
BULLETIN of the
MALAYSIAN MATHEMATICAL

SCIENCES SOCIETY

http://math.usm.my/bulletin

Bull. Malays. Math. Sci. Soc. (2) 36(4) (2013), 895–900

On the 2-Absorbing Ideals in Commutative Rings

1SH. PAYROVI AND 2S. BABAEI
1Imam Khomeini International University, Postal Code: 34149-6818 Qazvin, Iran

2Department of Mathematics, Takestan Branch, Islamic Azad University, Takestan, Iran
1shpayrovi@ikiu.ac.ir, 2sakine-babaei@yahoo.com

Abstract. Let R be a commutative ring with identity. In this article, we study a generaliza-
tion of prime ideal. A proper ideal I of R is called a 2-absorbing ideal if whenever abc ∈ I
for a,b,c ∈ R, then ab ∈ I or bc ∈ I or ac ∈ I. It is shown that if I is a 2-absorbing ideal of a
Noetherian ring R, then R/I has some ideals Jn, where 1≤ n≤ t and t is a positive integer,
such that Jn possesses a prime filtration FJn : 0⊂ R(x1 + I)⊂ R(x1 + I)⊕R(x2 + I)⊂ ·· · ⊂
R(x1 + I)⊕·· ·⊕R(xn + I) = Jn with AssR(Jn) = {I :R xi | i = 1, . . . ,n} and |AssR(Jn)|= n.
Also, a 2-Absorbing Avoidance Theorem is proved.
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1. Introduction

In this article, we study 2-absorbing ideals in commutative rings with non-zero identity,
which are a generalization of prime ideals. The concept of 2-absorbing ideals was intro-
duced and investigated in [1, 2]. A proper ideal I of a commutative ring R is called a
2-absorbing ideal if whenever abc ∈ I for a,b,c ∈ R, then ab ∈ I or bc ∈ I or ac ∈ I. The
reader is referred to [1] and [2] for more results and examples on 2-absorbing ideals.

For any Noetherian module M over a commutative ring R, there exists a chain FM : 0 =
M0 ⊂M1 ⊂ ·· · ⊂Mn−1 ⊂Mn = M in which the factors Mi/Mi−1(i = 1, . . . ,n) are isomor-
phic to R/pi for some prime ideal pi of R. These chains are useful devices in the study of
Noetherian modules. Following the notation of [4], we call such a chain a prime filtration
of M and we denote the set of prime ideals occurring as a factor in FM by P(FM) and the
length of FM by l(FM). It easily follows that Ass(M) ⊆ P(FM) and |Ass(M)| ≤ n = l(FM).
In [4], A. Li studied finitely generated modules M over a Noetherian ring R for which there
exists a prime filtration FM such that Ass(M) = P(FM) and |Ass(M)|= l(FM).

This article is devoted to the study of 2-absorbing ideals and construction of some prime
filtrations FM , for R-modules M, such that Ass(M) = P(FM) and |Ass(M)|= l(FM).

Let I be a 2-absorbing ideal of a commutative ring R. In section 2, the basic properties
of the ideals I :R x are studied. It is shown that I :R x is a 2-absorbing ideal of R, and {I :R
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x | x ∈ R} is a totally ordered set. Also, it is shown that if R is a Noetherian ring, then R/I
has some ideals Jn = R(x1 + I)⊕·· ·⊕R(xn + I), where 1≤ n≤ t and t is a positive integer,
which are the direct sum of cyclic R-modules. Furthermore, Ass(Jn) = {I :R x1, . . . , I :R xn}.

The Prime Avoidance Theorem [6, 3.61], states that: let p1,p2, . . . ,pn, where n ≥ 2, be
ideals of R such that at most two of p1,p2, . . . ,pn are not prime. Let I be an ideal of R such
that I ⊆ p1 ∪ p2 ∪ ·· · ∪ pn. Then I ⊆ pi for some i with 1 ≤ i ≤ n. In section 3, we prove
a 2-Absorbing Avoidance Theorem. Precisely, we prove: let I1, I2, . . . , In, where n ≥ 2, be
ideals of R such that at most two of I1, I2, . . . , In are not 2-absorbing and let Ii 6⊆ I j :R x, for
all x ∈

√
I j \ I j with i 6= j. Let I be an ideal of R such that I ⊆ I1∪ I2∪ ·· ·∪ In. Then I ⊆ Ii

for some i with 1≤ i≤ n.
The following are some basic facts about primary and 2-absorbing ideals in a commuta-

tive ring R.

Theorem 1.1. [6, Lemma 4.14] Let Q be a p-primary ideal of R and let x ∈ R.

(i) If x ∈ Q, then Q :R x = R.
(ii) If x 6∈ Q, then Q :R x is a p-primary ideal of R, so that,

√
Q :R x = p.

(iii) If x 6∈ p, then Q :R x = Q.

Theorem 1.2. [2, Theorem 2.4] Let I be a 2-absorbing ideal of R. Then one of the following
statements must hold:

(i)
√

I = p is a prime ideal of R such that p2 ⊆ I.
(ii)
√

I = p1 ∩ p2, p1p2 ⊆ I, and (
√

I)2 ⊆ I, where p1,p2 are the only distinct prime
ideals of R that are minimal over I.

Theorem 1.3. [2, Theorem 2.5] Let I be a 2-absorbing ideal of R such that
√

I = p is a
prime ideal of R and suppose that I 6= p. Then for each x ∈ p\ I, I :R x is a prime ideal of R
containing p. Furthermore, either I :R x⊆ I :R y or I :R y⊆ I :R x, for every x,y ∈ p\ I.

Theorem 1.4. [2, Theorem 2.6] Let I be a 2-absorbing ideal of R such that
√

I = p1 ∩ p2
where p1 and p2 are the only non-zero distinct prime ideals of R that are minimal over I.
Then for each x ∈

√
I \ I, I :R x is a prime ideal of R containing p1 and p2. Furthermore,

either I :R x⊆ I :R y or I :R y⊆ I :R x, for every x,y ∈
√

I \ I.

Throughout this article, R denotes a commutative ring with non-zero identity and I is an
ideal of R. Let

√
I = {r ∈ R : there exists n ∈N with rn ∈ I} denote the radical of I and let

I :R x denote the ideal {r ∈ R : rx ∈ I} of R. We say that p ∈ Spec(R) is an associated prime
ideal of an R-module M if there exists a non-zero element m ∈M such that 0 :R m = p. The
set of associated prime ideals of M is denoted by Ass(M). For notations and terminologies
not given in this article, the reader is referred to [6].

2. The results

Let I be a 2-absorbing ideal of R and x ∈ R. In the following, we study the ideals I :R x,
where x 6∈

√
I. First of all, the following example shows that {I :R x | I⊂ I :R x⊂

√
I,x 6∈

√
I}

may be a non-empty set. Suppose that R = Z[x,y,z], where Z is the ring of integers, x, y, z
are indeterminates, I = (4,2x,2y,xy,xz,x2)R and p = (2,x)R. Example 2.12, in [2], shows
that I is a 2-absorbing ideal of R and

√
I = p. It is easy to see that z 6∈

√
I, x ∈ I :R z \ I,

2 ∈
√

I \ I :R z and I ⊂ I :R z⊂
√

I.
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Theorem 2.1. Let I be a 2-absorbing ideal of R and let p,q be distinct prime ideals of R.
(i) If

√
I = p, then I :R x is a 2-absorbing ideal of R with

√
I :R x = p, for all x ∈ R\p,

and Σ = {I :R x | x ∈ R} is a totally ordered set.
(ii) If

√
I = p∩ q, then I :R x is a 2-absorbing ideal of R with

√
I :R x = p∩ q, for all

x ∈ R\p∪q, and Σ = {I :R x | x ∈ R\p∪q} is a totally ordered set.
(iii) If

√
I = p∩q, then I :R x = q, for all x ∈ p\q, and I :R x = p, for all x ∈ q\p. Also

I :R x is a prime ideal of R containing p and q, for all x ∈ p∩q\ I.

Proof. (i) Let x ∈ R\p and let a,b,c ∈ R be such that abc ∈ I :R x. Then abcx ∈ I. So ax ∈ I
or bcx ∈ I or abc ∈ I since I is a 2-absorbing ideal of R. If either ax ∈ I or bcx ∈ I, we
are done. If abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I, which implies abx ∈ I or acx ∈ I or
bcx ∈ I. Hence, I :R x is a 2-absorbing ideal of R. It is easy to see that I ⊆ I :R x⊆ p, so that,√

I :R x = p.
For the second assertion, suppose that x,y ∈ R \ p. It is clear that xy ∈ R \ p. Also, it is

clear that I :R x ⊆ I :R xy and I :R y ⊆ I :R xy. Thus (I :R x)∪ (I :R y)⊆ I :R xy. To establish
the reverse inclusion, let z ∈ I :R xy. Then xyz ∈ I. It follows that either xz ∈ I or yz ∈ I since
xy 6∈ I. Thus either z ∈ I :R x or z ∈ I :R y. Hence, I :R xy ⊆ (I :R x)∪ (I :R y), and therefore
I :R xy = (I :R x)∪ (I :R y). So it follows that either I :R xy = I :R x or I :R xy = I :R y. Thus
either I :R x⊆ I :R y or I :R y⊆ I :R x. Therefore, Σ′ = {I :R x | x ∈ R\p} is a totally ordered
set. On the other hand, for each x ∈ p \ I, I :R x is a prime ideal of R containing p and
Σ′′ = {I :R x | x∈ p\ I} is a totally ordered set, by 1.3. Hence, Σ = {I :R x | x∈ R} is a totally
ordered set.

(ii) By a similar argument to that of (i), we can prove I :R x is a 2-absorbing ideal of R
and
√

I :R x = p∩q, for each x 6∈ p∪q. Also, it is easy to see Σ = {I :R x | x ∈ R\p∪q} is a
totally ordered set.

(iii) Assume that x ∈ p \ q. We show I :R x = q. It is easy to see that I :R x ⊆ q. Now,
suppose that z ∈ q. Thus xz ∈ pq and pq ⊆ I, by 1.2(ii). Hence, xz ∈ I and z ∈ I :R x. So
I :R x = q. By a similar argument, we can show that I :R x = p whenever x ∈ q\p. The last
claim follows by 1.4.

Corollary 2.1. Let I be a 2-absorbing ideal of R and let p,q be distinct prime ideals of R.
(i) If

√
I = p, then Ass(R/I) is a totally ordered set.

(ii) If
√

I = p∩q, then Ass(R/I) is the union of two totally ordered sets.

Proof. (i) Let q′ ∈ Ass(R/I). Then there exists x ∈ R\ I such that q′ = I :R x. If x 6∈ p, then
q′ = p, by 2.1(i). Otherwise, p⊆ I :R x = q′, by 1.3. Also, Ass(R/I) is a totally ordered set.

(ii) Let q′ ∈ Ass(R/I). Then there exists x ∈ R\ I such that q′ = I :R x. If x 6∈ p∩q, then
in view of 2.1 (ii) and (iii), either q′ = p or q′ = q. If x ∈ p∩ q, then we have p ⊆ q′ and
q⊆ q′, by 1.4. Also, Ass(R/I) is the union of two totally ordered sets.

The following theorem offers some R-modules M for which there exists a prime filtration
FM such that Ass(M) = P(FM) and |Ass(M)|= l(FM).

Theorem 2.2. Let R be a Noetherian ring and let I be a 2-absorbing ideal of R. Then there
are x1, . . . ,xn ∈ R with 1 ≤ n ≤ t, where t is a positive integer, and ideals Jn = R(x1 + I)⊕
·· ·⊕R(xn + I) of R/I such that

Ass(Jn) = {I :R x1, . . . , I :R xn}.
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Proof. Let x1, . . . ,xm ∈ R be such that
√

I/I = (x1 + I, . . . ,xm + I). Then in view of 1.3
and 1.4, we have a chain I :R x1 ⊆ ·· · ⊆ I :R xm of prime ideals of R. Now, we can omit
any superfluous terms to obtain a strictly ascending chain I :R x1 ⊂ ·· · ⊂ I :R xt , where
1≤ t ≤ m is a positive integer. Thus x1 + I, . . . ,xt + I is an associated sequence of R/I, see
[4] Definition 1.4. Hence, in view of Theorem 3.2 in [4], for every 1≤ n≤ t, the ideal Jn of
R/I generated by x1 + I, . . . ,xn + I is the direct sum R(x1 + I)⊕·· ·⊕R(xn + I). Also,

0⊂ R(x1 + I)⊂ R(x1 + I)⊕R(x2 + I)⊂ ·· · ⊂ R(x1 + I)⊕·· ·⊕R(xn + I) = Jn

is a prime filtration of submodules of Jn with⊕i
j=1R(x j + I)/⊕i−1

j=1 R(x j + I)∼= R/I :R xi and

Ass(Jn) = {I :R x1, . . . , I :R xn}.

An ideal I of R is said to be irreducible precisely when I is proper and I cannot be
expressed as the intersection of two strictly larger ideals of R. The following theorem shows
the relationship between irreducible and 2-absorbing ideals.

Theorem 2.3. Let I be an irreducible ideal of R and let p,q be distinct prime ideals of R.

(i) If
√

I = p, then I is 2-absorbing if and only if p2 ⊆ I and I :R x = I :R x2, for all
x ∈ R\p.

(ii) If
√

I = p∩q, then I is 2-absorbing if and only if pq⊆ I and I :R x = I :R x2, for all
x ∈ R\p∩q.

Proof. (i) (⇒) By 1.2(i), we have p2 ⊆ I. Assume that x ∈ R \ p. We have to show that
I :R x = I :R x2. It is clear that I :R x ⊆ I :R x2. For the reverse inclusion, let y ∈ I :R x2. So
x2y∈ I. This implies that either xy∈ I or x2 ∈ I since I is 2-absorbing. If xy∈ I we are done.
Otherwise, x2 ∈ I which implies that x ∈ p and this is a contradiction.

(⇐) Assume that x,y,z∈ R, xyz∈ I and xy 6∈ I. We show that either xz∈ I or yz∈ I. From
xy 6∈ I it follows that x 6∈ p or y 6∈ p. Otherwise, x∈ p and y∈ p. Thus xy∈ p2⊆ I. But this is a
contradiction because xy 6∈ I. So that, by assumption, either I :R x = I :R x2 or I :R y = I :R y2.
Suppose that I :R x = I :R x2. To establish the claim, suppose, on the contrary, that xz 6∈ I and
yz 6∈ I. We look for a contradiction. Let a ∈ (I +xz)∩ (I +yz). Then there are a1,a2 ∈ I and
r1,r2 ∈ R such that a = a1 + r1xz = a2 + r2yz. Thus ax = a1x+ r1x2z = a2x+ r2xyz ∈ I. So
that r1x2z ∈ I, and therefore r1xz ∈ I since I :R x = I :R x2. Hence, a = a1 + r1xz ∈ I. This
shows that (I +xz)∩ (I +yz)⊆ I, and then (I +xz)∩ (I +yz) = I. But this is a contradiction
since I is irreducible. Thus we have shown that either xz ∈ I or yz ∈ I, as claimed.

(ii) This can be proved, by using 1.2(ii), in a very similar manner to the way in which (i)
was proved.

3. 2-Absorbing Avoidance Theorem

The first major result of this section (Theorem 3.2) is a 2-Absorbing Avoidance Theorem.
We will need the following theorem.

Theorem 3.1. Let I1, I2, . . . , In (n ≥ 2) be ideals of R such that at most two of I1, I2, . . . , In
are not 2-absorbing. If I is an ideal of R and I ⊆ I1∪ I2∪·· ·∪ In, then

√
I ⊆
√

Ii for some i
with 1≤ i≤ n.
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Proof. We may assume that Ii is a 2-absorbing ideal of R, for all i > 2. Let 2 < k ≤ n be
such that

√
Ii = pi, for all i with 2 < i≤ k, and

√
Ii = pi,1∩pi,2, for all i with k +1≤ i≤ n,

where pi,pi, j, for j = 1,2, are prime ideals of R. Then
√

I ⊆
√

I1∪
√

I2∪p3∪·· ·∪pk ∪ (pk+1,1∩pk+1,2)∪·· ·∪ (pn,1∩pn,2)

and so √
I ⊆
√

I1∪
√

I2∪p3∪·· ·∪pk ∪pk+1, jk+1 ∪·· ·∪pn, jn ,

where jk+1, . . . , jn ∈ {1,2}. By the Prime Avoidance Theorem [6, 3.61], we have
√

I ⊆
√

I1
or
√

I ⊆
√

I2 or
√

I ⊆ pi, with 3≤ i≤ k, or
√

I ⊆ pi, js , where k +1≤ i≤ n and js ∈ {1,2}.
If
√

I ⊆
√

I1 or
√

I ⊆
√

I2 or
√

I ⊆ pi, for some 3≤ i≤ k, we are done. If
√

I ⊆ ∪n
i=k+1pi, j,

then we may assume that
√

I ⊆ ∩s
i=k+1pi,1 and

√
I 6⊆ ∪n

i=s+1pi,1, where k +1≤ s≤ n. Now,√
I ⊆ pk+1,2 ∪ ·· · ∪ps,2 ∪ps+1,1 ∪ . . .∪pn,1 yields

√
I ⊆ p j,2, for some k + 1 ≤ j ≤ s. Thus√

I ⊆ p j,1∩p j,2 =
√

I j, and this completes the proof.

Corollary 3.1. Let I1, I2, . . . , In be 2-absorbing ideals of R, and suppose that I is an ideal of
R such that I ⊆ I1∪ I2∪·· ·∪ In. Then I2 ⊆ Ii, for some i with 1≤ i≤ n.

Proof. The claim follows by 3.1 and 1.2.
Let I, I1, I2, . . . , In be ideals of R. Following [3], we call a covering I ⊆ I1 ∪ I2 ∪ ·· · ∪

In efficient if no Ik is superfluous. Analogously, we shall say that I = I1 ∪ I2 ∪ ·· · ∪ In is
an efficient union if none of the Ik may be excluded. Any cover or union consisting of
ideals of R can be reduced to an efficient one, called an efficient reduction, by deleting any
unnecessary terms.

Theorem 3.2. (2-Absorbing Avoidance Theorem) Let I1, I2, . . . , In (n≥ 2) be ideals of R such
that at most two of I1, I2, · · · , In are not 2-absorbing and let Ii 6⊆ I j :R x, for all x ∈

√
I j \ I j

with i 6= j. Let I be an ideal of R such that I ⊆ I1∪ I2∪·· ·∪ In. Then I ⊆ Ii, for some i with
1≤ i≤ n.

Proof. We suppose that I 6⊆ I j for all j with 1 ≤ j ≤ n and look for a contradiction. Our
assumption means that I ⊆ I1 ∪ I2 ∪ ·· · ∪ In is an efficient covering of ideals of R. Hence,
I = ∪n

i=1(Ii∩ I) is an efficient union. Therefore, (
⋂

i6=k Ii)∩ I ⊆ Ik ∩ I, by Lemma 2.1 in [5].
On the other hand, at most two of the Ii are not 2-absorbing. We can, and do, assume that
they have been indexed in such a way that Ii is a 2-absorbing ideal, for all i > 2. Now,
a similar argument to that of 3.1 shows that either I ⊆ I1 ∪ I2 or I ⊆

√
Ii, for some i with

2 < i ≤ n. In the former case, we have a contradiction since by assumption I 6⊆ I j, for all
j with 1 ≤ j ≤ n; the second possibility leads to the following contradiction. Assume that
I ⊆
√

I j, for some 2 < j ≤ n. Thus there exists x ∈
√

I j \ I j such that x ∈ I \ I j. Moreover,
there are ri ∈ Ii \(I j :R x) for all i 6= j, by hypothesis. Let r = ∏i 6= j ri. Then rx∈ (

⋂
i 6= j Ii∩ I).

Also, rx 6∈ I j ∩ I, for otherwise, r ∈ I j :R x, and this is a contradiction since I j :R x is a prime
ideal of R by 1.3 and 1.4. Therefore, there is a j with 1 ≤ j ≤ n such that I ⊆ I j and the
proof is completed.

Corollary 3.2. Let I1, I2, . . . , In (n ≥ 2) be ideals of R such that at most two of I1, I2, . . . , In
are not 2-absorbing and let Ii 6⊆ I j :R x, for all x ∈

√
I j \ I j with i 6= j. Let I be an ideal of R

such that I ⊆ I1∪ I2∪·· ·∪ In. Then (∪n
i=1Ii) :R I = ∪n

i=1(Ii :R I).

There is a refinement of the 2-Absorbing Avoidance Theorem that is sometimes ex-
tremely useful.
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Theorem 3.3. Let I1, I2, . . . , In be ideals of R such that at most one of I1, I2, . . . , In are not
2-absorbing and let Ii 6⊆ I j :R x, for all x ∈

√
I j \ I j whenever i 6= j. Let I be an ideal of R

and let e ∈ R be such that I + e⊆ I1∪ I2∪·· ·∪ In. Then I + e⊆ Ii for some i with 1≤ i≤ n.

Proof. Without destroying our assumption, we may assume that I1 is not 2-absorbing. By
using Theorem 12 in [3], and by a similar argument to that of 3.1, we can show either I +e⊆
I1 or I +e⊆

√
I j, for some 2≤ j≤ n. If I +e⊆ I1, we are done. If I +e⊆

√
I j and

√
I j = I j,

then the claim follows. Assume that I +e⊆
√

I j and
√

I j 6= I j. Thus I ⊆
√

I j since e ∈
√

I j.
If I 6⊆ I j, then there exists x ∈ I \ I j, and by assumption, there are ri ∈ Ii \ I j :R x, for all i 6= j.
If I +e⊆ I1∪I2∪·· ·∪In is an efficient covering of I, then I∩(∩i 6= jIi)⊆ I∩I j, which implies
that ∏i 6= j ri ∈ I j :R x, and therefore ri ∈ I j :R x, for some i 6= j, which is a contradiction. Thus
the covering is not efficient, and so I + e⊆ Ii for some i with 1≤ i≤ n.
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