BULLETIN of the Malaysian Mathematical Sciences Society http://math.usm.my/bulletin

Finite Groups with Some *M*-Permutable Primary Subgroups

¹Hongwei Bao and ²Long Miao

¹Department of Mathematics and Physics, Bengbu College, Bengbu 233000, People's Republic of China ²School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People's Republic of China ¹big_bao2003@163.com, ²Imiao@yzu.edu.cn

Abstract. Let *d* be the smallest generator number of a finite *p*-group *P* and $\mathcal{M}_d(P) = \{P_1, P_2, \dots P_d\}$ be the set of maximal subgroups of *P* such that $\bigcap_{i=1}^d P_i = \Phi(P)$. Then *P* is called \mathcal{M} -permutable in a finite group *G*, if there exists a subgroup *B* of *G* such that G = PB and $P_iB < G$ for every P_i of $\mathcal{M}_d(P)$. In this paper, we investigate the structure of finite groups by some \mathcal{M} -permutable subgroups of the Sylow *p*-subgroup. Some new results about *p*-supersolvable groups and *p*-nilpotent groups are obtained.

2010 Mathematics Subject Classification: 20D10, 20D20

Keywords and phrases: p-supersolvable groups, p-nilpotent groups, \mathcal{M} -permutable subgroups, finite groups.

1. Introduction

All groups considered in this paper will be finite. We shall adhere to the notation employed in [4] and [17].

It seems that getting some critical information about some subgroups of Sylow subgroups of a group *G* often helps us to understand the structure of finite groups. Many authors have investigated the structure of a finite group when some subgroups of Sylow subgroups are well situated in the group. For instance, Wang [20] introduced the concept of *c*-normal subgroups and proved that if every maximal subgroup of Sylow subgroup of *G* is *c*-normal in *G*, then *G* is supersolvable. Afterwards this result was generalized [5–11,13,14]. In 2007, as an interesting application of these generalizations, Skiba [18] fixed in every noncyclic Sylow subgroup *P* of *G* a group *D* satisfying 1 < |D| < |P|, and then investigated the structure of *G* under the assumption that all subgroups *H* with |H| = |D| are weakly *s*-permutable in *G*. Recently, Miao and Lempken [15] considered *M*-supplemented subgroups and obtained some new characterization of saturated formations containing all supersolvable groups. More recently, Miao and Lempken [16] generalized the *M*-supplemented subgroups with *M*permutable subgroups and obtained some new results of supersolvable groups.

In this article, we continue to consider the *p*-nilpotency and *p*-supersolvability of finite group by using some \mathcal{M} -permutable primary subgroups.

Communicated by Kar Ping Shum.

Received: February 17, 2012; Revised: July 14, 2012.

Definition 1.1. Let G be a group and p be a prime divisor of |G|. A p-subgroup $P \neq 1$ of G is called \mathcal{M} -permutable in G if there exists a set $\mathcal{M}_d(P) = \{P_1, \dots, P_d\}$ of maximal subgroup P_i of P and a subgroup B of G such that

1) $\bigcap_{i=1}^{d} P_i = \Phi(P)$ and $|P : \Phi(P)| = p^d$ (so *d* is the smallest generator number of *P*); 2) G = PB and $P_iB = BP_i < G$ for every P_i of $\mathcal{M}_d(P)$.

Remark 1.1. Suppose that the prime p divides the order of a finite group G. Let P be a Sylow p-subgroup of G. If G is a p-nilpotent group, then P is an \mathcal{M} -permutable subgroup of G. In fact, this is true if G is a p-supersolvable group.(see Lemma 2.11)

However, if, in addition, we assume that P is a cyclic group of order p^2 , then P has exactly one maximal subgroup P_1 . Then P_1 is not \mathcal{M} -permutable in G.

Remark 1.2. In a finite group G, no p-subgroup of $\Phi(G)$ can be \mathcal{M} -permutable in G.

Remark 1.3. Let G be a finite group. Consider an abelian minimal normal subgroup N of G. Then we have the following.

- 1) No proper subgroup of N can be \mathcal{M} -permutable in G.
- 2) If *N* is *M*-permutable in *G*, then *N* is cyclic and $N \cap \Phi(G) = 1$.

Recall that, a subgroup *H* is called \mathcal{M} -supplemented in a finite group *G*, if there exists a subgroup *B* of *G* such that G = HB and H_1B is a proper subgroup of *G* for every maximal subgroup H_1 of H([15]). Obviously, if a *p*-subgroup *H* is \mathcal{M} -supplemented in *G*, then *H* is also \mathcal{M} -permutable in *G*. The following example shows that the converse is not true.

Example 1.1. $G = \langle s, a \rangle \times \langle t, b \rangle$ where |a| = |b| = 3, |s| = |t| = 2 and $\langle s, a \rangle \cong \langle t, b \rangle \cong S_3$. Clearly, $P = \langle a, b \rangle \in Syl_3(G)$, d = 2 and $\mathcal{M}_2(P) = \{\langle a \rangle, \langle b \rangle\}$. Choose $B = \langle s, t \rangle$. $\langle a \rangle B = B \langle a \rangle, \langle b \rangle B = B \langle b \rangle$, but $\langle ab \rangle B \neq B \langle ab \rangle$. Therefore we conclude that Sylow 3-subgroup of *G* is \mathcal{M} -permutable in *G*, but is not \mathcal{M} -supplemented in *G*.

2. Preliminaries

Firstly, we list here some known results which will be useful in the sequel.

Lemma 2.1. [16, Lemma 2.1] Let G be a group and $P \neq 1$ be a p-subgroup of G for some $p \in \pi(G)$. Assume that P is \mathcal{M} -permutable in G with respect to $\mathcal{M}_d(P)$ and that L is a normal subgroup of G contained in P. Then the following statements hold:

- 1) There exists a subgroup B of G such that G = PB and $|G : P_iB| = p$ for every $P_i \in \mathcal{M}_d(P)$; moreover, $P \cap B = P_i \cap B = \Phi(P) \cap B$.
- 2) If $P \leq H \leq G$, then P is \mathcal{M} -permutable in H.
- 3) $L \leq \Phi(G)$ if and only if $L \leq \Phi(P)$.
- 4) If $L \leq \Phi(P)$, then P/L is \mathcal{M} -permutable in G/L.
- 5) If L is minimal normal in G and $L \not\leq \Phi(P)$, then |L| = p.
- 6) If K is a normal p'-subgroup, then PK/K is \mathcal{M} -permutable in G/K.

Lemma 2.2. [3, Main Theorem] Suppose a group G has a Hall π -subgroup where π is a set of primes not containing 2. Then all Hall π -subgroups of G are conjugate.

Lemma 2.3. [4, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of a group G. If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which is contained in N.

Lemma 2.4. [12, Theorem I.6.6] *If H* is a subgroup of *G* with |G:H| = p, where *p* is the smallest prime divisor of |G|, then $H \leq G$.

Lemma 2.5. [4, Lemma 3.6.10] Let K be a normal subgroup of G and P be a p-subgroup of G where p is a prime divisor of |G|. Then $N_{G/K}(PK/K) = N_G(P_1)K/K$, here P_1 is a Sylow p-subgroup of PK.

Lemma 2.6. [2, Theorem 3.2, Chapter 6] If G is a p-solvable group where p is a prime divisor of |G|, then $C_G(F_p(G)) \leq F_p(G)$.

Lemma 2.7. [8, Lemma 2.6] Let G be a p-solvable group. Suppose that G has a chief series:

$$1 \leq \cdots \leq \Phi(G) = K_0 \leq K_1 \cdots \leq K_s = F_p(G) \leq \cdots \leq G$$

such that K_i/K_{i-1} are cyclic groups of order p or p'-groups for all $1 \le i \le s$. Then G is p-supersolvable.

Lemma 2.8. [16, Lemma 2.11] Let G be a group and $P \in Syl_p(G)$, where p is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if every maximal subgroup of P is \mathcal{M} -permutable in G or has a p-nilpotent supplement in G.

Lemma 2.9. [19] If P is a Sylow p-subgroup of a group G and $N \leq G$ such that $P \cap N \leq \Phi(P)$, then N is p-nilpotent.

Lemma 2.10. Suppose that G is a group, $\pi(G) = \{p_1, p_2 = p, p_3, \dots, p_n, p_1 < p_2 < \dots < p_n\}$ and P is a Sylow p-subgroup of G. If P is \mathcal{M} -permutable in G, then G is p-solvable.

Proof. Induction on the order of *G*. By the hypotheses, *P* is *M*-permutable in *G*. There exists a suitable set $\mathcal{M}_d(P)$ and a subgroup *B* of *G* such that G = PB and $P_iB < G$ for every $P_i \in \mathcal{M}_d(P)(i = 1, 2, \dots, d)$. By Lemma 2.1(1), $|G : P_iB| = p$ and $P \cap B = P_i \cap B = \Phi(P) \cap B$. Clearly, $G/(P_iB)_G$ is isomorphic to a subgroup of the symmetric group S_p and $|G/(P_iB)_G| = p_1^{\alpha_1}p$. Therefore $G/\cap_{i=1}^d(P_iB)_G$ is *p*-solvable. If $\cap_{i=1}^d(P_iB)_G = 1$, then *G* is solvable by Burnside Theorem. So we may assume $\cap_{i=1}^d(P_iB)_G \neq 1$. Since $P \cap (\cap_{i=1}^d(P_iB)_G) \leq P \cap (\cap_{i=1}^d(P_iB) = \cap_{i=1}^d(P \cap P_iB) = \cap_{i=1}^d\{P_i(P \cap B)\} = \Phi(P), \cap_{i=1}^d(P_iB)_G \text{ is } p\text{-nilpotent by Lemma 2.9. Thereby$ *G*is*p*-solvable.

Lemma 2.11. If G is a p-supersolvable groups where $p \in \pi(G)$, then Sylow p-subgroup P of G is \mathcal{M} -permutable in G.

Proof. Induction on the order of *G*. Let *L* be a minimal normal subgroup of *G*. Since *G* is *p*-supersolvable, *L* is a *p*'-subgroup or |L| = p. If *L* is a *p*'-subgroup, then *G/L* satisfies the condition and hence PL/L is *M*-permutable in *G/L*. It is easy to see that *P* is *M*-permutable in *G*, a contradiction. On the other hand, if $\Phi(G) \neq 1$, then we may get the same contradiction by Lemma 2.1(3)(4). So we have $\Phi(G) = 1$ and $F_p(G) = O_p(G) = L_1 \times L_2 \cdots L_t$ by Lemma 2.3 where $|L_i| = p$. By Lemma 2.6 and the hypotheses, $C_G(O_p(G)) \leq O_p(G)$. Moreover, since $|L| = p, L \leq Z(P)$ and $O_p(G) \leq Z(P)$. It follows that $P = C_G(O_p(G)) = O_p(G)$ and hence *P* is *M*-permutable in *G*. The proof is over.

3. Main results

Theorem 3.1. Let G be a group and $P \in Syl_p(G)$ where p is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if either P is cyclic or P has a subgroup D with

1 < D < P, and every subgroup E of P with order |D| not having a p-nilpotent supplement is \mathcal{M} -permutable in G.

Proof. Since the necessity part is obvious, we only need to consider the sufficiency part. Assume the theorem is false and we may choose G to be a counterexample of the minimal order.

If *P* is cyclic, then *G* is *p*-nilpotent by Burnside *p*-nilpotence Theorem, a contradiction. By hypotheses, we may assume that *P* is not cyclic, then there exists a subgroup *D* with 1 < D < P and every subgroup *E* of *P* with order |D| not having a *p*-nilpotent supplement is \mathcal{M} -permutable in *G*. Fix a subgroup *E* of *P* with order |D|. Let P_1 be a maximal subgroup of *P* with $E \leq P_1$.

If *E* has a *p*-nilpotent supplement *K* in *G*, then $G = EK = P_1K$ and $K_{p'}$ is a Hall p'-subgroup of *K*. Hence $G = P_1N_G(K_{p'}) = PN_G(K_{p'})$. Since *G* is not *p*-nilpotent, obviously, $N_G(K_{p'})$ is not normal in *G*; in particular, $p^2 | |G : N_G(K_{p'})|$. So we may assume that $P \cap N_G(K_{p'}) \leq L_2 < L_1$ where L_1 is a maximal subgroup of *P* and L_2 is maximal in L_1 . By the hypotheses, L_1 contains a subgroup *T* with order |D|. If *T* has a *p*-nilpotent supplement in *G*, then L_1 also has a *p*-nilpotent supplement in *G* and hence there exists a *p*-nilpotent subgroup *H* such that $G = TH = L_1H$. With the similar discussion as above we obtain $G = L_1N_G(H_{p'})$ where $H_{p'}$ is a Hall p'-subgroup of *H* and of course of *G*. By Lemma 2.2, there exists an element *x* of *P* such that $N_G(K_{p'}) = (N_G(H_{p'}))^x$. Therefore $G = L_1N_G(H_{p'}) = (L_1N_G(H_{p'}))^x = L_1N_G(K_{p'})$. Furthermore, $P = P \cap L_1N_G(K_{p'}) = L_1(P \cap N_G(K_{p'})) = L_1$, a contradiction.

So we may assume *T* is \mathcal{M} -permutable in *G*. There exists a suitable set $\mathcal{M}_d(T)$ and a subgroup *B* of *G* such that $G = TB = L_1B$ and $T_iB < G$ for every T_i of $\mathcal{M}_d(T)$. If $|D| = |L_1|$, then *G* is *p*-nilpotent by Lemma 2.8, a contradiction. If $|D| < |L_1|$, then $|G : T_iB| = p$ by Lemma 2.1(1) and hence $T_iB \leq G$ by Lemma 2.4. So we have $G = TB = PB = PT_iB$ and $P \cap T_iB = T_i(P \cap B)$ is a Sylow *p*-subgroup of T_iB . Clearly, $T_i(P \cap B)$ is maximal in *P*. If any subgroup *N* of $T_i(P \cap B)$ with order |D| has no *p*-nilpotent supplement in T_iB , then *N* also has no *p*-nilpotent supplement in *G* and hence is \mathcal{M} -permutable in *G*, furthermore, *N* is \mathcal{M} -permutable in T_iB by Lemma 2.1(2). Therefore T_iB satisfies the hypotheses of the theorem and hence T_iB is *p*-nilpotent by the minimal choice of *G*. On the other hand, since T_iB is normal in *G* and $|G : T_iB| = p$, we get *G* is *p*-nilpotent, a contradiction.

Final contradiction completes our proof.

I

Theorem 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and P has a nontrivial subgroup D such that every subgroup E of P with |E| = |D| is \mathcal{M} -permutable in G.

Proof. Based on the definition of \mathcal{M} -permutable subgroups, the necessity part is obvious. Next we only need to consider the sufficiency part. Assume that the assertion is false and choose *G* to be a counterexample of the minimal order. Then we consider the following steps.

1) $O_{p'}(G) = 1$. In fact, if $O_{p'}(G) \neq 1$, then we consider the quotient group $G/O_{p'}(G)$. By Lemma 2.1(6) and 2.5, $G/O_{p'}(G)$ satisfies the condition of the theorem, the minimal choice of *G* implies that $G/O_{p'}(G)$ is *p*-nilpotent and hence *G* is *p*-nilpotent, a contradiction.

- 2) If *S* is a proper subgroup of *G* containing *P*, then *S* is *p*-nilpotent. Clearly, $N_S(P) \le N_G(P)$ and hence $N_S(P)$ is *p*-nilpotent. Applying Lemma 2.1(2) and 2.5, *S* satisfies the hypotheses of our theorem. Then the minimal choice of *G* implies that *S* is *p*-nilpotent.
- 3) G = PQ, where Q is the Sylow q-subgroup of G with $q \neq p$. Since G is not p-nilpotent, by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8], there exists a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent. Since $N_G(P)$ is p-nilpotent, we may choose a characteristic subgroup H of P such that $N_G(H)$ is not p-nilpotent, but $N_G(K)$ is p-nilpotent for any characteristic subgroup K of P with $H < K \leq P$. Since $N_G(P) \leq N_G(H)$ and $N_G(H)$ is not p-nilpotent, we have $N_G(P) < N_G(H)$. Then by 2), we have $N_G(H) = G$. This leads to $O_p(G) \neq 1$ and $N_G(K)$ is p-nilpotent for any characteristic subgroup K of P such that $O_p(G) < K \leq P$. Now by Glauberman-Thompson theorem [2, Theorem 3.1, Chapter 8], again, we see that $G/O_p(G)$ is p-nilpotent and therefore, G is p-solvable. Since G is p-solvable, for any $q \in \pi(G)$ with $q \neq p$, there exists a Sylow q-subgroup Q of G such that PQ = QP is a subgroup of G by Gorenstein [2, Theorem 6.3.5]. If PQ < G, then PQ is p-nilpotent by 2). This leads to $Q \leq C_G(O_p(G)) \leq O_p(G)$ by Lemma 2.6. Since $O_{p'}(G) = 1$, a contradiction. Thus we have proven that G = PQ.
- 4) $\Phi(G) = 1$. Assume that $\Phi(G) \neq 1$. Notice that, by definition of \mathscr{M} -permutable subgroup and Remark 1.2, no subgroup of $\Phi(G)$ can be \mathscr{M} -permutable in *G*. Hence $|D| > |\Phi(G)|$ and let *E* be a subgroup of *P* with |D| = |E| and $\Phi(G) < E$. By Lemma 2.1(3) we have that $\Phi(G) \leq \Phi(E)$, since *E* is \mathscr{M} -permutable in *G*. By Lemma 2.1(4) we have that $E/\Phi(G)$ is \mathscr{M} -permutable in $G/\Phi(G)$. By minimality of *G*, the group $G/\Phi(G)$ is *p*-nilpotent. Since the class of all *p*-nilpotent groups is a saturated formation, this implies that *G* is *p*-nilpotent. This contradicts our assumption. Hence, $\Phi(G) = 1$.
- 5) Every minimal normal subgroup of *G* is cyclic. Let *N* be a minimal normal subgroup of *G*. By Remark 1.3, we have that $|N| \le |D|$. Let *E* be an \mathcal{M} -permutable subgroup of *G* such that $N \le E$. Then there exists a subgroup *B* such that G = BE and a set \mathcal{M} of maximal subgroups of *E* such that BE_i is a proper subgroup of *G* for every $E_i \in \mathcal{M}$. By Lemma 2.1(3) and step 4), $E = NE_i$ for some $E_i \in \mathcal{M}$. Then $G = (BE_i)N$. This implies that BE_i is a maximal subgroup of *G* and $BE_i \cap N = 1$. Hence $|N| = |G: BE_i| = p$. Therefore *N* is cyclic.
- 6) Final contradiction. Now apply [1, Theorem 2.3.24] and *G* is supersolvable. Since $O_q(G) = 1$, this implies that *P* is normal in *G*. But then $G = N_G(P)$ is *p*-nilpotent. This is a contradiction.

The final contradiction completes our proof.

Corollary 3.1. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and every maximal subgroup of P is \mathcal{M} -permutable in G, then G is p-nilpotent.

Corollary 3.2. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. Then G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and P is \mathcal{M} -permutable in G.

Corollary 3.3. Let p be an odd prime divisor of |G| and P be a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and every minimal subgroup of P is \mathcal{M} -permutable in G, then G is p-nilpotent.

I

Theorem 3.3. Let G be a p-solvable group and P be a Sylow p-subgroup of G. Suppose that P has a subgroup D such that $1 < D \le P$ and every subgroup E of P with |E| = |D| is \mathcal{M} -permutable in G, then G is p-supersolvable.

Proof. Assume that the assertion is false and choose G to be a counterexample of the minimal order. Furthermore, we have

- 1) $O_{p'}(G) = 1$. If $L = O_{p'}(G) \neq 1$, then PL/L is a Sylow *p*-subgroup of G/L. By hypotheses, *P* has a subgroup *D* such that 1 < D < P and every subgroup *E* of *P* with |E| = |D| is \mathcal{M} -permutable in *G*. Clearly, EL/L is also \mathcal{M} -permutable in G/L by Lemma 2.1(6). Therefore G/L satisfies the condition of the theorem. The minimal choice of *G* implies that G/L is *p*-supersolvable, and hence *G* is *p*-supersolvable, a contradiction.
- 2) $O_p(G) \neq 1$. Since G is p-solvable and $O_{p'}(G) = 1$, we obtain that the minimal normal subgroup of G is an abelian p-group and hence $O_p(G) \neq 1$.
- 3) $\Phi(G) = 1$. Assume that $\Phi(G) \neq 1$. Notice that, by definition of \mathscr{M} -permutable subgroup and Remark 1.2, no subgroup of $\Phi(G)$ can be \mathscr{M} -permutable in G. Hence $|D| > |\Phi(G)|$ and let E be a subgroup of P with |D| = |E| and $\Phi(G) < E$. By Lemma 2.1(3) we have that $\Phi(G) \leq \Phi(E)$, since E is \mathscr{M} -permutable in G. By Lemma 2.1(4) we have that $E/\Phi(G)$ is \mathscr{M} -permutable in $G/\Phi(G)$. By minimality of G, the group $G/\Phi(G)$ is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, this implies that G is p-nilpotent. This contradicts our assumption. Hence, $\Phi(G) = 1$.

By Lemma 2.3, $O_p(G) = R_1 \times ... \times R_t$ with minimal normal subgroups $R_1, ..., R_t$ of G. Let L be any minimal normal subgroup of G contained in $O_p(G)$. Assume that |D| < |L| for some $L \in \{R_1, ..., R_t\}$ and let E < L with |E| = |D|. By hypotheses, E is \mathcal{M} -permutable in G, i.e. there exists a set $\mathcal{M}_d(E)$ and a subgroup B of G such that G = EB and $E_iB < G$ for every $E_i \in \mathcal{M}_d(E)$. Since Lemma 2.1(1) and $\Phi(E) \leq \Phi(O_p(G)) = 1$, we also have $E \cap B = \Phi(E) \cap B = 1$. Now G = EB = LB and thus $1 \neq L \cap B \leq G$. Since L is minimal normal in G, we get $L \leq B$ and hence G = LB = B, a contradiction.

Now let $L \leq E \leq P$ with |E| = |D|. Assume that *E* is \mathscr{M} -permutable in *G*; i.e. there exists $B \leq G$ and a set $\mathscr{M}_d(E)$ such that G = EB and $E_lB < G$ with $|G : E_lB| = p$ by Lemma 2.1(1). Since $O_p(G) \cap \Phi(G) = 1$, there exists $E_i \in \mathscr{M}_d(E)$ with $L \nleq E_i$ and hence $E = LE_i$ as well as $G = EB = LE_iB$ and $L \cap E_iB \leq G$. As *L* is minimal normal in *G*, we get $L \nleq E_iB$ and thus $|L| = |G : E_iB| = p$, otherwise, if $L \leq E_iB$, then $E_iB = LE_iB = EB = G$, a contradiction.

Thus $O_p(G)$ is the direct product of some minimal normal subgroup of order p of G by Lemma 2.3. Since G is p-solvable, $C_G(O_p(G)) = O_p(G)$. It follows from $G/C_G(O_p(G)) = G/O_p(G)$ is p-supersolvable and Lemma 2.7 that G is p-supersolvable, a final contradiction. The final contradiction completes our proof.

The mar contradiction completes our proof.

Corollary 3.4. Let G be a group, $\pi(G) = \{p_1, p_2 = p, \dots, p_n, p_1 < p_2 < \dots < p_n\}$ and P be a Sylow p-subgroup of G. If P has a subgroup D such that $1 < D \le P$ and every subgroup T of H with |T| = |D| is \mathcal{M} -permutable in G, then G is p-supersolvable.

Proof. According to Theorem 3.3, we only need to prove G is p-solvable. Assume that the claim is false and choose G to be a counterexample of the minimal order. Then we have

1) $O_{p'}(G) = 1$. Assume that $L = O_{p'}(G) \neq 1$, then we consider the quotient group G/L. Obviously, PL/L is a Sylow *p*-subgroup of G/L and DL/L is a subgroup of

PL/L with $1 < DL/L \le PL/L$. For every subgroup T/L of PL/L with |TL/L| = |DL/L|, we have $T = T_1L$ with $|T_1| = |D|$. Since T_1 is \mathcal{M} -permutable in G, we get that T/L is \mathcal{M} -permutable in G/L by Lemma 2.1(6). Therefore G/L satisfies the condition of the theorem. The minimal choice of G implies that G/L is p-solvable and hence G is p-solvable, a contradiction.

2) *G* is *p*-solvable. If D = P, then *G* is *p*-solvable by Lemma 2.10, a contradiction. So we may assume that D < P. Let *T* be a subgroup of *P* with |T| = |D|. By hypotheses, there exists a suitable set $\mathcal{M}_d(T)$ and a subgroup *B* of *G* such that G = TB and $T_iB < G$ for every T_i of $\mathcal{M}_d(T)$. Applying Lemma 2.1(1), we have $|G:T_iB| = p$. Then $G/(T_iB)_G$ is isomorphic to a subgroup of the symmetric group S_p and $|G/(T_iB)_G| = p_1^{\alpha_1} p$, therefore $G/(T_iB)_G$ is *p*-solvable. Clearly, for every T_i of $\mathcal{M}_d(T)$, we have $(T_iB)_G \neq 1$ and hence $T_iB \neq 1$. Let $L = (T_iB)_p$ be a Sylow *p*-subgroup of T_iB . Then *L* is a maximal subgroup of *P*. If |D| = |L|, then *L* is \mathcal{M} permutable in T_iB by Lemma 2.1(2) and hence T_iB is *p*-solvable by Lemma 2.10. This implies that $(T_iB)_G$ is *p*-solvable.

So we may assert that |D| < |L|. It follows from Lemma 2.1(2) that every subgroup *A* of *L* with |A| = |D| is \mathcal{M} -permutable in T_iB . The minimal choice of *G* implies that T_iB is *p*-solvable and hence $(T_iB)_G$ is *p*-solvable. Therefore *G* is *p*-solvable and *G* is *p*-supersolvable by Theorem 3.3.

Acknowledgement. This research is supported by the grant of NSFC (Grant #10901133, #11271016) and Natural science fund for colleges and universities in Anhui Province (Grant # KJ2013B138), and Natural science fund of Bengbu College (Grant #2011ZR03zd). Prof. L. Miao is the corresponding author of the article.

References

- A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Mathematics and its applications (Springer), 584, Springer, Dordrecht, 2006.
- [2] D. Gorenstein, Finite Groups, Harper & Row, New York, 1968.
- [3] F. Gross, Conjugacy of odd order Hall subgroups, Bull. London Math. Soc. 19 (1987), no. 4, 311–319.
- [4] W. Guo, *The Theory of Classes of Groups*, translated from the 1997 Chinese original, Mathematics and its Applications, 505, Kluwer Acad. Publ., Dordrecht, 2000.
- [5] W. Guo, K. P. Shum and A. Skiba, Conditionally permutable subgroups and supersolubility of finite groups, *Southeast Asian Bull. Math.* 29 (2005), no. 3, 493–510.
- [6] W. Guo, K. P. Shum and A. N. Skiba, On solubility and supersolubility of some classes of finite groups, *Sci. China Ser. A* 52 (2009), no. 2, 272–286.
- [7] W. Guo, X. Feng and J. Huang, New characterizations of some classes of finite groups, *Bull. Malays. Math. Sci. Soc.* (2) 34 (2011), no. 3, 575–589.
- [8] X. Y. Guo and L. L. Wang, On finite groups with some semi cover-avoiding subgroups, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 9, 1689–1696.
- X. Guo, X. Sun and K. P. Shum, On the solvability of certain *c*-supplemented finite groups, *Southeast Asian Bull. Math.* 28 (2004), no. 6, 1029–1040.
- [10] X. Guo and K. P. Shum, On p-nilpotency of finite groups with some subgroups c-supplemented, Algebra Collog. 10 (2003), no. 3, 259–266.
- [11] X. Guo and K. P. Shum, Finite *p*-nilpotent groups with some subgroups c-supplemented, *J. Aust. Math. Soc.* 78 (2005), no. 3, 429–439.
- [12] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer, Berlin, 1967.
- [13] C. Li, New characterizations of p-nilpotency and Sylow tower groups, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 845–854.

- [14] Y. Liu and X. Yi, Finite groups in which primary subgroups have cyclic cofactors, *Bull. Malays. Math. Sci. Soc.* (2) **34** (2011), no. 2, 337–344.
- [15] L. Miao and W. Lempken, On *M*-supplemented subgroups of finite groups, *J. Group Theory* **12** (2009), no. 2, 271–287.
- [16] L. Miao and W. Lempken, On *M*-permutable maximal subgroups of Sylow subgroups of finite groups, *Comm. Algebra* 38 (2010), no. 10, 3649–3659.
- [17] D. J. S. Robinson, A course in the Theory of Groups, Graduate Texts in Mathematics, 80, Springer, New York, 1993.
- [18] A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), no. 1, 192–209.
- [19] J. Tate, Nilpotent quotient groups, Topology 3 (1964), suppl. 1, 109–111.
- [20] Y. Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 954–965.