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Abstract. The steady MHD mixed convection stagnation point flow towards a vertical plate
immersed in a micropolar fluid with a convective surface boundary condition is investigated.
The governing partial differential equations are first reduced to ordinary differential equa-
tions using a similarity transformation, before being solved numerically. The features of
the flow and heat transfer characteristics for different values of the governing parameters
are analyzed and discussed. Both assisting and opposing flows are considered. The results
indicate that dual solutions exist for the opposing flow, whereas for the assisting flow, the
solution is unique. The skin friction coefficient and the local Nusselt number increase in the
presence of magnetic field and buoyancy force.
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1. Introduction

The study of stagnation point flow towards a vertical plate has received a great attention
of research interest due to its wide applications in industries and practical applications.
Some of the applications are cooling of electronic devices by fans, solar central receivers
exposed to wind currents, cooling of nuclear reactors during emergency shutdown, and
many hydrodynamic processes. Chamka [20] for instance, has studied the mixed convection
flow near the stagnation point of a vertical semi-infinite permeable surface in the presence
of a magnetic field. The non-magnetic effect for impermeable surface on both arbitrary wall
temperature and arbitrary surface heat flux variations has been studied by Ramachandran
et al. [51], which they found that a reverse flow developed in the buoyancy opposing flow
region, and dual solutions exist for a certain range of the buoyancy parameter. This problem
was then extended by Devi et al. [23] to the unsteady case, where they obtained the similar
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results as in Ramachandran et al. [51]. It is worth mentioning that the stagnation-point flows
have also been studied in many flow situations, for examples in the papers by Chiam [21,
22], Bhattacharyya [12, 13], Bhattacharyya and Layek [14], Bhattacharyya and Vajravelu
[15], Bhattacharyya et al. [16, 17, 18, 19], Ishak et al. [30], and Wang [55], among others.

The basic idea of micropolar fluids has risen from the need to model many engineering
processes involving non-Newtonian fluids containing micro-constituents such as blood flow,
lubricants, colloidal fluids, liquid crystals and suspension fluids that cannot be described by
the classical Newtonian fluid. Based on this need, Eringen [24, 25] has introduced the
theory of micropolar fluids that is able to describe those fluids by taking into account the
microscopic effects arising from the local structure and micromotions of the fluid elements.
Numerous studies of the theory and its applications have been done by many researchers.
For example, the problems of MHD stagnation point flow of a micropolar fluid have been
investigated by Hayat et al. [28, 29], using the homotopy analysis method (HAM). It is
worth mentioning that this method was also employed by Alomari et al. [3] and Aziz et
al. [8] in their recent papers. In addition, Takhar et al. [54], Yücel [59], Lok et al. [40],
Alomari et al. [4], Ishak et al. [31] and Yacob and Ishak [57], studied the micropolar fluid
in the mixed convection flow by considering some other physical aspects. Comprehensive
reviews of the subject and its applications can be found in the review articles by Ariman et
al. [6, 7] and the books by Łukaszewicz [41] and Eringen [26].

Motivated by the above mentioned investigations, we consider the problem of hydromag-
netic stagnation-point flow towards a vertical plate immersed in an incompressible micropo-
lar fluid with a convective surface boundary condition. The boundary layer flow concerning
a convective boundary condition for the Blasius flow has been discussed by Aziz [9], while
Magyari [42] improved this work by obtaining the exact solution for the temperature field
in a compact integral form. Bataller [11] investigated the similar problem by considering
radiation effects on the Blasius and Sakiadis flows. Later, the effects of radiation on the
thermal boundary layer flow over a moving plate in a moving fluid have been studied by
Ishak et al. [32]. The hydromagnetic flow over a vertical plate under a convective boundary
condition was studied by Makinde [43, 44] and Makinde and Aziz [45], while Makinde and
Olanrewaju [46] studied the buoyancy effects on the thermal boundary layer over a vertical
plate, all under the same surface heating condition.

In the present paper, the governing equations are transformed into a system of nonlinear
ordinary differential equations, which are then solved numerically. Representative results
for the velocity, temperature and angular velocity profiles as well as the skin friction coef-
ficient, local couple stress and the local Nusselt number, which represents the heat transfer
rate at the surface, are presented for some values of the governing parameters.

2. Mathematical formulation

Consider a steady, two-dimensional flow of an incompressible micropolar fluid near the
stagnation point on a vertical flat plate of constant ambient temperature T∞, as shown in
Figure 1. It is assumed that the external velocity is prescribed as U(x) = ax where a is a
positive constant and x is the distance from the stagnation point. A uniform magnetic field
of strength B0 is assumed to be applied in the positive y-direction normal to the plate. The
induced magnetic field is assumed to be small compared to the applied magnetic field, and
is neglected. Further, it is assumed that the left surface of the plate is heated or cooled by
convection from a hot or cool fluid of temperature Tf (x) = T∞ + bx, which provides a heat
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transfer coefficient h f , where b is a constant with b > 0 for Tf (x)> T∞ (assisting flow) and
b < 0 for Tf (x)< T∞ (opposing flow). Under these assumptions along with the Boussinesq
and boundary layer approximations, the boundary layer equations are [28, 29, 31]:

(2.1)
∂u
∂x

+
∂v
∂y

= 0,

(2.2) u
∂u
∂x

+ v
∂u
∂y

=U
dU
dx

+

(
µ +κ

ρ

)
∂ 2u
∂y2 +

κ
ρ
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+
σB2

0
ρ

(U − u) + gβ (T − T∞) ,

(2.3) ρ j
(
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∂y2 −κ

(
2N +

∂u
∂y

)
,

(2.4) u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 ,

subject to the boundary conditions

u = 0, v = 0, N =−n
∂u
∂y

, −k
∂ T
∂ y

= h f (Tf −Tw) at y = 0,

(2.5) u →U(x), N → 0, T → T∞ as y → ∞,

where u and v are the velocity components along the x and y axes, respectively. Further, µ
is the dynamic viscosity, κ the vortex viscosity (or the microrotation viscosity), ρ the fluid
density, γ the spin gradient viscosity, α the thermal diffusivity, β the thermal expansion co-
efficient, g the acceleration due to gravity, T the fluid temperature, j the microinertia density,
N is the microrotation vector, k is the thermal conductivity of the fluid and n is a constant
such that 0 ≤ n ≤ 1. The case n = 0, is called strong concentration by Guram and Smith
[27], which indicates N = 0 near the wall, represents concentrated particle flows in which
the microelements close to the wall surface are unable to rotate (Jena and Mathur [38]). The
case n = 1/2 indicates the vanishing of anti-symmetric part of the stress tensor and denotes
weak concentrations (Ahmadi [1]). The case n = 1, as suggested by Peddieson [49], is used
for the modeling of turbulent boundary layer flows, see Ishak et al. [33]. Further, we follow
the work of many recent authors by assuming that γ = (µ +κ/2) j = µ(1+K/2) j, where
K = κ/µ is the constant dimensionless micropolar or material parameter. This assump-
tion is invoked to allow the field of equations to predict the correct behavior in the limiting
case when the microstructure effects become negligible and the total spin N reduces to the
angular velocity (Ahmadi [1]).

The continuity equation (2.1) is satisfied by introducing a stream function ψ such that

(2.6) u =
∂ψ
∂y

, v =−∂ψ
∂x

.

The momentum, angular momentum and energy equations can be transformed into the cor-
responding nonlinear ordinary differential equations by the following transformation (see
Ishak et al. [31] and Aziz [9]):

η =

(
U
νx

)1/2

y, f (η) =
ψ

(νxU)1/2 ,
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(2.7) h(η) =
N (νx)1/2

U3/2 , θ(η) =
T −T∞

Tf −T∞
.

The transformed ordinary differential equations are:

(2.8) (1+K) f ′′′+ f f ′′+1− f ′2 +Kh′ + M
(
1 − f ′

)
+λθ = 0,

(2.9)
(

1+
K
2

)
h′′+ f h′− f ′h−K

(
2h+ f ′′

)
= 0,

(2.10)
1
Pr

θ ′′+ f θ ′− f ′θ = 0,

subject to the boundary conditions (2.5) which become

f (0) = 0, f ′(0) = 0, h(0) =−n f ′′(0), θ ′(0) =−c [1−θ(0)]

(2.11) f ′(η)→ 1, h(η)→ 0, θ(η)→ 0 as η → ∞,

where we have taken j = ν/a as a reference length (Nazar et al. [48]). In the above
equations, primes denote differentiation with respect to η , Pr = ν /α is the Prandtl num-
ber, M = B2

0 σ
/
(ρa) is the magnetic parameter and c = (ν/a)1/2 h f /k is the convective

parameter. Further, λ = Grx/Re2
x is the buoyancy or mixed convection parameter with

Grx = gβ (Tf −T∞)x3/ν2 and Rex =Ux/ν being the local Grashof and Reynolds numbers,
respectively. We notice that λ is a constant with λ < 0 and λ > 0 correspond to the oppos-
ing and assisting flows, respectively, while λ = 0 is for pure forced convection flow. It is
worth mentioning that when K = 0 and M = 0, Eqs. (2.8) reduces to the problem derived
by Ramachandran et al. [51] for Newtonian fluid. The thermal boundary conditions occurs
in a variety of real situations such as fluid flow of rarefied gas, fluid flow around micro-
electromechanical (MEMS), convectional isothermal or iso-flux boundary conditions that
must be replaced with thermal slip boundary condition (Kiwan and Al-Nimr [39]). Note
that the convective boundary condition in (2.11) can be written as

(2.12) θ(0) = 1 + γ θ ′(0),

where γ = 1/c, (c ̸= 0) is the thermal slip parameter, so we can say that thermal slip is a
special case of convective surface boundary condition. For γ = 0 this boundary condition
becomes θ(0) = 1 , which is the prescribed surface temperature case.

The physical quantities of interest are the skin friction coefficient C f , the local couple
stress Mx and the local Nusselt number Nux, which are defined as (Jena and Mathur [38])

(2.13) C f =
τw

ρ U2 , Mx =
ν Mw

xU2 , Nx =
xqw

k (Tf −T∞)
,

where the surface shear stress τw, the surface couple stress Mw and the surface heat flux qw
are given by
(2.14)

τw =

[
(µ +κ)

∂ u
∂ y

+ κ N
]

y=0
, Mw = (a/ν)−1

(
∂ N
∂ y

)
y=0

, qw =−k
(

∂ T
∂ y

)
y=0

.

Using (2.7), we obtain

(2.15) C f Re1/2
x = [1+(1−n)K] f ′′(0), Mx Rex = h′(0), Nux Re−1/2

x =−θ ′(0).
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3. Results and discussion

The nonlinear ordinary differential equations (2.8)-(2.10) subject to the boundary conditions
(2.11) were solved numerically using the Runge-Kutta-Fehlberg method with shooting tech-
nique [34, 35, 36, 10] for several values of the magnetic parameter M, material parameter K,
Prandtl number Pr, convective parameter c and buoyancy parameter λ , in which n is taken
to be 0.5 (weak concentration). The descriptions of this method can be found in [14, 5].

The variations of the skin friction coefficient C f Re1/2
x , local couple stress Mx Rex and the

local Nusselt number Nux Re−1/2
x with λ for different values of M when the other parameters

are fixed to unity, are presented in Figures 2–4, respectively. In these figures, the solid lines
denote the upper branch solutions, while the dash lines denote the lower branch solutions.
It can be seen that dual solutions exist for the opposing flow (λ < 0), while for the assisting
flow (λ > 0), the solution is unique. For the upper branch solution, the values of C f Re1/2

x
increases as M and λ increase, since there is a favourable pressure gradient due to the
assisting bouyant flow which increases the surface shear stress and the heat transfer rate at
the surface. The same behaviour is observed for Nux Re−1/2

x (for the upper branch), where
the heat transfer rate at the surface increases as M and λ increase. On the other hand, for
the lower branch solution, the local Nusselt number is seen to decrease as M increases (due
to the fact that opposing buoyant flow induces an adverse pressure gradient, which slow
down the fluid motion), while the skin friction coefficient decreases in the begining and
then increases slightly, until no result could be found at certain values of λ . It should be
mentioned that the computations have been performed until the point where the solution
does not converge, and the computations were terminated at this location. For each selected
values of M, there is indeed a critical value λc of λ for which the solution exists. Based on
our computations, we found that λc = −3.7644626, −4.6517649 and −5.53465 for M =
0.5, 1.0 and 1.5, respectively. Therefore, the effect of the magnetic field is to widen the
range of λ for which the solutions exist.

It is worth mentioning that the existence of dual solutions in the mixed convection stag-
nation flow problems was also reported by Ramachandran et al. [51], in the MHD boundary
layer flow by Ishak et al. [37] and in the case of stagnation-point flow of a micropolar fluid
by Yacob and Ishak [58] and by Lok et al. [40]. Between the two solutions as presented
in Figures 2–4, we expect that the first solution (upper branch solution) is stable and most
physically relevance, while the second solution (lower branch solution) is not, since the first
solution is the only solution for the assisting flow case, and the second solution exists only
for certain range of the buoyancy parameter. However, they are still of interest as the differ-
ential equations are concerned, though such solutions are deprived of physical significant.
Similar results may arise in other situations where the corresponding solutions could have
more realistic meaning (Ridha [52]). For the similar problems, using a stability analysis,
Weidman et al. [56], Merkin [47] and Postelnicu and Pop [50] have shown that the upper
branch solutions are stable, while the lower branch solutions are not. Spangenberg et al.
[53] have reported in their experimental work on turbulent boundary layer under strong ad-
verse pressure gradient that dual solutions were obtained as a function of how the pressure
gradient was realized. Another example of non-unique flow is reported by Aidun et al. [2]
where they have observed experimentally that the primary steady state flow in a through-
flow lid-driven cavity was non-unique and only one of the multiple steady-state patterns can
stabilize in the cavity.
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Figure 5 shows the variation of the local Nusselt number Nux Re−1/2
x with the convective

parameter c for some values of M when K = 1, n = 0.5, Pr = 0.72 and λ = −3.5. The
local Nusselt number decreases as the convective parameter increases. Therefore, the effect
of the convective parameter c is to decrease the heat transfer rate at the surface. Figures
6-11 respectively present the velocity, temperature and angular velocity distributions for the
selected values of magnetic parameter and material parameter for the opposing flow. It is
clear that the upper branch solution displays a thinner boundary layer thickness compared
to the lower branch solution. These figures also show that the far field boundary condi-
tions (2.11) are satisfied asymptotically, hence support the validity of the numerical results
obtained, besides supporting the existence of the dual solutions presented in Figures 2-4.
Figures 8 and 11 show the micropolar (angular) velocity profiles for the selected values of
M and K, respectively. It is observed that the effects of microrotation are more dominant
near the surface for the upper branch solution than the lower branch solution.

Figures 12 and 13 present the upper branch and the lower branch streamlines for c = 1,
Pr = 1 and λ = −4, respectively. It can be seen that the streamlines for the upper branch
solution are quite simple and symmetric about the horizontal axis, due to the equal force of
buoyant flow (assisting and opposing flow) and the pattern is almost similar to the normal
stagnation point flow. On the other hand, the streamlines for the lower branch solutions are
more complicated with a vertical line seperate the flows into two regions.

4. Conclusions

In this paper, the steady MHD mixed convection stagnation point flow over an impermeable
vertical plate in an incompressible micropolar fluid with a convective surface boundary
condition was studied. The governing partial differential equaitons were first transformed
into a system of ordinary differential equaitons using a similarity transformation, before
being solved numerically by the Runge-Kutta-Fehlberg method with shooting technique.
The effects of magnetic parameter M, material parameter K, Prandtl number Pr, convective
parameter c and buoyancy parameter λ on the flow field and heat transfer characteristics
were analyzed and disscussed. It was found that the magnetic field increases the skin friction
coefficient, the local couple stress and the heat transfer rate at the surface. Dual solutions
were found to exist for the opposing flow, while for the assisting flow, the solution is unique.
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Figure 1. Physical model and coordinate system
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Figure 2. Variation of the skin friction coefficient C f Re1/2
x with λ for some values of M

when c = 1, K = 1, n = 0.5 andPr = 1
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Figure 3. Variation of the local couple stress Mx Re1/2
x with λ for some values of M when

c = 1, K = 1, n = 0.5 andPr = 1

−6 −5 −4 −3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

N
u

x  
R

e
x −

1
/2

M = 0.5, 1.0, 1.5

upper branch
lower branch

Figure 4. Variation of the local Nusselt number NuxRe−1/2
x with λ for some values of M

when c = 1, K = 1, n = 0.5 andPr = 1
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Figure 5. Variation of the local Nusselt number NuxRe−1/2
x with c for some values of M

when K = 1, n = 0.5, Pr = 0.72 and λ =−3.5

Figure 6. Velocity profiles f ′(η) for some values of M when c = 1, K = 1, n = 0.5, Pr =
1 and λ =−3.5
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Figure 7. Temperature profiles θ(η) for some values of M when c= 1, K = 1, n= 0.5, Pr=
1 and λ =−3.5

Figure 8. Angular velocity profiles h(η) for some values M when c = 1, K = 1, n =
0.5, Pr = 1 and λ =−3.5
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Figure 9. Velocity profiles f ′(η) for some values of K when c = 1, M = 1, n = 0.5, Pr =
1 and λ =−4.3

Figure 10. Temperature profiles θ(η) for some values of K when c = 1, M = 1, n =
0.5, Pr = 1 and λ =−4.3
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Figure 11. Angular velocity profiles h(η) for some values K when c = 1, M = 1, n =
0.5, Pr = 1 and λ =−4.3

Figure 12. Upper branch streamline for two dimensional flow when c = 1, K = 1, M =
1, n = 0.5, Pr = 1 and λ =−4
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Figure 13. Lower branch streamline for two dimensional flow when c = 1, K = 1, M =

1, n = 0.5, Pr = 1 and λ =−4


