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Abstract. In this paper, we introduce and analyze a new iterative algorithm for finding a
common element of the set of fixed points of strictly-pseudocontractive, the set of common
solutions of generalized mixed equilibrium problems and the set of common solutions of the
variational inclusion with inverse-strongly accretive mappings in Banach spaces. Using our
new iterative scheme, we prove strong convergence theorems for approximation of common
element of the three above mentioned sets. The results obtained in this paper extend the
corresponding results announced by many authors and the previously known results in this
area.
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1. Introduction

Let E be a real Banach space with norm ‖·‖ and C be a nonempty, closed and convex subset
of E. Let E∗ be the dual space of E and 〈·, ·〉 denote the pairing between E and E∗. For
q > 1, the generalized duality mapping Jq : E→ 2E∗ is defined by

Jq(x) = { f ∈ E∗ : 〈x, f 〉= ‖x‖q,‖ f‖= ‖x‖q−1},
for all x∈ E. In particular, if q = 2, the mapping J2 is called the normalized duality mapping
and usually write J2 = J.

Let ϕ : E→R∪{+∞} be a proper extended real-valued function and let F be a bifunction
of E×E into R such that E ∩ domϕ 6= /0, where R is the set of real numbers and domϕ =
{x ∈ E : ϕ(x) < +∞}.
The generalized mixed equilibrium problem for finding x ∈ E such that

(1.1) F(x,y)+ 〈Bx,y− x〉+ϕ(y)−ϕ(x)≥ 0, ∀y ∈ E.
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The set of solutions of (1.1) is denoted by GMEP(F,ϕ,B), that is,

(1.2) GMEP(F,ϕ,B) = {x ∈ E : F(x,y)+ 〈Bx,y− x〉+ϕ(y)−ϕ(x)≥ 0, ∀y ∈ E}.

We see that x is a solution of a problem (1.1) implies that x∈ domϕ = {x∈ E : ϕ(x) < +∞}.

Special Examples.
(1) If B = 0, the problem (1.1) is reduced into the mixed equilibrium problem for finding

x ∈ E such that

(1.3) F(x,y)+ϕ(y)−ϕ(x)≥ 0, ∀y ∈ E.

Problem (1.3) was studied by Ceng and Yao [11]. The set of solutions of (1.3) is
denoted by MEP(F,ϕ).

(2) If ϕ = 0, the problem (1.1) is reduced into the generalized equilibrium problem for
finding x ∈ E such that

(1.4) F(x,y)+ 〈Bx,y− x〉 ≥ 0, ∀y ∈ E.

Problem (1.4) was studied by Takahashi and Toyoda [41]. The set of solutions of
(1.4) is denoted by GEP(F,B).

(3) If B = 0 and ϕ = 0, the problem (1.1) is reduced into the equilibrium problem for
finding x ∈ E such that

(1.5) F(x,y)≥ 0, ∀y ∈ E.

Problem (1.5) was studied by Blum and Oettli [3]. The set of solutions of (1.5) is
denoted by EP(F).

(4) If F = 0, the problem (1.1) is reduced into the mixed variational inequality of Brow-
der type for finding x ∈ E such that

(1.6) 〈Bx,y− x〉+ϕ(y)−ϕ(x)≥ 0, ∀y ∈ E.

Problem (1.6) was studied by Browder [4]. The set of solutions of (1.6) is denoted
by V I(E,B,ϕ).

The generalized mixed equilibrium problems include fixed point problems, variational
inequality problems, optimization problems, Nash equilibrium problems and the equilib-
rium problem as special cases. Numerous problems in physics, optimization and economics
reduce to find a solution of (1.1). Many authors have proposed some useful methods for
solving the GMEP(F,ϕ,B), MEP(F,ϕ) and EP(F); see, for instance [8, 10–19, 28, 29, 35,
36, 40, 43, 46].
In this paper, we use F(S) to denote the set of fixed points of the mapping S, that is,
F(S) = {x ∈ E : Sx = x}. Recall that the mapping S is said to be nonexpansive, if

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈ E.

A mapping T is said to be λ -strictly pseudo-contractive, if there exists a constant λ ∈
[0,1) such that

〈T x−Ty,J(x− y)〉 ≤ ‖x− y‖2−λ‖(I−T )x− (I−T )y‖2, ∀x,y ∈C.

A mapping T is said to be pseudo-contraction, if there exists a constant λ ∈ (0,1) such that

〈T x−Ty,J(x− y)〉 ≤ ‖x− y‖2, ∀x,y ∈C.
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Recall that an operator A of E into itself is said to be accretive if

〈Ax−Ay,J(x− y)〉 ≥ 0, ∀x,y ∈ E.

For α > 0, recall that an operator A of E into itself is said to be α-inverse strongly accretive
if

〈Ax−Ay,J(x− y)〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈ E.

The class of strictly pseudo-contractive falls into the one between classes of nonexpan-
sive mappings and pseudo-contraction. Within the past several decades, many authors have
been devoting to the studies on the existence and convergence of fixed points for strictly
pseudo-contractive. In 1967, Browder and Petryshyn [6] introduced a convex combination
method to study strictly pseudo-contractive in Hilbert spaces. On the other hand, Marino
and Xu [27] and Zhou [48] developed some iterative scheme for finding a fixed point of a
strictly pseudo-contractive mapping. More precisely, take k ∈ [0,1) and define a mapping
Sk by

Skx = kx+(1− k)Sx, ∀x ∈ E,

where S is a strictly pseudo-contractive. Under appropriate restrictions on k, it is proved the
mapping Sk is nonexpansive. Therefore, the techniques of studying nonexpansive mappings
can be applied to study more general strictly pseudo-contractive. Variational inclusions are
among the most interesting and important mathematical problems and have been studied in-
tensively in the past years since they have wide applications in the optimization and control,
economics and transportation equilibrium, engineering science. For these reasons, many
existence result and iterative algorithms for various variational inclusion have been studied
extensively many authors. For detail, see [1, 21–26] and references therein. In this paper,
we consider the problem so-called quasi-variational inclusions problems, which is to find
u ∈ E such that

0 ∈ A(u)+M(u),(1.7)

where A : E → E and M : E → 2E are nonlinear mappings. The problem (1.7) denoted by
V I(E,A,M).

Definition 1.1. [47] Let M : E → 2E be a multi-valued maximal accretive mapping. The
single-valued mapping J(M,ρ) : E→ E defined by

J(M,ρ)(u) = (I +ρM)−1(u), ∀u ∈ E

is called the resolvent operator associated with M, where ρ is any positive number and I is
the identity mapping.

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if

Q(Qx+ t(x−Qx)) = Qx,

whenever Qx + t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called
a retraction if Q2 = Q. If a mapping Q of C into itself is a retraction, then Qz = z for all
z ∈ R(Q), where R(Q) is the range of P. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.
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In 2006, Aoyama, Iiduka and Takahashi [2] considered the following problem for finding
u ∈C such that

〈Au,J(v−u)〉 ≥ 0, ∀v ∈C.(1.8)

The variational inequality (1.8) is equivalent to a fixed point problem. The element u ∈C is
a solution of the variational inequality (1.8) if and only if u ∈C satisfies the equation

u = QC(u−λAu),(1.9)

where λ > 0 is constant and QC is sunny nonexpansive retraction from E onto C, see the
definition below.
In order to find a solution of the problem (1.8), Aoyama et al. [2] introduced the following
iterative algorithm in Banach spaces:

(1.10)


x1 ∈ E chosen arbitrary,

yn = QC(xn−λnAxn),
xn+1 = αnxn +(1−αn)yn, ∀n≥ 0,

where QC is a sunny nonexpansive retraction from E onto C.
Very recently, Ceng et al. [9] introduced iterative scheme for finding a common element
of the set of solutions of equilibrium problems and the set of fixed points of a k-strictly
pseudo-contractive mapping defined in the setting of real Hilbert space H: x0 ∈ H, let C be
a nonempty closed and convex subset of H and then by

(1.11)

{
F(un,y)+ 1

rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

xn+1 = αnun +(1−αn)Sun,

where {αn} ⊂ [a,b] for some a,b ∈ (k,1) and {rn} ⊂ (0,∞) satisfies liminfn→∞ rn > 0 and
S is k-strictly pseudo-contractive mapping. Further, they proved {xn} and {un} converge
weakly to q ∈ F(S)∩EP(F), where q = PF(S)∩EP(F)x0.
In 2008, Zhang, Lee and Chan [47] considered the problem (1.7) in Hilbert spaces. To be
more precise, they introduced the new following iterative process:

(1.12)


x0 ∈ H, chosen arbitrary,
yn = J(M,ρ)(xn−ρAxn),
xn+1 = αn f (xn)+βnxn + γnSyn

for all n ∈N∪{0}, where {αn} is a sequence in [0,1] and λ ∈ (0,2α] satisfying some mild
condition. They proved that if F(S)∩V I(H,A,M) 6= /0, where F(S) is denoted for the set of
fixed point of a nonexpansive mapping, then {xn} generated by (1.14) converges strongly to
x0, where x0 = PF(S)∩V I(H,A,M) f (x0).

In 2010, Qin, Cho and Kang [33] proved the following theorem.

Theorem 1.1 (Theorem QCK). [33] Let C be a nonempty, closed and convex subset of a
real Hilbert space H. Let F be a bifunction from C×C to R which satisfies (A1)-A(4) (in
section 2) and B : C→ H a λ -inverse-strongly monotone mapping. Let S : C→ C be a k-
strict pseudo-contraction, A1 : C→ H an α-inverse-strongly monotone mapping, A2 : C→
H an β -inverse-strongly monotone mapping. Assume that F := EP(F,B)∩V I(C,A1)∩
V I(C,A2)∩F(S) is nonempty. Let {αn} and {βn} be a sequences in (0,1). Let {tn} be a
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sequences in (0,2α), {sn} a sequences in (0,2β ) and {rn} a sequences in (0,2λ ). Let {xn}
be a sequence generated in the following manner:

(1.13)


x1 ∈C, chosen arbitrary,
un ∈C such thatF(un,u)+ 〈Bxn,u−un〉+ 1

rn
〈u−un,un− xn〉 ≥ 0, ∀u ∈C,

zn = PC(un− snA2un),
yn = PC(zn− tnA1zn),
xn+1 = αnxn +(1−αn)(βnyn +(1−βn)Syn), ∀n≥ 1.

Assume that the sequences {αn}, {βn}, {tn}, {sn} and {rn} satisfy the following restrictions:
(a) 0 < a≤ αn ≤ a′ < 1;
(b) 0 < k ≤ βn ≤ b < 1;
(c) 0 < c≤ rn ≤ d < 2λ , 0 < c′ ≤ sn ≤ d′ < 2β and 0 < c′′ ≤ tn ≤ d′′ < 2α.

Then the sequence {xn} generated in (1.14) converges weakly to some point x ∈F , where
x = limn→∞ PF xn and PF is the projection of H onto set F .

Next, Petrot et al. [31] introduced the new following iterative process for finding the set
of solution of quasi-variational inclusion problem and the set of fixed point of a nonexpan-
sive mapping. The sequence generate by

(1.14)


x0 ∈ H, chosen arbitrary,
xn+1 = αn f (xn)+βnxn + γnSzn
zn = JM,λ (yn−λAyn),
yn = JM,ρ(xn−ρAxn),

for all n ∈ N∪{0}, where S is nonexpansive self mapping on C, A : H → H an α-inverse-
strongly monotone mapping {αn},{βn},{γn} are three sequences in [0,1] and λ ∈ (0,2α].
They proved that {xn} generated by (1.14) converges strongly to z0 which is the unique
solution in F(S)∩V I(H,A,M).

In 2010, Kumam et al. [20] introduced the shrinking projection method for finding a
common element of the set of solutions of generalized mixed equilibrium problems, the set
of fixed points of a finite family of quasi-nonexpansive mappings and the set of solutions
of variational inclusion problems in Hilbert spaces. Starting with an arbitrary C1 = C, x1 =
PC1x0, un ∈C define sequence {xn}, {zn}, {vn} and {yn} as follows

(1.15)



F(un,y)+ϕ(y)−ϕ(un)+ 〈Bxn,y−un〉+ 1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

yn = JM,δn(un−δnAun),
vn = JM,λn(yn−λnAyn),
zn = αnxn +(1−αn)Knvn, n≥ 1,

Cn+1 = {z ∈Cn : ‖zn− z‖ ≤ ‖xn− z‖}, n≥ 1,

xn+1 = PCn+1x0, n≥ 1,

where Kn be the K-mapping, A, B be β , ξ -inverse-strongly monotone mapping of C into
H. They proved that if the sequences {αn}, {rn}, {δn} and {λn} of parameters satisfies
appropriate conditions, then {xn} is generated by (1.15) converges strongly to
P∩∞

i=1F(Si)∩GMEP(F,ϕ,B)∩V I(E,A,M)x0.
Very recently, Qin et al. [34] considered the problem of finding the solutions of a general

system of variational inclusion with α-inverse strongly accretive mappings. To be more
precise, they obtained the following result:
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Theorem 1.2 (Theorem QCCK). [34] Let E be a uniformly convex and 2-uniformly smooth
Banach space with the smooth constant K (see Lemma 2.5 in section 2). Let Mi : E → 2E

be a maximal monotone mapping, and Ai : E → E a γi-inverse-strongly accretive mapping,
respectively for each i = 1,2. Let T : E → E be a λ -strict pseudo-contraction with fixed
point. Define a mapping S by Sx = (1− λ

K2 )x + λ

K2 T x, ∀x ∈ E. Assume that Θ = F(T )∩
V I(E,A,M) 6= /0. Let x1 = u ∈ E and {xn} a sequence generated by

(1.16)


zn = J(M2,ρ2)(xn−ρ2A2xn),
yn = J(M1,ρ1)(zn−ρ1A1zn),
xn+1 = αnu+βnxn +(1−βn−αn)[µSxn +(1−µ)yn], ∀n≥ 1,

where µ ∈ (0,1), ρ1 ∈ (0,γ1/K2], ρ2 ∈ (0,γ2/K2], {αn} and {βn} are sequences in (0,1).
If the control consequences {αn} and {βn} satisfy the following restrictions

(C1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1 and (C2) lim
n→∞

αn = 0 and
∞

∑
n=0

αn = ∞,

then {xn} converges strongly to x∗ = PΘu, where PΘ is the sunny nonexpansive retraction
from E onto Θ and (x∗,y∗), where y∗ = J(M2,ρ2)(x∗−ρ2A2x∗).

Could we extend the iterative algorithm (1.11), (1.14) and (1.15) to solve the problem
(1.2) and (1.7) from Hilbert spaces to general Banach spaces?

The purpose of this paper is to give affirmative answer to this questions mentioned above.
Motivated and inspired by Zhang, Lee and Chan [47], Ceng et al. [9] and Qin et al. [34],
we introduce a new iterative scheme which for finding a common element of the set of
fixed points of strict pseudo-contractions, the set of common solutions of a generalized
mixed equilibrium problem and the set of common solutions of the quasi-variational inclu-
sion in Banach spaces. Strong convergence theorems are established in uniformly convex
and 2-uniformly smooth Banach spaces. The results in this paper extend and improve the
corresponding recent results.

2. Preliminaries

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if, for any
ε ∈ (0,2], there exists δ > 0 such that, for any x,y ∈U , ‖x−y‖ ≥ ε implies ‖ x+y

2 ‖ ≤ 1−δ .
It is known that a uniformly convex Banach space is reflexive and strictly convex. A

Banach space E is said to be smooth if the limit limt→0
‖x+ty‖−‖x‖

t exists for all x,y∈U . It is
also said to be uniformly smooth if the limit is attained uniformly for x,y ∈U . The modulus
of smoothness of E is defined by

ρ(τ) = sup{1
2
(‖x+ y‖+‖x− y‖)−1 : x,y ∈ E,‖x‖= 1,‖y‖= τ},

where ρ : [0,∞)→ [0,∞) is a function. It is known that E is uniformly smooth if and only
if limτ→0

ρ(τ)
τ

= 0. Let q be a fixed real number with 1 < q≤ 2. A Banach space E is said
to be q-uniformly smooth if there exists a constant c > 0 such that ρ(τ)≤ cτq for all τ > 0.

We note that E is a uniformly smooth Banach space if and only if Jq is single-valued
and uniformly continuous on any bounded subset of E. Typical examples of both uniformly
convex and uniformly smooth Banach spaces are Lp, where p > 1. More precisely, Lp is
min{p,2}-uniformly smooth for every p > 1.
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Lemma 2.1. (Zhou [49]) Let E be a real 2-uniformly smooth Banach space E and S : E→E
be a λ -strict pseudo-contraction. Then Sk := (1− λ/K2)I + λ/K2S is nonexpansive and
F(Sk) = F(S).

Lemma 2.2. (Bruck [7] and see on Qin et al. [32]) Let C be a nonempty, closed and convex
subset of a strictly convex Banach space E. Let {Tn : n ∈N} be a sequence of nonexpansive
mappings on E. Suppose ∩∞

n=1F(Tn) is nonempty. Let δn be a sequence of positive number
with ∑

∞
n=1 δn = 1. Then a mapping S on E define by

Sx =
∞

∑
n=1

δnTnx

for x ∈ E is well defined, nonexpansive and F(S) = ∩∞
n=1F(Tn) holds.

For solving the generalized mixed equilibrium problem, let us give the following assump-
tions for the bifunction F : C×C→ R, ϕ : C→ R is convex and lower semi-continuous,
the nonlinear mapping B : C→ E∗ is continuous and monotone satisfies the following con-
ditions:

(A1) F(x,x) = 0 for all x ∈C;
(A2) F is monotone, i.e., F(x,y)+F(y,x)≤ 0 ∀x,y ∈C;
(A3) for each x,y,z ∈C, lim

t↓0
F(tz+(1− t)x,y)≤ F(x,y);

(A4) for each x ∈C,y 7→ F(x,y) is convex and lower semi-continuous;
(B1) for each x ∈ E and r > 0, there exist a bounded subset Dx ⊆C and yx ∈C such that

for any z ∈C \Dx,

(2.1) F(z,yx)+ϕ(yx)−ϕ(z)+
1
r
〈yx− z,Jz− Jx〉< 0;

(B2) C is a bounded set.

Lemma 2.3. (Takahashi and Zembayashi [42]) Let C be a closed and convex subset of
smooth, strictly convex and reflexive Banach space E, let F : C×C→ R be a bifunction
satisfies (A1)-(A4) and let r > 0 and x ∈ E. Then, there exists z ∈C such that

F(z,y)+
1
r
〈y− z,Jz− Jx〉 ≥ 0, ∀y ∈C.

Motivated by Combettes and Hirstoaga [12] in a Hilbert space and Takahashi and Zem-
bayashi [42] in a Banach space, Zhang [48] and also [30] obtain the following lemma.

Lemma 2.4. (Zhang [48]) Let C be nonempty, closed and convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E. Let B : C → E∗ be a continuous
and monotone mapping, ϕ : C→ R be a lower semi-continuous and convex function, and
F : C×C→ R be a bifunction satisfies (A1)-(A4). For r > 0 and x ∈ E, then there exists
u ∈C such that

F(u,y)+ 〈Bu,y−u〉+ϕ(y)−ϕ(u)+
1
r
〈y−u,Ju− Jx〉, ∀y ∈C.

Define a mapping Kr : C→C as follows:

Kr(x) =
{

u ∈C : F(u,y)+ 〈Bu,y−u〉+ϕ(y)−ϕ(u)+
1
r
〈y−u,Ju− Jx〉 ≥ 0, ∀y ∈C

}
for all x ∈C. Then, the following conclusions hold:
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(i) Kr is single-valued;
(ii) Kr is firmly nonexpansive, i.e., for any x,y ∈ E, 〈Krx−Kry,JKrx− JKry〉 ≤ 〈Krx−

Kry,Jx− Jy〉;
(iii) F(Kr) = GMEP(F,ϕ,B);
(iv) GMEP(F,ϕ,B) is closed and convex.

Lemma 2.5. (Xu [44]) Let E be a real 2-uniformly smooth Banach space with the best
smooth constant K. Then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 +2〈y,Jx〉+2‖Ky‖2, ∀x,y ∈ E.

Lemma 2.6. (Suzuki [38]) Let {xn} and {ln} be bounded sequences in a Banach space X
and let {βn} be a sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose
xn+1 = (1−βn)ln +βnxn for all integers n≥ 1 and limsupn→∞(‖ln+1− ln‖−‖xn+1−xn‖)≤
0. Then, limn→∞ ‖ln− xn‖= 0.

Proposition 2.1. (Reich [37]) Let E be a uniformly smooth Banach space and T : C→C a
nonexpansive mapping such that F(T ) 6= /0. For each fixed u ∈C and every t ∈ (0,1), the
unique fixed point xt ∈ C of the contraction C 3 x 7→ tu +(1− t)T x converges strongly as
t→ 0 to a fixed point of T. Define Q : C→D by Qu = s− lim

t→0
xt . Then Q is the unique sunny

nonexpansive retract from C onto D, that is, Q satisfies the property:

〈u−Qu,J(y−Qu)〉 ≤ 0, ∀u ∈C, y ∈ D.

Note that we use Qu = s− lim
t→0

xt to denote strong convergence to Qu of the net {xt} as t→ 0.

A Banach space X is said to be satisfying Opial’s condition if for any sequence xn ⇀ x
for all x ∈ X implies

limsup
n→∞

‖xn− x‖< limsup
n→∞

‖xn− y‖, ∀y ∈ X , with x 6= y.

Lemma 2.7. (Browder [5] (Demi Closed Principle)) Let C be a nonempty closed convex
subset of a reflexive Banach space X which Opial’s condition and suppose T : C→ X is
nonexpansive. Then the mapping I−T is demiclosed at zero, i.e., xn ⇀ x and xn−T xn→ 0
implies x = T x.

Lemma 2.8. (Xu [45]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1−ρn)an +σn, n≥ 1,

where {ρn} is a sequence in (0,1) and {σn} is a sequence in R such that

(1) ∑
∞
n=1 ρn = ∞,

(2) limsupn→∞

σn
ρn
≤ 0 or ∑

∞
n=1 |σn|< ∞.

Then limn→∞ an = 0.

Lemma 2.9. Let E be a Banach space. Then for all x,y ∈ E,
‖x+ y‖2 ≤ ‖x‖2 +2〈y,J(x+ y)〉.
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3. Main results

In this section, we will use the new viscosity approximation iterative method to prove a
strong convergence theorem for finding a common element of the set of fixed points of
strictly pseudo-contractive mapping, the set of common solutions of common of a gen-
eralized mixed equilibrium problem and the set of a common solutions of the variational
inclusion for inverse-strongly accretive mappings in a Banach spaces.

Lemma 3.1. Let C be a nonempty, closed and convex subset of uniformly convex and a
real 2-uniformly smooth Banach space E with the smooth constant K. Let be A1 : C→C an
γ1-inverse-strongly accretive mapping. If ρ1 ∈ (0,γ1/K2), then I−ρ1A1 is nonexpansive.

Proof. For any x,y ∈C, Lemma 2.5, one has

‖(I−ρ1A1)x− (I−ρ1A1)y‖2 = ‖(x− y)−ρ1(A1x−A1y)‖2

≤ ‖x− y‖2−2ρ〈A1x−A1y,J(x− y)〉+2K2
ρ

2
1‖Ax−Ay‖2

≤ ‖x− y‖2−2ρ1γ1‖A1x−A1y‖2 +2K2
ρ

2
1‖A1x−A1y‖2

= ‖x− y‖2−2ρ1(γ1−K2
ρ1)‖Ax−Ay‖2

≤ ‖x− y‖2,

which implies the mapping I−ρ1A1 is nonexpansive.

Theorem 3.1. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings and
A1,A2 : E → E γ1,γ2-inverse-strongly accretive mappings, respectively. Let F1 and F2 be
two bifunctions from E×E to R satisfying (A1)-(A4) and let ϕ : C→R∪{+∞} be a proper
lower semicontinuous and convex function with either (B1) or (B2). Let B1 : C→ E∗ be
an ρ-inverse-strongly accretive mapping, B2 : C→ E∗ be an ω-inverse-strongly accretive
mapping. Let f : E→ E be an α-contraction with coefficient α (0≤ α < 1). Let S : E→ E
be an λ -strictly pseudo-contractive mapping with a fixed point. Define a mapping Sk by
Skx = kx+(1− k)Sx, ∀x ∈ E. Suppose that

Θ := F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩GMEP(F1,ϕ,B1)∩GMEP(F2,ϕ,B2) 6= /0.

Let {xn} be a sequence generated by the following iterative algorithm:
(3.1)

F1(u
(1)
n ,y1)+ 〈B1xn,y1−u(1)

n 〉+ϕ(y)−ϕ(u(1)
n )+ 1

r 〈y1−u(1)
n ,Ju(1)

n − Jxn〉 ≥ 0, ∀y1 ∈C,

F2(u
(2)
n ,y2)+ 〈B2xn,y2−u(2)

n 〉+ϕ(y)−ϕ(u(2)
n )+ 1

s 〈y2−u(2)
n ,Ju(2)

n − Jxn〉 ≥ 0, ∀y2 ∈C,
yn = JM2,ρ2(xn−ρ2A2xn),
vn = JM1,ρ1(xn−ρ1A1xn),
tn = µ

(1)
n Skxn + µ

(2)
n vn + µ

(3)
n yn + µ

(4)
n u(1)

n + µ
(5)
n u(2)

n ,
xn+1 = αn f (xn)+βnxn + γntn,

where {αn}, {βn}, {γn}, {µ(i)
n } are sequences in (0,1), where i = 1,2,3,4,5, αn +βn +γn =

1, ρ1 ∈ (0,γ1/K2], ρ2 ∈ (0,γ2/K2], r ∈ (0,2ρ) and s ∈ (0,2ω). Assume that the control
sequences satisfy the following restrictions:

(C1) ∑
5
i=1 µ

(i)
n = 1,

(C2) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞,
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(C3) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1,

(C4) limn→∞ µ
(i)
n = µ(i) ∈ (0,1), where i = 1,2,3,4,5.

Then {xn} converges strongly to x∗ = QΘ f (x∗), where QΘ is the sunny nonexpansive retrac-
tion from E onto Θ.

Proof. First, we define four functions H1,H2 : C×C→ R̈ and K̃r, K̃s : C→C by

H1(u(1),y1) = F1(u(1),y1)+ 〈B1x,y1−u(1)〉+ϕ(y)−ϕ(u(1)), y1 ∈C;

K̃r(x) = {u ∈C : H1(u(1),y1)+
1
r
〈y1−u(1),Ju(1)− Jx〉 ≥ 0, ∀y1 ∈C,},x ∈C,(3.2)

and

H2(u(2),y2) = F2(u2,y2)+ 〈B2x,y2−u(2)〉+ϕ(y)−ϕ(u(2)), y2 ∈C;

K̃s(x) = {u ∈C : H2(u(2),y2)+
1
s
〈y2−u(2),Ju(2)− Jx〉 ≥ 0, ∀y2 ∈C,},x ∈C.(3.3)

By Lemma 2.4, we know that the functions H1,H2 satisfy the conditions (A1)-(A4) and
K̃r, K̃s satisfy properties (i)-(iv).
We will divide the proof into five steps.

Step 1. We claim that {xn} is bounded.
Indeed, let p ∈Θ and Lemma 2.4, we obtain

p = JM1,ρ1(p−ρ1A1 p) = JM2,ρ2(p−ρ2A2 p) = K̃r p = K̃s p.

We note that u(1)
n = K̃rxn ∈ dom ϕ and u(2)

n = K̃sxn ∈ dom ϕ , and since K̃r and K̃s are
nonexpansive mappings, we have

‖u(1)
n − p‖=‖K̃rxn− K̃r p‖ ≤ ‖xn− p‖(3.4)

and

‖u(2)
n − p‖=‖K̃sxn− K̃s p‖ ≤ ‖xn− p‖.(3.5)

Putting vn = JM1,ρ1(xn−ρ1A1xn) and yn = JM2,ρ2(xn−ρ2A2xn), we get I−ρ1A1 and I−ρ2A2
are nonexpansive. Thus, we have

‖vn− p‖=‖JM1,ρ1(xn−ρ1A1xn)− JM1,ρ1(p−ρ1A1 p)‖
≤‖(xn−ρ1A1xn)− (p−ρ1A1 p)‖
=‖(I−ρ1A1)xn− (I−ρ1A1)p‖
≤‖xn− p‖

and similarly, we also have

‖yn− p‖ ≤‖xn− p‖.
From Lemma 2.1, we have that Sk is nonexpansive with F(Sk) = F(S). It follows that

‖tn− p‖= ‖µ(1)
n (Skxn− p)+ µ

(2)
n (vn− p)+ µ

(3)
n (yn− p)+ µ

(4)
n (u(1)

n − p)+ µ
(5)
n (u(2)

n − p)‖

≤ µ
(1)
n ‖Skxn− p‖+ µ

(2)
n ‖vn− p‖+ µ

(3)
n ‖yn− p‖+ µ

(4)
n ‖u(1)

n − p‖+ µ
(5)
n ‖u(2)

n − p‖

≤ µ
(1)
n ‖xn− p‖+ µ

(2)
n ‖xn− p‖+ µ

(3)
n ‖xn− p‖+ µ

(4)
n ‖xn− p‖+ µ

(5)
n ‖xn− p‖

= ‖xn− p‖,
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which yields that

‖xn+1− p‖=‖αn( f (xn)− p)+βn(xn− p)+ γn(tn− p)‖
≤αn‖ f (xn)− p‖+βn‖xn− p‖+ γn‖tn− p‖
≤αn‖ f (xn)− f (p)‖+αn‖ f (p)− p‖+βn‖xn− p‖+ γn‖tn− p‖
≤αnα‖xn− p‖+βn‖xn− p‖+ γn‖xn− p‖+αn‖ f (p)− p‖
=αnα‖xn− p‖+(1−αn)‖xn− p‖+αn‖ f (p)− p‖

=(1− (1−α)αn)‖xn− p‖+(1−α)αn
‖ f (p)− p‖

1−α

≤max
{
‖xn− p‖, ‖ f (p)− p‖

1−α

}
≤

...

≤max
{
‖x1− p‖, ‖ f (p)− p‖

1−α

}
, ∀n ∈ N.(3.6)

Hence, {xn} is bounded, so are {u(1)
n }, {u(2)

n }, {vn}, {yn}, {tn}, { f (xn)}, {A1xn} and
{A2xn}.
Step 2. We claim that limn→∞ ‖xn+1− xn‖= 0 and limn→∞ ‖tn− xn‖= 0.

Observing that u(1)
n = K̃rxn ∈ dom ϕ and u(1)

n+1 = K̃rxn+1 ∈ dom ϕ , by the nonexpansive-
ness of K̃r, we get

‖u(1)
n+1−u(1)

n ‖=‖K̃rxn+1− K̃rxn‖ ≤ ‖xn+1− xn‖.(3.7)

Similarly, let u(2)
n = K̃sxn ∈ dom ϕ and u(2)

n+1 = K̃sxn+1 ∈ dom ϕ , we have

‖u(2)
n+1−u(2)

n ‖=‖K̃sxn+1− K̃sxn‖ ≤ ‖xn+1− xn‖.(3.8)

From vn = JM1,ρ1(xn−ρ1A1xn) and yn = JM2,ρ2(xn−ρ2A2xn), we compute

‖vn+1− vn‖=‖JM1,ρ1(xn+1−ρ1A1xn+1)− JM1,ρ1(xn−ρ1A1xn)‖
≤‖(xn+1−ρ1A1xn+1)− (xn−ρ1A1xn)‖
=‖(I−ρ1A1)xn+1− (I−ρ1A1)xn‖
≤‖xn+1− xn‖.(3.9)

Similarly, we also have

‖yn+1− yn‖=‖JM2,ρ2(xn+1−ρ2A2xn+1)− JM2,ρ2(xn−ρ2A2xn)‖
≤‖xn+1− xn‖.(3.10)

Observing that{
tn = µ

(1)
n Skxn + µ

(2)
n vn + µ

(3)
n yn + µ

(4)
n u(1)

n + µ
(5)
n u(2)

n

tn+1 = µ
(1)
n+1Skxn+1 + µ

(2)
n+1vn+1 + µ

(3)
n+1yn+1 + µ

(4)
n+1u1

n+1 + µ
(5)
n+1u2

n+1,

we compute

‖tn+1− tn‖

≤µ
(1)
n+1‖Skxn+1−Skxn‖+ |µ(1)

n+1−µ
(1)
n |‖Skxn‖+ µ

(2)
n+1‖vn+1− vn‖
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+ |µ(2)
n+1−µ

(2)
n |‖vn‖+ µ

(3)
n+1‖yn+1− yn‖+ |µ(3)

n+1−µ
(3)
n |‖yn‖

+ µ
(4)
n+1‖u

1
n+1−u(1)

n ‖+ |µ(4)
n+1−µ

(4)
n |‖u(1)

n ‖

+ µ
(5)
n+1‖u

2
n+1−u(2)

n ‖+ |µ(5)
n+1−µ

(5)
n |‖u(2)

n ‖

≤µ
(1)
n+1‖xn+1− xn‖+ |µ(1)

n+1−µ
(1)
n |‖Skxn‖+ µ

(2)
n+1‖vn+1− vn‖

+ |µ(2)
n+1−µ

(2)
n |‖vn‖+ µ

(3)
n+1‖yn+1− yn‖+ |µ(3)

n+1−µ
(3)
n |‖yn‖

+ µ
(4)
n+1‖u

1
n+1−u(1)

n ‖+ |µ(4)
n+1−µ

(4)
n |‖u(1)

n ‖

+ µ
(5)
n+1‖u

2
n+1−u(2)

n ‖+ |µ(5)
n+1−µ

(5)
n |‖u(2)

n ‖.(3.11)

Substitution of (3.7), (3.8), (3.9) and (3.10) into (3.11), yields that

‖tn+1− tn‖ ≤ µ
(1)
n+1‖xn+1− xn‖+ |µ(1)

n+1−µ
(1)
n |‖Skxn‖+ µ

(2)
n+1‖xn+1− xn‖+ |µ(2)

n+1−µ
(2)
n |‖vn‖

+ µ
(3)
n+1‖xn+1− xn‖+ |µ(3)

n+1−µ
(3)
n |‖yn‖+ µ

(4)
n+1‖xn+1− xn‖+ |µ(4)

n+1−µ
(4)
n |‖u(1)

n ‖

+ µ
(5)
n+1‖xn+1− xn‖+ |µ(5)

n+1−µ
(5)
n |‖u(2)

n ‖

≤ ‖xn+1− xn‖+M1

(
|µ(1)

n+1−µ
(1)
n |+ |µ(2)

n+1−µ
(2)
n |+ |µ(3)

n+1−µ
(3)
n |

+ |µ(4)
n+1−µ

(4)
n |+ |µ(5)

n+1−µ
(5)
n |
)
,

(3.12)

where M1 is an appropriate constant such that

M1 = max
{

sup
n≥1
‖Skxn‖,‖vn‖,‖yn‖,‖u(1)

n ‖,‖u(2)
n ‖
}

.

Putting xn+1 = (1−βn)ln +βnxn, ∀n≥ 1, we have

ln =
xn+1−βnxn

1−βn
=

αn f (xn)+ γntn
1−βn

.

Then, we compute

ln+1− ln =
αn+1 f (xn+1)+ γn+1tn+1

1−βn+1
− αn f (xn)+ γntn

1−βn

=
αn+1

1−βn+1
f (xn+1)−

αn

1−βn
f (xn)+ tn+1− tn

+
αn

1−βn
tn−

αn+1

1−βn+1
tn+1

=
αn+1

1−βn+1
( f (xn+1)− tn+1)+

αn

1−βn
(tn− f (xn))+ tn+1− tn.(3.13)

It follows from (3.12) and (3.13), that

‖ln+1− ln‖−‖xn+1− xn‖ ≤
αn+1

1−βn+1
(‖ f (xn+1)‖+‖tn+1‖)+

αn

1−βn
(‖tn‖+‖ f (xn)‖)

+‖tn+1− tn‖−‖xn+1− xn‖

≤ αn+1

1−βn+1
(‖ f (xn+1)‖+‖tn+1‖)+

αn

1−βn
(‖tn‖+‖ f (xn)‖)
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+M1

(
|µ(1)

n+1−µ
(1)
n |+ |µ(2)

n+1−µ
(2)
n |+ |µ(3)

n+1−µ
(3)
n |

+ |µ(4)
n+1−µ

(4)
n |+ |µ(5)

n+1−µ
(5)
n |
)
.

This together with (C2)-(C4), imply that

limsup
n→∞

(‖ln+1− ln‖−‖xn+1− xn‖)≤ 0.

Hence, by Lemma 2.6, we obtain ‖ln− xn‖→ 0 as n→ ∞. It follows that

(3.14) lim
n→∞
‖xn+1− xn‖= lim

n→∞
(1−βn)‖ln− xn‖= 0.

From (3.7), (3.8) and (3.14), we have

lim
n→∞
‖u1

n+1−u(1)
n ‖= lim

n→∞
‖u2

n+1−u(2)
n ‖= 0.

From (3.9), (3.10) and (3.14), we have

lim
n→∞
‖vn+1− vn‖= lim

n→∞
‖yn+1− yn‖= 0.

Moreover, from condition (C4), (3.12) and (3.14), we also get

lim
n→∞
‖tn+1− tn‖= 0.

Observe that

xn+1− xn = αn( f (xn)− xn)+ γn(tn− xn).

By conditions (C2), (C3) and (3.14), we have

(3.15) limn→∞‖tn− xn‖= 0.

Step 3. We show that limsupn→∞

〈
( f − I)x∗,J(x∗− xn+1)

〉
First, we will prove that z ∈ F(S)∩ I(E,A1,M1)∩ I(E,A2,M2)∩GMEP(F1,ϕ,B1)∩

GMEP(F2,ϕ,B2).
Define a mapping G : E→ E by

Gx = µ
(1)Skx+µ

(2)J(M1,ρ1)(I−ρ1A1)x+µ
(3)J(M2,ρ2)(I−ρ2A2)x+µ

(4)K̃rx+µ
(5)K̃sx, ∀x∈E,

where limn→∞ µ
(i)
n = µ(i) ∈ (0,1), where i = 1,2,3,4,5. Since ∑

5
i=1 µ

(i)
n = 1 and by Lemma

2.2, we have G is nonexpansive and

F(G) =F(Sk)∩F(J(M1,ρ1)(I−ρ1A1))∩F(J(M2,ρ2)(I−ρ2A2))∩F(K̃r)∩F(K̃s)

=F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩GMEP(F1,ϕ,B1)∩GMEP(F2,ϕ,B2).(3.16)

Notice that

‖Gxn− xn‖
≤‖Gxn− tn‖+‖tn− xn‖

=

∥∥∥∥∥[µ(1)Skxn + µ
(2)J(M1,ρ1)(I−ρ1A1)xn + µ

(3)J(M2,ρ2)(I−ρ2A2)xn

+ µ
(4)K̃rxn + µ

(5)T F2
s (I− rB2)xn

]
−
[
µ

(1)
n Skxn

+ µ
(2)
n J(M1,ρ1)(I−ρ1A1)xn + µ

(3)
n J(M2,ρ2)(I−ρ2A2)xn



1062 N. Onjai-Uea and P. Kumam

+ µ
(4)
n K̃rxn + µ

(5)
n K̃sxn

]∥∥∥∥∥+‖tn− xn‖

≤|µ(1)−µ
(1)
n |‖Skxn‖+ |µ(2)−µ

(2)
n |‖J(M1,ρ1)(I−ρ1A1)xn‖

+ |µ(3)−µ
(3)
n |‖J(M2,ρ2)(I−ρ2A2)xn‖+ |µ(4)−µ

(4)
n |‖K̃rxn‖

+ |µ(5)−µ
(5)
n |‖K̃sxn‖+‖tn− xn‖

≤K1

(
5

∑
i=1
|µ(i)−µ

(i)
n |

)
+‖tn− xn‖,

where K1 is an appropriate constant such that

K1 =max
{

sup
n≥1
‖K̃rxn‖, sup

n≥1
‖K̃sxn‖, sup

n≥1
‖J(M1,ρ1)(I−ρ1A1)xn‖,

sup
n≥1
‖J(M2,ρ2)(I−ρ2A2)xn‖, sup

n≥1
‖Skxn‖

}
.

From (C4) and (3.15), we obtain

lim
n→∞
‖xn−Gxn‖= 0.(3.17)

Since QΘ f (x∗) is a contraction with the coefficient α ∈ [0,1), we have that there exists a
unique fixed point. We use x∗ to denote the unique fixed point to the mapping QΘ f (x∗).
That is x∗ = QΘ f (x∗). Since {xn} is bounded, there exists a subsequence {xni} of {xn}
which converges weakly to z. Without loss of generality, we may assume that {xni} ⇀ z. It
follows from (3.17), that

lim
n→∞
‖xni −Gxni‖= 0.

Since G is nonexpansive, it follows from Lemma 2.7 that z = Gz, we obtain that z ∈ F(G).
By (3.16), hence we have z ∈Θ.
Let be x∗ = lim

t→0
xt with xt being the fixed point of the contraction

x 7→ t f (x)+(1− t)Gx.

From Lemma 2.9 that

‖xt − xn‖2 =‖(1− t)(Gxt − xn)+ t( f (xt)− xn)‖2

≤(1− t)2‖Gxt − xn‖2 +2t〈 f (xt)− xn,J(xt − xn)〉

≤(1− t)2(‖Gxt −Gxn‖+‖Gxn− xn‖)2 +2t〈 f (xt)− xn,J(xt − xn)〉

≤(1− t)2(‖xt − xn‖+‖Gxn− xn‖)2 +2t〈 f (xt)− xn,J(xt − xn)〉

=(1− t)2[‖xt − xn‖2 +2‖xt − xn‖‖Gxn− xn‖+‖Gxn− xn‖2]
+2t〈 f (xt)− xt ,J(xt − xn)〉+2t〈xt − xn,J(xt − xn)〉

=(1−2t + t2)‖xt − xn‖2 + fn(t)+2t〈 f (xt)− xt ,J(xt − xn)〉+2t‖xt − xn‖2,(3.18)

where

(3.19) fn(t) = (1− t)2(2‖xt − xn‖+‖xn−Gxn‖)‖xn−Gxn‖→ 0, as n→ ∞.
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It follows from (3.18) that

(3.20) 〈xt − f (xt),J(xt − xn)〉 ≤
t
2
‖xt − xn‖2 +

1
2t

fn(t).

Let n→ ∞ in (3.20) and note that (3.19) yields

(3.21) limsup
n→∞

〈xt − f (xt),J(xt − xn)〉 ≤
t
2

M,

where M > 0 is a constant such that ‖xt − xn‖2 for all t ∈ (0,1) and n ≥ 1. Taking t → 0
from (3.21), we have

(3.22) limsup
t→0

limsup
n→∞

〈xt − f (xt),J(xt − xn)〉 ≤ 0.

On the other hand, we have

〈 f (x∗)− x∗,J(xn− x∗)〉=〈 f (x∗)− x∗,J(xn− x∗)〉−〈 f (x∗)− x∗,J(xn− xt)〉
+ 〈 f (x∗)− x∗,J(xn− xt)〉−〈 f (x∗)− xt ,J(xn− xt)〉
+ 〈 f (x∗)− xt ,J(xn− xt)〉−〈 f (xt)− xt ,J(xn− xt)〉
+ 〈 f (xt)− xt ,J(xn− xt)〉

=〈 f (x∗)− x∗,J(xn− x∗)− J(xn− xt)〉+ 〈xt − x∗,J(xn− xt)〉
+ 〈 f (x∗)− f (xt),J(xn− xt)〉+ 〈 f (xt)− xt ,J(xn− xt)〉.

It follow that

limsup
n→∞

〈 f (x∗)− x∗,J(xn− x∗)〉 ≤ limsup
n→∞

〈 f (x∗)− x∗,J(xn− x∗)− J(xn− xt)〉

+ |xt − x∗‖ limsup
n→∞

‖xn− xt‖+α‖x∗− xt‖ limsup
n→∞

‖xn− xt‖

+ limsup
n→∞

〈 f (xt)− xt ,J(xn− xt)〉.

Noticing that J is norm-to-norm uniformly continuous on bounded subset of C, it follows
from (3.22), we have

limsup
n→∞

〈
f (x∗)− x∗,J(x∗− xn)

〉
= limsup

t→0
limsup

n→∞

〈
f (x∗)− x∗,J(x∗− xn)

〉
≤0.(3.23)

Observe that On the other hand, we have

〈( f (x∗)− x∗,J(x∗− xn+1)〉=〈 f (x∗)− x∗,J(xn− xn+1)〉+ 〈 f (x∗)− x∗,J(x∗− xn)〉
≤‖ f (x∗)− x∗‖‖xn− xn+1‖+ 〈 f (x∗)− x∗,J(x∗− xn)〉.

From (3.14) and (3.23), we obtain that

limsup
n→∞

〈 f (x∗)− x∗,J(x∗− xn+1)〉 ≤ 0.(3.24)

Step 5. We claim that limn→∞ ‖xn− x∗‖= 0.
Indeed, by (3.1) and using Lemma 2.9, we observe that

‖xn+1− x∗‖2 =
∥∥αn( f (xn)− x∗)+βn(xn− x∗)+(1−αn−βn)(tn− x∗)

∥∥2

≤
∥∥∥(1−αn−βn)(tn− x∗)+βn(xn− x∗)

∥∥∥2
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+2αn
〈

f (xn)− x∗,J(xn+1− x∗)
〉

≤
(

βn‖xn− x∗‖+(1−αn−βn)‖tn− x∗‖
)2

+2αn
〈

f (xn)− f (x∗),J(xn+1− x∗)
〉
+2αn

〈
f (x∗)− x∗,J(xn+1− x∗)

〉
≤
(

βn‖xn− x∗‖+(1−αn−βn)‖xn− x∗‖
)2

+2αnα‖xn− x∗‖‖xn+1− x∗‖+2αn
〈

f (x∗)− x∗,J(xn+1− x∗)
〉

≤(1−αn)2‖xn− x∗‖2

+αnα

(
‖xn− x∗‖2 +‖xn+1− x∗‖2

)
+2αn

〈
f (x∗)− x∗,J(xn+1− x∗)

〉
=
(

1−2αn +α
2
n +ααn +2ααn−2ααn

)
‖xn− x∗‖2

+αnα‖xn+1− x∗‖2 +2αn
〈

f (x∗)− x∗,J(xn+1− x∗)
〉

=
(

1−ααn−2αn(1−α)+α
2
n

)
‖xn− x∗‖2

+αnα‖xn+1− x∗‖2 +2αn
〈

f (x∗)− x∗,J(xn+1− x∗)
〉
,(3.25)

which implies that

‖xn+1− x∗‖2 ≤1−ααn−2αn(1−α)+α2
n

1−αnα
‖xn− x∗‖2 +

2αn

1−αnα
〈 f (x∗)− x∗,J(xn+1− x∗)〉

=

[
1− 2αn(1−α)

1−αnα

]
‖xn− x∗‖2

+
2αn(1−α)

1−αnα

(
1

(1−α)
〈 f (x∗)− x∗,J(xn+1− x∗)〉+ αn

2(1−α)
M2

)
,(3.26)

where M2 is an appropriate constant such that M2 ≥ supn≥1{‖xn− x∗‖2}.
Set ρn = 2αn(1−α)

1−αnα
and σn = 1

(1−α) 〈 f (x
∗)− x∗,J(xn+1− x∗)〉+ αn

2(1−α)M2, we can rewrite
(3.26) as

(3.27) ‖xn+1− x∗‖2 ≤ (1−ρn)‖xn− x∗‖2 +σn,

we can see that ∑
∞
n=1 ρn = ∞ and limsupn→∞

σn
ρn
≤ 0. Applying Lemma 2.8 to (3.27), we

conclude that {xn} converges strongly to x∗ in norm. This completes the proof.
If the mapping S is nonexpansive, then Sk = S0 = S. We can obtain the following result

from Theorem 3.1 immediately.

Corollary 3.1. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings and
A1,A2 : E → E γ1,γ2-inverse-strongly accretive mappings, respectively. Let F1 and F2 be
two bifunctions from E×E to R satisfying (A1)-(A4) and let ϕ : C→R∪{+∞} be a proper
lower semicontinuous and convex function with either (B1) or (B2). Let B1 : C→ E∗ be
an ρ-inverse-strongly accretive mapping, B2 : C→ E∗ be an ω-inverse-strongly accretive
mapping. Let f : E→ E be an α-contraction with coefficient α (0≤ α < 1). Let S : E→ E
be a nonexpansive mapping. Suppose that

Θ := F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩GMEP(F1,ϕ,B1)∩GMEP(F2,ϕ,B2) 6= /0.
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Let {xn} be a sequence generated by the following iterative algorithm (3.1), where {αn},
{βn}, {γn}, {µ(i)

n } are sequences in (0,1), where i = 1,2,3,4,5, αn + βn + γn = 1, ρ1 ∈
(0,γ1/K2], ρ2 ∈ (0,γ2/K2], r ∈ (0,2ρ) and s ∈ (0,2ω). Assume that the control sequences
satisfy (C1)-(C4). Then {xn} converges strongly to x∗ = QΘ f (x∗), where QΘ is the sunny
nonexpansive retraction from E onto Θ.

Corollary 3.2. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings and
A1,A2 : E → E γ1,γ2-inverse-strongly accretive mappings, respectively. Let f : E → E be
an α-contraction with coefficient α (0 ≤ α < 1). Let S : E → E be an λ -strictly pseudo-
contractive mapping with a fixed point. Define a mapping Sk by Skx = kx + (1− k)Sx,
∀x ∈ E. Suppose that

Ω
′ := F(S)∩V I(E,A1,M1)∩V I(E,A2,M2) 6= /0.

Let {xn} be a sequence generated by the following iterative algorithm:

(3.28)


yn = JM2,ρ2(xn−ρ2A2xn),
vn = JM1,ρ1(xn−ρ1A1xn),
tn = υ

(1)
n Skxn +υ

(2)
n vn +υ

(3)
n yn +υ

(4)
n xn,

xn+1 = αn f (xn)+βnxn + γntn,

where {αn}, {βn}, {γn}, {υ(i)
n } are sequences in (0,1), where i = 1,2,3,4, αn +βn +γn = 1,

ρ1 ∈ (0,γ1/K2] and ρ2 ∈ (0,γ2/K2]. Assume that the control sequences satisfy the following
restrictions:

(C1) ∑
4
i=1 υ

(i)
n = 1,

(C2) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞,

(C3) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1,

(C4) limn→∞ υ
(i)
n = υ(i) ∈ (0,1), where i = 1,2,3,4.

Then {xn} converges strongly to x∗ = QΩ′ f (x∗), where QΩ′ is the sunny nonexpansive re-
traction from E onto Ω′.

Proof. Put F1(x,y) = F2(x,y) = 0 and B1 = B2 = 0 for all x,y ∈C and s = r = 1 in Theorem
3.1. Then, we have u(1)

n = u(2)
n = xn. So, by Theorem 3.1, we can conclude the desired result

easily.

Corollary 3.3. Let C be a subset of uniformly convex and 2-uniformly smooth Banach
space of E with the smooth constant K. Let f : E → E be an α-contraction with coefficient
α (0 ≤ α < 1). Let S : E → E be an λ -strictly pseudo-contractive mapping with a fixed
point. Define a mapping Sk by Skx = kx +(1− k)Sx, ∀x ∈ E. Suppose that F(S) 6= /0. Let
{xn} be a sequence generated by the following iterative algorithm:

(3.29)
{

tn = µnSkxn +(1−µn)xn,
xn+1 = αn f (xn)+βnxn + γntn,

where {αn}, {βn}, {γn}, {µn} are sequences in (0,1). Assume that the control sequences
satisfy the following restrictions:

(C1) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞,

(C2) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1,
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Then {xn} converges strongly to x∗ = QF(S) f (x∗), where QF(S) is the sunny nonexpansive
retraction from E onto F(S).

Proof. Put JM1,ρ1(I−ρ1A1) = JM2,ρ2(I−ρ2A2) = I in Corollary 3.2. Then, we have yn =
vn = xn So, by Theorem 3.1, we can conclude the desired result easily.

4. Applications

If we set ϕ(x) = 0 in (1.1) then the problem (1.1) is reduced to the GEP(F,B) (1.4), this
problem first introduced by Takahashi and Takahashi [39].
In case F(x,y) = 0, problem (1.4) reduced to variational inequality problem V I(C,B), i.e.,

〈Bx,y− x〉 ≥ 0, x,y ∈C.

If B = 0, problem (1.4) is reduced to EP(F) (1.5).
We give a mapping D : C→ E∗ and F(x,y) = 〈Dx,y− x〉, then,

(4.1) x ∈ EP(F)⇔ 〈Dx,y− x〉 ≥ 0, y ∈C.

If we defined F(x,y) = 〈Dx,y− x〉, then we can solve a common solution of variational
inequalities problems for two operators that is V I(C,D)∩V I(C,B) (see in Corollary 4.3).

Using our main theorem 3.1, we obtained the following Corollaries.

Corollary 4.1. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings
and A1,A2 : E → E γ1,γ2-inverse-strongly accretive mappings, respectively. Let F1 and F2
be two bifunctions from E ×E to R satisfying (A1)-(A4) and let ϕ : C→ R∪{+∞} be a
proper lower semicontinuous and convex function. Let f : E→ E be an α-contraction with
coefficient α (0≤ α < 1). Let S : E→ E be an λ -strict pseudo-contraction mapping with a
fixed point. Define a mapping Sk by Skx = kx+(1− k)Sx, ∀x ∈ E. Suppose that

Ω := F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩EP(F1)∩EP(F2) 6= /0.

Let {xn} be a sequence generated by the following iterative algorithm:

F1(u
(1)
n ,y1)+ 1

r 〈y1−u(1)
n ,Ju(1)

n − Jxn〉 ≥ 0, ∀y1 ∈C,

F2(u
(2)
n ,y2)+ 1

s 〈y2−u(2)
n ,Ju(2)

n − Jxn〉 ≥ 0, ∀y2 ∈C,
yn = JM2,ρ2(xn−ρ2A2xn),
vn = JM1,ρ1(xn−ρ1A1xn),
tn = µ

(1)
n Skxn + µ

(2)
n vn + µ

(3)
n yn + µ

(4)
n u(1)

n + µ
(5)
n u(2)

n ,
xn+1 = αn f (xn)+βnxn + γntn,

where {αn}, {βn}, {γn}, {µ(i)
n } are sequences in (0,1), where i = 1,2,3,4,5, αn +βn +γn =

1, ρ1 ∈ (0,γ1/K2], ρ2 ∈ (0,γ2/K2], r ∈ (0,2ρ) and s ∈ (0,2ω). Assume that the control
sequences satisfy condition (C1)-(C4). Then {xn} converges strongly to x∗ = QΩ f (x∗),
where QΩ is the sunny nonexpansive retraction from E onto Ω.

Proof. Put B1 = B2 = 0 for all x,y ∈C in Theorem 3.1. Then, we can conclude the desired
result easily.

Corollary 4.2. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings and
A1,A2 : E→ E γ1,γ2-inverse-strongly accretive mappings, respectively. Let B1 : C→ E∗ be
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an ρ-inverse-strongly accretive mapping, B2 : C→ E∗ be an ω-inverse-strongly accretive
mapping. Let f : E→ E be an α-contraction with coefficient α (0≤ α < 1). Let S : E→ E
be an λ -strictly pseudo-contractive mapping with a fixed point. Define a mapping Sk by
Skx = kx+(1− k)Sx, ∀x ∈ E. Suppose that

Θ := F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩V I(C,B1)∩V I(C,B2) 6= /0.

Let {xn} be a sequence generated by the following iterative algorithm:

〈B1xn,y1−u(1)
n 〉+ 1

r 〈y1−u(1)
n ,Ju(1)

n − Jxn〉 ≥ 0, ∀y1 ∈C,

〈B2xn,y2−u(2)
n 〉+ 1

s 〈y2−u(2)
n ,Ju(2)

n − Jxn〉 ≥ 0, ∀y2 ∈C,
yn = JM2,ρ2(xn−ρ2A2xn),
vn = JM1,ρ1(xn−ρ1A1xn),
tn = µ

(1)
n Skxn + µ

(2)
n vn + µ

(3)
n yn + µ

(4)
n u(1)

n + µ
(5)
n u(2)

n ,
xn+1 = αn f (xn)+βnxn + γntn,

where {αn}, {βn}, {γn}, {µ(i)
n } are sequences in (0,1), where i = 1,2,3,4,5, αn +βn +γn =

1, ρ1 ∈ (0,γ1/K2], ρ2 ∈ (0,γ2/K2], r ∈ (0,2ρ) and s ∈ (0,2ω). Assume that the control
sequences satisfy the following restrictions:

(C1) ∑
5
i=1 µ

(i)
n = 1,

(C2) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞,

(C3) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1,

(C4) limn→∞ µ
(i)
n = µ(i) ∈ (0,1), where i = 1,2,3,4,5.

Then {xn} converges strongly to x∗ = QΘ f (x∗), where QΘ is the sunny nonexpansive retrac-
tion from E onto Θ.

Proof. Put F1(x,y) = F2(x,y) = 0 for all x,y ∈C in Theorem 3.1. Then, we can conclude
the desired result easily.

Corollary 4.3. Let C be a subset of uniformly convex and 2-uniformly smooth Banach space
of E with the smooth constant K. Let M1,M2 : E → 2E be maximal accretive mappings and
A1,A2 : E→ E γ1,γ2-inverse-strongly accretive mappings, respectively. Let B1 : C→ E∗ be
an ρ-inverse-strongly accretive mapping, B2 : C→ E∗ be an ω-inverse-strongly accretive
mapping and D1,D2 : C→ E∗ be mappings. Let f : E → E be an α-contraction with coef-
ficient α (0 ≤ α < 1). Let S : E → E be an λ -strictly pseudo-contractive mapping with a
fixed point. Define a mapping Sk by Skx = kx+(1− k)Sx, ∀x ∈ E. Suppose that

F(S)∩V I(E,A1,M1)∩V I(E,A2,M2)∩V I(C,D2)∩V I(C,D2)∩V I(C,B1)∩V I(C,B2) 6= /0.

Let {xn} be a sequence generated by the following iterative algorithm:

〈D1xn,y1−u(1)
n 〉+ 〈B1xn,y1−u(1)

n 〉+ 1
r 〈y1−u(1)

n ,Ju(1)
n − Jxn〉 ≥ 0, ∀y1 ∈C,

〈D2xn,y2−u(2)
n 〉+ 〈B2xn,y2−u(2)

n 〉+ 1
s 〈y2−u(2)

n ,Ju(2)
n − Jxn〉 ≥ 0, ∀y2 ∈C,

yn = JM2,ρ2(xn−ρ2A2xn),
vn = JM1,ρ1(xn−ρ1A1xn),
tn = µ

(1)
n Skxn + µ

(2)
n vn + µ

(3)
n yn + µ

(4)
n u(1)

n + µ
(5)
n u(2)

n ,
xn+1 = αn f (xn)+βnxn + γntn,
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where {αn}, {βn}, {γn}, {µ(i)
n } are sequences in (0,1), where i = 1,2,3,4,5, αn +βn +γn =

1, ρ1 ∈ (0,γ1/K2], ρ2 ∈ (0,γ2/K2], r ∈ (0,2ρ) and s ∈ (0,2ω). Assume that the control
sequences satisfy the following restrictions:

(C1) ∑
5
i=1 µ

(i)
n = 1,

(C2) limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞,

(C3) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1,

(C4) limn→∞ µ
(i)
n = µ(i) ∈ (0,1), where i = 1,2,3,4,5.

Then {xn} converges strongly to x∗ = QΘ f (x∗), where QΘ is the sunny nonexpansive retrac-
tion from E onto Θ.

Proof. Put F1(x,y) = 〈D1xn,y1− u(1)
n 〉 and F2(x,y) = 〈D2xn,y2− u(2)

n 〉 for all x,y ∈ C in
Theorem 3.1. Then, we can conclude the desired result easily.
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