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1. Introduction and main results

Let C denote the complex plane and f (z) be a non-constant meromorphic function in C.
It is assumed that the reader is familiar with the standard notion used in Nevanlinna value
distribution theory such as T (r, f ), m(r, f ), N(r, f ) (see, e.g. [8, 10, 22, 23]), and S(r, f )
denotes any quantity that satisfies the condition S(r, f ) = o(T (r, f )) as r→ ∞ outside of a
possible exceptional set of finite linear measure. A meromorphic function a(z) is called a
small function of f (z), provided that T (r,a) = S(r, f ).

Let f (z) and g(z) be two non-constant meromorphic functions, and let a(z) be a small
function of f (z) and g(z) (Specially, a(z) may be a constant or ∞). We say that f and g share
the a CM provided that f − a and g− a have the same zeros with the same multiplicities.
Similarly, we say that f and g share a IM provided that f − a and g− a have the same
zeros ignoring multiplicities. Let b and c be constants or ∞. If f = b whenever g = c, we
write g = c⇒ f = b. If g = c⇒ f = b and f = b⇒ g = c, we write f = b⇔ g = c.
We denote by Nk)(r,1/( f − a)) the counting function for zeros of f − a with multiplicity
≤ k, and by Nk)(r,1/( f − a)) the corresponding one for which multiplicity is not counted.
Let N(k(r,1/( f −a)) be the counting function for zeros of f −a with multiplicity ≥ k, and
N(k(r,1/( f −a)) be the corresponding one for which multiplicity is not counted. Moreover,
we set Nk(r,1/( f − a)) = N(r,1/( f − a)) + N(2(r,1/( f − a)) + N(3(r,1/( f − a)) + · · ·+
N(k(r,1/( f −a)). We say that a finite value z0 is a fixed point of f (z) if f (z0) = z0. If f − z
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and g− z assume the same zeros with the same multiplicities, then we say f and g share z
CM.

The key result of difference counterparts of Nevanlinna Theory is the difference analogue
of the lemma on the logarithmic derivative, which was obtained by Halburd-Korhonen [5]
and Chiang-Feng [3], independently. Related to q-difference equations, Barnett et al. [1]
got the corresponding logarithmic derivative lemma as follows.

Theorem 1.1. Let f (z) be a non-constant zero-order meromorphic function, and q∈C\{0}.
Then

m(r, f (qz)/ f (z)) = S(r, f ).

They also gave an example to show the sharpness of the condition of zero-order.
Recently, Zhang and Korhonen used Theorem 1.1 to investigate the relationship between

T (r, f (qz)) and T (r, f (z)), as applications, corresponding to uniqueness theorems of mero-
morphic functions sharing values (see, e.g. [2, 4, 9, 11, 12, 13, 14, 16, 17]), they studied
value distribution and uniqueness of some q-difference functions. Specially, they got

Theorem 1.2. Let f (z) and g(z) be two transcendental meromorphic (resp. entire) functions
of zero-order. Suppose that q is a nonzero complex constant and n is an integer satisfying
n ≥ 8 (resp. n ≥ 4). If f n(z) f (qz) and gn(z)g(qz) share 1, ∞ CM, then f (z) ≡ tg(z) for
tn+1 = 1.

Theorem 1.3. Let f (z) and g(z) be two transcendental entire functions of zero-order. Sup-
pose that q is a nonzero complex constant and n ≥ 6 is an integer. If f n(z)( f (z)−1) f (qz)
and gn(z)(g(z)−1)g(qz) share 1 CM, then f (z)≡ g(z).

We improve Theorem 1.2 as follows.

Theorem 1.4. Let f (z) and g(z) be two non-constant meromorphic functions of zero-order.
Suppose that q is a nonzero complex constant and n ≥ 14 is an integer. If f n(z) f (qz) and
gn(z)g(qz) share 1 CM, f and g have at least one common pole, then f (z)≡ tg(z), where t
is a constant such that tn+1 = 1.

Example 1.1. Let t be a nonzero constant. f (z) = p(z)/r(z) and g(z) = t ·r(z)/p(z) are two
meromorphic functions of zero-order, where p(z) and r(z) are nonconstant entire functions
(Specially, f (z) and g(z) can be rational functions). Then f n(z) f (qz) and gn(z)g(qz) share
1 CM, but f 6= tg.

This example shows that the condition “ f and g have at least one common pole” is sharp,
without such a condition, one can get f g ≡ t besides f ≡ tg, in which t is a constant such
that tn+1 = 1.

Considering fixed points, we obtain a similar theorem as above.

Theorem 1.5. Let f (z) and g(z) be two transcendental meromorphic functions of zero-
order. Suppose that q is a nonzero complex constant and n≥ 14 is an integer. If f n(z) f (qz)
and gn(z)g(qz) share z CM, then f (z)≡ tg(z) for tn+1 = 1.

Remark 1.1. In Theorem 1.5, it seems that if z is replaced by a polynomial p(z) with
deg(p(z)) = p≥ 1, and let n≥max{2p+2, 14}, the conclusion still holds.

It’s natural to ask whether Theorem 1.3 holds if f and g are meromorphic functions. The
answer is negative. We give the following:
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Example 1.2. Let q be a constant(|q| 6= 0,1), n be a positive integer. Suppose that

f (z) =
K(z)n+1K(qz)−K(z)

K(z)n+1K(qz)−1
, g(z) =

K(z)nK(qz)−1
K(z)n+1K(qz)−1

,

where K(z) is a nonconstant entire function of zero-order (Specially, K(z) can be a noncon-
stant polynomial).

We deduce that f n(z)( f (z)−1) f (qz) and gn(z)(g(z)−1)g(qz) share 1 CM and f (z) and
g(z) share ∞ CM, moreover, f n(z)( f (z)−1) f (qz)≡ gn(z)(g(z)−1)g(qz), but f (z) 6≡ g(z).
This example shows that one cannot get f (z)≡ g(z) from f n(z)( f (z)−1) f (qz)≡ gn(z)(g(z)
−1)g(qz). Thus Theorem 1.3 does not hold if f (z) and g(z) are non-entire meromorphic
functions, even if f (z) and g(z) share ∞ CM.

In fact, we prove:

Theorem 1.6. Let f (z) and g(z) be two non-constant meromorphic functions of zero-order.
Suppose that q is a constant(|q| 6= 0,1) and n≥ 15 is an integer. If f n(z)( f (z)−1) f (qz) and
gn(z)(g(z)− 1)g(qz) share 1 CM, f (z) and g(z) share ∞ IM, then f n(z)( f (z)− 1) f (qz) ≡
gn(z)(g(z)−1)g(qz).

In 1959, Hayman [7] proved:

Theorem 1.7. Let f be a transcendental meromorphic function and a(6= 0), b be finite com-
plex constants. Then f n +a f ′−b has infinitely many zeros for n≥ 5. If f is transcendental
entire, this holds for n≥ 3, resp. n≥ 2, if b = 0.

We give an analogous result in q-difference as follows.

Theorem 1.8. Let f be a transcendental meromorphic function of zero-order, and a(z)(6≡
0,∞), b(z)(6≡ ∞) be small functions of f (z). Then f n(z) + a(z) f (qz)− b(z) has infinitely
many zeros for n≥ 6. If f (z) is transcendental entire, this holds for n≥ 2.

Example 1.3. Let f (z) = ez, n = q, a(z) = a be a nonzero constant. Then f n(z)+a f (qz) =
(a+1)enz has no zero. This example shows that the condition “f is of zero-order” in Theo-
rem 1.8 can not be removed.

Difference of Nevanlinna theory has been widely used to consider growth, oscillation,
and existence of entire or meromorphic solutions of linear and nonlinear difference equa-
tions in complex domains (see e.g. [3, 6, 15, 18, 19, 21, 26]). Recently, Yang and Laine
[21] studied the existence and uniqueness of finite order entire solutions of the nonlinear
differential equations and differential difference equations. Specially, they got

Theorem 1.9. Let n≥ 4 be an integer, M(z, f ) be a linear differential-difference polynomial
of f , not vanishing identically, and h be a meromorphic function of finite order. Then the
differential difference equation

f n +M(z, f ) = h,

possesses at most one admissible transcendental entire solution of finite order such that all
coefficients of M(z, f ) are small functions of f . If such a solution f exists, then f is of the
same order as h.

By Theorem 1.1, using the similar proof of Theorem 1.9, we obtain a similar theorem.
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Theorem 1.10. Let n≥ 4 be an integer, M(z, f )(= a(z) f (qz)+b(z)) be a linear q-difference
polynomial of f , not vanishing identically, and h be a meromorphic function of zero order.
Then the q-difference equation

(1.1) f n +M(z, f ) = h,

possesses at most one admissible transcendental entire solution of zero-order such that a(z)
and b(z) are small functions of f .

As an application of Theorem 1.10, we give a uniqueness theorem related to Theorem
1.8.

Theorem 1.11. Let f (z) and g(z) be two transcendental entire functions of zero-order,
n ≥ 7 be an integer, q be a nonzero constant, and a(z)(6≡ 0,∞), b(z)(6≡ 0,∞) be small
functions with respect to both f (z) and g(z). a(z) and b(z) have finitely many poles. If
f n(z)+a(z) f (qz) and gn(z)+a(z)g(qz) share b(z) CM, then f (z)≡ g(z).

2. Preliminary lemmas

Lemma 2.1. [25] Let f (z) be a non-constant zero-order meromorphic function, and q ∈
C\{0}. Then

T (r, f (qz)) = (1+o(1))T (r, f (z))

on a set of lower logarithmic density 1.

Remark 2.1. Zhang and Korhonen gave an example to show that the zero-order growth
restriction in Lemma 2.1 cannot be, in general, generalize to include any strictly positive
order.

Lemma 2.2. [20] Let f (z) and g(z) be two non-constant meromorphic functions and n,k be
two positive integers, a be a finite nonzero constant. If f and g share 1 CM, then one of the
following cases holds:

(i) T (r, f ) ≤ N2(r,1/ f )+ N2(r,1/g)+ N2(r, f )+ N2(r,g)+ S(r, f )+ S(r,g), the same
inequality holding for T (r,g);

(ii) f g≡ 1;
(iii) f ≡ g.

Lemma 2.3. [24] Let f j ( j = 1,2,3) be meromorphic functions that satisfy

3

∑
j=1

f j = 1.(2.1)

Assume that f1 is not a constant, and

3

∑
j=1

N2(r,1/ f j)+
3

∑
j=1

N(r, f j)≤ (λ +o(1))T (r), r ∈ I,(2.2)

where λ < 1, T (r) = max{T (r, f j), j = 1,2,3}, I is a set of r ∈ (0,∞) with infinite linear
measure. Then

f2 = 1 or f3 = 1.(2.3)
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3. Proof of Theorem 1.4

Let F = f n(z) f (qz), G = gn(z)g(qz). Then F and G share 1 CM. By Lemma 2.2 we have

(i) T (r,F)≤ N2(r,1/F)+N2(r,1/G)+N2(r,F)+N2(r,G)+S(r,F)+S(r,G);
(ii) FG≡ 1;

(iii) F ≡ G.

By Lemma 2.1 we obtain

nT (r, f (z)) = T (r, f n(z)) = T (r,F/ f (qz))≤ T (r,F)+T (r, f (z))+S(r, f ),

namely

(n−1)T (r, f (z))≤ T (r,F)+S(r, f ).(3.1)

For Case (i), we get

T (r,F(z))≤ 2N(r,1/ f (z))+N(r,1/ f (qz))+2N(r,1/g(z))+N(r,1/g(qz))+2N(r, f (z))

+N(r, f (qz))+2N(r,g(z))+N(r,g(qz))+S(r, f )+S(r,g)

≤ 6(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).

This together with (3.1) implies

(n−1)T (r, f (z))≤ 6(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).(3.2)

Similarly we have

(n−1)T (r,g(z))≤ 6(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).(3.3)

Combining (3.2) and (3.3) gives

n(T (r, f (z))+T (r,g(z)))≤ 13(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g),

which contradicts the assumption. Case (i) has been ruled out.
For Case (ii), we have FG≡ 1, namely

f (z)n f (qz)g(z)ng(qz)≡ 1.(3.4)

Let h = f (z)g(z). Then (3.4) implies

hn(z)h(qz)≡ 1.(3.5)

If h(z) is not a constant, then from (3.5) we deduce

nT (r,h(z)) = T (r,hn(z)) = T (r,1/h(qz)) = T (r,h(z))+S(r,h),(3.6)

which is a contradiction. Thus h(z)≡ t, where t is a nonzero constant. We have f (z)g(z)≡ t.
Since f (z) and g(z) have at least one common pole, we immediately get a contradiction.
Thus f (z) 6= ∞ and g(z) 6= ∞. Moreover, we obtain f (z) 6= 0 and g(z) 6= 0. Thus f = eα(z),
where α(z) is a non-constant entire function. Since f (z) is of zero-order, we get that α(z)
is a constant, a contradiction. Case (ii) has been ruled out.

Therefore, F ≡ G, namely, f (z)n f (qz)≡ g(z)ng(qz). Let H(z) = f (z)/g(z), similarly as
the proof in Case 2, we get H(z)≡ t, thus f ≡ tg, where t is a constant such that tn+1 = 1.
This completes the proof of Theorem 1.4.
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4. Proof of Theorem 1.5

Let F = f n(z) f (qz)/z, G = gn(z)g(qz)/z. Then F and G share 1 CM. Note that f and g
are transcendental and z is a small function of f and g. Similar to the proof in Theorem
1.4, we obtain f (z)n f (qz)g(z)ng(qz)≡ z2 or f (z)n f (qz)≡ g(z)ng(qz). The last one implies
f ≡ tg, where t is a constant such that tn+1 = 1. Now we only need to consider the case
f (z)n f (qz)g(z)ng(qz)≡ z2. Let h(z) = f (z)g(z) and we get

hn(z)h(qz)≡ z2.(4.1)

Obviously h(z) can not be a constant, but note that

T (r,h(z))≥ logr +O(1)(4.2)

and we still get a contradiction from the following

nT (r,h(z)) = T (r,hn(z)) = T (r,z2/h(qz))

≤ 2logr +T (r,h(z))+O(1)≤ 3T (r,h(z))+S(r,h).

This proves Theorem 1.5.

5. Proof of Theorem 1.6

Let F = f n(z)( f (z)− 1) f (qz), G = gn(z)(g(z)− 1)g(qz). Then F and G share 1 CM. By
Lemma 2.1 we obtain

(n+1)T (r, f (z)) = T (r, f n(z)( f (z)−1))+S(r, f ) = T (r,F/ f (qz))+S(r, f )

≤ T (r,F)+T (r, f (qz))+S(r, f )≤ T (r,F)+T (r, f (z))+S(r, f ),

namely

nT (r, f (z))≤ T (r,F)+S(r, f ).(5.1)

By Lemma 2.2, similar to the proof of Theorem 1.4, we obtain three cases.
Case 1. We get

T (r,F(z))≤ 2N(r,1/ f (z))+N(r,1/( f (z)−1))+N(r,1/ f (qz))+2N(r,1/g(z))

+N(r,1/(g(z)−1))+N(r,1/g(qz))+2N(r, f (z))+N(r, f (qz))

+2N(r,g(z))+N(r,g(qz))+S(r, f )+S(r,g)

≤ 7(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).

This together with (5.1) implies

nT (r, f (z))≤ 7(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).(5.2)

Similarly we have

nT (r,g(z))≤ 7(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g).(5.3)

Combining (5.2) and (5.3) gives

n(T (r, f (z))+T (r,g(z)))≤ 14(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g),

which contradicts the assumption n≥ 15. Case 1 has been ruled out.
Case 2. We have FG≡ 1, namely

f n(z)( f (z)−1) f (qz)gn(z)(g(z)−1)g(qz)≡ 1.(5.4)
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Rewrite (5.4) as

[hn+1(z)−hn(z)( f (z)+g(z))+hn(z)]h(qz)≡ 1,(5.5)

where h = f (z)g(z). Next we distinguish into two subcases below.
Subcase 2.1. h(z) is a constant. Note that f (z) and g(z) share ∞ IM, then f (z) 6= ∞ and
g(z) 6= ∞. Moreover, we obtain f (z) 6= 0 and g(z) 6= 0. Thus f = eβ (z), where β (z) is a
non-constant entire function. Since f (z) is of zero-order, we get that β (z) is a constant, a
contradiction. Subcase 2.1 has been ruled out.
Subcase 2.2. h(z) is not a constant. Suppose that h(z0) = 0, then f (z0)g(z0) = 0, since f (z)
and g(z) share ∞ IM, we obtain f (z0) 6= ∞ and g(z0) 6= ∞. Thus from (5.5) we deduce that
h(qz0) = ∞. This implies that

h(z) = 0⇒ h(qz) = ∞.(5.6)

Suppose that h(qz1) = 0, we obtain h(z1) = ∞, or else, if h(z1) 6= ∞, we deduce that f (z1) 6=
∞ and g(z1) 6= ∞. Then we get a contradiction with (5.5). Thus

h(qz) = 0⇒ h(z) = ∞.(5.7)

Suppose that h(z2) = ∞, then we get f (z2) = ∞ and g(z2) = ∞. Suppose that z2 is a pole of
f (z) of multiplicity s, and is a pole of g(z) of multiplicity t, then z2 is a pole of hn+1(z) of
multiplicity (n+1)(s+ t), a pole of hn(z)( f (z)+g(z)) of multiplicity < (n+1)(s+ t), and
a pole of hn(z) of multiplicity n(s+ t)(< (n+1)(s+ t)). Thus from (5.5) we get h(qz2) = 0.
So we deduce that

h(z) = ∞⇒ h(qz) = 0.(5.8)

Similarly we obtain

h(qz) = ∞⇒ h(z) = 0 or ( f −1)(g−1) = 0.(5.9)

Combining (5.6), (5.7) and (5.8) yields

h(z) = 0⇒ h(qz) = ∞.(5.10)

and

h(qz) = 0⇔ h(z) = ∞(5.11)

If |q|< 1, from (5.10) and (5.11) we deduce that

h(z) = 0⇒ h(qz) = ∞⇒ h(q2z) = 0⇒ ·· · ⇒ h(q2kz) = 0 · · · ,(5.12)

where k is a positive integer. For sufficiently large k, we derive

h(0) = 0,(5.13)

again from (5.10) we get h(0) = ∞, a contradiction.
If |q|> 1 and if

h(qz) = ∞⇒ h(z) = 0,(5.14)

From (5.11) and (5.14) we deduce that

h(qz) = 0⇒ h(z) = ∞⇒ h(z/q) = 0⇒ ··· ⇒ h(z/q2k−1) = 0 · · · ,(5.15)
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where k is a positive integer. For sufficiently large k, with similar discussion as above, we
derive a contradiction again.
If

h(qz) = ∞⇒ h(z) 6= 0,(5.16)

from (5.12) we deduce that

h(qz) = ∞⇒ h(q3z) = ∞⇒ h(q2z) 6= 0,(5.17)

which contradicts (5.12). Case 2 has been ruled out. Thus we obtain F ≡ G, namely

f n(z)( f (z)−1) f (qz)≡ gn(z)(g(z)−1)g(qz).(5.18)

This completes the proof of Theorem 1.6.

6. Proof of Theorem 1.8

Case 1. f (z) is meromorphic. Let

φ = (b(z)−a(z) f (qz))/ f n(z).(6.1)

We only need to prove φ −1 has infinitely many zeros. By Lemma 2.1, we obtain

T (r, f n(z)) = T (r,φ/(b(z)−a(z) f (qz)))+O(1)

≤ T (r,φ)+T (r, f (qz))+S(r, f )≤ T (r,φ)+T (r, f (z))+S(r, f ),

which implies that

T (r,φ)≥ (n−1)T (r, f )+S(r, f ).(6.2)

Furthermore

N(r,φ)≤ N(r, f (qz))+N(r,1/ f )+S(r, f ).(6.3)

N(r,1/φ)≤ N(r,1/(b(z)−a(z) f (qz)))+N(r, f ).(6.4)

By the second fundamental theorem, we deduce

T (r,φ)≤ N(r,1/φ)+N(r,φ)+N(r,1/(φ −1))+S(r,φ)

≤ N(r,1/(b(z)−a(z) f (qz)))+N(r, f )+N(r, f (qz))

+N(r,1/ f )+N(r,1/(φ −1))+S(r, f )

≤ 4T (r, f )+N(r,1/(φ −1))+S(r, f ).

(6.5)

In view of n≥ 6, by (6.2) and (6.5) we obtain the conclusion.
Case 2. f (z) is entire. Suppose, to the contrary, that f n(z)− a(z) f (qz)− b(z) has only
finitely many zeros, then

f n(z)+a(z) f (qz)−b(z) = p(z)/K(z),(6.6)

where p(z) is a polynomial and K(z) is an entire function such that K(z) and p(z) have no
common factors and T (r,(K(z)))≤ T (r,a(z))+T (r,b(z)) = S(r, f ). Thus we have

nT (r, f (z)) = T (r, f n(z)) = T (r, p(z)/K(z)− (a(z) f (qz)−b(z)))≤ T (r, f (z))+S(r, f ).

Note that n≥ 2, we derive a contradiction. This completes the proof of Theorem 1.8.
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7. Proof of Theorem 1.11

Under the assumptions we have

f n(z)+a(z) f (qz)−b(z)
gn(z)+a(z)g(qz)−b(z)

= c(z).(7.1)

If c(z) is not a constant, then we have T (r,c) = O(T (r, f )+ T (r,g)). Thus σ(c) ≤ σ( f +
g)≤max{σ( f ),σ(g)}= 0. Therefore, c(z) must have zeros or poles.

The zeros of c(z) come from zeros of f n(z) + a(z) f (qz)− b(z) and poles of gn(z) +
a(z)g(qz)− b(z). Note that f n(z) + a(z) f (qz) and gn(z) + a(z)g(qz) share b(z) CM, the
zeros of c(z) can only come from the poles of gn(z)+ a(z)g(qz)−b(z), namely they come
from the poles of a(z) and b(z). Since a(z) and b(z) have finitely many poles, we get that
c(z) has finitely many zeros. Similarly, c(z) has finitely many poles, and thus is a rational
function. Note that f (z) and g(z) are transcendental, then c(z) is a small function with
respect to both f (z) and g(z). Rewrite (7.1) as

f n(z)− c(z)gn(z)+a(z) f (qz)− c(z)a(z)g(qz) = (1− c(z))b(z).(7.2)

If c(z) 6≡ 1, we have

f n(z)
(1− c(z))b(z)

+
c(z)gn(z)

(c(z)−1)b(z)
+

a(z)( f (qz)− c(z)g(qz))
(1− c(z))b(z)

= 1.(7.3)

Let f1(z) = f n(z)
(1−c(z))b(z) , f2(z) = c(z)gn(z)

(c(z)−1)b(z) , f3(z) = a(z)( f (qz)−c(z)g(qz))
(1−c(z))b(z) . Then

f1(z)+ f2(z)+ f3(z) = 1.(7.4)

Obviously f1(z) is not a constant, or else we get f n(z) = d(1− c(z))b(z), where d is a
constant. Thus

nT (r, f (z)) = T (r, f n(z))≤ T (r,c(z))+T (r,b(z))+O(1) = S(r, f (z)),(7.5)

which is a contradiction. Without loss of generality, suppose that T (r, f (z)) ≤ T (r,g(z)),
r ∈ I, in view of n≥ 7, by Lemma 2.1 we get

T (r) = (1+o(1))T (r,gn(z)), r ∈ I,(7.6)

where T (r) and I are defined as in Lemma 2.3. Then we deduce that
3

∑
j=1

N2(r,1/ f j(z))+
3

∑
j=1

N(r, f j(z))

≤ 2N(r,1/ f (z))+2N(r,1/g(z))+N(r,1/( f (qz)+g(qz)))+S(r, f )+S(r,g)

≤ 3(T (r, f (z))+T (r,g(z)))+S(r, f )+S(r,g)≤ 6(1+o(1))T (r,g(z)) < T (r).

By Lemma 2.3 we obtain f2 ≡ 1 or f3 ≡ 1.
If f2 ≡ 1, it is easy to get a contradiction. If f3 ≡ 1, namely

a(z)( f (qz)− c(z)g(qz))
(1− c(z))b(z)

≡ 1.(7.7)

Substituting (7.7) into (7.3), we derive f n(z)≡ c(z)gn(z). Thus we have

T
(

r,
g
f

)
= S(r, f ),(7.8)
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From (7.7) we have

f (qz) =
(1− c(z))b(z)/a(z)
1− c(z)g(qz)/ f (qz)

.(7.9)

Note that c(z) 6≡ 1 and a(z), b(z) are non-vanishing small functions of f (z), by Lemma
2.12.1, we get from (7.8) and (7.9) that

T (r, f (qz)) = (1+o(1))T (r, f (z)) = S(r, f (z)),(7.10)

which is a contradiction. Thus c(z)≡ 1. From (7.2) we get

f n(z)+a(z) f (qz) = gn(z)+a(z)g(qz).(7.11)

By Theorem 1.10 we obtain f (z)≡ g(z). This completes the proof of Theorem 1.11.
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