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Abstract. The noncommuting graph of a finite nonabelian group G, denoted ∇(G), is de-
fined as follows: its vertices are the non-central elements of G, and two vertices are adjacent
when they do not commute. Problem 16.1 in the Kourovka Notebook contains the fol-
lowing conjecture: If M is a finite nonabelian simple group and G is a group such that
∇(G) ∼= ∇(M), then G ∼= M. The validity of this conjecture is still unknown for most of
finite simple groups with connected prime graphs even though it is known to hold for all
finite simple groups with disconnected prime graphs and only a few of finite simple groups
with connected prime graphs, for example, A10 and L4(9). In the present paper, it is proved
that the finite simple group of Lie type Dn(3), where n ≥ 5 is an odd integer or n = p + 1
for a prime p > 3, is quasirecognizable by its prime graph. In particular, AAM’s conjecture
is true for it. Thus it is an example of an infinite series of finite simple groups recognizable
by their noncommuting graphs, whose prime graphs are connected for some n.
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1. Introduction

One of the well-known graphs which has deserved a lot of attention is the prime graph or
Gruenberg-Kegel graph Γ(G) of a finite group G. In this graph, the vertices are the prime
numbers dividing the order of the group G and two different vertices p and q are connected
when G possesses an element of order pq (see [18]). Another graph associated with a finite
nonabelian group is called the noncommuting graph. Actually, the noncommuting graph of
a finite nonabelian group G, denoted ∇(G), is defined as follows: its vertices are the non-
central elements of G, and two vertices are adjacent when they do not commute (see [2]).

For a graph X , we denote the sets of its vertices and edges by V (X) and E(X), respec-
tively. Two graphs X and Y are said to be isomorphic if there exists a bijective map φ :
V (X)→V (Y ) such that x and y are adjacent in X if and only if φ(x) and φ(y) are adjacent
in Y . If two graphs X and Y are isomorphic, we denote it by X ∼= Y . It is easy to see that if
X ∼= Y , then |V (X)|= |V (Y )| and |E(X)|= |E(Y )|.
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In 2006, Abdollahi, Akbari and Maimani posed the following conjecture in [2], which is
also compiled as Problem 16.1 in the Kourovka Notebook (see [10]).

AAM’s Conjecture: If M is a finite nonabelian simple group and G is a group such that
∇(G)∼= ∇(M), then G∼= M.

In fact, AAM’s conjecture is true for all finite simple groups with disconnected prime
graphs, A10, L4(q)(q≤ 17), SL(2,q) and PGL(2,q), where q is a prime power (see [1–3, 6,
9, 17, 20–26]). However, it is still unknown whether AAM’s conjecture is true for most of
the finite (almost) simple groups with connected prime graphs.

The spectrum of a finite group G, which is denoted by πe(G), is the set of its element
orders. A finite nonabelian simple group S is called quasirecognizable by its prime graph
(resp. by spectrum) if every finite group G with Γ(G) = Γ(S) (resp. πe(G) = πe(S)) has
a unique nonabelian composition factor isomorphic to S. We denote by k(Γ(G)) (resp.
h(πe(G))) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H)
(resp. πe(G) = πe(H)). Given a natural number r, a finite group G is called r-recognizable
by its prime graph (resp. by spectrum) if k(Γ(G)) = r (resp. h(πe(G)) = r) and irrec-
ognizable if k(Γ(G)) (resp. h(πe(G))) is infinite. Usually a 1-recognizable group by its
prime graph (resp. by spectrum) is called a recognizable group by its prime graph (resp. by
spectrum) (see [4, 12]).

Let M be a finite nonabelian simple group. If G is a group such that ∇(G)∼= ∇(M), then
Γ(G) ∼= Γ(M) by Corollary 2.2. Thus there is a close relation between AAM’s conjecture
and recognition by its prime graph for a finite simple group.

In the present paper, we focus our attention on the finite simple group Dn(3), where
n ≥ 5 is an odd integer, and prove that it is quasirecognizable by its prime graph. As a
consequence of this result and another known one, we have that AAM’s conjecture is also
true for Dn(3), where n ≥ 5 is an odd integer or n = p + 1 for a prime p > 3. Thus it is an
example of an infinite series of finite simple groups recognizable by their noncommuting
graphs, whose prime graphs are connected for some n. To prove these results, we use the
classification of finite simple groups and some special properties of their prime graphs.

2. Preliminaries and lemmas

In the sequel, we denote by π(n) the set of prime divisors of a natural number n. Let G
be a finite group. For short, we define π(G) := π(|G|). Moreover, we denote by πi(G)
(i = 1,2, . . . ,s(G)) the ith connected component of Γ(G). When |G| is even, we always
assume that 2 ∈ π1(G). Let q be a prime power and p be an odd prime. By [11,18], we have
the following statements about the finite simple group Dn(q).

(1) When n = p≥ 5 and q = 2,3,5, Γ(Dp(q)) has two connected components: π1(Dp

(q)) = π(q∏
p−1
i=1 (q2i−1));π2(Dp(q)) = π((qp−1)/(q−1)).

(2) When n = p+1 and q = 2,3, Γ(Dp+1(q)) has two connected components: π1(Dp+1

(q)) = π(q(qp +1)(qp+1−1)∏
p−1
i=1 (q2i−1));π2(Dp+1(q)) = π(qp−1).

(3) Except for the above two cases, Γ(Dn(q)) has only one connected component:
π1(Dn(q)) = π(q(qn−1)∏

n−1
i=1 (q2i−1)).

Next we state some lemmas which are particularly useful in our analysis.

Lemma 2.1. [5] Let G be a finite simple group of Lie type over a finite field of order q,
where q is a prime power. Then |G|= N/d, where N and d are itemized in Table 1.
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Table 1. Orders of finite simple groups of Lie type

G N d

An(q)(n≥ 1) q
n(n+1)

2 ∏
n
i=1(q

i+1−1) (n+1,q−1)
Bn(q)(n≥ 2) qn2

∏
n
i=1(q

2i−1) (2,q−1)
Cn(q)(n≥ 3) qn2

∏
n
i=1(q

2i−1) (2,q−1)
Dn(q)(n≥ 4) qn(n−1)(qn−1)∏

n−1
i=1 (q2i−1) (4,qn−1)

G2(q) q6(q6−1)(q2−1) 1
F4(q) q24(q12−1)(q8−1)(q6−1)(q2−1) 1
E6(q) q36(q12−1)(q9−1)(q8−1)× (3,q−1)

(q6−1)(q5−1)(q2−1)
E7(q) q63(q18−1)(q14−1)(q12−1)× (2,q−1)

(q10−1)(q8−1)(q6−1)(q2−1)
E8(q) q120(q30−1)(q24−1)(q20−1)(q18−1)× 1

(q14−1)(q12−1)(q8−1)(q2−1)
2An(q)(n≥ 2) q

n(n+1)
2 ∏

n
i=1(q

i+1− (−1)i+1) (n+1,q+1)
2B2(q)(q = 22m+1) q2(q2 +1)(q−1) 1

2Dn(q)(n≥ 4) qn(n−1)(qn +1)∏
n−1
i=1 (q2i−1) (4,qn +1)

3D4(q) q12(q8 +q4 +1)(q6−1)(q2−1) 1
2G2(q)(q = 32m+1) q3(q3 +1)(q2−1) 1
2F4(q)(q = 22m+1) q12(q6 +1)(q4−1)(q3 +1)(q−1) 1

2E6(q) q36(q12−1)(q9 +1)(q8−1)× (3,q+1)
(q6−1)(q5 +1)(q2−1)

If q is a natural number, r is an odd prime and (r,q) = 1, then by e(r,q) we denote the
minimal natural number n with qn ≡ 1 (mod r). If q is odd, let e(2,q) = 1 if q≡ 1 (mod 4)
and e(2,q) = 2 if q≡−1 (mod 4).

Lemma 2.2. [27, Corollary to Zsigmondy’s theorem] Let q be a natural number greater
than 1. For every natural number m there exists a prime r with e(r,q) = m but for the cases
q = 2 and m = 1, q = 3 and m = 1, and q = 2 and m = 6.

The prime r with e(r,q) = n is said to be a Zsigmondy prime of qn−1. By Lemma 2.2
it always exists except for the cases indicated above. If q is fixed, we denote by rn(q) or rn
some Zsigmondy prime of qn−1. Obviously, qn−1 can have more than one such divisor.
Note that according to our definition every prime divisor of q−1 is a Zsigmondy prime of
q− 1 with sole exception: 2 is not a Zsigmondy prime of q− 1 if e(2,q) = 2. In the last
case 2 is a Zsigmondy prime of q2−1.

Let G be a finite group and r∈ π(G). We denote by ρ(G) (by ρ(r,G)) some independence
set in Γ(G) (containing r) with maximal number of vertices. Denote by t(G) the maximal
number of primes in π(G) pairwise non-adjacent in Γ(G). In other words, t(G) is a maximal
number of vertices in independent sets of Γ(G) and is called an independence number of the
graph. By analogy we denote by t(r,G) the maximal number of vertices in independent sets
of Γ(G) containing the prime r. We call this number an r-independence number. Obviously,
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|ρ(G)| = t(G) and |ρ(r,G)| = t(r,G) (see [15]). It is not hard to see that ρ(G) and ρ(r,G)
are generally not uniquely determined.

For natural numbers m and r, [m] denotes the integral part of m, and mr stands for the
r-part of m, which is the greatest divisor of m with π(mr)⊆ π(r). Moreover, we define

η(m) =
{

m, if m is odd;
m
2 , otherwise; and ν(m) =

 m, m≡ 0 (mod 4);
m
2 , m≡ 2 (mod 4);
2m, m≡ 1 (mod 2).

The following lemmas describe a connection between the structure of a finite simple
group and the properties of its prime graph.

Lemma 2.3. [15, Proposition 2.2] Let G∼= 2An−1(q) be a finite simple group of Lie type over
a field of characteristic p. Suppose that r and s are odd primes with r,s ∈ π(G)\{p},k =
e(r,q), l = e(s,q) and 2≤ ν(k)≤ ν(l). Then r and s are non-adjacent if and only if ν(k)+
ν(l) > n and ν(k) - ν(l).

Lemma 2.4. [16, Proposition 2.5] Suppose ε ∈ {+,−}. Let G = Dε
n(q) be a finite simple

group of Lie type over a field of characteristic p. Suppose that r and s are odd primes with
r,s ∈ π(G)\{p},k = e(r,q), l = e(s,q) and 1≤ η(k)≤ η(l). Then r and s are non-adjacent
if and only if 2η(k)+ 2η(l) > 2n− (1− ε(−1)k+l), l/k is not an odd natural number, and
for ε = +, a chain of equalities like n = l = 2η(l) = 2η(k) = 2k is not true.

Lemma 2.5. [13, Propositions 1 and 2], [14, Theorem 1] Let G be a finite group such that
t(G)≥ 3 and t(2,G)≥ 2. Then the following assertions hold.

(a) There is a finite nonabelian simple group S such that S . G := G/K . Aut (S) for
the maximal normal solvable subgroup K of G.

(b) For every independent subset ρ of primes in π(G) with |ρ| ≥ 3 at most one prime
in ρ divides the product |K| · |G/S|. In particular, t(S)≥ t(G)−1.

(c) One of the following statements holds:
(1) S∼= A7 or L2(q) for some odd prime power q and t(S) = t(2,S) = 3;
(2) For every prime r ∈ π(G) non-adjacent to 2 in Γ(G) a Sylow r-subgroup of G

is isomorphic to a Sylow r-subgroup of S. In particular, t(2,S)≥ t(2,G).

An immediate corollary arises from the above lemma as follows.

Corollary 2.1. Let (G,S,K) be as in Lemma 2.5. Then the following statements hold.
(a) S . G/K . Aut (S). In particular, π(S)⊆ π(G) and |S|

∣∣|G|.
(b) If S� A7 and S� L2(q), there always exists an independent subset ρ(2,S) of π(S)

containing a fixed independent subset ρ(2,G) of π(G). For convenience we write
ρ(2,G)⊆ ρ(2,S) to denote the above relation.

(c) t(S) ≥ t(G)− 1. Moreover, for every odd prime r ∈ π(S), we have that t(r,S) ≥
t(r,G)−1.

In this paper, we will repeatedly use [15, Tables 2–9] and their corrections in [16]. For
convenience we only display some of them here.

Lemma 2.6. [15, Tables 6 and 8], [16, Tables 6 and 8] Let q be a power of a prime p and ri
be a Zsigmondy prime of qi−1. Let G be a finite simple classical group over a field of order
q. If p 6= 2, then the 2-independence number of G is as displayed in Table 2. Moreover, the
independence number of G is as displayed in Table 3.
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Table 2. 2-independence numbers for finite simple classical groups with p 6= 2

G Conditions t(2,G) ρ(2,G)
An−1(q) n = 2,q≡ 1 (mod 4) 3 {2, p,r2}

n = 2,q 6= 3,q≡ 3 (mod 4) 3 {2, p,r1}
n≥ 3 and n2 < (q−1)2 2 {2,rn}

n≥ 3 and either n2 > (q−1)2 2 {2,rn−1}
or n2 = (q−1)2 = 2

2 < n2 = (q−1)2 3 {2,rn−1,rn}
2An−1(q) n2 > (q+1)2 2 {2,r2n−2}

n2 = 1 2 {2,r2n}
2 < n2 < (q+1)2 2 {2,rn}

n≥ 3,2 = n2 ≤ (q+1)2 2 {2,r n
2
}

2 < n2 = (q+1)2 3 {2,r2n−2,rn}
Bn(q) or Cn(q) n > 1 is odd and (q−1)2 = 2 2 {2,rn}

n is even or (q−1)2 > 2 2 {2,r2n}
Dn(q) n≡ 0 (mod 2),n≥ 4,q≡ 3 (mod 4) 2 {2,rn−1}

n≡ 0 (mod 2),n≥ 4,q≡ 1 (mod 4) 2 {2,r2n−2}
n≡ 1 (mod 2),n > 4,q≡ 3 (mod 4) 2 {2,rn}
n≡ 1 (mod 2),n > 4,q≡ 1 (mod 8) 2 {2,r2n−2}
n≡ 1 (mod 2),n > 4,q≡ 5 (mod 8) 3 {2,rn,r2n−2}

2Dn(q) n≡ 0 (mod 2),n≥ 4 2 {2,r2n}
n≡ 1 (mod 2),n≥ 4,q≡ 1 (mod 4) 2 {2,r2n}
n≡ 1 (mod 2),n > 4,q≡ 7 (mod 8) 2 {2,r2n−2}
n≡ 1 (mod 2),n > 4,q≡ 3 (mod 8) 3 {2,r2n−2,r2n}

At the end of this section we quote some lemmas on noncommuting graph of a finite
group.

Lemma 2.7. [6, Theorem 1] Let M be a finite nonabelian simple group. If G is a finite
group such that ∇(M)∼= ∇(G), then |M|= |G|.

Lemma 2.8. [7, Corollary 5] Let S be a finite nonabelian simple group. If G is a finite group
such that ∇(G)∼= ∇(S), then Γ(S) = Γ(G). In particular, the recognizability by prime graph
of S implies the recognizability by noncommuting graph of S.

By the above two lemmas, the following corollary follows immediately.

Corollary 2.2. Let M be a finite nonabelian simple group. If G is a finite group such that
∇(M)∼= ∇(G), then |M|= |G| and Γ(G) = Γ(M).

3. On AAM’s conjecture for Dn(3)

In this section we will prove that AAM’s conjecture is valid for Dn(3) for some n. First let
us state a lemma and its corollary which will be used often later.

Lemma 3.1. Let S∈ {Am−1(q),2Am−1(q),Bm(q),Cm(q),Dm(q),2Dm(q)} be a simple classi-
cal group of Lie type over a field GF(q), where q is a power of a prime p and m is a natural
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Table 3. Independence numbers for finite simple classical groups

G Conditions t(G) ρ(G)
An−1(q) n = 2,q > 3 3 {p,r1,r2}

n = 3,(q−1)3 = 3, q+1 6= 2k 4 {p,3,r2 6= 2,r3}
n = 3,(q−1)3 6= 3, q+1 6= 2k 3 {p,r2 6= 2,r3}
n = 3,(q−1)3 = 3, q+1 = 2k 3 {p,3,r3}
n = 3,(q−1)3 6= 3, q+1 = 2k 2 {p,r3}

n = 4 3 {p,rn−1,rn}
n = 5,6,q = 2 3 {5,7,31}

7≤ q≤ 11,q = 2 [ n−1
2 ] {ri|i 6= 6, [ n

2 ] < i≤ n}
n > 5 and q > 2, [ n+1

2 ] {ri|[ n
2 ] < i≤ n}

or n > 12 and q = 2
2An−1(q) n = 3,q 6= 2,(q+1)3 = 3 4 {p,3,r1 6= 2,r6}

and q−1 6= 2k

n = 3,(q+1)3 6= 3, q−1 6= 2k 3 {p,r1 6= 2,r6}
n = 3,(q+1)3 = 3, q−1 = 2k 3 {p,3,r6}
n = 3,(q+1)3 6= 3, q−1 = 2k 2 {p,r6}

n = 4,q = 2 2 {2,5}
n = 4,q > 2 3 {p,r4,r6}
n = 5,q = 2 3 {2,5,11}

n≥ 5 and (n,q) 6= (5,2) [ n+1
2 ] {r i

2
|[ n

2 ] < i≤ n, i≡ 2 (mod 4)}
∪{r2i|[ n

2 ] < i≤ n, i≡ 1 (mod 2)}
∪{ri|[ n

2 ] < i≤ n, i≡ 0 (mod 4)}
Bn(q) or n = 2,q > 2 2 {p,r4}

Cn(q)
n = 3 and q = 2 2 {5,7}
n = 4 and q = 2 3 {5,7,17}
n = 5 and q = 2 4 {7,11,17,31}
n = 6 and q = 2 5 {7,11,13,17,31}

n > 2 and [ 3n+5
4 ] {r2i|[ n+1

2 ]≤ i≤ n}
(n,q) 6= (3,2),(4,2),(5,2),(6,2) ∪{ri|[ n

2 ] < i≤ n, i≡ 1 (mod 2)}
Dn(q) n = 4 and q = 2 2 {5,7}

n = 5 and q = 2 4 {5,7,17,31}
n = 6 and q = 2 4 {7,11,17,31}

n≥ 4,n 6= 3 (mod 4) [ 3n+1
4 ] {r2i|[ n+1

2 ]≤ i < n}
(n,q) 6= (4,2),(5,2),(6,2) ∪{ri|[ n

2 ] < i≤ n, i≡ 1 (mod 2)}
n≡ 3 (mod 4) 3n+3

4 {r2i|[ n+1
2 ]≤ i < n}

∪{ri|[ n
2 ]≤ i≤ n, i≡ 1 (mod 2)}

2Dn(q) n = 4 and q = 2 3 {5,7,17}
n = 5 and q = 2 3 {7,11,17}
n = 6 and q = 2 5 {7,11,13,17,31}
n = 7 and q = 2 5 {11,13,17,31,43}

n≥ 4,n 6= 1 (mod 4), [ 3n+4
4 ] {r2i|[ n

2 ]≤ i≤ n}
(n,q) 6= (4,2),(6,2),(7,2) ∪{ri|[ n

2 ] < i < n, i≡ 1 (mod 2)}
n > 4,n≡ 1 (mod 4), [ 3n+4

4 ] {r2i|[ n
2 ] < i≤ n}

(n,q) 6= (5,2) ∪{ri|[ n
2 ] < i < n, i≡ 1 (mod 2)}
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number. Let r ∈ π(S)\{2, p} and k = e(r,q). We give some upper boundaries U and lower
boundaries L for t(r,S) in Tables 4 and 5.

Table 4. Boundaries of t(r,S) of the simple classical group of Lie type (I)

S Conditions k U L
Am−1(q) m≥ 5 and q > 2, 2≤ k ≤ [m

2 ] k k
or m≥ 12 and q = 2

2Am−1(q) m≥ 5, 2≤ ν(k)≤ [m
2 ] ν(k) ν(k)

(m,q) 6= (5,2)
Bm(q) m > 2,(m,q) 6= (3,2), η(k) < m+1

2 , 3k+3
2

3k−3
2

or Cm(q) (4,2),(5,2),(6,2) k odd
Bm(q) m > 2,(m,q) 6= (3,2), η(k) < m+1

2 , k
2 +[ k

4 ]+2 k
2 +[ k

4 ]−1
or Cm(q) (4,2),(5,2),(6,2) k even
Dm(q) m≥ 4,(m,q) 6= η(k) < m+1

2 , 3k+3
2

3k−3
2

(4,2),(5,2),(6,2) k odd
Dm(q) m≥ 4,(m,q) 6= η(k) < m+1

2 , k
2 +[ k+2

4 ]+1 k
2 +[ k+2

4 ]−2
(4,2),(5,2),(6,2) k even

2Dm(q) m≥ 4,(m,q) 6= (4,2), η(k)≤ m
2 , 3k+3

2
3k−3

2
(5,2),(6,2),(7,2) k odd

2Dm(q) m≥ 4,(m,q) 6= (4,2), η(k)≤ m
2 , k

2 +[ k−2
4 ]+3 k

2 +[ k−2
4 ]

(5,2),(6,2),(7,2) k even

Table 5. Boundaries of t(r,S) of the simple classical group of Lie type (II)

S Conditions t(r,S)
Am−1(q); k > [m

2 ],k ≥ 2 t(S) = [m+1
2 ]

m≥ 5 and q > 2, or m≥ 12 and q = 2
2Am−1(q); ν(k) > [m

2 ],ν(k)≥ 2 t(S) = [m+1
2 ]

m≥ 5 and (m,q) 6= (5,2)
Bm(q) or Cm(q); η(k)≥ m+1

2 t(S) = [ 3m+5
4 ]

m > 2,(m,q) 6= (3,2),(4,2),(5,2),(6,2)
Dm(q);m≥ 4,(m,q) 6= (4,2),(5,2),(6,2) η(k)≥ m+1

2 t(S) = [ 3m+1
4 ] or 3m+3

4
2Dm(q); η(k) > m

2 t(S) = [ 3m+4
4 ]

m≥ 4,(m,q) 6= (4,2),(5,2),(6,2),(7,2)

Proof. Let s ∈ π(S)\{2, p} and l = e(s,q).

A. Let S∼= 2Am−1(q) such that m≥ 5 and (m,q) 6= (5,2).

We note that if ν(k) > [m/2] and k≥ 2, then we can assume that r ∈ ρ(S) by Table 3 and
so t(r,S) = t(S) = [(m+1)/2].

If 2≤ ν(k)≤ [m/2], then ν(k) < (m+2)/2. Let r� s in Γ(S). Therefore ν(l) > m−ν(k)
and ν(k) - ν(l) by Lemma 2.3. Considering the order of S, we have that ν(l)≤ m and thus
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ν(l) ∈ I := [m− ν(k)+ 1,m]. Because there are only ν(k) integers in the interval I, it is
obvious that ν(k) divides exactly one element in I. So there exist at most ν(k)−1 elements
of π(S) non-adjacent to r. Therefore t(r,S)≤ (ν(k)−1)+1 = ν(k).

On the other hand, we suppose that

X := {s ∈ π(S)|2≤ ν(e(s,q)) ∈ I,ν(k) - ν(e(s,q))}

such that s,s′ ∈ X and s 6= s′ imply that e(s,q) 6= e(s′,q). Let s,s′ ∈ X and s 6= s′. So e(s,q) 6=
e(s′,q). Since m≥ 5, it follows that ν(e(s,q)),ν(e(s′,q))≥m−ν(k)+1 > m−(m+2)/2+
1 = m/2 ≥ 2 and so ν(e(s,q))+ ν(e(s′,q)) > m. Assume that e(s,q) = m− ν(k)+ j and
e(s′,q) = m−ν(k)+ j′, where 1 ≤ j < j′ ≤ ν(k) ≤ m. If (m−ν(k)+ j)

∣∣(m−ν(k)+ j′),
there exists an integer t ≥ 2 such that m−ν(k)+ j′ = (m−ν(k)+ j)t ≥ (m−ν(k)+1)t >
m/2 · 2 = m, a contradiction by the choice of e(s′,q). Thus ν(e(s,q)) - ν(e(s′,q)). Hence
s � s′ in Γ(S) by Lemma 2.3. Furthermore, it is clear that r /∈ X and so r � s in Γ(S)
for each s ∈ X by the same lemma. Therefore X ∪{r} is an independent subset and thus
t(r,S)≥ (ν(k)−1)+1 = ν(k). Consequently, U = L = ν(k).

B. Let S∼= Dm(q) such that m≥ 4 and (m,q) 6= (4,2),(5,2),(6,2).

We note that if η(k) ≥ m + 1/2, then we can assume that r ∈ ρ(S) by Table 3 and so
t(r,S) = t(S) = [(3m+1)/4] or (3m+3)/4.

Assume that η(k) < (m + 1)/2. Let r � s in Γ(S). Therefore 2η(l) + 2η(k) > 2m−
(1− (−1)k+l) such that one of the conditions (a) and (b) in Lemma 2.4 holds. Thus η(l) >

m− (1− (−1)k+l)/2−η(k). On the other hand, since |S| = (qm(m−1)(qm−1)∏
m−1
i=1 (q2i−

1))/((4,qm−1)) by Table 1, we have that η(l)≤m. Thus η(l)∈ I := [m−(1−(−1)k+l)/2−
η(k)+1,m].

Case 1. Let k be an even number and l an odd number. Then l ∈ I = [m− k/2,m].
Suppose

X := {s ∈ π(S)|1≤ e(s,q) ∈ I,e(s,q) is odd}
such that s,s′ ∈ X and s 6= s′ imply that e(s,q) 6= e(s′,q).

Let s,s′ ∈X and s 6= s′. So e(s,q) 6= e(s′,q). Since m≥ 4, it follows that η(e(s,q)),η(e(s′,
q))≥m−η(k) > m−(m+1)/2 = (m−1)/2≥ 1. Thus 2η(e(s,q))+2η(e(s′,q))≥ 2(m−
k/2)+ 2(m− k/2 + 2) = 4m− 2k + 4 > 4m− 2(m + 1)+ 4 = 2m + 2 > 2m. Let e(s,q) =
m− k/2+ j and e(s′,q) = m− k/2+ j′, where 0≤ j < j′ ≤ k/2≤ m. If (e(s′,q))/(e(s,q))
is an odd number, then there exists an integer t ≥ 3 such that m− k/2 + j′ = (m− k/2 +
j)t ≥ (m− k/2)t ≥ (m− 1)/2 · 3 > m, a contradiction by the choice of e(s′,q). Thus
(e(s′,q))/(e(s,q)) is not an odd number. Hence s � s′ in Γ(S) by Lemma 2.4. Further-
more, it is clear that r /∈ X since k is even and so r � s in Γ(S) for each s ∈ X by the same
lemma. Therefore X ∪{r} is an independent subset such that

|X |=
{

[ k+2
4 ]+1, if m is odd and k

2 is even;
[ k+2

4 ], otherwise.

Case 2. Let k and l be two even numbers. Then l/2 ∈ I := [m− k/2 + 1,m]. We have
that l ∈ I′ := [2m− k +2,2(m−1)] considering the order of S. Suppose

X ′ := {s ∈ π(S)|1≤ e(s,q) ∈ I′,e(s,q) is even}
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such that the following statements hold:
(1) s,s′ ∈ X and s 6= s′ imply that e(s,q) 6= e(s′,q).
(2) (e(s,q))/k is not an odd integer.

Let s,s′ ∈ X ′ and s 6= s′. So e(s,q) 6= e(s′,q). Since m≥ 4, it follows that η(e(s,q)),η(e
(s′,q)) > m−η(k) > m− (m + 1)/2 = (m− 1)/2 > 1. Thus 2η(e(s,q))+ 2η(e(s′,q)) ≥
2(m− k/2 + 1)+ 2(m− k/2 + 2) = 4m− 2k + 6 > 4m− 2(m + 1)+ 6 > 2m. Let e(s,q) =
2m− k + j and e(s′,q) = 2m− k + j′, where 2≤ j < j′ ≤ k−2. If (e(s′,q))/(e(s,q)) is an
odd number, then there exists an odd integer t ≥ 3 such that 2m− k + j′ = (2m− k + j)t ≥
(2m− (m+1)+2)t ≥ 3(m+1) > 2(m−1), a contradiction by the choice of e(s′,q). Hence
(e(s,q))/(e(s′,q)) is not an odd number. By Lemma 2.4, s� s′ in Γ(S). Therefore X ′ is an
independent subset such that

|X ′|=
{ k−2

2 , if all odd multiples of k are not in I′;
k−2

2 −1, if an odd multiple of k is in I′.

Note that s � s′ in Γ(S) for each s ∈ X and each s′ ∈ X ′ by Lemma 2.4. From Cases 1
and 2, we can conclude that if η(k) < (m+1)/2 and k is even, then

U = max{|X ∪{r}∪X ′|}=
([

k +2
4

]
+1
)

+
k−2

2
+1 =

[
k +2

4

]
+

k
2

+1

and

L = min{|X ∪X ′|}=
[

k +2
4

]
+
(

k−2
2
−1
)

=
[

k +2
4

]
+

k
2
−2.

Case 3. Let k be an odd number and l an even number. Then l/2 ∈ I := [m− k,m]. We
have that l ∈ I′ := [2m−2k,2(m−1)] considering the order of S. Suppose

X ′ := {s ∈ π(S)|1≤ e(s,q) ∈ I′,e(s,q) is even }
such that the following statements hold:

(1) s,s′ ∈ X and s 6= s′ imply that e(s,q) 6= e(s′,q).
(2) the chain of equalities m = e(s,q) = 2k is not true.

Let s,s′ ∈ X ′ and s 6= s′. So e(s,q) 6= e(s′,q). Since m≥ 4, it follows that η(e(s,q)),η(e
(s′,q)) ≥ m−η(k) > m− (m + 1)/2 = (m− 1)/2 ≥ 1. Thus 2η(e(s,q))+ 2η(e(s′,q)) ≥
2(m− k)+2(m− k +1) = 4m−4k +2 > 4m−4 · (m+1)/2+2 = 2m. Let e(s,q) = 2m−
2k+ j and e(s′,q) = 2m−2k+ j′, where 2≤ j < j′ ≤ 2k−2. If (e(s′,q))/(e(s,q)) is an odd
number, then there exists an odd integer t ≥ 3 such that 2m− 2k + j′ = (2m− 2k + j)t ≥
(2m−(m+1)/2 ·2)t ≥ 3(m−1) > 2(m−1), a contradiction by the choice of e(s′,q). Hence
(e(s′,q))/(e(s,q)) is not an odd number. By Lemma 2.4, s � s′ in Γ(S). Furthermore, it is
clear that r /∈ X ′ since k is odd and so r � s in Γ(S) for each s ∈ X ′ by the same lemma.
Therefore X ′∪{r} is an independent subset such that

|X ′|= k.

Case 4. Let k and l be two odd numbers. Then l ∈ I := [m− k +1,m]. Suppose

X := {s ∈ π(S)|1≤ e(s,q) ∈ I,e(s,q) is odd}
such that the following statements hold:

(1) s,s′ ∈ X and s 6= s′ imply that e(s,q) 6= e(s′,q).
(2) e(s,q)/k is not an odd integer.
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Let s,s′ ∈ X and s 6= s′. So e(s,q) 6= e(s′,q). Since m≥ 4, it follows that η(e(s,q)),η(e
(s′,q))≥m−k+1 > m−(m+1)/2+1 = (m+1)/2≥ 1. Thus 2η(e(s,q))+2η(e(s′,q))≥
2(m− k + 1)+ 2(m− k + 2) = 4m− 4k + 6 > 4m− 4 · (m + 1)/2 + 6 = 2m + 4 > 2m. Let
e(s,q) = m− k + j and e(s′,q) = m− k + j′, where 1 ≤ j < j′ ≤ k. If (e(s,q))/(e(s′,q)) is
an odd number, then there exists an odd integer t ≥ 3 such that m− k + j′ = (m− k + j)t >
(m− (m + 1)/2 + 1)t ≥ (m + 1)/2 ·3 > m, a contradiction by the choice of e(s′,q). Hence
(e(s′,q))/(e(s,q)) is not an odd number. By Lemma 2.4, s � s′ in Γ(S). Therefore X is an
independent subset such that

|X |=
{ k−1

2 or k+1
2 , if all odd multiples of k are not in I;

k−1
2 −1 or k+1

2 −1, if an odd multiple of k is in I.

Note that s � s′ in Γ(S) for each s ∈ X and each s′ ∈ X ′ by Lemma 2.4. From Cases 3
and 4, we can conclude that if η(k) < (m+1)/2 and k is odd, then

U = max{|X ∪{r}∪X ′|}=
k +1

2
+ k +1 =

3k +3
2

and

L = min{|X ∪X ′|}= (
k−1

2
−1)+ k =

3k−3
2

.

For convenience we omit the proof of other cases since they are similar. See Propositions
2.1−2.2 in [15] and Proposition 2.4 in [16] if necessary. The lemma is proved.

Corollary 3.1. Let S∈{Am−1(q),2 Am−1(q),Bm(q),Cm(q),Dm(q),2 Dm(q)} be a simple group
of Lie type over a field GF(q), where q is a power of a prime p and m is a positive integer.
If r ∈ π(S)\{2, p} and k = e(r,q), the following statements hold:

(a) If k > 1 is odd, then t(r,S)≤ 2k.
(b) If k is even, then t(r,S)≤max{[(k−2)/4]+ k/2+3,k}.

Proof. If (m,q) satisfies the conditions of Lemma 3.1, it follows from Lemma 3.1. Other-
wise, it follows from Table 3 by a one-by-one check.

Let n ≥ 5 be an odd integer. Without loss of generality, by Tables 2 and 3, we may
suppose that

ρ(2,Dn(3)) = {2,rn}, t(2,Dn(3)) = 2 and t(Dn(3)) =
[

3n+1
4

]
or

3n+3
4
≥ 4.

Before considering AAM’s conjecture for Dn(3) we prove the following stronger result.

Theorem 3.1. Let n≥ 9 is an odd natural number. If G is a finite group such that Γ(G) =
Γ(Dn(3)), then Dn(3) . G/K . Aut(Dn(3)), where K is the maximal normal solvable sub-
group of G. That is, Dn(3) is quasirecognizable by its prime graph.

Proof. Since Γ(G) = Γ(Dn(3)), it follows that π(G) = π(Dn(3)), t(G) = t(Dn(3))≥ 3 and
t(2,G) = t(2,Dn(3)) = 2. By Lemma 2.5(a), there exists a finite nonabelian simple group
S such that S . G = G/K . Aut(S) for the maximal normal solvable subgroup K of G. In
addition, by Corollary 2.1, we have that

(A) S . G/K . Aut(S). In particular, π(S)⊆ π(G) and |S|
∣∣|G|;

(B) If S� A7 and S� L2(q), then ρ(2,G)⊆ ρ(2,S);
(C) t(S) ≥ t(G)− 1. Moreover, for every odd prime r ∈ π(S), we have that t(r,S) ≥

t(r,G)−1.
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In the sequel, we denote by ri a Zsigmondy prime of 3i− 1. If S is a simple group of Lie
type over a field GF(q), where q = pα is power of a prime p, then ui denotes a Zsigmondy
prime of qi− 1. According to the classification of finite simple groups, we consider each
possibility for S.

Step 1. We prove that the simple group S is not isomorphic to an alternating group.

Let S∼= Am. Since n≥ 9, it follows from (C) that t(S)≥ t(G)−1≥ [(3 ·9+1)/4]−1 = 6.
Therefore t(S) = t(Am) = |τ(m)|+1≥ 6 or t(S) = t(Am) = |τ(m)| ≥ 6 from Table 3 in [15],
where τ(m) := {s|s is a prime such that m/2 < s ≤ m}. By the definition of the function
τ(m), we have that m≥ 31 and so 31 ∈ π(S).

Let s∈ π(S)\{2}. Notice the fact that s� 31 in Γ(S) if and only if s+31 > m. Therefore
s∈ [m−30,m]. It is obvious that there are at least 20 elements in [m−30,m] which are divis-
ible by 2 or 3 since [31/2]+ [31/3]− [31/6] = 20. Therefore there are at most 31−20 = 11
odd prime numbers in [m−30,m]. If 2∼ 31 in Γ(S), we have that t(31,S)≤ 12. If 2� 31
in Γ(S), then 31 + 4 > m and so m < 35. Thus there are at most 9 odd prime numbers in
[m− 30,m] and we have that t(31,S) ≤ 11. Hence, in both cases, t(31,S) ≤ 12. On the
other hand, it is obvious that e(31,3) = 30. By Tables 4 and 5, we conclude that t(31,G)≥
[(30+2)/4]+[30/2]−2 = 21 if n > 29; and t(31,G)≥ [(3n+1)/4]≥ [(3 ·19+1)/4] = 14 if
19≤ n≤ 29. In both cases, by (C), we have that 13≤ t(31,G)−1≤ t(31,S)≤ 12, a contra-
diction. Hence 9≤ n≤ 18. Since n is odd, it follows that 9≤ n≤ 17. By Table 1, G is a finite
simple {2,3,5,7,11,13,17,19,23,29,31,37,41,61,67,73,193,271,547,661,1093,1181,
757,1871,16493,21523361,398581,797161,4561,6481,34511,3851}-group. Clearly 43 /∈
π(G), and so 31 ≤ m ≤ 42. Let ρ = {r9,r14,r16} if n = 9,10 and ρ = {r11,r18,r20} if
11≤ n≤ 17, respectively. Thus ρ is an independent subset of π(G) by Table 3. By Lemma
2.5(b), at most one number of ρ divides the product |K||G/S|= |G|/|S| and so at least two
numbers in it divide |S|, which is impossible since 31≤ m≤ 42.

Step 2. We prove that the simple group S is not isomorphic to a simple classical group
over a field of characteristic p 6= 3.

Because n ≥ 9 is odd, we can suppose that B := {r2(n−1),r2(n−2),r2(n−3),r2(n−4),rn} is
an independent subset in Γ(G) = Γ(Dn(3)) by Table 3. Therefore |B∩π(S)| ≥ 4 by Lemma
2.5(b). Notice that, by Table 4 in [15], t(p,S) ≤ 3 for each simple classical group except
exactly in the following cases:

(a) S∼= A2(q) such that (q−1)3 = 3 and q+1 6= 2t ;
(b) S∼= 2A2(q) such that q 6= 2,(q+1)3 = 3 and q−1 6= 2t ;
(c) S∼= 2Dm(q) such that m≡ 0 (mod 2), m≥ 4 and (m,q) 6= (4,2).

It follows that p /∈ B if S is not isomorphic to these exceptions. Otherwise, t(p,S) ≥ |B∩
π(S)| ≥ 4, a contradiction. Therefore p is adjacent to at least two elements of B in Γ(S).
(Otherwise, we can also deduce that t(p,S)≥ 4, a contradiction.) Hence p is also adjacent
to them in Γ(G) since π(S)⊆ π(G). Without loss of generality we may suppose p∼ r2(n−1)
and p∼ r2(n−4) in Γ(G). Let l = e(p,3). Since n≥ 9 is odd, it follows that the equalities n =
l = 2η(l) = 2η(k) = 2k can not be true, where k ∈ {2(n−1),2(n−2),2(n−3),2(n−4),n}.
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Moreover, since p /∈ B, we have that l /∈ {2(n−1),2(n−2),2(n−3),2(n−4),n}. Thus, by
Lemma 2.4, we have that

(1) if l is even, then
(a) 2η(l)+2(n−1)≤ 2n, or (2(n−1))/l is an odd integer; and
(b) 2η(l)+2(n−4)≤ 2n, or 2(n−4)/l is an odd integer;

or

(2) if l is odd, then
(c) 2η(l)+2(n−1)≤ 2n−2; and
(d) 2η(l)+2(n−4)≤ 2n−2.

Thus in each case we conclude that η(l) ≤ 4 and so l ∈ {1,2,3,4,6,8}. Therefore p ∈
{2,5,7,13,41}.

Case 1. Let S∼= Aε
m−1(q), where q = pα .

Let n ≥ 9. Since t(S) ≥ t(G)− 1 ≥ [(3 · 9 + 1)/4]− 1 = 6 by (C), it follows that 6 ≤
t(S) ∈ {[(m + 1)/2], [(m− 1)/2]} by Table 3. By an easy computation we get that m ≥ 11
and so the exceptional cases (a) and (b) are ruled out.

Let p = 2. Clearly e(31,2) = 5 and 31∈ π(S) if m≥ 11 by Table 1. Therefore 31∈ π(G)
by (A). Since e(31,3) = 30 and π(G) = π(Dn(3)), it follows that n ≥ 16 by Table 1. By
(C), we know that t(31,G)−1≤ t(31,S). If 16≤ n≤ 29, then η(30) = 15≥ (n+1)/2 and
so t(31,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 11 = [(3 ·16 +
1)/4]−1≤ [(3n+1)/4]−1≤ t(31,G)−1≤ t(31,S)≤ 2 ·5 = 10, which is a contradiction.
Therefore n > 29. Similarly, we have that 20 = ([(30+2)/4]+30/2−2)−1≤ t(31,G)−
1≤ t(31,S)≤ 10 by Table 4, a contradiction.

Let p = 5. Clearly e(521,5) = 10 and 521 ∈ π(S) if m ≥ 11 by Table 1. Therefore
521 ∈ π(G). Since e(521,3) = 520, it follows that n ≥ 261 by Table 1. By (C), we
know that t(521,G)− 1 ≤ t(521,S). If 261 ≤ n ≤ 519, then η(520) = 260 ≥ (n + 1)/2
and so t(521,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 195 =
[(3 · 261 + 1)/4]− 1 ≤ [(3n + 1)/4]− 1 ≤ t(521,G)− 1 ≤ t(521,S) ≤ max{[(10− 2)/4]+
10/2 + 3,10} = 10, which is a contradiction. Therefore n > 519. Similarly, we have that
387 = (520/2+[(520+2)/4]−2)−1≤ t(521,G)−1≤ t(521,S)≤ 10 by Table 4, a con-
tradiction.

Let p = 7. Clearly e(191,7) = 10 and 191 ∈ π(S) if m ≥ 11 by Table 1. Therefore
191 ∈ π(G). Since e(191,3) = 95, it follows that n≥ 95 by Table 1. By (C), we know that
t(191,G)−1≤ t(191,S). If 95≤ n≤ 189, then η(95) = 95≥ (n+1)/2 and so t(191,G)≥
[(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 70 = [(3 · 95 + 1)/4]− 1 ≤
[(3n+1)/4]−1≤ t(191,G)−1≤ t(191,S)≤max{[(10−2)/4]+10/2+3,10}= 10, which
is a contradiction. Therefore n > 189. Similarly, we have that 140 = (3 · 95− 3)/2− 1 ≤
t(191,G)−1≤ t(191,S)≤ 10 by Table 4, a contradiction.

Let p = 13. Clearly e(2411,13) = 10 and 2411 ∈ π(S) if m≥ 11 by Table 1. Therefore
2411 ∈ π(G). Since e(2411,3) = 1205, it follows that n ≥ 1205 by Table 1. By (C), we
know that t(2411,G)− 1 ≤ t(2411,S). If 1205 ≤ n ≤ 2409, then η(1205) = 1205 ≥ (n +
1)/2 and so t(2411,G)≥ [(3n+1)/4] by Table 5. Now by Corollary 3.1, we have that 903 =
[(3 ·1205+1)/4]−1≤ [(3n+1)/4]−1≤ t(2411,G)−1≤ t(2411,S)≤max{[(10−2)/4]+
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10/2 + 3,10} = 10, which is a contradiction. Therefore n > 2409. Similarly, we have
1805 = (3 ·1205−3)/2−1≤ t(2411,G)−1≤ t(2411,S)≤ 10 by Table 4, a contradiction.

Let p = 41. Clearly e(4111,41) = 10 and 4111 ∈ π(S) if m ≥ 11 by Table 1. There-
fore 4111 ∈ π(G). Since e(4111,3) = 822, it follows that n ≥ 412 by Table 1. By (C), we
know that t(4111,G)− 1 ≤ t(4111,S). If 412 ≤ n ≤ 821, then η(822) = 411 ≥ (n + 1)/2
and so t(4111,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 308 =
[(3 ·412+1)/4]−1≤ [(3n+1)/4]−1≤ t(4111,G)−1≤ t(4111,S)≤max{[(10−2)/4]+
10/2 + 3,10} = 10, which is a contradiction. Therefore n > 821. Similarly, we have
614 = (822/2 + [(822 + 2)/4]− 2)− 1 ≤ t(4111,G)− 1 ≤ t(4111,S) ≤ 10 by Table 4, a
contradiction.

Case 2. Similarly we can rule out the following cases: S ∼= Bm(q),Cm(q) or Dm(q),
where q = pα .

Thus we must focus our attention on the exceptional case (c).

Case 3. Let S∼=2 Dm(q), where q = pα .

Let n ≥ 11. Since t(S) ≥ t(G)− 1 ≥ [(3 · 11 + 1)/4]− 1 = 7, it follows that t(S) =
[(3m+4)/4]≥ 7. By an easy computation we get that m≥ 8.

Since n≥ 11 is odd, we can suppose that B′ = {r2(n−1),r2(n−2),r2(n−3),r2(n−4),r2(n−5),
rn} is an independent set in Γ(G) by Table 3. Therefore |B∩π(S)| ≥ 5 by Lemma 2.5(b).
Notice that, by [15, Table 4], t(p,S) ≤ 4, which implies that p /∈ B. Otherwise, t(p,S) ≥
|B∩π(S)| ≥ 5, a contradiction. Therefore p is adjacent to at least two elements of B in Γ(S).
(Otherwise, we can also deduce that t(p,S)≥ 5, a contradiction.) Hence p is also adjacent
to them in Γ(G). Without loss of generality, we may suppose p ∼ r2(n−1) and p ∼ r2(n−5)
in Γ(G). Let l = e(p,3). Since n ≥ 9 is odd, it follows that the equalities n = l = 2η(l) =
2η(k) = 2k can not be true, where k ∈ {2(n− 1),2(n− 2),2(n− 3),2(n− 4),2(n− 5),n}.
Moreover, since p /∈ B, it follows that l /∈ {2(n−1),2(n−2),2(n−3),2(n−4),2(n−5),n}.
Thus, by Lemma 2.4, we have that

(1) if l is even, then
(a) 2η(l)+2(n−1)≤ 2n−2, or (2(n−1))/l is an odd integer; and
(b) 2η(l)+2(n−5)≤ 2n−2, or (2(n−5))/l is an odd integer;

or

(2) if l is odd, then
(c) 2η(l)+2(n−1)≤ 2n; and
(d) 2η(l)+2(n−5)≤ 2n.

Thus in each case we conclude that η(l) ≤ 5 and so l ∈ {1,2,3,4,5,6,8,10}. Therefore
p ∈ {2,5,7,11,13,41,61}.

Let p = 2. Clearly e(31,2) = 5 and 31 ∈ π(S) if m≥ 8 by Table 1. Therefore 31 ∈ π(G).
Since e(31,3) = 30, it follows that n≥ 16 by Table 1. By (C), we know that t(31,G)−1≤
t(31,S). If 16≤ n≤ 29, then since η(30) = 15≥ (n+1)/2 and so t(31,G)≥ [(3n+1)/4]
by Table 5. Now by Corollary 3.1, we have that 11 = [(3 ·16+1)/4]−1≤ [(3n+1)/4]−1≤
t(31,G)− 1 ≤ t(31,S) ≤ 2 · 5, which is a contradiction. Therefore n > 29. Similarly, we
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have that 20 = (30/2+[(30+2)/4]−2)−1≤ t(31,G)−1≤ t(31,S)≤ 2 ·5 by Table 4, a
contradiction.

Let p = 5. Clearly e(521,5) = 10 and 521 ∈ π(S) if m ≥ 8 by Table 1. Therefore
521 ∈ π(G). Since e(521,3) = 520, it follows that n ≥ 261 by Table 1. By (C), we
know that t(521,G)− 1 ≤ t(521,S). If 261 ≤ n ≤ 519, then η(520) = 260 ≥ (n + 1)/2
and so t(521,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 195 =
[(3 ·261 + 1)/4]− 1 ≤ [(3n + 1)/4]−1 ≤ t(521,G)− 1 ≤ t(521,S) ≤ max{[(10−2)/4]+
10/2 + 3,10} = 10, which is a contradiction. Therefore n > 519. Similarly, we have that
388 = (520/2+[(520+2)/4]−2)−1≤ t(521,G)−1≤ t(521,S)≤ 10 by Table 4, a con-
tradiction.

Let p = 7. Clearly e(191,7) = 10 and 191 ∈ π(S) if m ≥ 8 by Table 1. Therefore
191 ∈ π(G). Since e(191,3) = 95, it follows that n≥ 95 by Table 1. By (C), we know that
t(191,G)−1≤ t(191,S). If 95≤ n≤ 189, then η(95) = 95≥ (n+1)/2 and so t(191,G)≥
[(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 70 = [(3 · 95 + 1)/4]− 1 ≤
[(3n + 1)/4]− 1 ≤ t(191,G)− 1 ≤ t(191,S) ≤ max{[(10− 2)/4] + 10/2 + 3,10} = 10,
which is a contradiction. Therefore n > 189. Similarly, we have that 140 = (3 ·95−3)/2−
1≤ t(191,G)−1≤ t(191,S)≤ 10 by Table 4, a contradiction.

Let p = 11. Clearly e(3221,11) = 5 and 3221 ∈ π(S) if m ≥ 8 by Table 1. Therefore
3221 ∈ π(G). Since e(3221,3) = 644, it follows that n ≥ 323 by Table 1. By (C), we
know that t(3221,G)− 1 ≤ t(3221,S). If 323 ≤ n ≤ 643, then η(644) = 322 ≥ (n + 1)/2
and so t(3221,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 240 =
[(3 · 323 + 1)/4]− 1 ≤ [(3n + 1)/4]− 1 ≤ t(3221,G)− 1 ≤ t(3221,S) ≤ 2 · 5, which is a
contradiction. Therefore n > 643. Similarly, we have that 480 = (644/2+[(644+2)/4]−
2)−1≤ t(3221,G)−1≤ t(3221,S)≤ 10 by Table 4, a contradiction.

Let p = 13. Clearly e(2411,13) = 10 and 2411 ∈ π(S) if m ≥ 8 by Table 1. Therefore
2411 ∈ π(G). Since e(2411,3) = 1205, it follows that n ≥ 1205 by Table 1. By (C),
we know that t(2411,G)− 1 ≤ t(2411,S). If 1205 ≤ n ≤ 2409, then η(1205) = 1205 ≥
(n+1)/2 and so t(2411,G)≥ [(3n+1)/4] by Table 5. Now by Corollary 3.1, we have that
903 = [(3 ·1205+1)/4]−1≤ [(3n+1)/4]−1≤ t(2411,G)−1≤ t(2411,S)≤max{[(10−
2)/4] + 10/2 + 3,10} = 10, which is a contradiction. Therefore n > 2409. Similarly, we
have that 1805 = (3 · 1205− 3)/2− 1 ≤ t(2411,G)− 1 ≤ t(2411,S) ≤ 10 by Table 4, a
contradiction.

Let p = 41. Clearly e(4111,41) = 10 and 4111 ∈ π(S) if m ≥ 8 by Table 1. Therefore
4111 ∈ π(G). Since e(4111,3) = 822, it follows that n ≥ 412 by Table 1. By (C), we
know that t(4111,G)− 1 ≤ t(4111,S). If 412 ≤ n ≤ 821, then η(822) = 411 ≥ (n + 1)/2
and so t(4111,G) ≥ [(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 308 =
[(3 ·412+1)/4]−1≤ [(3n+1)/4]−1≤ t(4111,G)−1≤ t(4111,S)≤max{[(10−2)/4]+
10/2 + 3,10} = 10, which is a contradiction. Therefore n > 821. Similarly, we have that
614 = (822/2 + [(822 + 2)/4]− 2)− 1 ≤ t(4111,G)− 1 ≤ t(4111,S) ≤ 10 by Table 4, a
contradiction.

Let p = 61. Clearly e(131,61) = 5 and 131 ∈ π(S) if m ≥ 8 by Table 1. Therefore
131 ∈ π(G). Since e(131,3) = 65, it follows that n≥ 65 by Table 1. By (C), we know that
t(131,G)−1≤ t(131,S). If 65≤ n≤ 129, then η(65) = 65≥ (n+1)/2 and so t(131,G)≥
[(3n + 1)/4] by Table 5. Now by Corollary 3.1, we have that 48 = [(3 · 65 + 1)/4]− 1 ≤
[(3n + 1)/4]− 1 ≤ t(131,G)− 1 ≤ t(3221,S) ≤ 2 · 5, which is a contradiction. Therefore
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n > 129. Similarly, we have that 95 = (3 · 65− 3)/2− 1 ≤ t(131,G)− 1 ≤ t(131,S) ≤ 10
by Table 4, a contradiction.

Let n = 9. Therefore t(G) = [(3 · 9 + 1)/4] = 7 and so m ≥ 7. Thus (p10− 1)
∣∣|S| by

Table 1. On the other hand, by (A), we have that 3 6= p ∈ π(S) ⊆ π(G) = π(D9(3)) =
{2,3,5,7,11,13,17,41,61,73,193,547,757,1093} by Table 1. However, for each previous
prime p, p10−1 has a prime divisor which is not in π(G), a contradiction.

Step 3. We prove that the simple group S is not isomorphic to a simple exceptional group
of Lie type.

Let n ≥ 9. Since t(S) ≥ t(G)− 1 ≥ [(3 · 9 + 1)/4]− 1 = 6, S is isomorphic to E7(q) or
E8(q) by [15, Table 9].

Case 1. Let S∼= E7(q), where q = pα .

Since t(S) = 8 by Table 9 in [15], it follows that [(3n+1)/4]≤ t(G)≤ t(S)+1 = 9 and
so 9≤ n≤ 12. By our assumption, n = 9 or 11.

Let n = 9. It is obvious that (p12−1)
∣∣|S| by Table 1. On the other hand, by (A), we have

that p ∈ π(S) ⊆ π(G) = π(D9(3)) = {2,3,5,7,11,13,17,41,61,73,193,547,757,1093}.
However, for each previous prime p 6= 2,3, p12 − 1 has a prime divisor which is not in
π(G), a contradiction. Thus p = 2 or 3. Suppose p = 2. Since q(q18− 1)

∣∣|S|, it follows
that 19

∣∣|S|. Then 19 ∈ π(E7(q)) ⊆ π(G), a contradiction. Hence p = 3. However, 19 ∈
π(318−1)⊆ π(E7(3α))⊆ π(G), a contradiction.

Let n = 11. It is obvious that (p18−1)
∣∣|S| by Table 1. On the other hand, by (A), we have

that p ∈ π(S)⊆ π(G) = π(D11(3)) = {2,3,5,7,11,13,17,19,23,37,41,61,73,193,547,
757,1093,1181,3851}. However, for each previous prime p 6= 2,3, p18− 1 has a prime
divisor which is not in π(G), a contradiction. Thus p = 2 or 3. Suppose p = 2. Then
127 ∈ π(E7(q)) ⊆ π(G), a contradiction. Hence p = 3. On one hand, 2 is non-adjacent to
r11 in Γ(G) by Table 2 and 2 can only be non-adjacent to one of u7,u9,u14 or u18 in Γ(S)
by Table 7 in [15]. Since ρ(2,G) ⊆ ρ(2,S), it follows that e(r11,3α) ∈ {7,9,14,18}. On
the other hand, since it is an easy number-theoretic observation that e(ri, pα) = i/(α, i) if
ri is a Zsigmondy prime of pi− 1 for a prime p, we have that e(r11,3α) ∈ {1,11}. This
contradiction shows that this case does not occur.

Case 2. Let S∼= E8(q), where q = pα .

Since t(S) = 12 by [15, Table 9], it follows that [(3n + 1)/4] ≤ t(G) ≤ t(S) + 1 = 13
and so 9 ≤ n ≤ 18. It is clear that q(q30− 1)

∣∣|E8(q)| and so 31 ∈ π(E8(q)) ⊆ π(G). On
the other hand, e(31,3) = 30 implies that n ≥ 16. Therefore n = 16 or 17. Since n is
odd, n = 17. It is obvious that (p30 − 1)

∣∣|S| by Table 1. By (A), p ∈ π(S) ⊆ π(G) =
π(D17(3)). However, for each previous prime p 6= 3, p30− 1 has a prime divisor which is
not in π(G), a contradiction. Thus p = 3 and S ∼= E8(3α). Clearly ρ(2,G) = {2,r17} and
ρ(2,E8(3α)) = {2,u15,u20,u24,u30} by Table 7 in [15]. Since ρ(2,G)⊆ ρ(2,S), it follows
that e(r17,3α)∈ {15,20,24,30}. On the other hand, e(r17,3α) = 17/(α,17)∈ {1,17}. This
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contradiction shows that this case does not occur.

Step 4. We prove that the simple group S is not isomorphic to a sporadic simple group.

Since n≥ 9, it follows that t(G)≥ [(3n+1)/4]≥ [(3 ·9+1)/4] = 7. By (C), it follows
that t(S)≥ t(G)−1≥ 6. By [15, Table 2], we have that S∼= J4. However, t(J4) = 6 implies
that t(G) ≤ t(J4)+ 1 = 7 and so n = 9. On the other hand, by (A), 43 ∈ π(J4) ⊆ π(G) =
π(D9(3)), a contradiction.

Up to now, it is proved that S can only be isomorphic to a classical simple group over a
field of characteristic 3. Thus we begin to prove the following.

Step 5. We prove that the simple group S is isomorphic to Dn(3).

Case 1. Let S∼= Am−1(q), where q = 3α .

Let n≥ 9. By (C), it is clear that 6≤ [(3 ·9+1)/4]−1≤ [(3n+1)/4]−1≤ t(G)−1≤
t(S). Hence t(S) = [(m+1)/2] by Table 3. Therefore m≥ 11. Moreover, [(3n+1)/4]−1≤
[(m + 1)/2] implies that n < m if n ≥ 9. By (B), {2,rn} = ρ(2,G) ⊆ ρ(2,S). On the other
hand, ρ(2,S) = ρ(2,Am−1(q)) = {2,um} or {2,um−1} or {2,um−1,um} if m ≥ 11 by Table
2. Thus rn = um or rn = um−1.

If rn = um, then e(rn,3α) = n/(α,n) = m, which is impossible since m > n.
If rn = um−1, then e(rn,3α) = n/(α,n) = m− 1. Since m > n ≥ 9, it follows that

n = m− 1. On the other hand, since π(S) ⊆ π(G), we have that α(m− 1) ≤ 2n− 2
by Lemma 2.2 and so α = 1. Therefore (α,m) = (1,n + 1) and thus S ∼= An(3). Let
ρ = {r2(n−1),r2(n−2),r2(n−3)}. Then ρ is an independent subset of π(G) by Table 3 if n≥ 9.
By Lemma 2.5(b), at most one number of ρ divides the product |K||G/S|= |G|/|S| and so
at least two numbers in it divide |S|, which is impossible by Table 1.

Case 2. Let S∼= 2Am−1(q), where q = 3α .

Let n≥ 9. By (C), it is clear that 6≤ [(3 ·9+1)/4]−1≤ [(3n+1)/4]−1≤ t(G)−1≤
t(S). Hence t(S) = [(m+1)/2] by Table 3. Therefore m≥ 11. Moreover, [(3n+1)/4]−1≤
[(m + 1)/2] implies that n < m if n ≥ 9. By (B), {2,rn} = ρ(2,G) ⊆ ρ(2,S). On the other
hand, ρ(2,S) = ρ(2,2 Am−1(q)) ⊆ {2,u2m,u2m−2,um,um/2} if m ≥ 11 by Table 2. Thus
rn = u2m,um/2,um or u2m−2.

If rn = um,u2m,u2m−2, then e(rn,3α) = n/(α,n) = m,2m or 2m−2, which is impossible
since m > n.

If rn = um/2, then e(rn,3α) = n/(α,n) = m/2. Since m > n≥ 9, it follows that n = m/2.
On the other hand, since π(S) ⊆ π(G), we have that (mα)/2 ≤ 2n− 2 by Lemma 2.2 and
so α = 1. Therefore (α,m) = (1,2n) and thus S ∼= 2A2n−1(3). Thus r2n ∈ π(S) \π(G), a
contradiction.

Case 3. Let S∼= Bm(q) or Cm(q), where q = 3α .
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Let n ≥ 9, it is clear that 6 ≤ [(3 ·9 + 1)/4]−1 ≤ [(3n + 1)/4]−1 ≤ t(G)−1 ≤ t(S) ≤
[(3m + 5)/4]. Therefore m ≥ 7 and [(3n + 1)/4]− 1 ≤ [(3m + 5)/4], which implies that
n− 4 < m. Clearly ρ(2,Bm(q)) = ρ(2,Cm(q)) = {2,um} or {2,u2m} by Table 2. By (B),
rn = um or u2m.

If rn = u2m, then e(rn,3α) = n/(α,n) = 2m, which is impossible since n is odd.
If rn = um, then e(rn,3α) = n/(α,n) = m. Since m > n− 4, it follows that n = m. On

the other hand, since π(S)⊆ π(G), we have that αm≤ 2n−2 by Lemma 2.2 and so α = 1.
Therefore (α,m) = (1,n) and so S ∼= Bn(3) or Cn(3). Thus r2n ∈ π(S)\π(G), a contradic-
tion.

Case 4. Let S∼= 2Dm(q), where q = 3α .

Let n≥ 9. By (C), it is clear that 6≤ [(3 ·9+1)/4]−1≤ [(3n+1)/4]−1≤ t(G)−1≤
t(S) ≤ [(3m + 4)/4]. Therefore m ≥ 7 and [(3n + 1)/4]−1 ≤ [(3m + 4)/4], which implies
that n− 4 < m. By Table 2, ρ(2,S) ⊆ {2,u2m−2,u2m}. By (B), rn = u2m−2 or u2m. Thus
e(rn,3α) = n/(α,n) = 2m or 2m−2, which is impossible since n is odd.

Case 5. Let S∼= Dm(q), where q = 3α .

Let n≥ 9. By (C), it is clear that 6≤ [(3 ·9+1)/4]−1≤ [(3n+1)/4]−1 = t(G)−1≤
t(S) ≤ [(3m + 1)/4]. Therefore m ≥ 8 and [(3n + 1)/4]−1 ≤ [(3m + 1)/4], which implies
that n−3 < m. By Table 2, ρ(2,S)⊆ {2,u2m−2,um,um−1}. By (B), rn ∈ {u2m−2,um,um−1}.

If rn = u2m−2, then e(rn,3α) = n/(α,n) = 2m−2, which is impossible since n is odd.
If rn = um−1, then e(rn,3α) = n/(α,n) = m− 1. Since m > n− 3, it follows that n =

m−1. On the other hand, since π(S) ⊆ π(G), we have that α(m−1) ≤ 2n−2 by Lemma
2.2 and so α = 1. Therefore (α,m) = (1,n + 1) and so S ∼= Dn+1(3). By (A), this is
impossible.

Therefore rn = um and so e(rn,3α) = n/(α,n) = m. Since m > n− 3, it follows that
n = m. On the other hand, since π(S) ⊆ π(G), we have that αm ≤ 2n− 2 by Lemma 2.2
and so α = 1. Therefore (α,m) = (1,n) and so S∼= Dn(3), as desired.

Theorem 3.2. Let n = 5 or 7. If G is a finite group such that ∇(G) = ∇(Dn(3)), then
G∼= Dn(3).

Proof. Since the proofs are similar, we only consider the case n = 7. By Tables 4 and
6 in [16], we have that t(D7(3)) = 6 and t(2,D7(3)) ≥ 2. By Corollary 2.2, Γ(G) =
Γ(D7(3)) and |G| = |D7(3)| = 222 · 342 · 53 · 72 · 112 · 132 · 41 · 61 · 73 · 1093. Thus t(G) =
6 and t(2,G) ≥ 2. It follows from Corollary 2.1 that there is a finite nonabelian sim-
ple group S such that S . G/K . Aut (S) for the maximal normal solvable subgroup K
of G and t(S) ≥ t(G)− 1 ≥ 5. By Tables 8-9 in [15], we can immediately obtain that
S ∼= Aε

m−1(q),Bm(q),Cm(q),Dε
m(q),E6(q),F4(q),E7(q),E8(q),2 E6(q),2 G2(q) or 2F4(q) for

some suitable prime power q. Since the proofs of all cases are similar, we only give two of
them as follows.

If S ∼= 2Dm(q), where q is a power of a prime p ∈ π(S), then m ≥ 6 and so (q8−1)
∣∣|S|.

Clearly p ∈ π(S)⊆ π(G) = {2,3,5,7,11,13,41,61,73,1093}. However, for each previous
prime p 6= 3, p8−1 has a prime divisor which is not in π(G), a contradiction. Thus p = 3.
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Since {2,r7}= ρ(2,G)⊆ ρ(2,S) by Corollary 2.1(b), it follows that r7 = u2m or u2m−2 by
Table 2. Thus, e(r7,3α) = 7/(α,7) = 2m or 2m−2, which is impossible.

If S ∼= Dm(q), where q is a power of a prime p ∈ π(S), then m ≥ 6 and so (q8− 1)
∣∣|S|.

Clearly p ∈ π(S) ⊆ π(G). However, for each previous prime p 6= 3, p8− 1 has a prime
divisor which is not in π(G), a contradiction. Thus p = 3. Since {2,r7}= ρ(2,G)⊆ ρ(2,S)
by Corollary 2.1(b), it follows that r7 = um or um−1 by Table 2. Thus, e(r7,3α) = 7/(α,7) =
m or m− 1. Since m ≥ 6, we have that (α,m) = (1,7) or (1,8). Clearly the latter case
will not occur and so S ∼= D7(3). Since S . G/K . Aut(G), it follows that K = 1 and so
G∼= S∼= D7(5), as desired.

In [8], authors have proved that Dn(3), where n ∈ {p, p + 1} for a prime p > 3, is
quasirecognizable by its prime graph. As a corollary of the above results, we obtain the
following result, which shows that AAM’s conjecture is valid for Dn(3) for some n.

Corollary 3.2. Let n≥ 5 be an odd integer or n = p +1 for a prime p > 3. If G is a finite
group such that ∇(G) = ∇(Dn(3)), then G∼= Dn(3).

Proof. If n = p + 1 for a prime p > 3, then Dn(3) is quasirecognizable by its prime graph
by [8]. Thus ∇(G) = ∇(Dn(3)) implies G ∼= Dn(3) by Lemma 2.7. Furthermore, by The-
orem 3.2, both D5(3) and D7(3) are recognizable by their noncommuting graphs. We now
need only to consider the remaining case that n ≥ 9 is odd. Since ∇(G) = ∇(Dn(3)), it
follows that |G|= |Dn(3)| and Γ(G) = Γ(Dn(3)) by Corollary 2.2. Since Γ(G) = Γ(Dn(3)),
by Theorem 3.1, Dn(3) . G/K . Aut(Dn(3)), where K is the maximal normal solvable
subgroup of G. Since |G|= |Dn(3)|, we have that K = 1 and so G∼= Dn(3), as desired.

Let G and H be finite groups. Since πe(G) = πe(H) always implies that Γ(G) = Γ(H),
we can also obtain the following corollary by Theorem 3.1 and by [8], part of which was
proved in [19].

Corollary 3.3. Let n≥ 5 be an odd integer or n = p +1 for a prime p > 3. If G is a finite
group such that πe(G) = πe(Dn(3)) and |G|= |Dn(3)|, then G∼= Dn(3).
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