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Abstract. In this paper, we investigate the existence of at least one positive solution for a
class of fractional q-difference boundary value problems with φ -Laplacian operator. The
arguments mainly rely on the upper and lower solutions method as well as the Schauder’s
fixed point theorem. Nonlinear term may be singular at t = 0,1 or u = 0. Furthermore, two
examples are presented to illustrate the main results.
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1. Introduction

In recent years, boundary value problems involving nonlinear fractional q-difference equa-
tions have been addressed extensively by several researchers. There have been some papers
dealing with the existence and multiplicity of solutions or positive solutions for bound-
ary value problems involving nonlinear fractional q-difference equations by the use of
some well-known fixed point theorems. For some recent developments on the subject,
see [3, 4, 6, 7, 10] and the references therein. El-Shahed and Al-Askar [5] studied the exis-
tence of multiple positive solutions to the nonlinear q-fractional boundary value problems
by using Guo-Krasnoselskii’s fixed point theorem in a cone. Ma and Yang [11] considered
the existence of solutions for multi-point boundary value problems of nonlinear fractional
q-difference equations by means of the Banach contraction principle and Krasnoselskii’s
fixed point theorem.

The upper and lower solutions method is regarded as an excellent tool for investigating
the existence results for certain boundary value problem. Many boundary value problems
has been obtained based on the upper and lower solutions method combining with standard
fixed point theorems, see for example [2, 9, 12, 14, 17] and references therein. Zhang and
Liu [18] and Zhang [19] investigated the existence of positive solutions for singular fourth-
order four-point and integral boundary value problem with p-Laplacian operator by using
the upper and lower solutions method and fixed point theorem, respectively. By employing
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the upper and lower solutions method, Wang and Xiang [16] discussed the existence of at
least one positive solution for singular fractional boundary value problems with p-Laplacian
operator. Mao et al. [13] studied the existence and uniqueness of positive solutions for a
second order integral boundary value problem based on the method of lower and upper
solutions and the maximal principle.

However, to the best of author’s knowledge, few results exist in the literatures devoted
to investigate φ -Laplacian fractional q-difference boundary value problems by applying the
upper and lower solutions method. To fill this gap, in this paper, we consider the following
fractional q-difference boundary value problem with φ -Laplacian operator

(1.1)
Dβ

q (φµ(Dα
q u(t))) = f (t,u(t)), 0 < t < 1,

u(0) = u(1) = 0, Dα
q u(0) = Dα

q u(1) = 0,

where 1 < α,β ≤ 2, and Dα
q is the fractional q-derivative of the Riemann-Liouville type,

φµ(s) = |s|µ−2s, µ > 1, (φµ)−1 = φν , (1/µ)+(1/ν) = 1, and nonlinear term f (t,u) may be
singular at t = 0,1 or u = 0. By applying the upper and lower solutions method associated
with the Schauder’s fixed point theorem, the existence results of at least one positive solution
for the above fractional q-difference boundary value problem with φ -Laplacian operator are
established. At the end of this paper, we will give two examples to show the effectiveness
of the main result.

2. Preliminaries

In this section, we present some necessary definitions and lemmas. For details, the readers
can see [8] and references therein.

Let q ∈ (0,1) and define

[a]q =
qa−1
q−1

, a ∈ R.

The q-analogue of the power (a−b)n with n ∈ N0 is

(a−b)(0) = 1, (a−b)(n) =
n−1

∏
k=0

(a−bqk), n ∈ N, a,b ∈ R.

More generally, if α ∈ R, then

(a−b)(α) = aα
∞

∏
n=0

a−bqn

a−bqα+n .

Note that, if b = 0 then a(α) = aα . The q-gamma function is defined by

Γq(x) =
(1−q)(x−1)

(1−q)x−1 , x ∈ R\{0,−1,−2, . . .},

and satisfies Γq(x+1) = [x]qΓq(x).
The q-derivative of a function f is here defined by

(Dq f )(x) =
f (x)− f (qx)

(1−q)x
, (Dq f )(0) = lim

x→0
(Dq f )(x),

and q-derivatives of higher order by

(D0
q f )(x) = f (x) and (Dn

q f )(x) = Dq(Dn−1
q f )(x), n ∈ N.
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The q-integral of a function f defined in the interval [0,b] is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

f (xqn)qn, x ∈ [0,b].

If a ∈ [0,b] and f is defined in the interval [0,b], its integral from a to b is defined by∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, namely,

(I0
q f )(x) = f (x) and (In

q f )(x) = Iq(In−1
q ) f (x), n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIq f )(x) = f (x),

and if f is continuous at x = 0, then

(IqDq f )(x) = f (x)− f (0).

Basic properties of the two operators can be found in the book [8]. We now point out three
formulas that will be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α), tDq(t− s)(α) = [α]q(t− s)(α),(
xDq

∫ x

0
f (x, t)dqt

)
(x) =

∫ x

0
xDq f (x, t)dqt + f (qx,x).

Denote that if α > 0 and a≤ b≤ t, then (t−a)(α) ≥ (t−b)(α) [6].

Definition 2.1. [1] Let α ≥ 0 and f be function defined on [0,1]. The fractional q-integral
of the Riemann-Liouville type is I0

q f (x) = f (x) and

(Iα
q f )(x) =

1
Γq(α)

∫ x

0
(x−qt)(α−1) f (t)dqt, α > 0, x ∈ [0,1].

Definition 2.2. [15] The fractional q-derivative of the Riemann-Liouville type of order α ≥
0 is defined by D0

q f (x) = f (x) and

(Dα
q f )(x) = (Dm

q Im−α
q f )(x), α > 0,

where m is the smallest integer greater than or equal to α .

Lemma 2.1. [6] Let α > 0 and p be a positive integer. Then the following equality holds:

(Iα
q Dα

q f )(x) = (Dα
q Iα

q f )(x)−
p−1

∑
k=0

xα−p+k

Γq(α + k− p+1)
(Dk

q f )(0).

Lemma 2.2. [7] Let y ∈C[0,1] and 1 < α ≤ 2, the unique solution of

(2.1) Dα
q u(t)+ y(t) = 0, 0 < t < 1, u(0) = u(1) = 0,

is given by

u(t) =
∫ 1

0
G(t,qs)y(s)dqs,
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where

(2.2) G(t,s) =
1

Γq(α)

{
(t(1− s))(α−1)− (t− s)(α−1), 0≤ s≤ t ≤ 1,

(t(1− s))(α−1), 0≤ t ≤ s≤ 1.

Lemma 2.3. Let y ∈ C[0,1], 1 < α,β ≤ 2. The fractional q-difference boundary value
problem

Dβ
q (φµ(Dα

q u(t))) = y(t), 0 < t < 1, u(0) = u(1) = 0, Dα
q u(0) = Dα

q u(1) = 0,

is given by

u(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ)y(τ)dqτ

)
dqs,

where G(t,s) is defined by (2.2) and

(2.3) H(t,s) =
1

Γq(β )

{
(t(1− s))(β−1)− (t− s)(β−1), 0≤ s≤ t ≤ 1,

(t(1− s))(β−1), 0≤ t ≤ s≤ 1.

Proof. The proof is similar to Lemma 2.2, we omit it here.

Lemma 2.4. [7] Let 1 < α,β ≤ 2. Then functions G(t,s) and H(t,s) defined by (2.2) and
(2.3) respectively, are continuous on [0,1]× [0,1] satisfying

(a) G(t,qs)≥ 0, G(t,qs)≤ G(qs,qs) and G(t,qs)≥ tα−1G(1,qs) for all t,s ∈ [0,1];
(b) H(t,qs)≥ 0, H(t,qs)≤ H(qs,qs) and H(t,qs)≥ tβ−1H(1,qs) for all t,s ∈ [0,1].

From Lemmas 2.2 and 2.4, it is easy to obtain the following lemma.

Lemma 2.5. Let 0≤ y(t) ∈C[0,1] and 1 < α ≤ 2. Then the fractional q-difference bound-
ary value problem (2.1) has a unique solution u(t)≥ 0, t ∈ [0,1].

Let E = {u : u,φµ(Dα
q u) ∈C2[0,1]}. Now we introduce the following definitions about

the upper and lower solutions of the fractional q-difference boundary value problem (1.1).

Definition 2.3. A function ϕ(t) is called a lower solution of fractional q-difference bound-
ary value problem (1.1), if ϕ(t) ∈ E and ϕ(t) satisfies

Dβ
q (φµ(Dα

q ϕ(t)))≤ f (t,ϕ(t)), 0 < t < 1,
ϕ(0)≤ 0, ϕ(1)≤ 0, Dα

q ϕ(0)≥ 0, Dα
q ϕ(1)≥ 0.

Definition 2.4. A function ψ(t) is called an upper solution of fractional q-difference bound-
ary value problem (1.1), if ψ(t) ∈ E and ψ(t) satisfies

Dβ
q (φµ(Dα

q ψ(t)))≥ f (t,ψ(t)), 0 < t < 1,
ψ(0)≥ 0, ψ(1)≥ 0, Dα

q ψ(0)≤ 0, Dα
q ψ(1)≤ 0.

3. Main results

For the sake of simplicity, we make the following assumptions throughout this paper.

(H1) f (t,u) ∈C[(0,1)× (0,+∞), [0,+∞)] and f (t,u) is nonincreasing relative to u;
(H2) For any constant ρ > 0, f (t,ρ) 6≡ 0 and 0 <

∫ 1
0 H(qs,qs) f (s,ρsα−1)dqs < +∞.
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We define P = {u ∈C[0,1] : there exists a positive number λu such that u(t) ≥ λutα−1,
t ∈ [0,1]}. Obviously, e(t) = tα−1 ∈ P. Therefore, P is not empty. And define an operator
T by

Tu(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ) f (τ,u(τ))dqτ

)
dqs, ∀u ∈ P.

Theorem 3.1. Suppose that conditions (H1)-(H2) are satisfied, then the boundary value
problem (1.1) has at least one positive solution u(t), which satisfies u(t)≥ κtα−1 for some
κ > 0.

Proof. We will divide our proof into four steps.

Step 1. We show that T is well defined on P and T (P)⊆ P.
Firstly, combining Lemma 2.4 and conditions (H1)-(H2), for any u ∈ P, by the definition

of P, there exists λu > 0, such that∫ 1

0
H(s,qτ) f (τ,u(τ))dqτ ≤

∫ 1

0
H(s,qτ) f (τ,λuτ

α−1)dqτ < +∞.

Therefore,

Tu(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ) f (τ,u(τ))dqτ

)
dqs

≤
∫ 1

0
G(qs,qs)dqs ·φν

(∫ 1

0
H(qτ,qτ) f (τ,λuτ

α−1)dqτ

)
< +∞.

Secondly, it follows from Lemma 2.4 that

Tu(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ) f (τ,u(τ))dqτ

)
dqs

≥ tα−1
∫ 1

0
G(1,qs)φν

(∫ 1

0
H(s,qτ) f (τ,u(τ))dqτ

)
dqs = λTutα−1, ∀t ∈ [0,1].

Consequently, It follows from the above that T is well defined and T (P)⊆ P.
At the same time, by direct computations, we can obtain

(3.1) Dβ
q (φµ(Dα

q (Tu)(t))) = f (t,u(t)), 0 < t < 1,
(Tu)(0) = (Tu)(1) = 0, Dα

q (Tu)(0) = Dα
q (Tu)(1) = 0.

Let
m(t) = min{e(t),(Te)(t)}, n(t) = max{e(t),(Te)(t)}.

Obviously m(t) and n(t) make sense and m(t)≤ n(t).

Step 2. We will prove that the functions ϕ(t) = T n(t), ψ(t) = T m(t) are a couple of lower
and upper solutions of the fractional q-difference boundary value problem (1.1), respec-
tively.

Since Te ∈ P, it follows that there a positive number λTe such that Te(t) ≥ λTee(t).
Therefore, m(t) = min{1,λTe}e(t) = λ1e(t). This implies m(t) ∈ P and n(t) ∈ P. From
(H1), we know that T is nonincreasing relative to u. Furthermore, T m(t) and T n(t) make
sense and

T n(t)≤ T m(t)≤ T (λ1e)(t), t ∈ [0,1].
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Therefore, ϕ(t)≤ψ(t). With the aid of the decreasing property of the operator T , it follows
that

(3.2) T n(t)≤ Te(t)≤ n(t), T m(t)≥ Te(t)≥ m(t), t ∈ [0,1].

By Step 1, we know ϕ(t),ψ(t) ∈ P. And it follows from (3.1) and (3.2), we obtain

Dβ
q (φµ(Dα

q ϕ(t)))− f (t,ϕ(t))≤ Dβ
q (φµ(Dα

q (T n)(t)))− f (t,n(t)) = 0,
ϕ(0) = ϕ(1) = 0, Dα

q ϕ(0) = Dα
q ϕ(1) = 0,

Dβ
q (φµ(Dα

q ψ(t)))− f (t,ψ(t))≥ Dβ
q (φµ(Dα

q (T m)(t)))− f (t,m(t)) = 0,
ψ(0) = ϕ(1) = 0, Dα

q ψ(0) = Dα
q ψ(1) = 0,

that is, ϕ(t) and ψ(t) are a couple of lower and upper solutions of fractional q-difference
boundary value problem (1.1), respectively.

Step 3. We will show that the fractional q-difference boundary value problem

(3.3) Dβ
q (φµ(Dα

q u(t))) = g(t,u(t)), 0 < t < 1,
u(0) = u(1) = 0, Dα

q u(0) = Dα
q u(1) = 0,

has a positive solution, where

g(t,u(t)) =


f (t,ϕ(t)), if u(t) < ϕ(t),
f (t,u(t)), if ϕ(t)≤ u(t)≤ ψ(t),
f (t,ψ(t)), if u(t) > ψ(t).

To see this, we consider the operator A : C[0,1]→C[0,1] defined as follows:

Au(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ)g(τ,u(τ))dqτ

)
dqs,

where G(t,s) is defined as (2.2), H(t,s) is defined as (2.3). It is clear that Au ≥ 0, for all
u ∈ P, and a fixed point of the operator A is a solution of the boundary value problem (3.3).

Since ϕ(t) ∈ P, there exists a positive number λϕ such that ϕ(t) ≥ λϕ tα−1, t ∈ [0,1]. It
follows from (H2) that∫ 1

0
H(qτ,qτ)g(τ,u(τ))dqτ ≤

∫ 1

0
H(qτ,qτ) f (τ,u(τ))dqτ

≤
∫ 1

0
H(qτ,qτ) f (τ,λϕ τ

α−1)dqτ < +∞.

Consequently, for all u(t) ∈C[0,1], we have

Au(t) =
∫ 1

0
G(t,qs)φν

(∫ 1

0
H(s,qτ)g(τ,u(τ))dqτ

)
dqs

≤
∫ 1

0
G(qs,qs)φν

(∫ 1

0
H(s,qτ)g(τ,u(τ))dqτ

)
dqs

≤
∫ 1

0
G(qs,qs)dqs ·φν

(∫ 1

0
H(qτ,qτ) f (τ,ϕ(τ))dqτ

)
< +∞,

which implies that the operator A is uniformly bounded.
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On the other hand, since G(t,s) is continuous on [0,1]× [0,1], it is uniformly continuous
on [0,1]× [0,1]. So, for fixed s ∈ [0,1] and for any ε > 0, there exists a constant δ > 0, such
that any t1, t2 ∈ [0,1] and |t1− t2|< δ ,

|G(t1,qs)−G(t2,qs)|< ε

φν

(∫ 1
0 H(qτ,qτ) f (τ,λϕ τα−1)dqτ

) .

Then, for all u(t) ∈C[0,1], we have

|Au(t1)−Au(t2)|=
∫ 1

0
|G(t1,qs)−G(t2,qs)|φν

(∫ 1

0
H(s,qτ)g(τ,u(τ))dqτ

)
dqs

≤
∫ 1

0
|G(t1,qs)−G(t2,qs)|φν

(∫ 1

0
H(s,qτ) f (τ,ϕ(τ))dqτ

)
dqs

≤
∫ 1

0
|G(t1,qs)−G(t2,qs)|dqs ·φν

(∫ 1

0
H(qτ,qτ) f (τ,ϕ(τ))dqτ

)
< ε,

that is to say, A is equicontinuous. Thus, from the Arzela-Ascoli Theorem, we know that
A is a compact operator. by using the Schauder’s fixed point theorem, the operator A has
a fixed point; i.e., the fractional q-difference boundary value problem (3.3) has a positive
solution.

Step 4. We will prove that the boundary value problem (1.1) has at least one positive
solution. Suppose that u(t) is a solution of (3.3), we only need to prove that ϕ(t)≤ u(t)≤
ψ(t), t ∈ [0,1]. Now we claim that ϕ(t)≤ u(t)≤ ψ(t), t ∈ [0,1]. From this it follows that

(3.4)
Dβ

q (φµ(Dα
q u(t))) = f (t,u(t)), 0 < t < 1,

u(0) = u(1) = 0, Dα
q u(0) = Dα

q u(1) = 0.

Suppose by contradiction that u(t)≥ ψ(t). According to the definition of g, we have

g(t,u(t)) = f (t,ψ(t)), 0 < t < 1.

Consequently, we obtain

(3.5) Dβ
q (φµ(Dα

q u(t))) = f (t,ψ(t)), 0 < t < 1.

On the other hand, since ψ is an upper solution to (1.1), we obviously have

(3.6) Dβ
q (φµ(Dα

q ψ(t)))≥ f (t,ψ(t)), 0 < t < 1.

Let z(t) = φµ(Dα
q ψ(t))−φµ(Dα

q u(t)), 0 < t < 1. From (3.5) and (3.6), we have

Dβ
q (φµ(Dα

q ψ(t)))−Dβ
q (φµ(Dα

q u(t)))≥ f (t,ψ(t))− f (t,ψ(t)) = 0, t ∈ [0,1]

and z(0) = 0, z(1) = 0. Thus, by Lemma 2.5, we have z(t)≤ 0, t ∈ [0,1], which implies that

φµ(Dα
q ψ(t))≤ φµ(Dα

q u(t)), t ∈ [0,1].

Since φµ is monotone increasing, we obtain Dα
q ψ(t) ≤ Dα

q u(t), i.e., Dα
q (ψ − u)(t) ≤ 0.

Combining Lemma 2.5, we have (ψ − u)(t) ≥ 0. Therefore, ψ(t) ≥ u(t), t ∈ [0,1], a con-
tradiction to the assumption that u(t) > ψ(t). Hence, u(t) > ψ(t) is impossible.

Similarly, suppose by contradiction that u(t) ≤ ϕ(t). According to the definition of g,
we have

g(t,u(t)) = f (t,ϕ(t)), 0 < t < 1.
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Consequently, we obtain

(3.7) Dβ
q (φµ(Dα

q u(t))) = f (t,ϕ(t)), 0 < t < 1.

On the other hand, since ψ is an upper solution to (1.1), we obviously have

(3.8) Dβ
q (φµ(Dα

q ϕ(t)))≤ f (t,ϕ(t)), 0 < t < 1.

Let z(t) = φµ(Dα
q u(t))−φµ(Dα

q ϕ(t)), 0 < t < 1. From (3.7) and (3.8), we have

Dβ
q (φµ(Dα

q u(t)))−Dβ
q (φµ(Dα

q ϕ(t)))≥ f (t,ϕ(t))− f (t,ϕ(t)) = 0, t ∈ [0,1]

and z(0) = 0, z(1) = 0. Thus, by Lemma 2.5, we have z(t)≤ 0, t ∈ [0,1], which implies that

φµ(Dα
q u(t))≤ φµ(Dα

q ϕ(t)), t ∈ [0,1].

Since φµ is monotone increasing, we obtain Dα
q u(t)≤Dα

q ϕ(t), i.e., Dα
q (u−ϕ)(t)≤ 0. Com-

bining Lemma 2.5, we have (u−ϕ)(t)≥ 0. Therefore, u(t)≥ϕ(t), t ∈ [0,1], a contradiction
to the assumption that u(t) < ϕ(t). Hence, u(t) < ϕ(t) is impossible.

Consequently, we have that ϕ(t)≤ u(t)≤ ψ(t), t ∈ [0,1], that is, u(t) is a positive solu-
tion of the boundary value problem (1.1). Furthermore, ϕ(t) ∈ P implies that there exists
a positive constant κ such that u(t) ≥ ϕ(t) ≥ κtα−1, t ∈ [0,1]. Thus, we have finished the
proof of Theorem 3.1.

Theorem 3.2. If f (t,u) ∈C([0,1]× [0,+∞), [0,+∞)) is decreasing in u and f (t,ρ) 6≡ 0 for
any ρ > 0, then the boundary value problem (1.1) has at least one positive solution u(t),
which satisfies u(t)≥ κtα−1 for some κ > 0.

Proof. The proof is similar to Theorem 3.1, we omit it here.

4. Two examples

Example 4.1. Consider the fractional q-difference boundary value problem

(4.1)
D4/3

1/2(φµ(D3/2
1/2u(t))) =

2(1+ 3
√

t)√
tu(t)

, 0 < t < 1,

u(0) = u(1) = 0, D3/2
1/2u(0) = D3/2

1/2u(1) = 0.

It is easy to check that (H1) holds. For any ρ > 0, f (t,ρ) 6≡ 0 and∫ 1

0
H(qs,qs) f (s,ρsα−1)dqs =

1
√

ρ

∫ 1

0
H(qs,qs)

2(1+ 3
√

s)
s3/4 dqs≈ 1.86460

√
ρ

< +∞,

which implies that (H2) holds. Theorem 3.1 implies that the boundary value problem (4.1)
has at least one positive solution.

Example 4.2. Consider the fractional q-difference boundary value problem

(4.2)
D4/3

1/2(φµ(D3/2
1/2u(t))) = t2 +

1√
u(t)+4

, 0 < t < 1,

u(0) = u(1) = 0, D3/2
1/2u(0) = D3/2

1/2u(1) = 0.

It is easy to check that f (t,u) : [0,1]× [0,+∞)→ [0,+∞) is continuous and decreasing in u
and f (t,ρ) 6≡ 0 for any ρ > 0. Theorem 3.2 implies that the boundary value problem (4.2)
has at least one positive solution.
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