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1. Introduction

In this paper, we consider the fractional boundary value problem (BVP for short) of the
following form

(1.1)


d
dt

(
1
2 0D−β

t (u′(t))+
1
2 tD

−β

T (u′(t))
)

+∇F(t,u(t)) = 0, a.e. t ∈ [0,T ],

u(0) = u(T ) = 0,

where 0D−β

t and tD
−β

T are the left and right Riemann-Liouville fractional integrals of order
0≤ β < 1 respectively, F : [0,T ]×RN → R satisfies the following assumptions:

(A) F(t,x) is measurable in t for every x ∈ RN and continuously differentiable in x for
a.e. t ∈ [0,T ], and there exist a ∈C(R+,R+),b ∈ L1(0,T ;R+), such that

|F(t,x)| ≤ a(|x|)b(t), |∇F(t,x)| ≤ a(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [0,T ]. In particular, if β = 0, BVP (1.1) reduces to the standard
second-order boundary value problem.

Fractional calculus and fractional differential equations can find many applications in
various fields of physical science such as viscoelasticity, diffusion, control, relaxation pro-
cesses and modeling phenomena in engineering, see [1,2,8,11,13,14,17,21,23,25,28,33].
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Recently, many results were obtained dealing with the existence and multiplicity of solu-
tions of nonlinear fractional differential equations by use of techniques of nonlinear analy-
sis, such as fixed point theory (including Leray-Schauder nonlinear alternative) (see [4,30]),
topological degree theory (including coincidence degree theory) (see [5, 15]) and compari-
son method (including upper and lower solutions methods and monotone iterative method)
(see [18, 31]) and so on. However, it seems that the popular methods mentioned above are
not appropriate for discussing BVP (1.1), for the equivalent integral equation is not easy to
be obtained.

It should be noted that variational methods have turned out to be a very effective analyti-
cal tool in determining the existence of solutions for integer order differential equation. The
idea behind them is trying to find solutions of a given boundary value problem by looking
for critical (stationary) points of a suitable energy functional defined on an appropriate func-
tion space. The classical critical point theory was developed in the sixties and seventies for
C1 functional. The celebrated and important result in the last 30 years has been Mountain
Pass Theorem due to Ambrosetti and Rabinowitz [3] in 1973. Since then, a series of new
theorems in the minimax form have appeared via various linking, category and index the-
ories. Now these results become a wonderful tool in studying the existence of solutions to
differential equations with variational structures. We refer readers to the books (or surveys)
due to Mawhin and Willem [20], Rabinowitz [24], Brézis and Nirenberg [9], Nirenberg [22],
Schechter [26], Willem [29], and the papers [10, 19, 27, 32] and the references therein.

Recently, Jiao and Zhou [16] introduced some appropriate function spaces as their work-
ing space and set up a variational functional for BVP (1.1), then they gave two existence
results of solutions for problem (1.1) by using the least action principle and Mountain Pass
Theorem in critical point theory. It is interesting to ask whether problem (1.1) has infi-
nite solutions under suitable conditions. Motivated by the excellent results of [16], we give
definite answer to this question by using Fountain Theorem and Dual Fountain Theorem.
Fountain Theorem and its dual form were established by Bartsch in [6] and by Bartsch-
Willem in [7] respectively. They are effective tools for studying the existence of infinitely
many large or small energy solutions. It should be noted that the (PS)c condition and its
variants play an important role in these theorems and their applications.

The structure of the paper is the following. In the next section, we present the necessary
preliminary knowledge. In Section 3, using variational methods we prove the multiplicity
results for the solutions of problem (1.1). Finally in Section 4, two examples are presented
to illustrate our results.

2. Preliminaries and variational setting

In this section, we recall some related preliminaries and display the variational setting which
has been established for our problem.

Definition 2.1. [17] Let f (t) be a function defined on [a,b] and γ > 0. The left and right
Riemann-Liouville fractional integrals of order γ for function f (t) denoted by aD−γ

t f (t) and
tD
−γ

b f (t), respectively, are defined by

aD−γ

t f (t) =
1

Γ(γ)

∫ t

a
(t− s)γ−1 f (s)ds, t ∈ [a,b],
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and

tD
−γ

b f (t) =
1

Γ(γ)

∫ b

t
(t− s)γ−1 f (s)ds, t ∈ [a,b],

provided the right-hand sides are pointwise defined on [a,b], where Γ is the gamma function.

Definition 2.2. [17] Let f (t) be a function defined on [a,b]. The left and right Riemann-
Liouville fractional derivatives of order γ for function f (t) denoted by aDγ

t f (t) and tD
γ

b f (t),
respectively, are defined by

aDγ

t f (t) =
dn

dtn aDγ−n
t f (t) =

1
Γ(n− γ)

dn

dtn

(∫ t

a
(t− s)n−γ−1 f (s)ds

)
and

tD
γ

b f (t) = (−1)n dn

dtn tD
γ−n
b f (t) =

1
Γ(n− γ)

(−1)n dn

dtn

(∫ b

t
(s− t)n−γ−1 f (s)ds

)
,

where t ∈ [a,b], n−1≤ γ < n and n ∈ N.

Property 2.1. [17] The left and right Riemann-Liouville fractional integral operators have
the property of a semigroup, i.e.

aD−γ1
t (aD−γ2

t f (t)) = aD−γ1−γ2
t f (t) and tD

−γ1
b (tD

−γ2
b f (t)) = tD

−γ1−γ2
b f (t), ∀γ1,γ2 > 0

The left and right Caputo fractional derivatives are defined via the above Riemann-
Liouville fractional derivatives. In particular, they are defined for the function belong-
ing to the space of absolutely continuous functions, which we denote by AC([a,b],RN).
ACk([a,b],RN)(k = 1, · · ·) is the space of functions f such that f ∈ Ck−1([a,b],RN) and
f (k−1) ∈ AC([a,b],RN). In particular, AC([a,b],RN) = AC1([a,b],RN).

Definition 2.3. [17] Let γ ≥ 0 and n ∈ N. If γ ∈ [n− 1,n) and f (t) ∈ ACn([a,b],RN),
then the left and right Caputo fractional derivative of order γ for function f (t) denoted by
c
aDγ

t f (t) and c
t Dγ

b f (t), respectively, exist almost everywhere on [a,b]. c
aDγ

t f (t) and c
t Dγ

b f (t)
are represented by

c
aDγ

t f (t) = aDγ−n
t f (n)(t) =

1
Γ(n− γ)

(∫ t

a
(t− s)n−γ−1 f (n)(s)ds

)
and

c
t Dγ

b f (t) = (−1)n
tD

γ−n
b f (n)(t) =

(−1)n

Γ(n− γ)

(∫ b

t
(s− t)n−γ−1 f (n)(s)ds

)
,

respectively, where t ∈ [a,b].

Definition 2.4. [16] Define 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα, p
0

is defined by the closure of C∞
0 ([0,T ],RN) with respect to the norm

(2.1) ‖u‖α, p =
(∫ T

0
|u(t)|pdt +

∫ T

0
|c0Dα

t u(t)|pdt
)1/p

, ∀u ∈ Eα, p
0 ,

where C∞
0 ([0,T ],RN) denotes the set of all functions u ∈C∞([0,T ],RN) with u(0) = u(T ) =

0. It is obvious that the fractional derivative space Eα, p
0 is the space of functions u ∈

Lp(0,T ;RN) having an α-order Caputo fractional derivative c
0Dα

t u ∈ Lp(0,T ;RN) and
u(0) = u(T ) = 0.
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Proposition 2.1. [16] Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα, p
0

is a reflexive and separable space.

Proposition 2.2. [16] Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα, p
0 , we have

(2.2) ‖u‖Lp ≤ T α

Γ(α +1)
‖c

0Dα
t u‖Lp .

Moreover, if α > 1/p and 1/p+1/q = 1, then

(2.3) ‖u‖∞ ≤
T α−1/p

Γ(α)((α−1)q+1)1/q ‖
c
0Dα

t u‖Lp .

According to (2.3), we can consider Eα, p
0 with respect to the norm

(2.4) ‖u‖α, p = ‖c
0Dα

t u‖Lp =
(∫ T

0
|c0Dα

t u(t)|pdt
)1/p

.

Proposition 2.3. [16] Define 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1/p and the
sequence {uk} converges weakly to u in Eα, p

0 , i.e. uk ⇀ u. Then uk → u in C([0,T ],RN),
i.e. ‖u−uk‖∞→ 0, as k→ ∞.

Making use of the Property 2.1 and the Definition 2.3, for any u ∈ AC([0,T ],RN), BVP
(1.1) is equivalent to the following problem:

(2.5)


d
dt

(
1
2 0Dα−1

t
(c

0Dα
t u(t)

)
− 1

2 tDα−1
T
(c

t Dα
T u(t)

))
+∇F(t,u(t)) = 0, a.e. t ∈ [0,T ],

u(0) = u(T ) = 0,

where α = 1−β/2 ∈ (1/2,1].
In the following, we will treat BVP (2.5) in the Hilbert space Eα = Eα,2

0 with the cor-
responding norm ‖u‖α = ‖u‖α,2. It follows from [16, Theorem 4.1] that the functional ϕ

given by

(2.6) ϕ(u) =
∫ T

0

[
− 1

2
(c

0Dα
t u(t), c

t Dα
T u(t))−F(t,u(t))

]
dt

is continuously differentiable on Eα . Moreover, for ∀u,v ∈ Eα , we have

(2.7)
〈ϕ ′(u),v〉=−

∫ T

0

1
2
[
(c

0Dα
t u(t), c

t Dα
T v(t))+(c

t Dα
T u(t), c

0Dα
t v(t))

]
dt

−
∫ T

0

(
∇F
(
t,u(t)),v(t)

)
dt.

Definition 2.5. [16] A function u ∈ AC([0,T ],RN) is called a solution of BVP (2.5) if

(i) Dα(u(t)) is derivative for almost every t ∈ [0,T ], and
(ii) u satisfies (2.5),

where Dα(u(t)) := 1/2 0Dα−1
t (c

0Dα
t u(t))−1/2 tDα−1

T (c
t Dα

T u(t)).

It is well known that the solutions for BVP (2.5) correspond to the critical points of the
functional ϕ , see [16, Theorem 4.2].
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Proposition 2.4. [16] If 1/2 < α ≤ 1, then for any u ∈ Eα , we have

(2.8) |cos(πα)|‖u‖2
α ≤−

∫ T

0

(c
0Dα

t u(t), c
t Dα

T u(t)
)
dt ≤ 1

|cos(πα)|
‖u‖2

α .

3. Main results and proofs

Theorem 3.1. Assume that F(t,x) satisfies the condition (A), and suppose the following
conditions hold:

(A1) there exist κ > 2 and r > 0 such that

κF(t,x)≤ (∇F(t,x),x)

for a.e. t ∈ [0,T ] and all |x| ≥ r in RN;
(A2) there exist positive constants µ > 2 and Q > 0 such that

limsup
|x|→+∞

F(t,x)
|x|µ

≤ Q

uniformly for a.e. t ∈ [0,T ];
(A3) there exist µ ′ > 2 and Q′ > 0 such that

liminf
|x|→+∞

F(t,x)
|x|µ ′

≥ Q′

uniformly for a.e. t ∈ [0,T ];
(A4) F(t,x) = F(t,−x) for t ∈ [0,T ] and all x in RN .

Then BVP (1.1) has infinite solutions {un} on Eα for every positive integer n such that
‖un‖∞→+∞, as n→ ∞.

Theorem 3.2. Assume that F(t,x) satisfies the following assumption:
(A5) F(t,x) := a(t)|x|γ , where a(t) ∈ L∞(0,T ;R+) and 1 < γ < 2 is a constant.

Then BVP (1.1) has infinite solutions {un} on Eα for every positive integer n with ‖un‖α

bounded.

Before giving the proof of our main results, we still state some necessary definition and
theorems.

Definition 3.1. [20] Let H be a real Banach space, ψ: H→ R is differentiable and c ∈ R.
We say that ψ satisfies the (PS)c condition if the existence of a sequence {uk} in H such that

ψ(uk)→ c, ψ
′(uk)→ 0

as k→ ∞, implies that c is a critical value of ψ .

As Eα is a separable and reflexive Banach space, there exist (see [12]) {en}∞
n=1 ⊂ Eα

and { fn}∞
n=1 ⊂ (Eα)∗ such that

fn(em) = δn,m =

{
1, n = m,

0, n 6= m,

(3.1) Eα = span{en : n = 1,2, · · ·} and (Eα)∗ = spanW ∗{ fn : n = 1,2, · · ·}.
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For k = 1,2, . . ., denote

(3.2) Xk = span{ek}, Yk =
k⊕

j=1

X j, Zk =
∞⊕

j=k

X j.

Theorem 3.3. (Fountain Theorem, see [6]). Suppose
(H1) X is a Banach space, ϕ ∈C1(X ,R) is an even functional, the subspace Xk, Yk and

Zk are defined by (3.2);
If for every k ∈ N, there exist ρk > rk > 0 such that

(H2) ak := max u∈Yk
‖u‖=ρk

ϕ(u)≤ 0;

(H3) bk := inf u∈Zk
‖u‖=rk

ϕ(u)→ ∞, as k→ ∞;

(H4) ϕ satisfies the (PS)c condition for every c > 0.
Then ϕ has an unbounded sequence of critical values.

Theorem 3.4. (Dual Fountain Theorem, see [7]). Assume (H1) is satisfied, and there is a
k0 > 0 so as to for each k ≥ k0, there exist ρk > rk > 0 such that

(H5) dk := inf u∈Zk
‖u‖≤ρk

ϕ(u)→ 0, as k→ ∞;

(H6) ik := max u∈Yk
‖u‖=rk

ϕ(u) < 0;

(H7) inf u∈Zk
‖u‖=ρk

ϕ(u)≥ 0;

(H8) ϕ satisfies the (PS)∗c condition for every c ∈ [dk0 ,0).
Then ϕ has a sequence of negative critical values converging to 0.

Remark 3.1. ϕ satisfies the (PS)∗c condition means that: if any sequence {un j} ⊂ X such
that n j→∞, un j ∈Yn j , ϕ(un j)→ c and (ϕ|Yn j

)′(un j)→ 0, then {un j} contains a subsequence
converging to critical point of ϕ . It is obvious that if ϕ satisfies the (PS)∗c condition, then ϕ

satisfies the (PS)c condition.

The proof of Theorem 3.1 is organized as follows: first, we show the functional ϕ defined
by (2.6) satisfies the (PS) condition, then we verify for ϕ the conditions in Theorem 3.3 item
by item, then ϕ has an unbounded sequence of critical values.

Proof of Theorem 3.1. Let {un}⊂Eα such that ϕ(un) is bounded and ϕ ′(un)→ 0 as n→∞.
First we prove {un} is a bounded sequence, otherwise, {un} would be unbounded sequence,
passing to a subsequence, still denoted by {un}, such that ‖un‖α ≥ 1 and ‖un‖α → ∞, as
n→ ∞. Noting that

〈ϕ ′(un),un〉=−
∫ T

0

[(c
0Dα

t un(t), c
t Dα

T un(t)
)
+
(
∇F(t,un(t)),un(t)

)]
dt.

In view of the condition (A1) and (2.8) that

ϕ(un)−
1
κ
〈ϕ ′(un),un〉=

(
1
κ
− 1

2

)∫ T

0
(c

0Dα
t un(t), c

t Dα
T un(t))dt

+
∫ T

0

[
1
κ

(∇F(t,un(t)),un(t))−F(t,un(t))
]

dt
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≥
(

1
2
− 1

κ

)
|cos(πα)|‖un‖2

α

+
(∫

Ω1

+
∫

Ω2

)[
1
κ

(
∇F(t,un(t)),un(t)

)
−F(t,un(t))

]
dt

≥
(

1
2
− 1

κ

)
|cos(πα)|‖un‖2

α −C1,(3.3)

where Ω1 := {t ∈ [0,T ]; |un(t)| ≤ r}, Ω2 := [0,T ]\Ω1 and C1 is a positive constant.
Since ϕ(un) is bounded, there exists a positive constant C2, such that |ϕ(un)| ≤ C2.

Hence, we have

(3.4)
C2 ≥ ϕ(un)≥

(
1
2
− 1

κ

)
|cos(πα)|‖un‖2

α +
1
κ
〈ϕ ′(un),un〉−C1

≥
(

1
2
− 1

κ

)
|cos(πα)|‖un‖2

α −
1
κ
‖ϕ ′(un)‖α‖un‖α −C1,

so {un} is a bounded sequence in Eα by (3.4).
Since Eα is a reflexive space, going to a subsequence if necessary, we may assume that

un ⇀ u weakly in Eα , thus we have

(3.5)
〈ϕ ′(un)−ϕ

′(u), un−u〉= 〈ϕ ′(un), un−u〉−〈ϕ ′(u), un−u〉
≤ ‖ϕ ′(un)‖α‖un−u‖α −〈ϕ ′(u), un−u〉 → 0,

as n→ ∞. Moreover, according to (2.3) and Proposition 2.3, we have {un} is bounded in
C([0,T ],RN) and ‖un−u‖∞→ 0 as n→ ∞.

Observing that

(3.6)

〈ϕ ′(un)−ϕ
′(u), un−u〉

=−
∫ T

0

(c
0Dα

t (un(t)−u(t)), c
t Dα

T (un(t)−u(t))
)
dt

−
∫ T

0

(
∇F(t,un(t))−∇F(t,u(t)),un(t)−u(t)

)
dt

≥ |cos(πα)|‖un−u‖2
α −

∣∣∣∣∫ T

0

(
∇F(t,un(t))−∇F(t,u(t))

)
dt
∣∣∣∣‖un−u‖∞.

Combining this with (3.5), it is easy to verify that ‖un−u‖α → 0 as n→ ∞, and hence that
un→ u in Eα . Thus, {un} admits a convergent subsequence.

For any u ∈ Yk, let

(3.7) ‖u‖∗ :=
(∫ T

0
|u(t)|µ ′dt

)1/µ ′

,

and it is easy to verify that ‖ · ‖∗ defined by (3.7) is a norm of Yk. Since all the norms of
a finite dimensional normed space are equivalent, so there exists positive constant C3 such
that

(3.8) C3‖u‖α ≤ ‖u‖∗ for u ∈ Yk.

In view of (A3), there exist two positive constants M1 and C4 such that

(3.9) F(t,x)≥M1|x|µ
′
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for a.e. t ∈ [0,T ] and |x| ≥C4.
It follows (2.8), (3.8) and (3.9) that

ϕ(u) =−
∫ T

0

1
2
(c

0Dα
t u(t), c

t Dα
T u(t)

)
dt−

∫ T

0
F(t,u(t))dt

≤ 1
2|cos(πα)|

‖u‖2
α −

∫
Ω3

F(t,u(t))dt−
∫

Ω4

F(t,u(t))dt

≤ 1
2|cos(πα)|

‖u‖2
α −M1

∫
Ω3

|u(t)|µ ′dt−
∫

Ω4

F(t,u(t))dt

=
1

2|cos(πα)|
‖u‖2

α −M1

∫ T

0
|u(t)|µ ′dt +M1

∫
Ω4

|u(t)|µ ′dt−
∫

Ω4

F(t,u(t))dt

≤ 1
2|cos(πα)|

‖u‖2
α −Cµ ′

3 M1‖u‖µ ′
α +C5,

where Ω3 := {t ∈ [0,T ]; |u(t)| ≥C4}, Ω4 := [0,T ]\Ω3 and C5 is a positive constant.
Since µ ′ > 2, then there exists positive constants dk such that

(3.10) ϕ(u)≤ 0 for all u ∈ Yk and ‖u‖α ≥ dk.

For any u ∈ Zk, let

(3.11) ‖u‖µ :=
(∫ T

0
|u(t)|µ dt

)1/µ

and βk := sup
u∈Zk
‖u‖α =1

‖u‖µ ,

then we conclude βk→ 0 as k→ ∞.
In fact, it is obvious that βk ≥ βk+1 > 0, so βk→ β ≥ 0 as k→∞. For every k ∈N, there

exists uk ∈ Zk such that

(3.12) ‖uk‖α = 1 and ‖uk‖µ > βk/2.

As Eα is reflexive, {uk} has a weakly convergent subsequence, still denoted by {uk},
such that uk ⇀ u. We claim u = 0.

In fact, for any fm ∈ { fn : n = 1,2, · · ·}, we have fm(uk) = 0, when k > m, so

fm(uk)→ 0, as k→ ∞

for any fm ∈ { fn : n = 1,2, · · ·}, therefore u = 0.
By Proposition 2.3, when uk ⇀ 0 in Eα , then uk → 0 strongly in C([0,T ];RN). So we

conclude β = 0 by (3.12).
In view of (A2), there exist two positive constants M2 and C6 such that

(3.13) F(t,x)≤M2|x|µ

uniformly for a.e. t ∈ [0,T ] and |x| ≥C6.
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We have

ϕ(u) =−
∫ T

0

1
2
(c

0Dα
t u(t), c

t Dα
T u(t)

)
dt−

∫ T

0
F(t,u(t))dt

≥ |cos(πα)|
2

‖u‖2
α −

∫
Ω5

F(t,u(t))dt−
∫

Ω6

F(t,u(t))dt

≥ |cos(πα)|
2

‖u‖2
α −M2

∫
Ω5

|u(t)|µ dt−
∫

Ω6

F(t,u(t))dt

=
|cos(πα)|

2
‖u‖2

α −M2

∫ T

0
|u(t)|µ dt +M2

∫
Ω6

|u(t)|µ dt−
∫

Ω6

F(t,u(t))dt

≥ |cos(πα)|
2

‖u‖2
α −M2βk

µ‖u‖µ

α −C7,

where Ω5 := {t ∈ [0,T ]; |u(t)| ≥C6}, Ω6 := [0,T ]\Ω5 and C7 is a positive constant.
Choosing rk = 1/βk, it is obvious that rk→ ∞ as k→ ∞, then

bk := inf
u∈Zk
‖u‖α =rk

ϕ(u)→ ∞ as k→ ∞,(3.14)

that is, the condition (H3) in Theorem 3.3 is satisfied.
In view of (3.10), let ρk := max{dk,rk +1}, then

ak := max
u∈Yk
‖u‖α =ρk

ϕ(u)≤ 0,

and this shows the condition of (H2) in Theorem 3.3 is satisfied.
We have proved the functional ϕ satisfies all the conditions of Theorem 3.3, then ϕ has

an unbounded sequence of critical values cn = ϕ(un) by Theorem 3.3. We only need to
show ‖un‖∞→ ∞ as n→ ∞. In fact, since un is a critical point of the functional ϕ , that is

(3.15) 〈ϕ ′(un),un〉=−
∫ T

0

[
(c

0Dα
t un(t), c

t Dα
T un(t))+(∇F(t,un(t)),un(t))

]
dt = 0.

Hence, we have

(3.16)

cn = ϕ(un) =−
∫ T

0

1
2
(c

0Dα
t un(t), c

t Dα
T un(t))dt−

∫ T

0
F(t,un(t)

)
dt,

=
1
2

∫ T

0

(
∇F(t,un(t)),un(t)

)
dt−

∫ T

0
F
(
t,un(t)

)
dt,

≤ 1
2

∫ T

0

∣∣∇F(t,un(t))
∣∣|un(t)|dt +

∫ T

0

∣∣F(t,un(t))
∣∣dt,

since cn→ ∞, we conclude

‖un‖∞→ ∞ as n→ ∞

by (3.16). In fact, if not, going to a subsequence if necessary, we may assume that

‖un‖∞ ≤M3,

for all n ∈ N and some positive constant M3.
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Combining assumption (A) and (3.16), we have

cn ≤
1
2

∫ T

0

∣∣∇F(t,un(t))
∣∣|un(t)|dt +

∫ T

0
|F
(
t,un(t)

)
|dt

≤ 1
2
(M3 +1) max

0≤s≤M3
a(s)

∫ T

0
b(t)dt,

which contradicts the unboundness of cn. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Let us show that ϕ satisfies conditions in the Theorem 3.4 item by
item. First, we show that ϕ satisfies the (PS)∗c condition for every c ∈ R. Suppose n j → ∞,
un j ∈ Yn j , ϕ(un j)→ c and (ϕ|Yn j

)′(un j)→ 0, then {un j} is a bounded sequence, otherwise,
{un j} would be unbounded sequence, passing to a subsequence, still denoted by {un j} such
that ‖un j‖α ≥ 1 and ‖un j‖α → ∞. Note that

(3.17) 〈ϕ ′(un j), un j〉− γϕ(un j) =
(
−1+

γ

2

)∫ T

0

(c
0Dα

t un j(t),
c
t Dα

T un j(t)
)
dt

However, from (3.17), we have

(3.18) −γϕ(un j)≥
(

1− γ

2

)
|cos(πα)|‖un j‖

2
α −‖(ϕ|Yn j

)′(un j)‖‖un j‖α ,

thus ‖un j‖α is a bounded sequence in Eα . Going, if necessary, to a subsequence, we can
assume that un j ⇀ u in Eα . As Eα =

⋃
n j

Yn j , we can choose vn j ∈ Yn j such that vn j → u.

Hence

lim
n j→∞
〈ϕ ′(un j), un j −u〉= lim

n j→∞
〈ϕ ′(un j), un j − vn j〉+ lim

n j→∞
〈ϕ ′(un j), vn j −u〉

= lim
n j→∞
〈(ϕ|Yn j

)′(un j), un j − vn j〉= 0.

So we have

lim
n j→∞
〈ϕ ′(un j)−ϕ

′(u), un j −u〉= lim
n j→∞
〈ϕ ′(un j), un j −u〉− lim

n j→∞
〈ϕ ′(u), un j −u〉= 0.

and
〈ϕ ′(un j)−ϕ

′(u), un j −u〉

=−
∫ T

0

(c
0Dα

t (un j(t)−u(t)), c
t Dα

T (un j(t)−u(t))
)

dt

−
∫ T

0

(
∇F(t,un j(t))−∇F(t,u(t)), un j(t)−u(t)

)
dt

≥ |cos(πα)|‖un j −u‖2
α −

∣∣∣∣∫ T

0

(
∇F(t,un j(t))−∇F(t,u(t))

)
dt
∣∣∣∣‖un j −u‖∞ ,

we can conclude un j → u in Eα , furthermore, we have ϕ ′(un j)→ ϕ ′(u). Let us prove
ϕ ′(u) = 0 below. Taking arbitrarily ωk ∈ Yk, notice when n j ≥ k, we have

〈ϕ ′(u), ωk〉= 〈ϕ ′(u)−ϕ
′(un j), ωk〉+ 〈ϕ ′(un j), ωk〉

= 〈ϕ ′(u)−ϕ
′(un j), ωk〉+ 〈(ϕ|Yn j

)′(un j), ωk〉.
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Going to limit in the right side of above equation reaches

〈ϕ ′(u), ωk〉= 0, ∀ωk ∈ Yk,

so ϕ ′(u) = 0, this shows that ϕ satisfies the (PS)∗c for every c ∈ R.
For any finite dimensional subspace E ⊂ Eα , there exists ε > 0 such that

(3.19) meas{t ∈ [0,T ] : a(t)|u(t)|γ ≥ ε‖u‖γ

α} ≥ ε, ∀u ∈ E\{0}.
Otherwise, for any positive integer n, there exists un ∈ E\{0} such that

(3.20) meas
{

t ∈ [0,T ] : a(t)|un(t)|γ ≥
1
n
‖un‖γ

α

}
<

1
n
.

Set vn(t) := (un(t))/(‖un‖α) ∈ E\{0}, then ‖vn‖α = 1 for all n ∈ N and

(3.21) meas
{

t ∈ [0,T ] : a(t)|vn(t)|γ ≥
1
n

}
<

1
n
.

Since dimE < ∞, it follows from the compactness of the unit sphere of E that there exists
a subsequence, denoted also by {vn}, such that {vn} converges to some v0 in E. It is obvious
that ‖v0‖α = 1. By the equivalence of the norms on the finite dimensional space, we have
vn→ v0 in L2([0,T ];RN), i.e.

(3.22)
∫ T

0
|vn− v0|2dt→ 0 as n→ ∞.

By (3.22) and Hölder inequality, we have

(3.23)

∫ T

0
a(t)|vn− v0|γ dt ≤

(∫ T

0
a(t)

2
2−γ dt

) 2−γ

2
(∫ T

0
|vn− v0|2dt

) γ

2

= ‖a‖ 2
2−γ

(∫ T

0
|vn− v0|2dt

) γ

2
→ 0, as n→ ∞.

Thus, there exist ξ1,ξ2 > 0 such that

(3.24) meas
{

t ∈ [0,T ] : a(t)|v0(t)|γ ≥ ξ1
}
≥ ξ2.

In fact, if not, we have

meas
{

t ∈ [0,T ] : a(t)|v0(t)|γ ≥
1
n

}
= 0

for all positive integer n. It implies that

0≤
∫ T

0
a(t)|v0|γ+2dt <

T
n
‖v0‖2

∞ ≤
C2

8T
n
‖v0‖2

α → 0

as n→ ∞, where

C8 :=
T α−1/2

Γ(α)(2α−1)1/2

by (2.3). Hence v0 = 0 which contradicts that ‖v0‖α = 1. Therefore, (3.24) holds.
Now let

Ω0 =
{

t ∈ [0,T ] : a(t)|v0(t)|γ ≥ ξ1
}
, Ωn =

{
t ∈ [0,T ] : a(t)|vn(t)|γ <

1
n

}
,

and Ωc
n = [0,T ]\Ωn =

{
t ∈ [0,T ] : a(t)|vn(t)|γ ≥ 1/n

}
.
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By (3.21) and (3.24), we have

meas(Ωn∩Ω0) = meas(Ω0\(Ωc
n∩Ω0)≥meas(Ω0)−meas(Ωc

n∩Ω0)≥ ξ2−
1
n

for all positive integer n. Let n be large enough such that

ξ2−
1
n
≥ 1

2
ξ2 and

1
2γ−1 ξ1−

1
n
≥ 1

2γ
ξ1,

then we have∫ T

0
a(t)|vn− v0|γ dt ≥

∫
Ωn∩Ω0

a(t)|vn− v0|γ dt

≥ 1
2γ−1

∫
Ωn∩Ω0

a(t)|v0|γ dt−
∫

Ωn∩Ω0

a(t)|vn|γ dt

≥
(

1
2γ−1 ξ1−

1
n

)
meas(Ωn∩Ω0)≥

ξ1

2γ
.
ξ2

2
=

ξ1ξ2

2γ+1 > 0

for all large n, which is a contradiction to (3.23). Therefore, (3.19) holds.
For any u ∈ Zk, let

‖u‖2 :=
(∫ T

0
|u(t)|2dt

)1/2

and γk := sup
u∈Zk
‖u‖α =1

‖u‖2,

then we conclude γk→ 0 as k→ ∞ in the same way as in the proof of Theorem 3.1.

(3.25)

ϕ(u) =−
∫ T

0

1
2
(c

0Dα
t u(t), c

t Dα
T u(t)

)
dt−

∫ T

0
F(t,u(t))dt,

≥ 1
2
|cos(πα)|‖u‖2

α −
∫ T

0
a(t)|u(t)|γ dt

≥ 1
2
|cos(πα)|‖u‖2

α −
(∫ T

0
a(t)

2
2−γ dt

) 2−γ

2
‖u‖γ

2

≥ 1
2
|cos(πα)|‖u‖2

α −
(∫ T

0
a(t)

2
2−γ dt

) 2−γ

2
γ

γ

k ‖u‖
γ

α .

Let ρk :=
(
(4cγ

γ

k )/(|cos(πα)|)
)1/(2−γ), where c :=

(∫ T
0 a(t)2/(2−γ)dt

)(2−γ)/2
, it is ob-

vious that ρk→ 0, as k→ ∞.

In view of (3.25), we conclude

inf
u∈Zk
‖u‖α =ρk

ϕ(u)≥ |cos(πα)|
4

ρ
2
k > 0,

so the condition (H7) in Theorem 3.4 is satisfied.
Furthermore, by (3.25), for any u ∈ Zk with ‖u‖α ≤ ρk, we have

ϕ(u)≥−cγ
γ

k ‖u‖
γ

α .

Therefore,
−cγ

γ

k ρ
γ

k ≤ inf
u∈Zk
‖u‖α≤ρk

ϕ(u)≤ 0.
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So we have
inf

u∈Zk
‖u‖α≤ρk

ϕ(u)→ 0

for ρk, γk→ 0, as k→ ∞. Hence (H5) in Theorem 3.4 is satisfied.
For any u ∈ Yk\{0},

ϕ(u) =−
∫ T

0

1
2
(c

0Dα
t u(t), c

t Dα
T u(t)

)
dt−

∫ T

0
F(t,u(t))dt,

≤ 1
2|cos(πα)|

‖u‖2
α −

∫ T

0
a(t)|u(t)|γ dt

≤ 1
2|cos(πα)|

‖u‖2
α − ε‖u‖γ

α meas(Ωu)

≤ 1
2|cos(πα)|

‖u‖2
α − ε

2‖u‖γ

α ,

where ε is given in (3.19), and Ωu :=
{

t ∈ [0,T ] : a(t)|u(t)|γ ≥ ε‖u‖γ

α

}
. Choosing 0 < rk <

min{ρk,(|cos(πα)|ε2)1/(2−γ)}, we conclude

ik := max
u∈Yk
‖u‖α =rk

ϕ(u) <− 1
2|cos(πα)|

r2
k < 0, ∀ k ∈ N,

that is, the condition (H6) in Theorem 3.4 is satisfied. We have proved the functional ϕ

satisfies all the conditions of Theorem 3.4, then ϕ has a bounded sequence of negative
critical values cn = ϕ(un) converging to 0 by Theorem 3.4, we only need to show ‖un‖α is
bounded as for every positive integer n.

(3.26)

cn = ϕ(un) =−
∫ T

0

1
2
(c

0Dα
t un(t), c

t Dα
T un(t)

)
dt−

∫ T

0
F(t,un(t))dt,

=−
∫ T

0

1
2
(c

0Dα
t un(t), c

t Dα
T un(t)

)
dt−

∫ T

0
a(t)|un(t)|γ dt,

≥ |cos(πα)|
2

‖un‖2
α −a0‖un‖γ

∞T,

≥ |cos(πα)|
2

‖un‖2
α −a0TCγ

8‖un‖γ

α ,

where a0 = ess sup
{

a(t) : t ∈ [0,T ]
}

. By Theorem 3.4, cn→ 0 as n→ ∞. If ‖un‖α has an
unbounded sequence, then cn is unbounded by (3.26), which is a contradiction. The proof
of Theorem 3.2 is completed.

4. Examples

In this section, we give two examples to illustrate our results.

Example 4.1. In BVP (1.1), let F(t,x) = |x|4, and choose

κ = 4, r = 2, µ = µ
′ = 4 and Q = Q′ = 1,

so it is easy to verify that all the conditions (A1)–(A4) are satisfied. Then by Theorem 3.1,
BVP (1.1) has infinite solutions {uk} on Eα for every positive integer k such that ‖uk‖∞→
+∞, as k→ ∞.
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Example 4.2. In BVP (1.1), let F(t,x) = a(t)|x|3/2 where

a(t) =

{
T, t = 0
t, 0 < t ≤ T.

By Theorem 3.2, BVP (1.1) has infinite solutions {uk} on Eα for every positive integer k
with ‖uk‖α bounded.
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Birkhäuser Boston, Boston, MA, 1996.
[30] S. Zhang, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci. Ser. B Engl.

Ed. 26 (2006), no. 2, 220–228.
[31] S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions,

Comput. Math. Appl. 61 (2011), no. 4, 1202–1208.
[32] Q. Zhang and C. Liu, Infinitely many periodic solutions for second order Hamiltonian systems, J. Differential

Equations 251 (2011), no. 4-5, 816–833.
[33] Y. Zhou, F. Jiao and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite

delay, Nonlinear Anal. 71 (2009), no. 7-8, 3249–3256.




