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Abstract. Let d be the smallest generator number of a finite p-group P and .# ;(P) =
{P1,P2,---P;} be the set of maximal subgroups of P such that ﬂ;j:l P, = ®(P). Then P is
called .Z -permutable in a finite group G, if there exists a subgroup B of G such that G = PB
and PB < G for every P, of .#,(P). In this paper, we investigate the structure of finite
groups by some .Z-permutable subgroups of the Sylow p-subgroup. Some new results
about p-supersolvable groups and p-nilpotent groups are obtained.
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1. Introduction

All groups considered in this paper will be finite. We shall adhere to the notation employed
in [4] and [17].

It seems that getting some critical information about some subgroups of Sylow subgroups
of a group G often helps us to understand the structure of finite groups. Many authors have
investigated the structure of a finite group when some subgroups of Sylow subgroups are
well situated in the group. For instance, Wang [20] introduced the concept of c-normal sub-
groups and proved that if every maximal subgroup of Sylow subgroup of G is c-normal in G,
then G is supersolvable. Afterwards this result was generalized [5—11,13,14]. In 2007, as an
interesting application of these generalizations, Skiba [18] fixed in every noncyclic Sylow
subgroup P of G a group D satisfying 1 < |D| < |P|, and then investigated the structure of G
under the assumption that all subgroups H with |H| = |D| are weakly s-permutable in G. Re-
cently, Miao and Lempken [15] considered . -supplemented subgroups and obtained some
new characterization of saturated formations containing all supersolvable groups. More
recently, Miao and Lempken [16] generalized the .# -supplemented subgroups with .Z -
permutable subgroups and obtained some new results of supersolvable groups.

In this article, we continue to consider the p-nilpotency and p-supersolvability of finite
group by using some . -permutable primary subgroups.
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Definition 1.1. Ler G be a group and p be a prime divisor of |G|. A p-subgroup P # 1
of G is called M -permutable in G if there exists a set My(P) = {Py, -+ ,P;} of maximal
subgroup P; of P and a subgroup B of G such that
1) N, P =®(P) and |P: ®(P)| = p? (so d is the smallest generator number of P);
2) G = PB and P.B = BP; < G for every P, of #y(P).

Remark 1.1. Suppose that the prime p divides the order of a finite group G. Let P be a
Sylow p-subgroup of G. If G is a p-nilpotent group, then P is an . -permutable subgroup
of G. In fact, this is true if G is a p-supersolvable group.(see Lemma 2.11)

However, if, in addition, we assume that P is a cyclic group of order p?, then P has
exactly one maximal subgroup P;. Then P; is not .# -permutable in G.

Remark 1.2. In a finite group G, no p-subgroup of ®(G) can be .# -permutable in G.

Remark 1.3. Let G be a finite group. Consider an abelian minimal normal subgroup N of
G. Then we have the following.

1) No proper subgroup of N can be . -permutable in G.

2) If N is .# -permutable in G, then N is cyclic and NN®(G) = 1.

Recall that, a subgroup H is called . -supplemented in a finite group G, if there exists a
subgroup B of G such that G = HB and H, B is a proper subgroup of G for every maximal
subgroup H; of H([15]). Obviously, if a p-subgroup H is .# -supplemented in G, then H is
also . -permutable in G. The following example shows that the converse is not true.

Example 1.1. G =< s,a > X <t,b> where |a| = |b| =3,|s| = |[f| =2 and < 5,a >=<
t,b > 8;. Clearly, P =< a,b >€ Syl3(G), d =2 and .#,(P) = {< a >,< b >}. Choose
B=<st> <a>B=B<a>,<b>B=B<b>,but<ab > B# B < ab>. Therefore
we conclude that Sylow 3-subgroup of G is .# -permutable in G, but is not .# -supplemented
in G.

2. Preliminaries

Firstly, we list here some known results which will be useful in the sequel.

Lemma 2.1. [16, Lemma 2.1] Let G be a group and P # 1 be a p-subgroup of G for some
p € n(G). Assume that P is . -permutable in G with respect to #y(P) and that L is a
normal subgroup of G contained in P. Then the following statements hold:

1) There exists a subgroup B of G such that G = PB and |G : P,B| = p for every
P, € My(P); moreover, PNB=P,NB=®(P)NB.

2) IfP <H <G, then P is M -permutable in H.

3) L< ®(G) ifand only if L < O(P).

4) If L < D(P), then P/L is M -permutable in G/L.

5) If L is minimal normal in G and L & ®(P), then |L| = p.

6) If K is a normal p'-subgroup, then PK /K is .# -permutable in G/K.

Lemma 2.2. [3, Main Theorem] Suppose a group G has a Hall w-subgroup where T is a
set of primes not containing 2. Then all Hall w-subgroups of G are conjugate.

Lemma 2.3. [4, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of a
group G. If NN®(G) = 1, then the Fitting subgroup F(N) of N is the direct product of
minimal normal subgroups of G which is contained in N.
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Lemma 2.4. [12, Theorem 1.6.6] If H is a subgroup of G with |G : H| = p, where p is the
smallest prime divisor of |G|, then H < G.

Lemma 2.5. [4, Lemma 3.6.10] Let K be a normal subgroup of G and P be a p-subgroup of
G where p is a prime divisor of |G|. Then Ngx(PK/K) = Ng(P1)K /K, here Py is a Sylow
p-subgroup of PK.

Lemma 2.6. [2, Theorem 3.2, Chapter 6] If G is a p-solvable group where p is a prime
divisor of |G|, then C(F,(G)) < F,(G).

Lemma 2.7. [8, Lemma 2.6] Let G be a p-solvable group. Suppose that G has a chief
series:

1< <PG) =Ky <Ki <K =F)(G) <+ <G
such that K;/K;_ are cyclic groups of order p or p'-groups forall1 <i<s. Then G is
p-supersolvable.

Lemma 2.8. [16, Lemma 2.11] Let G be a group and P € Syl,(G), where p is the smallest
prime divisor of |G|. Then G is p-nilpotent if and only if every maximal subgroup of P is
M -permutable in G or has a p-nilpotent supplement in G .

Lemma 2.9. [19] If P is a Sylow p-subgroup of a group G and N < G such that PNN <
®(P), then N is p-nilpotent.

Lemma 2.10. Suppose that G is a group, ©1(G) = {p1,p2 = p,p3,-** s Pn,P1 < P2 < -+ <
pn} and P is a Sylow p-subgroup of G. If P is 4 -permutable in G, then G is p-solvable.

Proof. Induction on the order of G. By the hypotheses, P is .# -permutable in G. There
exists a suitable set .#,(P) and a subgroup B of G such that G = PB and P,B < G for every
P e #y(P)(i=1,2,---,d). ByLemma2.1(1), |G: P.B| = pand PNB=PFNB=®(P)NB.
Clearly, G/(P:B)¢ is isomorphic to a subgroup of the symmetric group S, and |G/(P;B)g| =
pl'p. Therefore G/ N, (P.B)g is p-solvable. If N%_,(PB)g = 1, then G is solvable by
Burnside Theorem. So we may assume N¢_, (PB)g # 1. Since PN (N, (PB)g) < PN
(nd_,PB)=n¢(PNPB) =N’ {P(PNB)} =®(P),NL, (PB)g is p-nilpotent by Lemma
2.9. Thereby G is p-solvable. 1

Lemma 2.11. If G is a p-supersolvable groups where p € ©t(G), then Sylow p-subgroup P
of G is M -permutable in G.

Proof. Induction on the order of G. Let L be a minimal normal subgroup of G. Since G
is p-supersolvable, L is a p,-subgroup or |L|=p. If Lisa p/-subgroup, then G/L sat-
isfies the condition and hence PL/L is .# -permutable in G/L. It is easy to see that P
is ./ -permutable in G, a contradiction. On the other hand, if ®(G) # 1, then we may
get the same contradiction by Lemma 2.1(3)(4). So we have ®(G) = 1 and F,(G) =
0,(G) =Ly x Ly---L; by Lemma 2.3 where |L;| = p. By Lemma 2.6 and the hypotheses,
Cc(0,(G)) < 0,(G). Moreover, since |L| = p, L < Z(P) and 0,(G) < Z(P). It follows
that P = C(0,(G)) = O,(G) and hence P is .#-permutable in G. The proof is over. 1

3. Main results

Theorem 3.1. Let G be a group and P € Syl,(G) where p is the smallest prime divisor
of |G|. Then G is p-nilpotent if and only if either P is cyclic or P has a subgroup D with
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1 < D < P, and every subgroup E of P with order |D| not having a p-nilpotent supplement
is M -permutable in G.

Proof. Since the necessity part is obvious, we only need to consider the sufficiency part.
Assume the theorem is false and we may choose G to be a counterexample of the minimal
order.

If P is cyclic, then G is p-nilpotent by Burnside p-nilpotence Theorem, a contradiction.
By hypotheses, we may assume that P is not cyclic, then there exists a subgroup D with
1 < D < P and every subgroup E of P with order |D| not having a p-nilpotent supplement is
M -permutable in G. Fix a subgroup E of P with order |D|. Let P; be a maximal subgroup
of Pwith E < P.

If E has a p-nilpotent supplement K in G, then G = EK = P|K and Kp/ is a Hall p/-
subgroup of K. Hence G = P Ng (Kp/) = PNg (Kp/ ). Since G is not p-nilpotent, obviously,
NG(KP/) is not normal in G; in particular, p? | |G : Ng(Kp/)|. So we may assume that
P ﬂNG(KP/) < L, < Ly where L; is a maximal subgroup of P and L; is maximal in L;. By
the hypotheses, L; contains a subgroup T with order |D|. If T has a p-nilpotent supplement
in G, then L; also has a p-nilpotent supplement in G and hence there exists a p-nilpotent
subgroup H such that G = TH = L{H. With the similar discussion as above we obtain
G= LlNg(Hp/) where Hp/ is a Hall p/—subgroup of H and of course of G. By Lemma 2.2,
there exists an element x of P such that N(;(Kp/ )= (Ng(Hp/ ))*. Therefore G=L 1NG(HP/ )=
(LlN(;(Hp/))x = LlNG(Kpl). Furthermore, P = PﬁLlNG(Kp/) =1L (PﬂNG(Kp/)) =L, a
contradiction.

So we may assume T is .#-permutable in G. There exists a suitable set .#;(T) and a
subgroup B of G such that G=TB = LB and T;B < G for every T; of .#,(T). If |D| = |L1|,
then G is p-nilpotent by Lemma 2.8, a contradiction. If |D| < |L;|, then |G : T;B| = p by
Lemma 2.1(1) and hence 7;B < G by Lemma 2.4. So we have G = TB = PB = PT;B and
PNT;B =T, (PNB) is a Sylow p-subgroup of T;B. Clearly, 7;(PNB) is maximal in P. If
any subgroup N of T;(P N B) with order |D| has no p-nilpotent supplement in 7;B, then N
also has no p-nilpotent supplement in G and hence is .# -permutable in G, furthermore, N
is ./ -permutable in 7;B by Lemma 2.1(2). Therefore 7;B satisfies the hypotheses of the
theorem and hence 7;B is p-nilpotent by the minimal choice of G. On the other hand, since
T;B is normal in G and |G : T;B| = p, we get G is p-nilpotent, a contradiction.

Final contradiction completes our proof. 1

Theorem 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
Then G is p-nilpotent if and only if Ng(P) is p-nilpotent and P has a nontrivial subgroup D
such that every subgroup E of P with |E| = |D| is .# -permutable in G.

Proof. Based on the definition of .# -permutable subgroups, the necessity part is obvious.
Next we only need to consider the sufficiency part. Assume that the assertion is false and
choose G to be a counterexample of the minimal order. Then we consider the following
steps.
1) o, (G) = 1. In fact, if 0, (G) # 1, then we consider the quotient group G/ 0, (G).
By Lemma 2.1(6) and 2.5, G/ 0, (G) satisfies the condition of the theorem, the
minimal choice of G implies that G/ Op/ (G) is p-nilpotent and hence G is p-nilpotent,
a contradiction.
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If S is a proper subgroup of G containing P, then S is p-nilpotent. Clearly, Ns(P) <
Ng(P) and hence Ng(P) is p-nilpotent. Applying Lemma 2.1(2) and 2.5, S satisfies
the hypotheses of our theorem. Then the minimal choice of G implies that S is
p-nilpotent.

G = PQ, where Q is the Sylow g-subgroup of G with ¢ # p. Since G is not p-
nilpotent, by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8], there
exists a characteristic subgroup H of P such that Ng(H) is not p-nilpotent. Since
Ng(P) is p-nilpotent, we may choose a characteristic subgroup H of P such that
Ng(H) is not p-nilpotent, but Ng(K) is p-nilpotent for any characteristic subgroup
K of P with H < K < P. Since Ng(P) < Ng(H) and Ng(H) is not p-nilpotent, we
have Ng(P) < Ng(H). Then by 2), we have Ng(H) = G. This leads to 0,(G) # 1
and Ng(K) is p-nilpotent for any characteristic subgroup K of P such that 0,(G) <
K < P. Now by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8],
again, we see that G/O,(G) is p-nilpotent and therefore, G is p-solvable. Since
G is p-solvable, for any g € (G) with g # p, there exists a Sylow g-subgroup Q
of G such that PQ = QP is a subgroup of G by Gorenstein [2, Theorem 6.3.5]. If
PQ < G, then PQ is p-nilpotent by 2). This leads to Q < C;(0,(G)) < 0,(G) by
Lemma 2.6. Since Op/ (G) =1, a contradiction. Thus we have proven that G = PQ.
®(G) = 1. Assume that ®(G) # 1. Notice that, by definition of .#-permutable
subgroup and Remark 1.2, no subgroup of ®(G) can be ./ -permutable in G. Hence
|D| > |®(G)| and let E be a subgroup of P with |D| = |E| and ®(G) < E. By
Lemma 2.1(3) we have that ®(G) < ®(E), since E is .# -permutable in G. By
Lemma 2.1(4) we have that E/®(G) is .# -permutable in G/®(G). By minimality
of G, the group G/®(G) is p-nilpotent. Since the class of all p-nilpotent groups
is a saturated formation, this implies that G is p-nilpotent. This contradicts our
assumption. Hence, ®(G) = 1.

Every minimal normal subgroup of G is cyclic. Let N be a minimal normal sub-
group of G. By Remark 1.3, we have that |N| < |D|. Let E be an .# -permutable
subgroup of G such that N < E. Then there exists a subgroup B such that G = BE
and a set .# of maximal subgroups of E such that BE; is a proper subgroup of G
for every E; € /. By Lemma 2.1(3) and step 4), E = NE; for some E; € .# . Then
G = (BE;)N. This implies that BE; is a maximal subgroup of G and BE;N\N = 1.
Hence |[N| = |G : BE;| = p. Therefore N is cyclic.

6) Final contradiction. Now apply [1, Theorem 2.3.24] and G is supersolvable. Since
0,4(G) = 1, this implies that P is normal in G. But then G = Ng(P) is p-nilpotent.

This is a contradiction.
The final contradiction completes our proof. 1

Corollary 3.1. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. If
Ng(P) is p-nilpotent and every maximal subgroup of P is .# -permutable in G, then G is
p-nilpotent.

Corollary 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
Then G is p-nilpotent if and only if Ng(P) is p-nilpotent and P is ./ -permutable in G.

Corollary 3.3. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G.
If Ng(P) is p-nilpotent and every minimal subgroup of P is .# -permutable in G, then G is
p-nilpotent.
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Theorem 3.3. Let G be a p-solvable group and P be a Sylow p-subgroup of G. Suppose
that P has a subgroup D such that 1 < D < P and every subgroup E of P with |E| = |D| is
M -permutable in G, then G is p-supersolvable.

Proof. Assume that the assertion is false and choose G to be a counterexample of the mini-
mal order. Furthermore, we have

1) OP/(G) =1. IfL= OP/(G) # 1, then PL/L is a Sylow p-subgroup of G/L. By
hypotheses, P has a subgroup D such that 1 < D < P and every subgroup E of
P with |E| = |D| is .#-permutable in G. Clearly, EL/L is also .#-permutable
in G/L by Lemma 2.1(6). Therefore G/L satisfies the condition of the theorem.
The minimal choice of G implies that G/L is p-supersolvable, and hence G is p-
supersolvable, a contradiction.

2) 0,(G) # 1. Since G is p-solvable and 0, (G) = 1, we obtain that the minimal
normal subgroup of G is an abelian p-group and hence 0,(G) # 1.

3) ®(G) = 1. Assume that ®(G) # 1. Notice that, by definition of .# -permutable
subgroup and Remark 1.2, no subgroup of ®(G) can be ./ -permutable in G. Hence
|D| > |®(G)| and let E be a subgroup of P with |D| = |E| and ®(G) < E. By
Lemma 2.1(3) we have that ®(G) < ®(E), since E is .# -permutable in G. By
Lemma 2.1(4) we have that E/®(G) is .# -permutable in G/®(G). By minimality
of G, the group G/®(G) is p-nilpotent. Since the class of all p-nilpotent groups
is a saturated formation, this implies that G is p-nilpotent. This contradicts our
assumption. Hence, ®(G) = 1.

By Lemma 2.3, 0,(G) = Ry X ... x R; with minimal normal subgroups Ry, ...,R; of G.
Let L be any minimal normal subgroup of G contained in O,(G). Assume that |[D| < |L|
for some L € {Ry,...,R;} and let E < L with |[E| = |D|. By hypotheses, E is .# -permutable
in G, i.e. there exists a set .#;(E) and a subgroup B of G such that G = EB and E;B < G
for every E; € .#,(E). Since Lemma 2.1(1) and ®(E) < ®(0,(G)) = 1, we also have
ENB=®(E)NB=1. Now G=EB=LB and thus 1 ## LNB < G. Since L is minimal
normal in G, we get L < B and hence G = LB = B, a contradiction.

Now let L < E < P with |E| = |D|. Assume that E is .#-permutable in G; i.e. there
exists B < G and a set .#;(E) such that G = EB and E;B < G with |G : E;B| = p by Lemma
2.1(1). Since 0,(G)N®(G) = 1, there exists E; € .#,(E) with L £ E; and hence E = LE; as
well as G=EB = LE;B and LNE;B I G. As L is minimal normal in G, we get L ﬁ E;B and
thus |L| = |G : E;B| = p, otherwise, if L < E;B, then E;B = LE;B = EB = G, a contradiction.

Thus O,(G) is the direct product of some minimal normal subgroup of order p of G by
Lemma 2.3. Since G is p-solvable, C5(0,(G)) = 0,(G). It follows from G/C(0,(G)) =
G/0,(G) is p-supersolvable and Lemma 2.7 that G is p-supersolvable, a final contradiction.

The final contradiction completes our proof. 1

Corollary 3.4. Let G be a group, n(G) ={p1,p2=p, - ,pnsP1 <p2 < -+ < pp} and P
be a Sylow p-subgroup of G. If P has a subgroup D such that 1 < D < P and every subgroup
T of H with |T| = |D| is .# -permutable in G, then G is p-supersolvable.

Proof. According to Theorem 3.3, we only need to prove G is p-solvable. Assume that the

claim is false and choose G to be a counterexample of the minimal order. Then we have
1) 0, (G) = 1. Assume that L = 0, (G) # 1, then we consider the quotient group
G/L. Obviously, PL/L is a Sylow p-subgroup of G/L and DL/L is a subgroup of
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PL/L with 1 < DL/L < PL/L. For every subgroup T /L of PL/L with |TL/L| =
|DL/L|, we have T = T\ L with |T}| = |D|. Since T} is .#-permutable in G, we get
that T /L is .4 -permutable in G/L by Lemma 2.1(6). Therefore G/L satisfies the
condition of the theorem. The minimal choice of G implies that G/L is p-solvable

and hence G is p-solvable, a contradiction.
2) G is p-solvable. If D = P, then G is p-solvable by Lemma 2.10, a contradiction.
So we may assume that D < P. Let T be a subgroup of P with |T| = |D|. By
hypotheses, there exists a suitable set .#y(T) and a subgroup B of G such that
G =TB and T;B < G for every T; of .#,(T). Applying Lemma 2.1(1), we have
|G : T;B| = p. Then G/(T;B)¢ is isomorphic to a subgroup of the symmetric group
S, and |G/(T;B)g| = p{" p. therefore G/(T;B)g is p-solvable. Clearly, for every
T; of .#,(T), we have (T;B) # 1 and hence T;B # 1. Let L = (T;B), be a Sylow
p-subgroup of T;B. Then L is a maximal subgroup of P. If |D| = |L|, then L is .# -
permutable in 7;B by Lemma 2.1(2) and hence 7;B is p-solvable by Lemma 2.10.

This implies that (7;B) is p-solvable.

So we may assert that |[D| < |L|. It follows from Lemma 2.1(2) that every subgroup A of
L with |A| = |D| is .# -permutable in T;B. The minimal choice of G implies that T;B is p-
solvable and hence (7;B)¢ is p-solvable. Therefore G is p-solvable and G is p-supersolvable
by Theorem 3.3. 1
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