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Abstract. Let R be a prime ring with Utumi quotient ring U and extended centroid C, g a
nonzero generalized derivation of R, I a nonzero right ideal of R, f (r1, . . . ,rk) a multilinear
polynomial over C and n ≥ 2 be a fixed integer. If g( f (r1, . . . ,rk)n) = g( f (r1, . . . ,rk))n

for all r1, . . . ,rk ∈ I, then one of the following holds: (1) IC = eRC for some idempotent
e ∈ soc(RC) and f (x1, . . . ,xk) is central-valued on eRCe; (2) there exist a,b ∈U such that
g(x) = ax + xb for all x ∈ R and (a−α)I = (0), (b− β )I = (0) for some α,β ∈ C with
(α +β )n−1 = 1; (3) there exists a ∈U such that g(x) = ax for all x ∈ R with aI = (0).
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1. Introduction

Let R be an associative prime ring with center Z(R). Throughout this paper, U will denote
the Utumi quotient ring of R and C = Z(U), the center of U , which is called extended
centroid of R. For x,y ∈ R, the symbol [x,y] stands for the commutator xy− yx. An additive
mapping d : R→ R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x,y ∈ R.
The concept of derivation is extended to generalized derivation. The generalized derivation
means an additive mapping g : R→ R such that g(xy) = g(x)y + xd(y) for all x, ,y ∈ R,
where d is a derivation of R. For some fixed a,b ∈ R, the maps g(x) = ax+ xb for all x ∈ R,
is an example of generalized derivation. This kind of generalized derivations are called
generalized inner derivations.

Let S be a nonempty set of R and F : R→ R be an additive mapping. Then we say that
F acts as homomorphism or anti-homomorphism on S if F(xy) = F(x)F(y) or F(xy) =
F(y)F(x) holds for all x,y ∈ S respectively. The additive mapping F acts as a Jordan ho-
momorphism on S if F(x2) = F(x)2 holds for all x ∈ S. Obviously, any additive mapping
acting as homomorphism or anti-homomorphism is a surjective Jordan homomorphism,
but the converse is not true in general. In [11, Theorem 3.1], Herstein proved that in a
2-torsion free prime ring, any Jordan homomorphism is either a homomorphism or an anti-
homomorphism.
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In [2], Bell and Kappe proved that if a derivation d of a prime ring R acts as a homo-
morphism or anti-homomorphism on a nonzero right ideal of R, then d = 0 on R. Recently,
Ali, Rehman and Ali in [1] proved a similar result to Lie ideal case. They proved that if
R is a 2-torsion free prime ring, L a nonzero Lie ideal of R such that u2 ∈ L for all u ∈ L
and d acts as a homomorphism or anti-homomorphism on L, then either d = 0 or L⊆ Z(R).
In [22], Wang and You eliminated the assumption u2 ∈ L for all u ∈ L and obtain the same
conclusion of [1].

On the other hand, the authors developed above results, replacing the derivation d with a
generalized derivation g of R. In [21], Rehman proved that the 2-torsion free prime ring R
must be commutative, if there is a generalized derivation g admitting a nonzero associated
derivation, that acts as homomorphism or anti-homomorphism on a nonzero ideal of R.
Gusic in [10] showed that the result of Rehman is not in complete form. He proved the
following: let R be a prime ring, I a nonzero ideal of R and d,g any two functions on
R (not necessary to be additive and d not necessary to be a derivation) such that g(xy) =
g(x)y + xd(y) for all x,y ∈ R. If g acts as a homomorphism or an anti-homomorphism on
I, then d = 0 and either g = 0 or g(x) = x for all x ∈ R; in addition, when g acts as an
anti-homomorphism on I, then R must be commutative. In the same line of investigation,
recently in [7] De Filippis studied the situation when generalized derivation g acts as a
Jordan homomorphism on a noncentral Lie ideal L of R and on the set [I, I], where I is a
nonzero right ideal of a prime ring R. More precisely, De Filippis proved the following two
theorems:

Theorem 1.1. Let R be a prime ring, L a non-central Lie ideal of R and g a nonzero gener-
alized derivation of R. If g acts as a Jordan homomorphism on L, then either g(x) = x for
all x∈ R, or char(R) = 2, R satisfies the standard identity s4(x1,x2,x3,x4), L is commutative
and u2 ∈ Z(R) for any u ∈ L.

Theorem 1.2. Let R be a prime ring, I a nonzero right ideal of R and g a nonzero gener-
alized derivation of R. If g acts as a Jordan homomorphism on the set [I, I], then one of the
following holds: (i) char (R) = 2 and I satisfies the identity s4(x1, . . . ,x4)x5; (ii) [I, I]I = 0;
(iii) there exists a ∈ R such that g(x) = ax for all x ∈ R and aI = 0; (iv) g(x) = x for all
x ∈ I; (v) there exists q ∈ R such that g(x) = xq and qx = x for all x ∈ I.

It is natural to generalize above results considering the generalized derivation g acts as
Jordan homomorphism on the set { f (x1, . . . ,xk)|x1, . . . ,xk ∈ I}, where I is a nonzero right
ideal of R and f (x1, . . . ,xk) is a multilinear polynomial on R over C. In the present paper,
our aim is to study this situation in more generalized form by considering n-power values.

Let R be a prime ring and U be the Utumi quotient ring of R and C = Z(U), the center
of U . Note that U is also a prime ring with C a field. Let f (x1, . . . ,xk) be a multilinear
polynomial over C. We can write it as

f (x1, . . . ,xk) = x1x2 . . .xk + ∑
I 6=σ∈Sk

ασ xσ(1) . . .xσ(k),

where Sk is the permutation group over k elements and any ασ ∈C. We denote by f d(x1, . . . ,
xk) the polynomial obtained from f (x1, . . . ,xk) by replacing each coefficient ασ with d(ασ .1).
In this way we have

d( f (x1, . . . ,xk)) = f d(x1, . . . ,xk)+∑
i

f (x1, . . . ,d(xi), . . . ,xk).
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Now we include some facts which will be used to prove our theorems.

Fact 1. It is well known that any derivation of R can be uniquely extended to a derivation
of U (see [17, Lemma 2]).

Fact 2. Let ρ be a nonzero right ideal of R. Then ρ , ρC, ρU satisfy the same generalized
polynomial identities with coefficients in U (see [5]).

Fact 3. Let ρ be a nonzero right ideal of R. Then ρ , ρR and ρU satisfy the same differential
identities with coefficients in U (see [17, Theorem 2]).

Fact 4. Let ρ be a nonzero right ideal of R. If ρ satisfies a nontrivial polynomial identity,
then RC is a primitive ring with soc(RC) 6= 0 and ρC = eRC for some idempotent e = e2 ∈
soc(RC) (see [16, Proposition]).

Fact 5. Let R be a dense ring of linear transformations of a vector space V over a division
ring D and a ∈ R. If for any v ∈ V , av and v are linearly D-dependent, then there exists a
β ∈ D such that av = vβ for all v ∈V .

Proof. For any v ∈V , av = vαv for some αv ∈ D. Now we prove that αv is independent of
the choice of v ∈V . Let u be a fixed vector of V . Then au = uα . Let v be any vector of V .
Then av = vαv, where αv ∈ D. If u and v are linearly D-dependent, then u = vβ , for β ∈ D.
In this case, we see that uα = au = avβ = (vαv)β = (vβ )αv = uαv, implying α = αv.

Now if u and v are linearly D-independent, then we have (u + v)αu+v = a(u + v) =
au + av = uα + vαv, which implies u(αu+v−α) + v(αu+v−αv) = 0. Since u and v are
linearly D-independent, we have αu+v−α = 0 = αu+v−αv and so α = αv. Thus av = vα

for all v ∈V , where α ∈ D independent of the choice of v ∈V .

Fact 6. Let I be a nonzero right ideal of R and a∈U . If for every x∈ I, ax and x are linearly
C-dependent, then there exists α ∈C such that (a−α)I = (0).

The proof of Fact 6 is similar to that of Fact 5, so we omit it here.

Remark 1.1. Now we mention a result of Lee in [15] which will be used to prove our
main theorem. In [15], Lee extended the definition of generalized derivation as follows:
generalized derivation means an additive mapping g : ρ→U such that g(xy) = g(x)y+xδ (y)
for all x,y ∈ ρ , where ρ is a dense right ideal of R and δ ia a derivation from ρ into U . The
author proved that every generalized derivation of R can be uniquely extended to generalized
derivation of U and has the form g(x) = ax + δ (x) for all x ∈U , where a ∈U and δ is a
derivation of U [15, Theorem 3]. For more details about generalized derivations we refer to
[3], [12], [15] and [18].

2. Main results

First we study the case when g is inner generalized derivation of R, that is, for some a,b∈U ,
g(x) = ax+ xb for all x ∈ R.

Lemma 2.1. Let R = Mm(F), m ≥ 2, be the set of all m×m matrices over a field F
and f (x1, . . . ,xk) be a noncentral multilinear polynomial over F. If for some a,b ∈ R,
a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb = (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n for all x1, . . . ,xk ∈ R,
then a,b ∈ F.Im with (a+b)n− (a+b) = 0.
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Proof. Let a = (ai j)m×m, b = (bi j)m×m. Since f (x1, . . . ,xk) is not central valued on R, by
[19, Lemma 2, Proof of Lemma 3] there exists a sequence of matrices r = (r1, . . . ,rk) in R
such that f (r1, . . . ,rk) = γei j with 0 6= γ ∈ F and i 6= j. Since the set f (R) = { f (x1, . . . ,xk),
xi ∈ R} is invariant under the action of all inner automorphisms of R, for all i 6= j there exists
a sequence of matrices r = (r1, . . . ,rk) such that f (r) = γei j. Thus

a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb = (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n

gives 0 = (aγei j + γei jb)n i.e., 0 = (aei j + ei jb)n. Left multiplying by ei j yields an
ji = 0 and

right multiplying by ei j yields bn
ji = 0. Thus, we have a ji = 0 and b ji = 0 for any i 6= j, that

is, a and b are diagonal matrices.
Now for any F-automorphism θ of R, we have

aθ f (x1, . . . ,xk)n + f (x1, . . . ,xk)nbθ =
(
aθ f (x1, . . . ,xk)+ f (x1, . . . ,xk)bθ

)n

for all x1, . . . ,xk ∈ R. Then by above argument aθ and bθ must be diagonal. Write, a =
m
∑

i=0
aiieii and b =

m
∑

i=0
biieii; then for s 6= t, we have

(1+ ets)a(1− ets) =
m

∑
i=0

aiieii +(ass−att)ets

diagonal and

(1+ ets)b(1− ets) =
m

∑
i=0

biieii +(bss−btt)ets

diagonal, implying ass = att , bss = btt and so a,b ∈ F.Im. Then our assumption

a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb =
(
a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b

)n

for all x1, . . . ,xk ∈ R, reduces to ((a + b)n− (a + b)) f (x1, . . . ,xk)n = 0. This implies either
(a+b)n− (a+b) = 0 or f (x1, . . . ,xk)n = 0 for all x1, . . . ,xk ∈ R. But by [19, Corollary 5],
f (x1, . . . ,xk)n = 0 for all x1, . . . ,xk ∈ R, implies that f (x1, . . . ,xk) = 0 for all x1, . . . ,xk ∈ R,
a contradiction.

Proposition 2.1. Let R be a prime ring with Utumi quotient ring U and extended centroid
C, and f (r1, . . . ,rk) be a multilinear polynomial over C which is not central valued on R. If
for some a,b ∈U, a f (r)n + f (r)nb = (a f (r)+ f (r)b)n for all r = (r1, . . . ,rk) ∈ Rk, where
n≥ 2 is a fixed integer, then a,b ∈C with (a+b)n− (a+b) = 0.

Proof. Since R and U satisfy same generalized polynomial identity (see [5]), U satisfies

h(x1, . . . ,xk) = a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb− (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n = 0.

Suppose that h(x1, . . . ,xk) is a trivial GPI for U . Let T =U ∗C C{x1, . . . ,xk}, the free product
of U and C{x1, . . . ,xk}, the free C-algebra in noncommuting indeterminates x1, . . . ,xk. Then,

a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb− (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n

is zero element in T . If a /∈C, then a and 1 are linearly independent over C. Then expanding
the above identity, it will imply

a f (x1, . . . ,xk)n−a f (x1, . . . ,xk)(a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n−1 = 0

that is,

a f (x1, . . . ,xk){ f (x1, . . . ,xk)n−1− (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n−1}= 0
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in T . Again, since a and 1 are linearly independent over C, this implies that

a f (x1, . . . ,xk){a f (x1, . . . ,xk)(a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n−2}= 0

and so (a f (x1, . . . ,xk))n = 0, implying a = 0, a contradiction. Hence, a ∈ C. Then our
generalized polynomial identity (GPI) reduces to f (x1, . . . ,xk)n(a+b)− ( f (x1, . . . ,xk)(a+
b))n = 0 in T . If a+b /∈C, then a+b and 1 are linearly independent over C. Then by same
argument as above, ( f (x1, . . . ,xk)(a+b))n = 0, which is a nontrivial generalized polynomial
identity for R, a contradiction. Thus, a + b ∈ C and hence b ∈ C. Then our GPI becomes
{(a + b)− (a + b)n} f (x1, . . . ,xk)n = 0, which is trivial GPI for R, implying (a + b)− (a +
b)n = 0.

Next suppose that h(x1, . . . ,xk) is a nontrivial GPI for R and so for U . In case C is infinite,
we have h(x1, . . . ,xk) = 0 for all x1, . . . ,xk ∈U ⊗C C, where C is the algebraic closure of C.
Since both U and U ⊗C C are prime and centrally closed [8, Theorems 2.5 and 3.5], we
may replace R by U or U ⊗C C according to C finite or infinite. Then R is centrally closed
over C and h(x1, . . . ,xk) = 0 for all x1, . . . ,xk ∈ R. By Martindale’s theorem [20], R is then a
primitive ring with nonzero socle soc(R) and with C as its associated division ring. Then, by
Jacobson’s theorem [13, p.75], R is isomorphic to a dense ring of linear transformations of a
vector space V over C. Assume first that V is finite dimensional over C, that is, dimCV = m.
By density of R, we have R ∼= Mm(C). Since f (r1, . . . ,rk) is not central valued on R, R
must be noncommutative and so m≥ 2. In this case, by Lemma 2.1, we obtain our required
conclusion.

Now, if V is infinite dimensional over C, then as in lemma 2 in [23], the set f (R) is dense
on R and so from

a f (r1, . . . ,rk)n + f (r1, . . . ,rk)nb− (a f (r1, . . . ,rk)+ f (r1, . . . ,rk)b)n = 0

for all r1, . . . ,rk ∈ R, we have arn + rnb− (ar + rb)n = 0 for all r ∈ R. Let v and bv be
linearly C-independent for some v ∈V . Then by density there exists r ∈ R such that rv = 0,
rbv = v. Therefore, we have 0 = {arn + rnb− (ar + rb)n}v = −v for n ≥ 2, contradiction.
Hence, v and bv are linearly C-dependent for all v ∈V . By Fact 5, we can write bv = vα for
all v ∈V and α ∈C fixed.

Now let r ∈ R, v ∈V . Since bv = vα ,

[b,r]v = (br)v− (rb)v = b(rv)− r(bv) = (rv)α− r(vα) = 0.

Thus [b,r]v = 0 for all v ∈ V i.e., [b,r]V = 0. Since [b,r] acts faithfully as a linear trans-
formation on the vector space V , [b,r] = 0 for all r ∈ R. Therefore, b ∈C. Then we obtain
(a + b)rn− ((a + b)r)n = 0 for all r ∈ R. Let v and (a + b)v be linearly C-independent for
some v ∈V . By density, we may choose r ∈ R such that rv = v, r(a+b)v = 0. Then we get
0 = {(a+b)rn− ((a+b)r)n}v = (a+b)v for n≥ 2, a contradiction. Hence, v and (a+b)v
are linearly C-dependent for all v ∈V , which implies as before that a+b ∈C and so a ∈C.
Therefore, {(a+b)n− (a+b)}rn = 0 for all r ∈ R. Since V is infinite dimensional over C,
(a+b)n− (a+b) = 0.

Proposition 2.2. Let R be a prime ring with Utumi quotient ring U and extended centroid
C, I a nonzero right ideal of R and f (r1, . . . ,rk) a multilinear polynomial over C. If for some
a,b ∈U, a f (r)n + f (r)nb = (a f (r)+ f (r)b)n for all r = (r1, . . . ,rk) ∈ Ik, then one of the
following holds:
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(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . ,xk) is central-valued on
eRCe;

(2) there exist α,β ∈C such that (a−α)I = (0) and (b−β )I = (0) with (α +β )n−1 =
1;

(3) b ∈C and (a+b)I = (0).

Proof. Let u ∈ I. Then R satisfies the GPI

(2.1) a f (ux1, . . . ,uxk)n + f (ux1, . . . ,uxk)nb = (a f (ux1, . . . ,uxk)+ f (ux1, . . . ,uxk)b)n.

Now we consider following two cases:

Case I: R does not satisfy any nontrivial GPI
Then (2.1) is a trivial GPI for R, that is,

(2.2) a f (ux1, . . . ,uxk)n + f (ux1, . . . ,uxk)nb− (a f (ux1, . . . ,uxk)+ f (ux1, . . . ,uxk)b)n

is zero element in R∗C C{x1, . . . ,xk}. Suppose first that there exists u ∈ I such that {bu,u}
are linearly C-independent. Then b /∈C, and hence above GPI implies that

f (ux1, . . . ,uxk)nb− (a f (ux1, . . . ,uxk)+ f (ux1, . . . ,uxk)b)n−1 f (ux1, . . . ,uxk)b = 0.

Now since {bu,u} are linearly C-independent, we see expanding the above expression that
( f (ux1, . . . ,uxk)b)n appears nontrivially, a contradiction. Hence bu and u are linearly C-
dependent for all u ∈ I. Then by Fact 6, there exists β ∈C such that (b−β )I = (0). Next
suppose that there exists u ∈ I such that {au,u} are linearly C-independent. Then from
above (2.2), we obtain that

(2.3) a f (ux1, . . . ,uxk)n−a f (ux1, . . . ,uxk){a f (ux1, . . . ,uxk)+ f (ux1, . . . ,uxk)b}n−1 = 0.

Expanding the above expression we find that the term {a f (ux1, . . . ,uxk)}n appears nontriv-
ially, a contradiction. Hence we conclude that au and u are linearly C-dependent for all
u ∈ I. By Fact 6, there exists α ∈C such that (a−α)I = (0).

Then (2.1) reduces to

(2.4) f (ux1, . . . ,uxk)n(α +b) = ( f (ux1, . . . ,uxk)(α +b))n.

Using (b−β )I = (0), it follows that

(2.5) f (ux1, . . . ,uxk)n(α +b) = f (ux1, . . . ,uxk)n(α +β )n−1(α +b)

that is

(2.6) f (ux1, . . . ,uxk)n{1− (α +β )n−1}(α +b) = 0.

Since this is trivial GPI for R, either 1− (α + β )n−1 = 0 or b = −α ∈C. These two cases
gives conclusion (2) and (3) respectively.

Case II: R satisfy a nontrivial GPI
Now assume first that [ f (I), I]I = 0, that is [ f (x1, . . . ,xk),xk+1]xk+2 = 0 for all x1,x2, . . . ,
xk+2 ∈ I. Then by Fact 4, IC = eRC for some idempotent e ∈ soc(RC). Since [ f (I), I]I = 0,
we have [ f (IR), IR]IR = 0 and hence [ f (IU), IU ]IU = 0 by [5, Theorem 2]. In particular,
[ f (IC), IC]IC = 0, or equivalently, [ f (eRC),eRC]eRC = 0. Then [ f (eRCe),eRCe] = 0, that
is, f (x1, . . . ,xk) is central-valued on eRCe and hence conclusion (1) is obtained.

So, we assume that [ f (I), I]I 6= 0, that is, [ f (x1, . . . ,xk),xk+1]xk+2 is not an identity for I.
In this case R is a prime GPI-ring and so is U (see [5]). Since U is centrally closed over C,
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it follows from [20] that U is a primitive ring with H = Soc(U) 6= 0. Then [ f (IH), IH]IH 6=
0. For otherwise, [ f (IU), IU ]IU = 0 by [5], a contradiction. Choose u1, . . . ,uk+2 ∈ IH
such that [ f (u1, . . . ,uk),uk+1]uk+2 6= 0. Let u ∈ IH. Since H is a regular ring, there exists
e2 = e ∈ H such that eH = uH +u1H + · · ·+uk+2H. Then e ∈ IH and u = eu, ui = eui for
i = 1, . . . ,k + 2. Thus, we have 0 6= [ f (eH),eH]eH = [ f (eHe),eHe]H i.e., f (r1, . . . ,rk) is
not central-valued in eHe.

By our assumption and by [5], we may also assume that

a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb = (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n

is an identity for IU . In particular,

a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb = (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n

is an identity for IH and so for eH. It follows that, for all r1, . . . ,rk ∈ H,

(2.7) a f (er1, . . . ,erk)n + f (er1, . . . ,erk)nb = (a f (er1, . . . ,erk)+ f (er1, . . . ,erk)b)n.

We may write
f (x1, . . . ,xk) = ∑

i
ti(x1, . . . ,xi−1,xi+1, . . . ,xk)xi,

where ti is a suitable multilinear polynomial in k− 1 variables and xi never appears in any
monomials of ti. Since f (eHe) 6= 0, there exists some ti which does not vanish in eHe.
Without loss of generality, we assume that tk(eHe) 6= 0. Let r ∈ H. Then replacing rk with
r(1− e) in (2.7), we have

(2.8) 0 = (atk(er1, . . . ,erk−1)er(1− e)+ tk(er1, . . . ,erk−1)er(1− e)b)n.

Left multiplying by (1− e), we obtain (1− e)(atk(er1, . . . ,erk−1)er(1− e))n = 0, that is,
{(1−e)atk(er1, . . . ,erk−1)er}n+1 = 0 for all r ∈H. By [9], (1−e)atk(er1e, . . . ,erk−1e) = 0
for all r1, . . . ,rk−1 ∈ H. Since eHe is a simple Artinian ring and tk(eHe) 6= 0 is invariant
under the action of all inner automorphisms of eHe, by [6, Lemma 2], (1− e)ae = 0. Now
again right multiplying by e in (2.8), we obtain (tk(er1, . . . ,erk−1)er(1− e)b)ne = 0 that is,
{(1−e)btk(er1, . . . ,erk−1)er)n+1 = 0 for all r∈H, implying (1−e)btk(er1e, . . . ,erk−1e) = 0
for all r1, . . . ,rk−1 ∈ H. By above argument we conclude that (1− e)be = 0.

In particular, from (2.7), we can write that H satisfies

(2.9)
e{a f (er1e, . . . ,erke)n + f (er1e, . . . ,erke)nb

− (a f (er1e, . . . ,erke)+ f (er1e, . . . ,erke)b)n}e = 0

and so using the facts (1− e)ae = 0 and (1− e)be = 0, we have, prime ring eHe satisfies

(2.10)
eae f (r1, . . . ,rk)n + f (r1, . . . ,rk)nebe

− (eae f (r1, . . . ,rk)+ f (r1, . . . ,rk)ebe)n = 0.

By Proposition 2.1, since f (r1, . . . ,rk) is not central-valued in eHe, we conclude eae,ebe ∈
Ce with (eae + ebe)n − (eae + ebe) = 0. Therefore, ae = eae ∈ Ce and be = ebe ∈ Ce.
Thus au = aeu = eaeu ∈ Cu and hence au,u are linearly C-dependent for each u ∈ I. So
(a−α)I = (0) for some α ∈C. Similarly, (b−β )I = (0) for some β ∈C.

Thus our hypothesis a f (x1, . . . ,xk)n + f (x1, . . . ,xk)nb = (a f (x1, . . . ,xk)+ f (x1, . . . ,xk)b)n

for all x1, . . . ,xk ∈ I, implies that f (x1, . . . ,xk)n{(α +β )n−1−1}(α +b)= 0 for all x1, . . . ,xk ∈
I. By Lemma 2 in [4], either f (I)I = 0 or {(α + β )n−1− 1}(α + b) = 0. If f (I)I = 0,
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then by Fact 4, conclusion (1) is obtained. If {(α + β )n−1− 1}(α + b) = 0, then either
(α +β )n−1 = 1 or b =−α ∈C. Both cases imply conclusions (2) and (3) respectively.

We are now ready to prove our main theorem.

Theorem 2.1. Let R be a prime ring with Utumi quotient ring U and extended centroid C, g
a nonzero generalized derivation of R, I a nonzero right ideal of R, f (r1, . . . ,rk) a multilinear
polynomial over C and n ≥ 2 be a fixed integer. If g( f (r1, . . . ,rk)n) = g( f (r1, . . . ,rk))n for
all r1, . . . ,rk ∈ I, then one of the following holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . ,xk) is central-valued on
eRCe;

(2) there exist a,b ∈ U such that g(x) = ax + xb for all x ∈ R and (a−α)I = (0),
(b−β )I = (0) for some α,β ∈C with (α +β )n−1 = 1;

(3) there exists a ∈U such that g(x) = ax for all x ∈ R with aI = (0).

Proof. If g is inner generalized derivation of R, then result follows by Proposition 2.2.
Assume that g is not U-inner. Then by Remark 1.1, we may assume that for all x ∈ U ,
g(x) = ax + d(x), where a ∈U and d is a derivation of U . By our assumption, I satisfies
g( f (x1, . . . ,xk)n) = g( f (x1, . . . ,xk))n. Since I and IU satisfy the same generalized polyno-
mial identities (see [5]) as well as the same differential identities (see [17]), we may assume
for u1, . . . ,uk ∈ I that U satisfies

(2.11)
a f (u1x1, . . . ,ukxk)n +d( f (u1x1, . . . ,ukxk)n)

={a f (u1x1, . . . ,ukxk)+d( f (u1x1, . . . ,ukxk))}n

that is,

(2.12)

a f (u1x1, . . . ,ukxk)n

+
n−1

∑
i=0

f (u1x1, . . . ,ukxk)id( f (u1x1, . . . ,ukxk)) f (u1x1, . . . ,ukxk)n−i−1

={a f (u1x1, . . . ,ukxk)+d( f (u1x1, . . . ,ukxk))}n.

Since g is not inner, d can not be inner derivation of U . Then we have from (2.12) that

a f (u1x1, . . . ,ukxk)n +
n−1

∑
i=0

f (u1x1, . . . ,ukxk)i
{

f d(u1x1, . . . ,ukxk)

+∑
j

f (u1x1, . . . ,d(u j)x j +u jd(x j), . . . ,ukxk)
}

f (u1x1, . . . ,ukxk)n−i−1

=
{

a f (u1x1, . . . ,ukxk)+ f d(u1x1, . . . ,ukxk)

+∑
j

f (u1x1, . . . ,d(u j)x j +u jd(x j), . . . ,ukxk)
}n

.

(2.13)
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By Kharchenko’s theorem [14], we have that U satisfies

a f (u1x1, . . . ,ukxk)n +
n−1

∑
i=0

f (u1x1, . . . ,ukxk)i
{

f d(u1x1, . . . ,ukxk)

+∑
j

f (u1x1, . . . ,d(u j)x j +u jy j, . . . ,ukxk)
}

f (u1x1, . . . ,ukxk)n−i−1

=
{

a f (u1x1, . . . ,ukxk)+ f d(u1x1, . . . ,ukxk)

+∑
j

f (u1x1, . . . ,d(u j)x j +u jy j, . . . ,ukxk)
}n

.

(2.14)

In particular, putting x1 = 0, we have that U satisfies

(2.15) 0 = { f (u1y1, . . . ,ukxk)}n.

Since I and IU satisfy the same polynomial identities, we have that I satisfies f (x1, . . . ,xk)n =
0. By [6, Main Theorem], f (I)I = 0 and hence conclusion (2) is obtained by using Fact 4.
Hence the theorem is proved.

It is well known that if R is a prime ring and L is a non-central Lie ideal of R, then
there exists a nonzero two-sided ideal I of R such that 0 6= [I,R] ⊆ L, unless char (R) = 2
and R satisfies the standard identity s4. Thus from above theorem following corollary is
straightforward.

Corollary 2.1. Let R be a prime ring with Utumi quotient ring U and extended centroid C,
g a nonzero generalized derivation of R, L a noncentral Lie ideal of R and n≥ 2 be a fixed
integer. If g(un) = g(u)n for all u ∈ L, then one of the following holds:

(1) char (R) = 2 and R satisfies s4, standard identity of four variables.
(2) there exists λ ∈C such that g(x) = λx for all x ∈ R with λ n−1 = 1.

Now we prove our next corollary, which states that the restriction on char (R) = 2 and R
satisfies s4 in the Theorem 1.2 can be omitted.

Corollary 2.2. Let R be a prime ring with Utumi quotient ring U and extended centroid C,
g a nonzero generalized derivation of R, I a nonzero right ideal of R and f (r1, . . . ,rk) be a
multilinear polynomial over C. If g( f (r1, . . . ,rk)2) = g( f (r1, . . . ,rk))2 for all r1, . . . ,rk ∈ I,
then one of the following holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . ,xk) is central-valued on
eRCe;

(2) there exists a ∈U such that g(x) = xa for all x ∈ I and (a−1)I = (0);
(3) there exists a ∈U such that g(x) = ax for all x ∈ R with aI = (0).

Proof. By Theorem 2.1, we have only to consider the case when g(x) = ax + xb for all
x ∈ R and (a−α)I = (0), (b−β )I = (0) for some α,β ∈C with α +β = 1. Then g(x) =
ax + xb = αx + xb = x(α + b) for all x ∈ I with (0) = (b−β )I = (b + α − 1)I. Hence we
obtain our conclusion (2).

Corollary 2.3. Let R be a prime ring with extended centroid C, g a nonzero generalized
derivation of R and f (r1, . . . ,rk) a noncentral multilinear polynomial over C. If g( f (r1, . . . ,
rk)2) = g( f (r1, . . . ,rk))2 for all r1, . . . ,rk ∈ R, then g(x) = x for all x ∈ R.
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Corollary 2.4. Let R be a prime ring with extended centroid C, d a derivation of R and
f (r1, . . . ,rk) a noncentral multilinear polynomial over C. If d( f (r1, . . . ,rk)2) = d( f (r1, . . . ,
rk))2 for all r1, . . . ,rk ∈ R, then d = 0.

Example 2.1. Let Z be the set of all integers. Consider a ring R =
{( x y

0 0
)
|x,y ∈ Z

}
and

a multilinear polynomial f (X ,Y ) = XY which is not central-valued on R. We define maps
g,d : R→ R, by g

( x y
0 0

)
=

( x 2y
0 0

)
and d

( x y
0 0

)
=

(0 y
0 0

)
. Then g is a generalized derivation

associated to the derivation d satisfying g( f (X ,Y )2) = g( f (X ,Y ))2 for all X ,Y ∈ R. Since(
0 1
0 0

)
R

(
0 2
0 0

)
= 0, R is not prime ring. Since g is not an identity mapping in R, the primeness

hypothesis in Corollary 2.3 is essential.
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[10] I. Gusić, A note on generalized derivations of prime rings, Glas. Mat. Ser. III 40(60) (2005), no. 1, 47–49.
[11] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, IL, 1969.
[12] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166.
[13] N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised

edition Amer. Math. Soc., Providence, RI, 1964.
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