On the 2-Absorbing Ideals in Commutative Rings

${ }^{1}$ Sh. Payrovi and ${ }^{2}$ S. Babaei
${ }^{1}$ Imam Khomeini International University, Postal Code: 34149-6818 Qazvin, Iran
${ }^{2}$ Department of Mathematics, Takestan Branch, Islamic Azad University, Takestan, Iran
${ }^{1}$ shpayrovi@ikiu.ac.ir, ${ }^{2}$ sakine-babaei@yahoo.com

Abstract

Let R be a commutative ring with identity. In this article, we study a generalization of prime ideal. A proper ideal I of R is called a 2-absorbing ideal if whenever $a b c \in I$ for $a, b, c \in R$, then $a b \in I$ or $b c \in I$ or $a c \in I$. It is shown that if I is a 2 -absorbing ideal of a Noetherian ring R, then R / I has some ideals J_{n}, where $1 \leq n \leq t$ and t is a positive integer, such that J_{n} possesses a prime filtration $F_{J_{n}}: 0 \subset R\left(x_{1}+I\right) \subset R\left(x_{1}+I\right) \oplus R\left(x_{2}+I\right) \subset \cdots \subset$ $R\left(x_{1}+I\right) \oplus \cdots \oplus R\left(x_{n}+I\right)=J_{n}$ with $\operatorname{Ass}_{R}\left(J_{n}\right)=\left\{I:_{R} x_{i} \mid i=1, \ldots, n\right\}$ and $\left|\operatorname{Ass}_{R}\left(J_{n}\right)\right|=n$. Also, a 2-Absorbing Avoidance Theorem is proved.

2010 Mathematics Subject Classification: 13A15
Keywords and phrases: 2-absorbing ideal.

1. Introduction

In this article, we study 2 -absorbing ideals in commutative rings with non-zero identity, which are a generalization of prime ideals. The concept of 2 -absorbing ideals was introduced and investigated in [1, 2]. A proper ideal I of a commutative ring R is called a 2 -absorbing ideal if whenever $a b c \in I$ for $a, b, c \in R$, then $a b \in I$ or $b c \in I$ or $a c \in I$. The reader is referred to [1] and [2] for more results and examples on 2-absorbing ideals.

For any Noetherian module M over a commutative ring R, there exists a chain $F_{M}: 0=$ $M_{0} \subset M_{1} \subset \cdots \subset M_{n-1} \subset M_{n}=M$ in which the factors $M_{i} / M_{i-1}(i=1, \ldots, n)$ are isomorphic to R / \mathfrak{p}_{i} for some prime ideal \mathfrak{p}_{i} of R. These chains are useful devices in the study of Noetherian modules. Following the notation of [4], we call such a chain a prime filtration of M and we denote the set of prime ideals occurring as a factor in F_{M} by $\mathbb{P}\left(F_{M}\right)$ and the length of F_{M} by $l\left(F_{M}\right)$. It easily follows that $\operatorname{Ass}(M) \subseteq \mathbb{P}\left(F_{M}\right)$ and $|\operatorname{Ass}(M)| \leq n=l\left(F_{M}\right)$. In [4], A. Li studied finitely generated modules M over a Noetherian ring R for which there exists a prime filtration F_{M} such that $\operatorname{Ass}(M)=\mathbb{P}\left(F_{M}\right)$ and $|\operatorname{Ass}(M)|=l\left(F_{M}\right)$.

This article is devoted to the study of 2-absorbing ideals and construction of some prime filtrations F_{M}, for R-modules M, such that $\operatorname{Ass}(M)=\mathbb{P}\left(F_{M}\right)$ and $|\operatorname{Ass}(M)|=l\left(F_{M}\right)$.

Let I be a 2 -absorbing ideal of a commutative ring R. In section 2, the basic properties of the ideals $I:_{R} x$ are studied. It is shown that $I:_{R} x$ is a 2-absorbing ideal of R, and $\left\{I:_{R}\right.$
$x \mid x \in R\}$ is a totally ordered set. Also, it is shown that if R is a Noetherian ring, then R / I has some ideals $J_{n}=R\left(x_{1}+I\right) \oplus \cdots \oplus R\left(x_{n}+I\right)$, where $1 \leq n \leq t$ and t is a positive integer, which are the direct sum of cyclic R-modules. Furthermore, $\operatorname{Ass}\left(J_{n}\right)=\left\{I:_{R} x_{1}, \ldots, I:_{R} x_{n}\right\}$.

The Prime Avoidance Theorem [6, 3.61], states that: let $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}$, where $n \geq 2$, be ideals of R such that at most two of $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}$ are not prime. Let I be an ideal of R such that $I \subseteq \mathfrak{p}_{1} \cup \mathfrak{p}_{2} \cup \cdots \cup \mathfrak{p}_{n}$. Then $I \subseteq \mathfrak{p}_{i}$ for some i with $1 \leq i \leq n$. In section 3, we prove a 2-Absorbing Avoidance Theorem. Precisely, we prove: let $I_{1}, I_{2}, \ldots, I_{n}$, where $n \geq 2$, be ideals of R such that at most two of $I_{1}, I_{2}, \ldots, I_{n}$ are not 2-absorbing and let $I_{i} \nsubseteq I_{j}: R x$, for all $x \in \sqrt{I}_{j} \backslash I_{j}$ with $i \neq j$. Let I be an ideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then $I \subseteq I_{i}$ for some i with $1 \leq i \leq n$.

The following are some basic facts about primary and 2-absorbing ideals in a commutative ring R.

Theorem 1.1. [6, Lemma 4.14] Let Q be a \mathfrak{p}-primary ideal of R and let $x \in R$.
(i) If $x \in Q$, then $Q:_{R} x=R$.
(ii) If $x \notin Q$, then $Q:_{R} x$ is a \mathfrak{p}-primary ideal of R, so that, $\sqrt{Q:_{R} x}=\mathfrak{p}$.
(iii) If $x \notin \mathfrak{p}$, then $Q: R x=Q$.

Theorem 1.2. [2, Theorem 2.4] Let I be a 2-absorbing ideal of R. Then one of the following statements must hold:
(i) $\sqrt{I}=\mathfrak{p}$ is a prime ideal of R such that $\mathfrak{p}^{2} \subseteq I$.
(ii) $\sqrt{I}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}, \mathfrak{p}_{1} \mathfrak{p}_{2} \subseteq I$, and $(\sqrt{I})^{2} \subseteq I$, where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are the only distinct prime ideals of R that are minimal over I.

Theorem 1.3. [2, Theorem 2.5] Let I be a 2-absorbing ideal of R such that $\sqrt{I}=\mathfrak{p}$ is a prime ideal of R and suppose that $I \neq \mathfrak{p}$. Then for each $x \in \mathfrak{p} \backslash I, I:_{R} x$ is a prime ideal of R containing \mathfrak{p}. Furthermore, either $I:_{R} x \subseteq I:_{R} y$ or $I:_{R} y \subseteq I:_{R} x$, for every $x, y \in \mathfrak{p} \backslash I$.

Theorem 1.4. [2, Theorem 2.6] Let I be a 2 -absorbing ideal of R such that $\sqrt{I}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ where \mathfrak{p}_{1} and \mathfrak{p}_{2} are the only non-zero distinct prime ideals of R that are minimal over I. Then for each $x \in \sqrt{I} \backslash I, I:_{R} x$ is a prime ideal of R containing \mathfrak{p}_{1} and \mathfrak{p}_{2}. Furthermore, either $I:_{R} x \subseteq I:_{R}$ y or $I:_{R} y \subseteq I:_{R} x$, for every $x, y \in \sqrt{I} \backslash I$.

Throughout this article, R denotes a commutative ring with non-zero identity and I is an ideal of R. Let $\sqrt{I}=\left\{r \in R\right.$: there exists $n \in \mathbb{N}$ with $\left.r^{n} \in I\right\}$ denote the radical of I and let $I:_{R} x$ denote the ideal $\{r \in R: r x \in I\}$ of R. We say that $\mathfrak{p} \in \operatorname{Spec}(R)$ is an associated prime ideal of an R-module M if there exists a non-zero element $m \in M$ such that $0:_{R} m=\mathfrak{p}$. The set of associated prime ideals of M is denoted by $\operatorname{Ass}(M)$. For notations and terminologies not given in this article, the reader is referred to [6].

2. The results

Let I be a 2-absorbing ideal of R and $x \in R$. In the following, we study the ideals $I:_{R} x$, where $x \notin \sqrt{I}$. First of all, the following example shows that $\left\{I:_{R} x \mid I \subset I:_{R} x \subset \sqrt{I}, x \notin \sqrt{I}\right\}$ may be a non-empty set. Suppose that $R=\mathbb{Z}[x, y, z]$, where \mathbb{Z} is the ring of integers, x, y, z are indeterminates, $I=\left(4,2 x, 2 y, x y, x z, x^{2}\right) R$ and $\mathfrak{p}=(2, x) R$. Example 2.12, in [2], shows that I is a 2 -absorbing ideal of R and $\sqrt{I}=\mathfrak{p}$. It is easy to see that $z \notin \sqrt{I}, x \in I:_{R} z \backslash I$, $2 \in \sqrt{I} \backslash I:_{R} z$ and $I \subset I:_{R} z \subset \sqrt{I}$.

Theorem 2.1. Let I be a 2-absorbing ideal of R and let $\mathfrak{p}, \mathfrak{q}$ be distinct prime ideals of R.
(i) If $\sqrt{I}=\mathfrak{p}$, then $I:_{R} x$ is a 2-absorbing ideal of R with $\sqrt{I:_{R} x}=\mathfrak{p}$, for all $x \in R \backslash \mathfrak{p}$, and $\Sigma=\left\{I:_{R} x \mid x \in R\right\}$ is a totally ordered set.
(ii) If $\sqrt{I}=\mathfrak{p} \cap \mathfrak{q}$, then $I:_{R} x$ is a 2-absorbing ideal of R with $\sqrt{I:_{R} x}=\mathfrak{p} \cap \mathfrak{q}$, for all $x \in R \backslash \mathfrak{p} \cup \mathfrak{q}$, and $\Sigma=\left\{I:_{R} x \mid x \in R \backslash \mathfrak{p} \cup \mathfrak{q}\right\}$ is a totally ordered set.
(iii) If $\sqrt{I}=\mathfrak{p} \cap \mathfrak{q}$, then $I:_{R} x=\mathfrak{q}$, for all $x \in \mathfrak{p} \backslash \mathfrak{q}$, and $I:_{R} x=\mathfrak{p}$, for all $x \in \mathfrak{q} \backslash \mathfrak{p}$. Also $I:_{R} x$ is a prime ideal of R containing \mathfrak{p} and \mathfrak{q}, for all $x \in \mathfrak{p} \cap \mathfrak{q} \backslash I$.

Proof. (i) Let $x \in R \backslash \mathfrak{p}$ and let $a, b, c \in R$ be such that $a b c \in I:_{R} x$. Then $a b c x \in I$. So $a x \in I$ or $b c x \in I$ or $a b c \in I$ since I is a 2 -absorbing ideal of R. If either $a x \in I$ or $b c x \in I$, we are done. If $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$, which implies $a b x \in I$ or $a c x \in I$ or $b c x \in I$. Hence, $I:_{R} x$ is a 2-absorbing ideal of R. It is easy to see that $I \subseteq I:_{R} x \subseteq \mathfrak{p}$, so that, $\sqrt{I:_{R} x}=\mathfrak{p}$.

For the second assertion, suppose that $x, y \in R \backslash \mathfrak{p}$. It is clear that $x y \in R \backslash \mathfrak{p}$. Also, it is clear that $I:_{R} x \subseteq I:_{R} x y$ and $I:_{R} y \subseteq I:_{R} x y$. Thus $\left(I:_{R} x\right) \cup\left(I:_{R} y\right) \subseteq I:_{R} x y$. To establish the reverse inclusion, let $z \in I:_{R} x y$. Then $x y z \in I$. It follows that either $x z \in I$ or $y z \in I$ since $x y \notin I$. Thus either $z \in I:_{R} x$ or $z \in I:_{R} y$. Hence, $I:_{R} x y \subseteq\left(I:_{R} x\right) \cup\left(I:_{R} y\right)$, and therefore $I:_{R} x y=\left(I:_{R} x\right) \cup\left(I:_{R} y\right)$. So it follows that either $I:_{R} x y=I:_{R} x$ or $I:_{R} x y=I:_{R} y$. Thus either $I:_{R} x \subseteq I:_{R} y$ or $I:_{R} y \subseteq I:_{R} x$. Therefore, $\Sigma^{\prime}=\left\{I:_{R} x \mid x \in R \backslash \mathfrak{p}\right\}$ is a totally ordered set. On the other hand, for each $x \in \mathfrak{p} \backslash I, I:_{R} x$ is a prime ideal of R containing \mathfrak{p} and $\Sigma^{\prime \prime}=\left\{I:_{R} x \mid x \in \mathfrak{p} \backslash I\right\}$ is a totally ordered set, by 1.3. Hence, $\Sigma=\left\{I:_{R} x \mid x \in R\right\}$ is a totally ordered set.
(ii) By a similar argument to that of (i), we can prove $I:_{R} x$ is a 2-absorbing ideal of R and $\sqrt{I:_{R} x}=\mathfrak{p} \cap \mathfrak{q}$, for each $x \notin \mathfrak{p} \cup \mathfrak{q}$. Also, it is easy to see $\Sigma=\left\{I:_{R} x \mid x \in R \backslash \mathfrak{p} \cup \mathfrak{q}\right\}$ is a totally ordered set.
(iii) Assume that $x \in \mathfrak{p} \backslash \mathfrak{q}$. We show $I:_{R} x=\mathfrak{q}$. It is easy to see that $I:_{R} x \subseteq \mathfrak{q}$. Now, suppose that $z \in \mathfrak{q}$. Thus $x z \in \mathfrak{p q}$ and $\mathfrak{p q} \subseteq I$, by 1.2(ii). Hence, $x z \in I$ and $z \in I:_{R} x$. So $I:_{R} x=\mathfrak{q}$. By a similar argument, we can show that $I:_{R} x=\mathfrak{p}$ whenever $x \in \mathfrak{q} \backslash \mathfrak{p}$. The last claim follows by 1.4.

Corollary 2.1. Let I be a 2 -absorbing ideal of R and let $\mathfrak{p}, \mathfrak{q}$ be distinct prime ideals of R.
(i) If $\sqrt{I}=\mathfrak{p}$, then $\operatorname{Ass}(R / I)$ is a totally ordered set.
(ii) If $\sqrt{I}=\mathfrak{p} \cap \mathfrak{q}$, then $\operatorname{Ass}(R / I)$ is the union of two totally ordered sets.

Proof. (i) Let $\mathfrak{q}^{\prime} \in \operatorname{Ass}(R / I)$. Then there exists $x \in R \backslash I$ such that $\mathfrak{q}^{\prime}=I:_{R} x$. If $x \notin \mathfrak{p}$, then $\mathfrak{q}^{\prime}=\mathfrak{p}$, by $2.1(\mathrm{i})$. Otherwise, $\mathfrak{p} \subseteq I:_{R} x=\mathfrak{q}^{\prime}$, by 1.3. Also, $\operatorname{Ass}(R / I)$ is a totally ordered set.
(ii) Let $\mathfrak{q}^{\prime} \in \operatorname{Ass}(R / I)$. Then there exists $x \in R \backslash I$ such that $\mathfrak{q}^{\prime}=I:_{R} x$. If $x \notin \mathfrak{p} \cap \mathfrak{q}$, then in view of 2.1 (ii) and (iii), either $\mathfrak{q}^{\prime}=\mathfrak{p}$ or $\mathfrak{q}^{\prime}=\mathfrak{q}$. If $x \in \mathfrak{p} \cap \mathfrak{q}$, then we have $\mathfrak{p} \subseteq \mathfrak{q}^{\prime}$ and $\mathfrak{q} \subseteq \mathfrak{q}^{\prime}$, by 1.4. Also, $\operatorname{Ass}(R / I)$ is the union of two totally ordered sets.

The following theorem offers some R-modules M for which there exists a prime filtration F_{M} such that $\operatorname{Ass}(M)=\mathbb{P}\left(F_{M}\right)$ and $|\operatorname{Ass}(M)|=l\left(F_{M}\right)$.
Theorem 2.2. Let R be a Noetherian ring and let I be a 2-absorbing ideal of R. Then there are $x_{1}, \ldots, x_{n} \in R$ with $1 \leq n \leq t$, where t is a positive integer, and ideals $J_{n}=R\left(x_{1}+I\right) \oplus$ $\cdots \oplus R\left(x_{n}+I\right)$ of R / I such that

$$
\operatorname{Ass}\left(J_{n}\right)=\left\{I:_{R} x_{1}, \ldots, I:_{R} x_{n}\right\} .
$$

Proof. Let $x_{1}, \ldots, x_{m} \in R$ be such that $\sqrt{I} / I=\left(x_{1}+I, \ldots, x_{m}+I\right)$. Then in view of 1.3 and 1.4, we have a chain $I:_{R} x_{1} \subseteq \cdots \subseteq I:_{R} x_{m}$ of prime ideals of R. Now, we can omit any superfluous terms to obtain a strictly ascending chain $I:_{R} x_{1} \subset \cdots \subset I:_{R} x_{t}$, where $1 \leq t \leq m$ is a positive integer. Thus $x_{1}+I, \ldots, x_{t}+I$ is an associated sequence of R / I, see [4] Definition 1.4. Hence, in view of Theorem 3.2 in [4], for every $1 \leq n \leq t$, the ideal J_{n} of R / I generated by $x_{1}+I, \ldots, x_{n}+I$ is the direct sum $R\left(x_{1}+I\right) \oplus \cdots \oplus R\left(x_{n}+I\right)$. Also,

$$
0 \subset R\left(x_{1}+I\right) \subset R\left(x_{1}+I\right) \oplus R\left(x_{2}+I\right) \subset \cdots \subset R\left(x_{1}+I\right) \oplus \cdots \oplus R\left(x_{n}+I\right)=J_{n}
$$

is a prime filtration of submodules of J_{n} with $\oplus_{j=1}^{i} R\left(x_{j}+I\right) / \oplus_{j=1}^{i-1} R\left(x_{j}+I\right) \cong R / I:_{R} x_{i}$ and

$$
\operatorname{Ass}\left(J_{n}\right)=\left\{I:_{R} x_{1}, \ldots, I:_{R} x_{n}\right\} .
$$

An ideal I of R is said to be irreducible precisely when I is proper and I cannot be expressed as the intersection of two strictly larger ideals of R. The following theorem shows the relationship between irreducible and 2 -absorbing ideals.

Theorem 2.3. Let I be an irreducible ideal of R and let $\mathfrak{p}, \mathfrak{q}$ be distinct prime ideals of R.
(i) If $\sqrt{I}=\mathfrak{p}$, then I is 2-absorbing if and only if $\mathfrak{p}^{2} \subseteq I$ and $I:_{R} x=I:_{R} x^{2}$, for all $x \in R \backslash \mathfrak{p}$.
(ii) If $\sqrt{I}=\mathfrak{p} \cap \mathfrak{q}$, then I is 2-absorbing if and only if $\mathfrak{p q} \subseteq I$ and $I:_{R} x=I:_{R} x^{2}$, for all $x \in R \backslash \mathfrak{p} \cap \mathfrak{q}$.

Proof. (i) (\Rightarrow) By 1.2(i), we have $\mathfrak{p}^{2} \subseteq I$. Assume that $x \in R \backslash \mathfrak{p}$. We have to show that $I:_{R} x=I:_{R} x^{2}$. It is clear that $I:_{R} x \subseteq I:_{R} x^{2}$. For the reverse inclusion, let $y \in I:_{R} x^{2}$. So $x^{2} y \in I$. This implies that either $x y \in \bar{I}$ or $x^{2} \in I$ since I is 2 -absorbing. If $x y \in I$ we are done. Otherwise, $x^{2} \in I$ which implies that $x \in \mathfrak{p}$ and this is a contradiction.
(\Leftarrow) Assume that $x, y, z \in R, x y z \in I$ and $x y \notin I$. We show that either $x z \in I$ or $y z \in I$. From $x y \notin I$ it follows that $x \notin \mathfrak{p}$ or $y \notin \mathfrak{p}$. Otherwise, $x \in \mathfrak{p}$ and $y \in \mathfrak{p}$. Thus $x y \in \mathfrak{p}^{2} \subseteq I$. But this is a contradiction because $x y \notin I$. So that, by assumption, either $I:_{R} x=I:_{R} x^{2}$ or $I:_{R} y=I:_{R} y^{2}$. Suppose that $I:_{R} x=I:_{R} x^{2}$. To establish the claim, suppose, on the contrary, that $x z \notin I$ and $y z \notin I$. We look for a contradiction. Let $a \in(I+x z) \cap(I+y z)$. Then there are $a_{1}, a_{2} \in I$ and $r_{1}, r_{2} \in R$ such that $a=a_{1}+r_{1} x z=a_{2}+r_{2} y z$. Thus $a x=a_{1} x+r_{1} x^{2} z=a_{2} x+r_{2} x y z \in I$. So that $r_{1} x^{2} z \in I$, and therefore $r_{1} x z \in I$ since $I:_{R} x=I:_{R} x^{2}$. Hence, $a=a_{1}+r_{1} x z \in I$. This shows that $(I+x z) \cap(I+y z) \subseteq I$, and then $(I+x z) \cap(I+y z)=I$. But this is a contradiction since I is irreducible. Thus we have shown that either $x z \in I$ or $y z \in I$, as claimed.
(ii) This can be proved, by using 1.2(ii), in a very similar manner to the way in which (i) was proved.

3. 2-Absorbing Avoidance Theorem

The first major result of this section (Theorem 3.2) is a 2-Absorbing Avoidance Theorem. We will need the following theorem.

Theorem 3.1. Let $I_{1}, I_{2}, \ldots, I_{n}(n \geq 2)$ be ideals of R such that at most two of $I_{1}, I_{2}, \ldots, I_{n}$ are not 2-absorbing. If I is an ideal of R and $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$, then $\sqrt{I} \subseteq \sqrt{I}$ i for some i with $1 \leq i \leq n$.

Proof. We may assume that I_{i} is a 2-absorbing ideal of R, for all $i>2$. Let $2<k \leq n$ be such that $\sqrt{I}_{i}=\mathfrak{p}_{i}$, for all i with $2<i \leq k$, and $\sqrt{I}_{i}=\mathfrak{p}_{i, 1} \cap \mathfrak{p}_{i, 2}$, for all i with $k+1 \leq i \leq n$, where $\mathfrak{p}_{i}, \mathfrak{p}_{i, j}$, for $j=1,2$, are prime ideals of R. Then

$$
\sqrt{I} \subseteq \sqrt{I}_{1} \cup \sqrt{I}_{2} \cup \mathfrak{p}_{3} \cup \cdots \cup \mathfrak{p}_{k} \cup\left(\mathfrak{p}_{k+1,1} \cap \mathfrak{p}_{k+1,2}\right) \cup \cdots \cup\left(\mathfrak{p}_{n, 1} \cap \mathfrak{p}_{n, 2}\right)
$$

and so

$$
\sqrt{I} \subseteq \sqrt{I}_{1} \cup \sqrt{I}_{2} \cup \mathfrak{p}_{3} \cup \cdots \cup \mathfrak{p}_{k} \cup \mathfrak{p}_{k+1, j_{k+1}} \cup \cdots \cup \mathfrak{p}_{n, j_{n}}
$$

where $j_{k+1}, \ldots, j_{n} \in\{1,2\}$. By the Prime Avoidance Theorem [6, 3.61], we have $\sqrt{I} \subseteq \sqrt{I_{1}}$ or $\sqrt{I} \subseteq \sqrt{I}_{2}$ or $\sqrt{I} \subseteq \mathfrak{p}_{i}$, with $3 \leq i \leq k$, or $\sqrt{I} \subseteq \mathfrak{p}_{i, j_{s}}$, where $k+1 \leq i \leq n$ and $j_{s} \in\{1,2\}$. If $\sqrt{I} \subseteq \sqrt{I}_{1}$ or $\sqrt{I} \subseteq \sqrt{I}_{2}$ or $\sqrt{I} \subseteq \mathfrak{p}_{i}$, for some $3 \leq i \leq k$, we are done. If $\sqrt{I} \subseteq \cup_{i=k+1}^{n} \mathfrak{p}_{i, j}$, then we may assume that $\sqrt{I} \subseteq \cap_{i=k+1}^{s} \mathfrak{p}_{i, 1}$ and $\sqrt{I} \nsubseteq \cup_{i=s+1}^{n} \mathfrak{p}_{i, 1}$, where $k+1 \leq s \leq n$. Now, $\sqrt{I} \subseteq \mathfrak{p}_{k+1,2} \cup \cdots \cup \mathfrak{p}_{s, 2} \cup \mathfrak{p}_{s+1,1} \cup \ldots \cup \mathfrak{p}_{n, 1}$ yields $\sqrt{I} \subseteq \mathfrak{p}_{j, 2}$, for some $k+1 \leq j \leq s$. Thus $\sqrt{I} \subseteq \mathfrak{p}_{j, 1} \cap \mathfrak{p}_{j, 2}=\sqrt{I}_{j}$, and this completes the proof.
Corollary 3.1. Let $I_{1}, I_{2}, \ldots, I_{n}$ be 2 -absorbing ideals of R, and suppose that I is an ideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then $I^{2} \subseteq I_{i}$, for some i with $1 \leq i \leq n$.
Proof. The claim follows by 3.1 and 1.2.
Let $I, I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R. Following [3], we call a covering $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup$ I_{n} efficient if no I_{k} is superfluous. Analogously, we shall say that $I=I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is an efficient union if none of the I_{k} may be excluded. Any cover or union consisting of ideals of R can be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms.

Theorem 3.2. (2-Absorbing Avoidance Theorem) Let $I_{1}, I_{2}, \ldots, I_{n}(n \geq 2)$ be ideals of R such that at most two of $I_{1}, I_{2}, \cdots, I_{n}$ are not 2 -absorbing and let $I_{i} \nsubseteq I_{j}:_{R} x$, for all $x \in \sqrt{I_{j}} \backslash I_{j}$ with $i \neq j$. Let I be an ideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then $I \subseteq I_{i}$, for some i with $1 \leq i \leq n$.
Proof. We suppose that $I \nsubseteq I_{j}$ for all j with $1 \leq j \leq n$ and look for a contradiction. Our assumption means that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is an efficient covering of ideals of R. Hence, $I=\cup_{i=1}^{n}\left(I_{i} \cap I\right)$ is an efficient union. Therefore, $\left(\bigcap_{i \neq k} I_{i}\right) \cap I \subseteq I_{k} \cap I$, by Lemma 2.1 in [5]. On the other hand, at most two of the I_{i} are not 2 -absorbing. We can, and do, assume that they have been indexed in such a way that I_{i} is a 2 -absorbing ideal, for all $i>2$. Now, a similar argument to that of 3.1 shows that either $I \subseteq I_{1} \cup I_{2}$ or $I \subseteq \sqrt{I}_{i}$, for some i with $2<i \leq n$. In the former case, we have a contradiction since by assumption $I \nsubseteq I_{j}$, for all j with $1 \leq j \leq n$; the second possibility leads to the following contradiction. Assume that $I \subseteq \sqrt{I}_{j}$, for some $2<j \leq n$. Thus there exists $x \in \sqrt{I}_{j} \backslash I_{j}$ such that $x \in I \backslash I_{j}$. Moreover, there are $r_{i} \in I_{i} \backslash\left(I_{j}:_{R} x\right)$ for all $i \neq j$, by hypothesis. Let $r=\prod_{i \neq j} r_{i}$. Then $r x \in\left(\bigcap_{i \neq j} I_{i} \cap I\right)$. Also, $r x \notin I_{j} \cap I$, for otherwise, $r \in I_{j}:_{R} x$, and this is a contradiction since $I_{j}:_{R} x$ is a prime ideal of R by 1.3 and 1.4. Therefore, there is a j with $1 \leq j \leq n$ such that $I \subseteq I_{j}$ and the proof is completed.
Corollary 3.2. Let $I_{1}, I_{2}, \ldots, I_{n}(n \geq 2)$ be ideals of R such that at most two of $I_{1}, I_{2}, \ldots, I_{n}$ are not 2-absorbing and let $I_{i} \nsubseteq I_{j}:_{R} x$, for all $x \in \sqrt{I}_{j} \backslash I_{j}$ with $i \neq j$. Let I be an ideal of R such that $I \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then $\left(\cup_{i=1}^{n} I_{i}\right):_{R} I=\cup_{i=1}^{n}\left(I_{i}:_{R} I\right)$.

There is a refinement of the 2-Absorbing Avoidance Theorem that is sometimes extremely useful.

Theorem 3.3. Let $I_{1}, I_{2}, \ldots, I_{n}$ be ideals of R such that at most one of $I_{1}, I_{2}, \ldots, I_{n}$ are not 2-absorbing and let $I_{i} \nsubseteq I_{j}:_{R} x$, for all $x \in \sqrt{I_{j}} \backslash I_{j}$ whenever $i \neq j$. Let I be an ideal of R and let $e \in R$ be such that $I+e \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$. Then $I+e \subseteq I_{i}$ for some i with $1 \leq i \leq n$.
Proof. Without destroying our assumption, we may assume that I_{1} is not 2 -absorbing. By using Theorem 12 in [3], and by a similar argument to that of 3.1, we can show either $I+e \subseteq$ I_{1} or $I+e \subseteq \sqrt{I}_{j}$, for some $2 \leq j \leq n$. If $I+e \subseteq I_{1}$, we are done. If $I+e \subseteq \sqrt{I}_{j}$ and $\sqrt{I}_{j}=I_{j}$, then the claim follows. Assume that $I+e \subseteq \sqrt{I}_{j}$ and $\sqrt{I}_{j} \neq I_{j}$. Thus $I \subseteq \sqrt{I}_{j}$ since $e \in \sqrt{I}_{j}$. If $I \nsubseteq I_{j}$, then there exists $x \in I \backslash I_{j}$, and by assumption, there are $r_{i} \in I_{i} \backslash I_{j}::_{R} x$, for all $i \neq j$. If $I+e \subseteq I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ is an efficient covering of I, then $I \cap\left(\cap_{i \neq j} I_{i}\right) \subseteq I \cap I_{j}$, which implies that $\prod_{i \neq j} r_{i} \in I_{j}:_{R} x$, and therefore $r_{i} \in I_{j}:_{R} x$, for some $i \neq j$, which is a contradiction. Thus the covering is not efficient, and so $I+e \subseteq I_{i}$ for some i with $1 \leq i \leq n$.

Acknowledgement. We would like to thank the referee for a careful reading of our article and insightful comments which saved us from several errors.

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39 (2011), no. 5, 1646-1672.
[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429.
[3] C. Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (1994), no. 8, 3087-3097.
[4] A. Li, Associated prime filtrations of finitely generated modules over Noetherian rings, Comm. Algebra 23 (1995), no. 4, 1511-1526.
[5] C.-P. Lu, Unions of prime submodules, Houston J. Math. 23 (1997), no. 2, 203-213.
[6] R. Y. Sharp, Steps in Commutative Algebra, second edition, London Mathematical Society Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.

