. [3, Main Theorem] Suppose a group G has a Hall π-subgroup where π is a
set of primes not containing 2. Then all Hall π-subgroups of G are conjugate.

Lemma 2.3. [4, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of a
group G. If N ∩Φ(G) = 1, then the Fitting subgroup F(N) of N is the direct product of
minimal normal subgroups of G which is contained in N.
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Lemma 2.4. [12, Theorem I.6.6] If H is a subgroup of G with |G : H| = p, where p is the
smallest prime divisor of |G|, then H E G.

Lemma 2.5. [4, Lemma 3.6.10] Let K be a normal subgroup of G and P be a p-subgroup of
G where p is a prime divisor of |G|. Then NG/K(PK/K) = NG(P1)K/K, here P1 is a Sylow
p-subgroup of PK.

Lemma 2.6. [2, Theorem 3.2, Chapter 6] If G is a p-solvable group where p is a prime
divisor of |G|, then CG(Fp(G))≤ Fp(G).

Lemma 2.7. [8, Lemma 2.6] Let G be a p-solvable group. Suppose that G has a chief
series:

1≤ ·· · ≤Φ(G) = K0 ≤ K1 · · · ≤ Ks = Fp(G)≤ ·· · ≤ G

such that Ki/Ki−1 are cyclic groups of order p or p
′
-groups for all 1 ≤ i ≤ s. Then G is

p-supersolvable.

Lemma 2.8. [16, Lemma 2.11] Let G be a group and P ∈ Sylp(G), where p is the smallest
prime divisor of |G|. Then G is p-nilpotent if and only if every maximal subgroup of P is
M -permutable in G or has a p-nilpotent supplement in G .

Lemma 2.9. [19] If P is a Sylow p-subgroup of a group G and N E G such that P∩N ≤
Φ(P), then N is p-nilpotent.

Lemma 2.10. Suppose that G is a group, π(G) = {p1, p2 = p, p3, · · · , pn, p1 < p2 < · · ·<
pn} and P is a Sylow p-subgroup of G. If P is M -permutable in G, then G is p-solvable.

Proof. Induction on the order of G. By the hypotheses, P is M -permutable in G. There
exists a suitable set Md(P) and a subgroup B of G such that G = PB and PiB < G for every
Pi ∈Md(P)(i = 1,2, · · · ,d). By Lemma 2.1(1), |G : PiB|= p and P∩B = Pi∩B = Φ(P)∩B.
Clearly, G/(PiB)G is isomorphic to a subgroup of the symmetric group Sp and |G/(PiB)G|=
pα1

1 p. Therefore G/∩d
i=1 (PiB)G is p-solvable. If ∩d

i=1(PiB)G = 1, then G is solvable by
Burnside Theorem. So we may assume ∩d

i=1(PiB)G 6= 1. Since P∩ (∩d
i=1(PiB)G) ≤ P∩

(∩d
i=1PiB) =∩d

i=1(P∩PiB) =∩d
i=1{Pi(P∩B)}= Φ(P), ∩d

i=1(PiB)G is p-nilpotent by Lemma
2.9. Thereby G is p-solvable.

Lemma 2.11. If G is a p-supersolvable groups where p ∈ π(G), then Sylow p-subgroup P
of G is M -permutable in G.

Proof. Induction on the order of G. Let L be a minimal normal subgroup of G. Since G
is p-supersolvable, L is a p

′
-subgroup or |L| = p. If L is a p

′
-subgroup, then G/L sat-

isfies the condition and hence PL/L is M -permutable in G/L. It is easy to see that P
is M -permutable in G, a contradiction. On the other hand, if Φ(G) 6= 1, then we may
get the same contradiction by Lemma 2.1(3)(4). So we have Φ(G) = 1 and Fp(G) =
Op(G) = L1×L2 · · ·Lt by Lemma 2.3 where |Li| = p. By Lemma 2.6 and the hypotheses,
CG(Op(G)) ≤ Op(G). Moreover, since |L| = p, L ≤ Z(P) and Op(G) ≤ Z(P). It follows
that P = CG(Op(G)) = Op(G) and hence P is M -permutable in G. The proof is over.

3. Main results

Theorem 3.1. Let G be a group and P ∈ Sylp(G) where p is the smallest prime divisor
of |G|. Then G is p-nilpotent if and only if either P is cyclic or P has a subgroup D with
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1 < D < P, and every subgroup E of P with order |D| not having a p-nilpotent supplement
is M -permutable in G.

Proof. Since the necessity part is obvious, we only need to consider the sufficiency part.
Assume the theorem is false and we may choose G to be a counterexample of the minimal
order.

If P is cyclic, then G is p-nilpotent by Burnside p-nilpotence Theorem, a contradiction.
By hypotheses, we may assume that P is not cyclic, then there exists a subgroup D with
1 < D < P and every subgroup E of P with order |D| not having a p-nilpotent supplement is
M -permutable in G. Fix a subgroup E of P with order |D|. Let P1 be a maximal subgroup
of P with E ≤ P1.

If E has a p-nilpotent supplement K in G, then G = EK = P1K and Kp′ is a Hall p
′
-

subgroup of K. Hence G = P1NG(Kp′ ) = PNG(Kp′ ). Since G is not p-nilpotent, obviously,
NG(Kp′ ) is not normal in G; in particular, p2 | |G : NG(Kp′ )|. So we may assume that
P∩NG(Kp′ )≤ L2 < L1 where L1 is a maximal subgroup of P and L2 is maximal in L1. By
the hypotheses, L1 contains a subgroup T with order |D|. If T has a p-nilpotent supplement
in G, then L1 also has a p-nilpotent supplement in G and hence there exists a p-nilpotent
subgroup H such that G = T H = L1H. With the similar discussion as above we obtain
G = L1NG(Hp′ ) where Hp′ is a Hall p

′
-subgroup of H and of course of G. By Lemma 2.2,

there exists an element x of P such that NG(Kp′ ) = (NG(Hp′ ))
x. Therefore G = L1NG(Hp′ ) =

(L1NG(Hp′ ))
x = L1NG(Kp′ ). Furthermore, P = P∩L1NG(Kp′ ) = L1(P∩NG(Kp′ )) = L1, a

contradiction.
So we may assume T is M -permutable in G. There exists a suitable set Md(T ) and a

subgroup B of G such that G = T B = L1B and TiB < G for every Ti of Md(T ). If |D|= |L1|,
then G is p-nilpotent by Lemma 2.8, a contradiction. If |D| < |L1|, then |G : TiB| = p by
Lemma 2.1(1) and hence TiB E G by Lemma 2.4. So we have G = T B = PB = PTiB and
P∩TiB = Ti(P∩B) is a Sylow p-subgroup of TiB. Clearly, Ti(P∩B) is maximal in P. If
any subgroup N of Ti(P∩B) with order |D| has no p-nilpotent supplement in TiB, then N
also has no p-nilpotent supplement in G and hence is M -permutable in G, furthermore, N
is M -permutable in TiB by Lemma 2.1(2). Therefore TiB satisfies the hypotheses of the
theorem and hence TiB is p-nilpotent by the minimal choice of G. On the other hand, since
TiB is normal in G and |G : TiB|= p, we get G is p-nilpotent, a contradiction.

Final contradiction completes our proof.

Theorem 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
Then G is p-nilpotent if and only if NG(P) is p-nilpotent and P has a nontrivial subgroup D
such that every subgroup E of P with |E|= |D| is M -permutable in G.

Proof. Based on the definition of M -permutable subgroups, the necessity part is obvious.
Next we only need to consider the sufficiency part. Assume that the assertion is false and
choose G to be a counterexample of the minimal order. Then we consider the following
steps.

1) Op′ (G) = 1. In fact, if Op′ (G) 6= 1, then we consider the quotient group G/Op′ (G).
By Lemma 2.1(6) and 2.5, G/Op′ (G) satisfies the condition of the theorem, the
minimal choice of G implies that G/Op′ (G) is p-nilpotent and hence G is p-nilpotent,
a contradiction.
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2) If S is a proper subgroup of G containing P, then S is p-nilpotent. Clearly, NS(P)≤
NG(P) and hence NS(P) is p-nilpotent. Applying Lemma 2.1(2) and 2.5, S satisfies
the hypotheses of our theorem. Then the minimal choice of G implies that S is
p-nilpotent.

3) G = PQ, where Q is the Sylow q-subgroup of G with q 6= p. Since G is not p-
nilpotent, by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8], there
exists a characteristic subgroup H of P such that NG(H) is not p-nilpotent. Since
NG(P) is p-nilpotent, we may choose a characteristic subgroup H of P such that
NG(H) is not p-nilpotent, but NG(K) is p-nilpotent for any characteristic subgroup
K of P with H < K ≤ P. Since NG(P)≤ NG(H) and NG(H) is not p-nilpotent, we
have NG(P) < NG(H). Then by 2), we have NG(H) = G. This leads to Op(G) 6= 1
and NG(K) is p-nilpotent for any characteristic subgroup K of P such that Op(G) <
K ≤ P. Now by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8],
again, we see that G/Op(G) is p-nilpotent and therefore, G is p-solvable. Since
G is p-solvable, for any q ∈ π(G) with q 6= p, there exists a Sylow q-subgroup Q
of G such that PQ = QP is a subgroup of G by Gorenstein [2, Theorem 6.3.5]. If
PQ < G, then PQ is p-nilpotent by 2). This leads to Q≤CG(Op(G))≤ Op(G) by
Lemma 2.6. Since Op′ (G) = 1, a contradiction. Thus we have proven that G = PQ.

4) Φ(G) = 1. Assume that Φ(G) 6= 1. Notice that, by definition of M -permutable
subgroup and Remark 1.2, no subgroup of Φ(G) can be M -permutable in G. Hence
|D| > |Φ(G)| and let E be a subgroup of P with |D| = |E| and Φ(G) < E. By
Lemma 2.1(3) we have that Φ(G) ≤ Φ(E), since E is M -permutable in G. By
Lemma 2.1(4) we have that E/Φ(G) is M -permutable in G/Φ(G). By minimality
of G, the group G/Φ(G) is p-nilpotent. Since the class of all p-nilpotent groups
is a saturated formation, this implies that G is p-nilpotent. This contradicts our
assumption. Hence, Φ(G) = 1.

5) Every minimal normal subgroup of G is cyclic. Let N be a minimal normal sub-
group of G. By Remark 1.3, we have that |N| ≤ |D|. Let E be an M -permutable
subgroup of G such that N ≤ E. Then there exists a subgroup B such that G = BE
and a set M of maximal subgroups of E such that BEi is a proper subgroup of G
for every Ei ∈M . By Lemma 2.1(3) and step 4), E = NEi for some Ei ∈M . Then
G = (BEi)N. This implies that BEi is a maximal subgroup of G and BEi ∩N = 1.
Hence |N|= |G : BEi|= p. Therefore N is cyclic.

6) Final contradiction. Now apply [1, Theorem 2.3.24] and G is supersolvable. Since
Oq(G) = 1, this implies that P is normal in G. But then G = NG(P) is p-nilpotent.
This is a contradiction.

The final contradiction completes our proof.

Corollary 3.1. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. If
NG(P) is p-nilpotent and every maximal subgroup of P is M -permutable in G, then G is
p-nilpotent.

Corollary 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
Then G is p-nilpotent if and only if NG(P) is p-nilpotent and P is M -permutable in G.

Corollary 3.3. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
If NG(P) is p-nilpotent and every minimal subgroup of P is M -permutable in G, then G is
p-nilpotent.
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Theorem 3.3. Let G be a p-solvable group and P be a Sylow p-subgroup of G. Suppose
that P has a subgroup D such that 1 < D ≤ P and every subgroup E of P with |E|= |D| is
M -permutable in G, then G is p-supersolvable.

Proof. Assume that the assertion is false and choose G to be a counterexample of the mini-
mal order. Furthermore, we have

1) Op′ (G) = 1. If L = Op′ (G) 6= 1, then PL/L is a Sylow p-subgroup of G/L. By
hypotheses, P has a subgroup D such that 1 < D < P and every subgroup E of
P with |E| = |D| is M -permutable in G. Clearly, EL/L is also M -permutable
in G/L by Lemma 2.1(6). Therefore G/L satisfies the condition of the theorem.
The minimal choice of G implies that G/L is p-supersolvable, and hence G is p-
supersolvable, a contradiction.

2) Op(G) 6= 1. Since G is p-solvable and Op′ (G) = 1, we obtain that the minimal
normal subgroup of G is an abelian p-group and hence Op(G) 6= 1.

3) Φ(G) = 1. Assume that Φ(G) 6= 1. Notice that, by definition of M -permutable
subgroup and Remark 1.2, no subgroup of Φ(G) can be M -permutable in G. Hence
|D| > |Φ(G)| and let E be a subgroup of P with |D| = |E| and Φ(G) < E. By
Lemma 2.1(3) we have that Φ(G) ≤ Φ(E), since E is M -permutable in G. By
Lemma 2.1(4) we have that E/Φ(G) is M -permutable in G/Φ(G). By minimality
of G, the group G/Φ(G) is p-nilpotent. Since the class of all p-nilpotent groups
is a saturated formation, this implies that G is p-nilpotent. This contradicts our
assumption. Hence, Φ(G) = 1.

By Lemma 2.3, Op(G) = R1× . . .×Rt with minimal normal subgroups R1, ...,Rt of G.
Let L be any minimal normal subgroup of G contained in Op(G). Assume that |D| < |L|
for some L ∈ {R1, ...,Rt} and let E < L with |E|= |D|. By hypotheses, E is M -permutable
in G, i.e. there exists a set Md(E) and a subgroup B of G such that G = EB and EiB < G
for every Ei ∈Md(E). Since Lemma 2.1(1) and Φ(E) ≤ Φ(Op(G)) = 1, we also have
E ∩B = Φ(E)∩B = 1. Now G = EB = LB and thus 1 6= L∩B E G. Since L is minimal
normal in G, we get L≤ B and hence G = LB = B, a contradiction.

Now let L ≤ E ≤ P with |E| = |D|. Assume that E is M -permutable in G; i.e. there
exists B≤G and a set Md(E) such that G = EB and ElB < G with |G : ElB|= p by Lemma
2.1(1). Since Op(G)∩Φ(G) = 1, there exists Ei ∈Md(E) with L � Ei and hence E = LEi as
well as G = EB = LEiB and L∩EiB E G. As L is minimal normal in G, we get L � EiB and
thus |L|= |G : EiB|= p, otherwise, if L≤ EiB, then EiB = LEiB = EB = G, a contradiction.

Thus Op(G) is the direct product of some minimal normal subgroup of order p of G by
Lemma 2.3. Since G is p-solvable, CG(Op(G)) = Op(G). It follows from G/CG(Op(G)) =
G/Op(G) is p-supersolvable and Lemma 2.7 that G is p-supersolvable, a final contradiction.

The final contradiction completes our proof.

Corollary 3.4. Let G be a group, π(G) = {p1, p2 = p, · · · , pn, p1 < p2 < · · · < pn} and P
be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < D≤ P and every subgroup
T of H with |T |= |D| is M -permutable in G, then G is p-supersolvable.

Proof. According to Theorem 3.3, we only need to prove G is p-solvable. Assume that the
claim is false and choose G to be a counterexample of the minimal order. Then we have

1) Op′ (G) = 1. Assume that L = Op′ (G) 6= 1, then we consider the quotient group
G/L. Obviously, PL/L is a Sylow p-subgroup of G/L and DL/L is a subgroup of
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PL/L with 1 < DL/L ≤ PL/L. For every subgroup T/L of PL/L with |T L/L| =
|DL/L|, we have T = T1L with |T1|= |D|. Since T1 is M -permutable in G, we get
that T/L is M -permutable in G/L by Lemma 2.1(6). Therefore G/L satisfies the
condition of the theorem. The minimal choice of G implies that G/L is p-solvable
and hence G is p-solvable, a contradiction.

2) G is p-solvable. If D = P, then G is p-solvable by Lemma 2.10, a contradiction.
So we may assume that D < P. Let T be a subgroup of P with |T | = |D|. By
hypotheses, there exists a suitable set Md(T ) and a subgroup B of G such that
G = T B and TiB < G for every Ti of Md(T ). Applying Lemma 2.1(1), we have
|G : TiB|= p. Then G/(TiB)G is isomorphic to a subgroup of the symmetric group
Sp and |G/(TiB)G| = pα1

1 p, therefore G/(TiB)G is p-solvable. Clearly, for every
Ti of Md(T ), we have (TiB)G 6= 1 and hence TiB 6= 1. Let L = (TiB)p be a Sylow
p-subgroup of TiB. Then L is a maximal subgroup of P. If |D|= |L|, then L is M -
permutable in TiB by Lemma 2.1(2) and hence TiB is p-solvable by Lemma 2.10.
This implies that (TiB)G is p-solvable.

So we may assert that |D|< |L|. It follows from Lemma 2.1(2) that every subgroup A of
L with |A| = |D| is M -permutable in TiB. The minimal choice of G implies that TiB is p-
solvable and hence (TiB)G is p-solvable. Therefore G is p-solvable and G is p-supersolvable
by Theorem 3.3.
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