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Abstract. A topological space G is said to be a rectifiable space provided that there are a
surjective homeomorphism ϕ : G×G→ G×G and an element e ∈ G such that π1 ◦ϕ = π1
and for every x ∈ G we have ϕ(x,x) = (x,e), where π1 : G×G→ G is the projection to
the first coordinate. In this paper, we firstly show that every submaximal rectifiable space
G either has a regular Gδ -diagonal, or is a P-space. Then, we mainly discuss rectifiable
spaces are determined by a point-countable cover, and show that if G is an α4-rectifiable
space determined by a point-countable cover G consisting of bisequential subspaces then it
is metrizable, which generalizes a result of Lin and Shen’s.
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1. Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such that the
product maps of G×G into G is jointly continuous and the inverse map of G onto itself
associating x−1 with arbitrary x ∈ G is continuous. A paratopological group G is a group
G with a topology such that the product maps of G×G into G is jointly continuous. A
topological space G is said to be a rectifiable space provided that there are a surjective
homeomorphism ϕ : G×G→ G×G and an element e ∈ G such that π1 ◦ϕ = π1 and for
every x ∈ G we have ϕ(x,x) = (x,e), where π1 : G×G→ G is the projection to the first
coordinate. If G is a rectifiable space, then ϕ is called a rectification on G. It is well
known that rectifiable spaces and paratopological groups are all good generalizations of
topological groups. In fact, for a topological group with the neutral element e, then it is
easy to see that the map ϕ(x,y) = (x,x−1y) is a rectification on G. However, there exists a
paratopological group which is not a rectifiable space; Sorgenfrey line [7, Example 1.2.2] is
such an example. Also, the 7-dimensional sphere S7 is rectifiable but not a topological group
[17, § 3]. Further, it is easy to see that paratopological groups and rectifiable spaces are all
homogeneous. Recently, the study of rectifiable spaces is an interesting topic in topological
algebra, see [4, 5, 9, 11, 12].
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In [12], Lin and Shen proved that each bisequential rectifiable space is metrizable. In
this paper, we shall generalize this result, and show that if G is an α4-rectifiable space
determined by a point-countable cover G consisting of bisequential subspaces then it is
metrizable. Moreover, we also discuss the submaximal rectifiable spaces and obtain some
interesting results.

2. Preliminaries

Let P be a family of subsets of a space X . The space X is determined by P if each
subset F of X is closed if and only if F ∩P is closed in P for each P ∈P . A space X
is called an S2-space (Arens’ space) if X = {∞}∪ {xn : n ∈ N}∪ {xn(m) : m,n ∈ N} and
the topology is defined as follows: Each xn(m) is isolated; a basic neighborhood of xn is
{xn}∪{xn(m) : m > k} for some k ∈N; a basic neighborhood of ∞ is {∞}∪ (

⋃
{Vn : n > k})

for some k ∈ N, where Vn is a neighborhood of xn. A space X is called Sω if X is obtained
by identifying all the limit points of ω many convergent sequences, where the identification
is topological quotient.

Definition 2.1. A space X is said to be Fréchet-Urysohn if, for each x ∈ A⊂ X, there exists
a sequence {xn} such that {xn} converges to x and {xn : n ∈ N} ⊂ A. A space X is said to
be strongly Fréchet-Urysohn if the following condition is satisfied
(SFU) For every x ∈ X and each sequence η = {An : n ∈ N} of subsets of X such that x ∈⋂

n∈N An, there is a sequence ζ = {an : n∈N} in X converging to x and intersecting
infinitely many members of η .

Obviously, a strongly Fréchet-Urysohn space is Fréchet-Urysohn. However, the space
Sω is Fréchet-Urysohn and non-strongly Fréchet-Urysohn.

Let X be a space. For P ⊂ X , the set P is a sequential neighborhood of x in X if every
sequence converging to x is eventually in P.

Definition 2.2. Let P =
⋃

x∈X Px be a cover of a space X such that for each x ∈ X, (a) if
U,V ∈Px, then W ⊂U ∩V for some W ∈Px; (b) the family Px is a network of x in X,
i.e., x ∈

⋂
Px, and if x ∈U with U open in X, then P⊂U for some P ∈Px.

The family P is called a weak base for X if, for every A ⊂ X, the set A is open in X
whenever for each x ∈ A there exists P ∈Px such that P ⊂ A. The space X is weakly
first-countable if Px is countable for each x ∈ X.

Definition 2.3. [3] Let ζ and η be any family of non-empty subsets of X.
(1) The family ζ is called a prefilter on a space X if, whenever P1 and P2 are in ζ , there

is a P ∈ ζ such that P⊂ P1∩P2;
(2) A prefilter ζ on a space X is said to converge to a point x ∈ X if every open neigh-

borhood of x contains an element of ζ ;
(3) If x ∈ X belongs to the closure of every element of a prefilter ζ on X, we say that ζ

accumulates to x or a cluster point for ζ ;
(4) Two prefilters ζ and η are called to be synchronous if, for any P∈ ζ and any Q∈η ,

P∩Q 6= /0;
(5) A space X is called bisequential [3] if, for every prefilter ζ on X accumulating to a

point x ∈ X, there exists a countable prefilter ξ on X converging to the same point
x such that ζ and ξ are synchronous.
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Definition 2.4. Let X be a topological space. We say that X is an α4-space if for each count-
able family {Sn : n ∈ N} of sequences converging to some point x ∈ X there is a sequence S
converging to x such that Sn∩S 6= /0 for infinitely many n ∈ N.

Theorem 2.1. [6, 9, 16] A topological space G is rectifiable if and only if there exists e ∈G
and two continuous maps p : G2→ G, q : G2→ G such that for any x ∈ G,y ∈ G the next
identities hold:

p(x,q(x,y)) = q(x, p(x,y)) = y,q(x,x) = e.

In fact, we can assume that p = π2 ◦ϕ−1 and q = π2 ◦ϕ in Theorem 2.1. Fixed a point
x ∈ G, then fx,gx : G→ G defined with fx(y) = p(x,y) and gx(y) = q(x,y), for each y ∈ G,
are homeomorphism, respectively. We denote fx,gx with p(x,G),q(x,G), respectively.

Let G be a rectifiable space, and let p be the multiplication on G. Further, we sometime
write x ·y instead of p(x,y) and A ·B instead of p(A,B) for any A,B⊂G. Therefore, q(x,y) is
an element such that x ·q(x,y) = y; since x ·e = x ·q(x,x) = x and x ·q(x,e) = e, it follows that
e is a right neutral element for G and q(x,e) is a right inverse for x. Hence a rectifiable space
G is a topological algebraic system with operation p,q, 0-ary operation e and identities as
above. It is easy to see that this algebraic system need not to satisfy the associative law
about the multiplication operation p. Clearly, every topological loop is rectifiable.

All spaces are T1 and regular unless stated otherwise. The notation N denotes the set of
all positive natural numbers. The letter e denotes the neutral element of a group and the
right neutral element of a rectifiable space, respectively. Readers may refer to [3, 7, 8] for
notations and terminology not explicitly given here.

3. Submaximal rectifiable subspaces

In this section, we mainly show that a submaximal rectifiable space G is metrizable if it
is locally countably compact or is of point-countable type, see Theorem 3.2. Let A be a
subset of a rectifiable space G. The set A is called a rectifiable subspace of G if we have
p(A,A)⊂ A and q(A,A)⊂ A.

Lemma 3.1. [11] Let G be a rectifiable space. If V is an open rectifiable subspace of G,
then V is closed in G.

Proposition 3.1. [11] Let G be a rectifiable space. If H is a rectifiable subspace of G, then
H is also a rectifiable subspace of G.

The following Lemma 3.2 is well known.

Lemma 3.2. If Y is a dense subspace of a regular space X, then χ(y,Y ) = χ(y,X) for each
y ∈ Y .

From Proposition 3.1 and Lemma 3.2, the proof of the following proposition is obvious,
and hence we omitted the proof.

Proposition 3.2. If H is a metrizable rectifiable subspace of a rectifiable space G, then the
closure of H is also metrizable.

A space X is a submaximal space if every subset A is open in A. The following Proposi-
tion 3.3 and the corollaries were proved in [2] for topological groups.

Proposition 3.3. Every rectifiable subspace of a submaximal rectifiable space G is closed.
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Proof. Let H be a rectifiable subspace of G, and let Y = H. By Proposition 3.1, the space
Y is a rectifiable space. Moreover, the set H is open in Y since G is submaximal. It follows
from Lemma 3.1 that H is closed in Y . Therefore, H is closed in G.

Corollary 3.1. If A is dense subset of a submaximal rectifiable space G, then G =
⋃

n∈N(An∪
Bn), where A1 = A,B1 = q(A,e)∪ q(A,A),A2 = p(A1 ∪B1,A1 ∪B1),B2 = q(A1 ∪B1,A1 ∪
B1), An+1 = p(An∪Bn,An∪Bn),Bn+1 = q(An∪Bn,An∪Bn),n = 1,2, · · · .

Proof. Since q(A,A)⊂B1, we have e∈B1. Therefore, it is easy to see that An∪Bn⊂An+1∪
Bn+1 for each n ∈ N. Put B =

⋃
n∈N(An ∪Bn). Next we shall prove that B is a rectifiable

subspace of G. Indeed, take arbitrary points x,y ∈ B. Then there exists an n ∈ N such that
x,y ∈ An∪Bn, and hence p(x,y) ∈ An+1∪Bn+1 and q(x,y) ∈ An+1∪Bn+1. Therefore, B is a
rectifiable subspace of G. By Proposition 3.3, B is closed in G. Moreover, it is obvious that
A⊂ B, and thus B = G.

Corollary 3.2. The density of a submaximal rectifiable space G is equal to the cardinality
of G.

Corollary 3.3. Every separable submaximal rectifiable space is countable.

Remark 3.1. (1) The 7-dimensional sphere S7 is a rectifiable space which is not submaxi-
mal. Indeed, S7 is separable, and however, the cardinality of S7 is uncountable.

(2) Mrowka-Isbell space is a separable submaximal Tychonoff uncountable space. There-
fore, Corollary 3.3 is not necessarily true if G is just a Tychonoff space.

Question 3.1. Is every pseudocompact submaximal rectifiable space finite?

Lemma 3.3. Every non-discrete subrectifiable H of a submaximal rectifiable space X is
open.

Proof. Since H is non-discrete, it follows from [2, Theorem 1.2] that H contains a non-
empty open subset, which implies H is open in G since H is a rectifiable subspace.

A space X is said to have a regular Gδ -diagonal if the diagonal ∆ = {(x,x) : x∈X} can be
represented as the intersection of the closures of a countable family of open neighborhoods
of ∆ in X×X .

The following Lemma 3.4 generalizes Arhangel’skiı̌ and Burke’s result for Abelian para-
compact groups.

Lemma 3.4. [11] Each rectifiable space G with countable pseudocharacter has a regular
Gδ -diagonal.

Theorem 3.1. If G is a submaximal rectifiable space, then, either G has a regular Gδ -
diagonal, or G is a P-space (that is, all Gδ -set are open in G).

Proof. For each countable family ζ = {Un : n ∈ N} of neighborhoods of the right neutral
element e of the rectifiable space G, then there is a closed rectifiable subspace H of G,
contained in the intersection of ζ , which is a Gδ -subset of the space G. Indeed, we first
may assume that Un+1 ⊂Un for each n ∈ N. By induction, it is easy to see from the joint
continuous of p and q that there exists a decreasing open neighborhoods {Vn : n ∈N} of the
right neutral element e such that the following conditions are satisfy:

(1) For each n ∈ N, p(Vn+1,Vn+1)⊂Vn and q(Vn+1,Vn+1)⊂Vn;
(2) For each n ∈ N, Vn ⊂Un.
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Put H =
⋂

n∈NVn. Obviously, H is closed Gδ -subset in G and H ⊂
⋂

n∈NUn. Next, we
shall show that H is a rectifiable subspace of G. Take arbitrary points x,y∈H. Then x,y∈Vn
for each n ∈N. Hence p(x,y) ∈Vn and q(x,y) ∈Vn for each n ∈N, and thus p(x,y) ∈H and
q(x,y)∈H. Therefore, H is a closed rectifiable subspace of G. If H is discrete, then G has a
regular Gδ -diagonal. In fact, since (

⋂
n∈NVn)∩ (G− (H−{e})) = {e}, it follows from the

homogeneity of G that every point of G is Gδ . By Lemma 3.4, G has a regular Gδ -diagonal.
If H is non-discrete, then H is open by Lemma 3.3. Therefore, G is a P-space.

Remark 3.2. We can not omit the assumption “G is rectifiable” in Theorem 3.1. Indeed, the
Alexandroff one-point compactification X of an uncountable discrete space is a submaximal
space which is not metrizable. It is well known that a compact space with a Gδ -diagonal is
metrizable or a compact P-space is finite [8]. Then X is not a P-space and does not have
any Gδ -diagonal since G is not metrizable.

Corollary 3.4. Every connected submaximal rectifiable space G has a regular Gδ -diagonal.

Proof. If G is finite, then G is discrete, hence it has a regular Gδ -diagonal. If G is infinite,
then G is not a P-space since an infinite P-space is not connected. By Theorem 3.1, G has a
regular Gδ -diagonal.

Recall that a space X is of point-countable type if each point of X is contained in a
compact subspace of X with a countable base of neighborhoods in X .

Theorem 3.2. Let G be a submaximal rectifiable space. If G is locally countably compact
or is of point-countable type, then G is metrizable.

Proof. It follows from Theorem 3.1 that G has a regular Gδ -diagonal, or G is a P-space.
Case 1: G has a regular Gδ -diagonal. If G is locally countably compact, then G is discrete
since a countably compact space with a Gδ -diagonal is metrizable [8]; If G is a P-space, then
there exists a compact subset F of G such that e ∈ F and F has a countable neighborhood
base. Since compact space space with a Gδ -diagonal is metrizable [8], it is easy to see that
G is first-countable, and hence G is metrizable by [9].
Case 2: G is a P-space. It is well known that a countably compact P-space is finite, and
therefore G is metrizable.
Note By remark 3.2, we know that the condition “G is rectifiable” is important.

4. Rectifiable spaces determined by a point-countable cover

Let P be a family of subsets of a space X . The family P is called a k-network [15] if
whenever K is a compact subset of X and K ⊂U ∈ τ(X), there is a finite subfamily P ′ ⊂P
such that K ⊂ ∪P ′ ⊂U .

In [12], Lin and Shen posed the following question:

Question 4.1. [12] Is every sequential rectifiable space with a point-countable k-network a
paracompact space?

In this section, we shall give some partial answer for Question 4.1. Firstly, we give some
lemmas.

Lemma 4.1. [12] Let G be a rectifiable space. Then G contains a (closed) copy of Sω if and
only if G has a (closed) copy of S2.
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Lemma 4.2. [14] Let G be a space determined by a point-countable cover G . Suppose
that finite unions of elements of G are either Fréchet-Urysohn or sequential spaces in which
each point is a Gδ -set. If G contains neither a closed copy of Sω nor a closed copy of S2,
then each point of G has an open neighborhood covered by some finite subfamily of G .

Lemma 4.3. [14] A space determined by a cover consisting of sequential space is sequen-
tial.

The following Proposition 4.1 corresponds to [14, Corollary 2.6].

Proposition 4.1. Let G be a rectifiable space determined by a countable increasing cover
G = {Gn : n ∈ N} consisting of its subrectifiable spaces. Assume also that one of the fol-
lowing conditions holds:

(1) each Gn is Fréchet-Urysohn, or
(2) each Gn is sequential and the right neutral element e is a Gδ -subset of Gn.

Then either
(i) G contains a closed copy of Sω , or
(ii) there exists an n ∈ N such that Gn is both open and closed in G.

Proof. It is easy to see that the family G satisfies the assumptions of Lemma 4.2. Suppose
that G contains no a closed copy of Sw. Then G contains no closed copy of S2 by Lemma 4.1.
It follows from Lemma 4.2 that we have e ∈ IntGn for some n ∈ N. Therefore, we have
Gn = ∪{x · IntGn : x ∈ Gn} is open in G. By Lemma 3.1, the set Gn is also closed in G.

Theorem 4.1. Let G be a rectifiable space determined by a point-countable sequential
subrectifiable subsets with a point-countable k-network. Then G is metrizable if G contains
no closed copy of Sω .

Proof. Let G be determined by a point-countable sequential subrectifiable subsets Xα(α ∈
Γ), where each Xα has a point-countable k-network. Since each Xα contains no closed copy
of Sω , then each Xα is weakly first-countable [13], and hence each Xα is first-countable
and has a point-countable base [10]. Let f :

⊕
α∈Γ Xα → G be a obvious map. Then f is

a quotient countable-to-one map. Hence G is a sequential space with a point-countable k-
network. Therefore, G is weakly first-countable since G contains no closed copy of Sω and
G is metrizable.

A prefilter U in a topological space X is called a nest [1] if U consists of open subsets
of X and has the following property: For any U,V ∈U either U ⊂V or V ⊂U. A space X
is π-nested at a point x ∈ X [1] if there exists a nest in X converging to x, and X is nested at
x [1] if there exists a nest in X which forms a local base for X at x. Finally, a space is nested
if it is nested at each of its points.

Lemma 4.4. If a rectifiable space G is π-nested at some point a ∈ G then G is nested.

Proof. Since G is homogeneous, we may assume that a is the right neutral element e of the
rectifiable space G. Take a nest A converges to e. Put φ = {q(U,U) : U ∈A }. Then φ is a
nest which is a base for G at the point e. By the homogeneity of the space G we have G is
nested.

Lemma 4.5. [14] Let U be a nonempty open subset of a space X, and let φ be a finite family
of subsets of X such that U ⊂ ∪φ . Then there exist E ∈ φ and a nonempty open subset V of
X with V ⊂V ∩E.
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The following Lemma 4.6 corresponds to Theorem 2.9 in [14].

Lemma 4.6. Assume that G is a rectifiable space determined by a point-countable cover G
consisting of bisequential spaces. Assume also that

(1) ∪G ′ is Fréchet-Urysohn for each finite subfamily G ′ ⊂ G , and
(2) G contains no closed copy of Sω .

Then G is metrizable.

Proof. If G is discrete, then it is obvious that G is metrizable. Suppose that G is a non-
discrete space. Obviously, G and G satisfy the assumptions of Lemma 4.2. Therefore,
there are a finite subfamily E ⊂ G and an open subset U with e ∈ U ⊂ ∪E . It follows
from Lemma 4.5 that there exist some E ∈ E and a non-empty open subset V such that
V ⊂ V ∩E. Take a point x ∈ V ∩E. Since V ∩E is an open subspace of bisequential space
E, the subspace V ∩E is bisequential. Therefore, V ∩E is π-nested at x by [1, Proposition
1]. It follows from [1, Lemma 20] that V ∩E is also π-nested at x. Since x ∈ V ⊂ V ∩E,
the set V is π-nested at x too. Therefore, we obtained that G is π-nested at x. Since G is
a rectifiable space, the space G is nested by Lemma 4.4. By Lemma 4.3, the space G is
sequential, and hence G contains a non-trivial convergent sequence. Therefore, the space G
must have a Gδ -subset which is not open. Since G is nested, the space G is first-countable
by [1, Lemma 10]. So G is metrizable.

Lemma 4.7. [11] Let G be a rectifiable space. Then G is an α4-sequential space if and only
if G is strongly Fréchet-Urysohn.

The following Theorem 4.2 corresponds to [14, Theorem 3.1].

Theorem 4.2. Let G be a rectifiable space determined by a point-countable cover G con-
sisting of bisequential spaces. Then the following conditions are equivalent:

(1) The space G is an α4-space;
(2) The space G is Fréchet-Urysohn;
(3) The space G is metrizable.

Proof. Implication (3)⇒(2) is trivial, and for (2)⇒(1), see Lemma 4.7. It is suffice to show
(1)⇒(3).

(1)⇒(3). From Lemmas 4.3 and 4.7, it follows that G is strongly Fréchet-Urysohn. In
particular, we have ∪G ′ is Fréchet-Urysohn for each finite G ′ ⊂ G . Hence item (1) of
Lemma 4.6 holds. Since closed subsets of a strongly Fréchet-Urysohn space are strongly
Fréchet-Urysohn, the space G contains no closed copy of Sω . It follows from Lemma 4.6
that G is metrizable.

Lemma 4.8. [14] If a space X is determined by a point-finite cover U consisting of α4-
spaces, then X is an α4-space itself.

Corollary 4.1. If a rectifiable space G is determined by a point-finite cover G consisting of
bisequential subspaces of G, then G is metrizable.

Proof. Since bisequential spaces are α4, it follows from Lemma 4.8 that G is α4. By Theo-
rem 4.2, the space G is metrizable.

The following Theorem 4.3 corresponds to [14, Theorem 3.2].
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Theorem 4.3. Let G be a rectifiable space determined by a point-countable cover G con-
sisting of closed bisequential spaces. Then the following conditions are equivalent:

(1) The space G contains no closed copy of Sω ;
(2) The space G contains no closed copy of S2;
(3) The space G is metrizable.

Proof. It follows from Lemma 4.1 that (1)⇔(2). (3)⇒(1) is obvious.
(1)⇒(3). Since every element D ∈ G is closed bisequential, we have ∪G ′ is Fréchet-

Urysohn for each finite subfamily G ′ ⊂ G . It follows from Lemma 4.6 that G is metrizable.

The following Theorem 4.4 corresponds to [14, Theorem 3.3].

Theorem 4.4. Let G be a rectifiable space determined by a countable increasing cover
G = {Gn : n ∈ N} consisting of bisequential subspaces of G. Then the following conditions
are equivalent:

(1) The space G contains no closed copy of Sω ;
(2) The space G contains no closed copy of S2;
(3) The space G is metrizable.

Proof. Note that each finite subfamily G ′ ⊂ G contains in some Gn. Therefore, it is easy to
see that our theorem holds.

Remark 4.1. (1) [14, Example 3.5] demonstrates that in Theorems 4.2, 4.3 and 4.4 at least
some countability restrictions on the cover are necessary.

(2) In Theorems 4.2, 4.3 and 4.4, we have to add some additional restrictions on G in
order to G is metrizable. [14, Example 3.7] demonstrates that at least some additional
restrictions on G are indeed necessary.

(3) We can not generalize Theorems 4.3 and 4.4 in the class of Maltsev spaces. Indeed,
Sorgenfrey line S is a Maltsev space which is not metrizable, and S contains no copy of
S2 and Sω since it is first-countable.

It follows from Theorem 4.3 or Theorem 4.4, we have the following corollary.

Corollary 4.2. [12] Every bisequential rectifiable space is metrizable.

A topological space X is said to be an Mω -space if X is determined by a countable family
M of closed metrizable subsets of X .

Corollary 4.3. Let G be an Mω -rectifiable space. If G contains no closed copy of Sω , then
the space G is metrizable.

However, we cannot omit the condition “G contains no closed copy of Sω ” in Corol-
lary 4.3. In fact, if X a convergent sequence containing the limit point then the free topo-
logical group F(X) is an Mω -space, but F(X) is non-metrizable.

Acknowledgement. The author is thankful to the reviewers for the detailed list of correc-
tions, suggestions to the paper, and all their efforts in order to improve the paper.
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