BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY http://math.usm.my/bulletin

On the 2-Absorbing Ideals in Commutative Rings

¹Sh. Payrovi and ²S. Babaei

¹Imam Khomeini International University, Postal Code: 34149-6818 Qazvin, Iran ²Department of Mathematics, Takestan Branch, Islamic Azad University, Takestan, Iran ¹shpayrovi@ikiu.ac.ir, ²sakine-babaei@yahoo.com

Abstract. Let *R* be a commutative ring with identity. In this article, we study a generalization of prime ideal. A proper ideal *I* of *R* is called a 2-absorbing ideal if whenever $abc \in I$ for $a, b, c \in R$, then $ab \in I$ or $bc \in I$ or $ac \in I$. It is shown that if *I* is a 2-absorbing ideal of a Noetherian ring *R*, then R/I has some ideals J_n , where $1 \le n \le t$ and *t* is a positive integer, such that J_n possesses a prime filtration F_{J_n} : $0 \subset R(x_1+I) \subset R(x_1+I) \oplus R(x_2+I) \subset \cdots \subset R(x_1+I) \oplus \cdots \oplus R(x_n+I) = J_n$ with $Ass_R(J_n) = \{I : R x_i \mid i = 1, ..., n\}$ and $|Ass_R(J_n)| = n$. Also, a 2-Absorbing Avoidance Theorem is proved.

2010 Mathematics Subject Classification: 13A15

Keywords and phrases: 2-absorbing ideal.

1. Introduction

In this article, we study 2-absorbing ideals in commutative rings with non-zero identity, which are a generalization of prime ideals. The concept of 2-absorbing ideals was introduced and investigated in [1, 2]. A proper ideal I of a commutative ring R is called a 2-absorbing ideal if whenever $abc \in I$ for $a, b, c \in R$, then $ab \in I$ or $bc \in I$ or $ac \in I$. The reader is referred to [1] and [2] for more results and examples on 2-absorbing ideals.

For any Noetherian module M over a commutative ring R, there exists a chain $F_M : 0 = M_0 \subset M_1 \subset \cdots \subset M_{n-1} \subset M_n = M$ in which the factors $M_i/M_{i-1}(i = 1, ..., n)$ are isomorphic to R/\mathfrak{p}_i for some prime ideal \mathfrak{p}_i of R. These chains are useful devices in the study of Noetherian modules. Following the notation of [4], we call such a chain a prime filtration of M and we denote the set of prime ideals occurring as a factor in F_M by $\mathbb{P}(F_M)$ and the length of F_M by $l(F_M)$. It easily follows that $\operatorname{Ass}(M) \subseteq \mathbb{P}(F_M)$ and $|\operatorname{Ass}(M)| \leq n = l(F_M)$. In [4], A. Li studied finitely generated modules M over a Noetherian ring R for which there exists a prime filtration F_M such that $\operatorname{Ass}(M) = \mathbb{P}(F_M)$ and $|\operatorname{Ass}(M)| = l(F_M)$.

This article is devoted to the study of 2-absorbing ideals and construction of some prime filtrations F_M , for *R*-modules *M*, such that $Ass(M) = \mathbb{P}(F_M)$ and $|Ass(M)| = l(F_M)$.

Let *I* be a 2-absorbing ideal of a commutative ring *R*. In section 2, the basic properties of the ideals $I :_R x$ are studied. It is shown that $I :_R x$ is a 2-absorbing ideal of *R*, and $\{I :_R x \in I :_R x \in I$

Communicated by Siamak Yassemi.

Received: June 18, 2011; Revised: December 3, 2011.

 $x | x \in R$ is a totally ordered set. Also, it is shown that if *R* is a Noetherian ring, then R/I has some ideals $J_n = R(x_1 + I) \oplus \cdots \oplus R(x_n + I)$, where $1 \le n \le t$ and *t* is a positive integer, which are the direct sum of cyclic *R*-modules. Furthermore, $Ass(J_n) = \{I : x_1, \dots, I : x_n\}$.

The Prime Avoidance Theorem [6, 3.61], states that: let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$, where $n \ge 2$, be ideals of R such that at most two of $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ are not prime. Let I be an ideal of R such that $I \subseteq \mathfrak{p}_1 \cup \mathfrak{p}_2 \cup \cdots \cup \mathfrak{p}_n$. Then $I \subseteq \mathfrak{p}_i$ for some i with $1 \le i \le n$. In section 3, we prove a 2-Absorbing Avoidance Theorem. Precisely, we prove: let I_1, I_2, \ldots, I_n , where $n \ge 2$, be ideals of R such that at most two of I_1, I_2, \ldots, I_n are not 2-absorbing and let $I_i \not\subseteq I_j :_R x$, for all $x \in \sqrt{I_j} \setminus I_j$ with $i \ne j$. Let I be an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. Then $I \subseteq I_i$ for some i with $1 \le i \le n$.

The following are some basic facts about primary and 2-absorbing ideals in a commutative ring R.

Theorem 1.1. [6, Lemma 4.14] Let Q be a p-primary ideal of R and let $x \in R$.

- (i) If $x \in Q$, then $Q :_R x = R$.
- (ii) If $x \notin Q$, then $Q:_R x$ is a p-primary ideal of R, so that, $\sqrt{Q:_R x} = p$.
- (iii) If $x \notin \mathfrak{p}$, then $Q :_R x = Q$.

Theorem 1.2. [2, Theorem 2.4] *Let I be a 2-absorbing ideal of R. Then one of the following statements must hold:*

- (i) $\sqrt{I} = \mathfrak{p}$ is a prime ideal of *R* such that $\mathfrak{p}^2 \subseteq I$.
- (ii) $\sqrt{I} = \mathfrak{p}_1 \cap \mathfrak{p}_2, \ \mathfrak{p}_1 \mathfrak{p}_2 \subseteq I, \ and \ (\sqrt{I})^2 \subseteq I, \ where \ \mathfrak{p}_1, \mathfrak{p}_2 \ are \ the \ only \ distinct \ prime \ ideals \ of R \ that \ are \ minimal \ over \ I.$

Theorem 1.3. [2, Theorem 2.5] Let I be a 2-absorbing ideal of R such that $\sqrt{I} = \mathfrak{p}$ is a prime ideal of R and suppose that $I \neq \mathfrak{p}$. Then for each $x \in \mathfrak{p} \setminus I$, $I :_R x$ is a prime ideal of R containing \mathfrak{p} . Furthermore, either $I :_R x \subseteq I :_R y$ or $I :_R y \subseteq I :_R x$, for every $x, y \in \mathfrak{p} \setminus I$.

Theorem 1.4. [2, Theorem 2.6] Let I be a 2-absorbing ideal of R such that $\sqrt{I} = \mathfrak{p}_1 \cap \mathfrak{p}_2$ where \mathfrak{p}_1 and \mathfrak{p}_2 are the only non-zero distinct prime ideals of R that are minimal over I. Then for each $x \in \sqrt{I} \setminus I$, $I :_R x$ is a prime ideal of R containing \mathfrak{p}_1 and \mathfrak{p}_2 . Furthermore, either $I :_R x \subseteq I :_R y$ or $I :_R y \subseteq I :_R x$, for every $x, y \in \sqrt{I} \setminus I$.

Throughout this article, R denotes a commutative ring with non-zero identity and I is an ideal of R. Let $\sqrt{I} = \{r \in R : \text{there exists } n \in \mathbb{N} \text{ with } r^n \in I\}$ denote the radical of I and let $I :_R x$ denote the ideal $\{r \in R : rx \in I\}$ of R. We say that $\mathfrak{p} \in Spec(R)$ is an associated prime ideal of an R-module M if there exists a non-zero element $m \in M$ such that $0 :_R m = \mathfrak{p}$. The set of associated prime ideals of M is denoted by Ass(M). For notations and terminologies not given in this article, the reader is referred to [6].

2. The results

Let *I* be a 2-absorbing ideal of *R* and $x \in R$. In the following, we study the ideals $I:_R x$, where $x \notin \sqrt{I}$. First of all, the following example shows that $\{I:_R x \mid I \subseteq I:_R x \subset \sqrt{I}, x \notin \sqrt{I}\}$ may be a non-empty set. Suppose that $R = \mathbb{Z}[x, y, z]$, where \mathbb{Z} is the ring of integers, x, y, z are indeterminates, $I = (4, 2x, 2y, xy, xz, x^2)R$ and $\mathfrak{p} = (2, x)R$. Example 2.12, in [2], shows that *I* is a 2-absorbing ideal of *R* and $\sqrt{I} = \mathfrak{p}$. It is easy to see that $z \notin \sqrt{I}$, $x \in I:_R z \setminus I$, $2 \in \sqrt{I} \setminus I:_R z$ and $I \subset I:_R z \subset \sqrt{I}$.

Theorem 2.1. Let I be a 2-absorbing ideal of R and let p, q be distinct prime ideals of R.

- (i) If $\sqrt{I} = \mathfrak{p}$, then $I :_R x$ is a 2-absorbing ideal of R with $\sqrt{I} :_R x = \mathfrak{p}$, for all $x \in R \setminus \mathfrak{p}$, and $\Sigma = \{I :_R x \mid x \in R\}$ is a totally ordered set.
- (ii) If $\sqrt{I} = \mathfrak{p} \cap \mathfrak{q}$, then $I :_R x$ is a 2-absorbing ideal of R with $\sqrt{I :_R x} = \mathfrak{p} \cap \mathfrak{q}$, for all $x \in R \setminus \mathfrak{p} \cup \mathfrak{q}$, and $\Sigma = \{I :_R x \mid x \in R \setminus \mathfrak{p} \cup \mathfrak{q}\}$ is a totally ordered set.
- (iii) If $\sqrt{I} = \mathfrak{p} \cap \mathfrak{q}$, then $I :_R x = \mathfrak{q}$, for all $x \in \mathfrak{p} \setminus \mathfrak{q}$, and $I :_R x = \mathfrak{p}$, for all $x \in \mathfrak{q} \setminus \mathfrak{p}$. Also $I :_R x$ is a prime ideal of R containing \mathfrak{p} and \mathfrak{q} , for all $x \in \mathfrak{p} \cap \mathfrak{q} \setminus I$.

Proof. (i) Let $x \in R \setminus \mathfrak{p}$ and let $a, b, c \in R$ be such that $abc \in I :_R x$. Then $abcx \in I$. So $ax \in I$ or $bcx \in I$ or $abc \in I$ since I is a 2-absorbing ideal of R. If either $ax \in I$ or $bcx \in I$, we are done. If $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$, which implies $abx \in I$ or $acx \in I$ or $bcx \in I$. Hence, $I :_R x$ is a 2-absorbing ideal of R. It is easy to see that $I \subseteq I :_R x \subseteq \mathfrak{p}$, so that, $\sqrt{I :_R x} = \mathfrak{p}$.

For the second assertion, suppose that $x, y \in R \setminus p$. It is clear that $xy \in R \setminus p$. Also, it is clear that $I :_R x \subseteq I :_R xy$ and $I :_R y \subseteq I :_R xy$. Thus $(I :_R x) \cup (I :_R y) \subseteq I :_R xy$. To establish the reverse inclusion, let $z \in I :_R xy$. Then $xyz \in I$. It follows that either $xz \in I$ or $yz \in I$ since $xy \notin I$. Thus either $z \in I :_R x$ or $z \in I :_R y$. Hence, $I :_R xy \subseteq (I :_R x) \cup (I :_R y)$, and therefore $I :_R xy = (I :_R x) \cup (I :_R y)$. So it follows that either $I :_R xy = I :_R x$ or $I :_R y = I :_R y$. Thus either $I :_R x \subseteq I :_R y$ or $I :_R y \subseteq I :_R x$. Therefore, $\Sigma' = \{I :_R x \mid x \in R \setminus p\}$ is a totally ordered set. On the other hand, for each $x \in p \setminus I$, $I :_R x$ is a prime ideal of R containing p and $\Sigma'' = \{I :_R x \mid x \in p \setminus I\}$ is a totally ordered set, by 1.3. Hence, $\Sigma = \{I :_R x \mid x \in R\}$ is a totally ordered set.

(ii) By a similar argument to that of (i), we can prove $I :_R x$ is a 2-absorbing ideal of R and $\sqrt{I} :_R x = \mathfrak{p} \cap \mathfrak{q}$, for each $x \notin \mathfrak{p} \cup \mathfrak{q}$. Also, it is easy to see $\Sigma = \{I :_R x \mid x \in R \setminus \mathfrak{p} \cup \mathfrak{q}\}$ is a totally ordered set.

(iii) Assume that $x \in \mathfrak{p} \setminus \mathfrak{q}$. We show $I :_R x = \mathfrak{q}$. It is easy to see that $I :_R x \subseteq \mathfrak{q}$. Now, suppose that $z \in \mathfrak{q}$. Thus $xz \in \mathfrak{pq}$ and $\mathfrak{pq} \subseteq I$, by 1.2(ii). Hence, $xz \in I$ and $z \in I :_R x$. So $I :_R x = \mathfrak{q}$. By a similar argument, we can show that $I :_R x = \mathfrak{p}$ whenever $x \in \mathfrak{q} \setminus \mathfrak{p}$. The last claim follows by 1.4.

Corollary 2.1. Let I be a 2-absorbing ideal of R and let $\mathfrak{p}, \mathfrak{q}$ be distinct prime ideals of R.

- (i) If $\sqrt{I} = \mathfrak{p}$, then Ass(R/I) is a totally ordered set.
- (ii) If $\sqrt{I} = \mathfrak{p} \cap \mathfrak{q}$, then Ass(R/I) is the union of two totally ordered sets.

Proof. (i) Let $\mathfrak{q}' \in \operatorname{Ass}(R/I)$. Then there exists $x \in R \setminus I$ such that $\mathfrak{q}' = I :_R x$. If $x \notin \mathfrak{p}$, then $\mathfrak{q}' = \mathfrak{p}$, by 2.1(i). Otherwise, $\mathfrak{p} \subseteq I :_R x = \mathfrak{q}'$, by 1.3. Also, $\operatorname{Ass}(R/I)$ is a totally ordered set.

(ii) Let $\mathfrak{q}' \in \operatorname{Ass}(R/I)$. Then there exists $x \in R \setminus I$ such that $\mathfrak{q}' = I :_R x$. If $x \notin \mathfrak{p} \cap \mathfrak{q}$, then in view of 2.1 (ii) and (iii), either $\mathfrak{q}' = \mathfrak{p}$ or $\mathfrak{q}' = \mathfrak{q}$. If $x \in \mathfrak{p} \cap \mathfrak{q}$, then we have $\mathfrak{p} \subseteq \mathfrak{q}'$ and $\mathfrak{q} \subseteq \mathfrak{q}'$, by 1.4. Also, $\operatorname{Ass}(R/I)$ is the union of two totally ordered sets.

The following theorem offers some *R*-modules *M* for which there exists a prime filtration F_M such that $Ass(M) = \mathbb{P}(F_M)$ and $|Ass(M)| = l(F_M)$.

Theorem 2.2. Let *R* be a Noetherian ring and let *I* be a 2-absorbing ideal of *R*. Then there are $x_1, \ldots, x_n \in R$ with $1 \le n \le t$, where *t* is a positive integer, and ideals $J_n = R(x_1 + I) \oplus \cdots \oplus R(x_n + I)$ of *R*/*I* such that

$$\operatorname{Ass}(J_n) = \{I :_R x_1, \dots, I :_R x_n\}.$$

Proof. Let $x_1, \ldots, x_m \in R$ be such that $\sqrt{I}/I = (x_1 + I, \ldots, x_m + I)$. Then in view of 1.3 and 1.4, we have a chain $I :_R x_1 \subseteq \cdots \subseteq I :_R x_m$ of prime ideals of R. Now, we can omit any superfluous terms to obtain a strictly ascending chain $I :_R x_1 \subset \cdots \subset I :_R x_t$, where $1 \leq t \leq m$ is a positive integer. Thus $x_1 + I, \ldots, x_t + I$ is an associated sequence of R/I, see [4] Definition 1.4. Hence, in view of Theorem 3.2 in [4], for every $1 \leq n \leq t$, the ideal J_n of R/I generated by $x_1 + I, \ldots, x_n + I$ is the direct sum $R(x_1 + I) \oplus \cdots \oplus R(x_n + I)$. Also,

$$0 \subset R(x_1+I) \subset R(x_1+I) \oplus R(x_2+I) \subset \cdots \subset R(x_1+I) \oplus \cdots \oplus R(x_n+I) = J_n$$

is a prime filtration of submodules of J_n with $\bigoplus_{j=1}^{i} R(x_j + I) / \bigoplus_{j=1}^{i-1} R(x_j + I) \cong R/I :_R x_i$ and

$$\operatorname{Ass}(J_n) = \{I :_R x_1, \dots, I :_R x_n\}.$$

An ideal I of R is said to be irreducible precisely when I is proper and I cannot be expressed as the intersection of two strictly larger ideals of R. The following theorem shows the relationship between irreducible and 2-absorbing ideals.

Theorem 2.3. Let I be an irreducible ideal of R and let $\mathfrak{p}, \mathfrak{q}$ be distinct prime ideals of R.

- (i) If $\sqrt{I} = \mathfrak{p}$, then I is 2-absorbing if and only if $\mathfrak{p}^2 \subseteq I$ and $I :_R x = I :_R x^2$, for all $x \in R \setminus \mathfrak{p}$.
- (ii) If $\sqrt{I} = \mathfrak{p} \cap \mathfrak{q}$, then *I* is 2-absorbing if and only if $\mathfrak{pq} \subseteq I$ and $I :_R x = I :_R x^2$, for all $x \in R \setminus \mathfrak{p} \cap \mathfrak{q}$.

Proof. (i) (\Rightarrow) By 1.2(i), we have $\mathfrak{p}^2 \subseteq I$. Assume that $x \in R \setminus \mathfrak{p}$. We have to show that $I :_R x = I :_R x^2$. It is clear that $I :_R x \subseteq I :_R x^2$. For the reverse inclusion, let $y \in I :_R x^2$. So $x^2 y \in I$. This implies that either $xy \in I$ or $x^2 \in I$ since *I* is 2-absorbing. If $xy \in I$ we are done. Otherwise, $x^2 \in I$ which implies that $x \in \mathfrak{p}$ and this is a contradiction.

(⇐) Assume that $x, y, z \in R$, $xyz \in I$ and $xy \notin I$. We show that either $xz \in I$ or $yz \in I$. From $xy \notin I$ it follows that $x \notin p$ or $y \notin p$. Otherwise, $x \in p$ and $y \in p$. Thus $xy \in p^2 \subseteq I$. But this is a contradiction because $xy \notin I$. So that, by assumption, either $I :_R x = I :_R x^2$ or $I :_R y = I :_R y^2$. Suppose that $I :_R x = I :_R x^2$. To establish the claim, suppose, on the contrary, that $xz \notin I$ and $yz \notin I$. We look for a contradiction. Let $a \in (I+xz) \cap (I+yz)$. Then there are $a_1, a_2 \in I$ and $r_1, r_2 \in R$ such that $a = a_1 + r_1xz = a_2 + r_2yz$. Thus $ax = a_1x + r_1x^2z = a_2x + r_2xyz \in I$. So that $r_1x^2z \in I$, and therefore $r_1xz \in I$ since $I :_R x = I :_R x^2$. Hence, $a = a_1 + r_1xz \in I$. This shows that $(I+xz) \cap (I+yz) \subseteq I$, and then $(I+xz) \cap (I+yz) = I$. But this is a contradiction since I is irreducible. Thus we have shown that either $xz \in I$ or $yz \in I$, as claimed.

(ii) This can be proved, by using 1.2(ii), in a very similar manner to the way in which (i) was proved.

3. 2-Absorbing Avoidance Theorem

The first major result of this section (Theorem 3.2) is a 2-Absorbing Avoidance Theorem. We will need the following theorem.

Theorem 3.1. Let $I_1, I_2, ..., I_n$ $(n \ge 2)$ be ideals of R such that at most two of $I_1, I_2, ..., I_n$ are not 2-absorbing. If I is an ideal of R and $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$, then $\sqrt{I} \subseteq \sqrt{I_i}$ for some i with $1 \le i \le n$.

898

Proof. We may assume that I_i is a 2-absorbing ideal of R, for all i > 2. Let $2 < k \le n$ be such that $\sqrt{I_i} = \mathfrak{p}_i$, for all i with $2 < i \le k$, and $\sqrt{I_i} = \mathfrak{p}_{i,1} \cap \mathfrak{p}_{i,2}$, for all i with $k + 1 \le i \le n$, where $\mathfrak{p}_i, \mathfrak{p}_{i,j}$, for j = 1, 2, are prime ideals of R. Then

$$\sqrt{I} \subseteq \sqrt{I}_1 \cup \sqrt{I}_2 \cup \mathfrak{p}_3 \cup \cdots \cup \mathfrak{p}_k \cup (\mathfrak{p}_{k+1,1} \cap \mathfrak{p}_{k+1,2}) \cup \cdots \cup (\mathfrak{p}_{n,1} \cap \mathfrak{p}_{n,2})$$

and so

$$\sqrt{I} \subseteq \sqrt{I}_1 \cup \sqrt{I}_2 \cup \mathfrak{p}_3 \cup \cdots \cup \mathfrak{p}_k \cup \mathfrak{p}_{k+1,j_{k+1}} \cup \cdots \cup \mathfrak{p}_{n,j_n}$$

where $j_{k+1}, \ldots, j_n \in \{1, 2\}$. By the Prime Avoidance Theorem [6, 3.61], we have $\sqrt{I} \subseteq \sqrt{I_1}$ or $\sqrt{I} \subseteq \sqrt{I_2}$ or $\sqrt{I} \subseteq \mathfrak{p}_i$, with $3 \le i \le k$, or $\sqrt{I} \subseteq \mathfrak{p}_{i,j_s}$, where $k+1 \le i \le n$ and $j_s \in \{1, 2\}$. If $\sqrt{I} \subseteq \sqrt{I_1}$ or $\sqrt{I} \subseteq \sqrt{I_2}$ or $\sqrt{I} \subseteq \mathfrak{p}_i$, for some $3 \le i \le k$, we are done. If $\sqrt{I} \subseteq \bigcup_{i=k+1}^n \mathfrak{p}_{i,j}$, then we may assume that $\sqrt{I} \subseteq \bigcap_{i=k+1}^s \mathfrak{p}_{i,1}$ and $\sqrt{I} \not\subseteq \bigcup_{i=s+1}^n \mathfrak{p}_{i,1}$, where $k+1 \le s \le n$. Now, $\sqrt{I} \subseteq \mathfrak{p}_{k+1,2} \cup \cdots \cup \mathfrak{p}_{s,2} \cup \mathfrak{p}_{s+1,1} \cup \ldots \cup \mathfrak{p}_{n,1}$ yields $\sqrt{I} \subseteq \mathfrak{p}_{j,2}$, for some $k+1 \le j \le s$. Thus $\sqrt{I} \subseteq \mathfrak{p}_{j,1} \cap \mathfrak{p}_{j,2} = \sqrt{I_j}$, and this completes the proof.

Corollary 3.1. Let $I_1, I_2, ..., I_n$ be 2-absorbing ideals of R, and suppose that I is an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. Then $I^2 \subseteq I_i$, for some i with $1 \le i \le n$.

Proof. The claim follows by 3.1 and 1.2.

Let $I, I_1, I_2, ..., I_n$ be ideals of R. Following [3], we call a covering $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$ efficient if no I_k is superfluous. Analogously, we shall say that $I = I_1 \cup I_2 \cup \cdots \cup I_n$ is an efficient union if none of the I_k may be excluded. Any cover or union consisting of ideals of R can be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms.

Theorem 3.2. (2-Absorbing Avoidance Theorem) Let $I_1, I_2, ..., I_n$ $(n \ge 2)$ be ideals of R such that at most two of $I_1, I_2, ..., I_n$ are not 2-absorbing and let $I_i \not\subseteq I_j :_R x$, for all $x \in \sqrt{I_j} \setminus I_j$ with $i \ne j$. Let I be an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. Then $I \subseteq I_i$, for some i with $1 \le i \le n$.

Proof. We suppose that $I \not\subseteq I_j$ for all j with $1 \leq j \leq n$ and look for a contradiction. Our assumption means that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$ is an efficient covering of ideals of R. Hence, $I = \bigcup_{i=1}^n (I_i \cap I)$ is an efficient union. Therefore, $(\bigcap_{i \neq k} I_i) \cap I \subseteq I_k \cap I$, by Lemma 2.1 in [5]. On the other hand, at most two of the I_i are not 2-absorbing. We can, and do, assume that they have been indexed in such a way that I_i is a 2-absorbing ideal, for all i > 2. Now, a similar argument to that of 3.1 shows that either $I \subseteq I_1 \cup I_2$ or $I \subseteq \sqrt{I_i}$, for some i with $2 < i \leq n$. In the former case, we have a contradiction since by assumption $I \not\subseteq I_j$, for all j with $1 \leq j \leq n$; the second possibility leads to the following contradiction. Assume that $I \subseteq \sqrt{I_j}$, for some $2 < j \leq n$. Thus there exists $x \in \sqrt{I_j} \setminus I_j$ such that $x \in I \setminus I_j$. Moreover, there are $r_i \in I_i \setminus (I_j :_R x)$ for all $i \neq j$, by hypothesis. Let $r = \prod_{i \neq j} r_i$. Then $rx \in (\bigcap_{i \neq j} I_i \cap I)$. Also, $rx \notin I_j \cap I$, for otherwise, $r \in I_j :_R x$, and this is a contradiction since $I_j :_R x$ is a prime ideal of R by 1.3 and 1.4. Therefore, there is a j with $1 \leq j \leq n$ such that $I \subseteq I_j$ and the proof is completed.

Corollary 3.2. Let $I_1, I_2, ..., I_n$ $(n \ge 2)$ be ideals of R such that at most two of $I_1, I_2, ..., I_n$ are not 2-absorbing and let $I_i \not\subseteq I_j :_R x$, for all $x \in \sqrt{I_j} \setminus I_j$ with $i \ne j$. Let I be an ideal of R such that $I \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. Then $(\bigcup_{i=1}^n I_i) :_R I = \bigcup_{i=1}^n (I_i :_R I)$.

There is a refinement of the 2-Absorbing Avoidance Theorem that is sometimes extremely useful.

I

Theorem 3.3. Let $I_1, I_2, ..., I_n$ be ideals of R such that at most one of $I_1, I_2, ..., I_n$ are not 2-absorbing and let $I_i \not\subseteq I_j :_R x$, for all $x \in \sqrt{I_j} \setminus I_j$ whenever $i \neq j$. Let I be an ideal of R and let $e \in R$ be such that $I + e \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$. Then $I + e \subseteq I_i$ for some i with $1 \le i \le n$.

Proof. Without destroying our assumption, we may assume that I_1 is not 2-absorbing. By using Theorem 12 in [3], and by a similar argument to that of 3.1, we can show either $I + e \subseteq$ I_1 or $I + e \subseteq \sqrt{I_j}$, for some $2 \leq j \leq n$. If $I + e \subseteq I_1$, we are done. If $I + e \subseteq \sqrt{I_j}$ and $\sqrt{I_j} = I_j$, then the claim follows. Assume that $I + e \subseteq \sqrt{I_j}$ and $\sqrt{I_j} \neq I_j$. Thus $I \subseteq \sqrt{I_j}$ since $e \in \sqrt{I_j}$. If $I \not\subseteq I_j$, then there exists $x \in I \setminus I_j$, and by assumption, there are $r_i \in I_i \setminus I_j :_R x$, for all $i \neq j$. If $I + e \subseteq I_1 \cup I_2 \cup \cdots \cup I_n$ is an efficient covering of I, then $I \cap (\bigcap_{i \neq j} I_i) \subseteq I \cap I_j$, which implies that $\prod_{i \neq j} r_i \in I_j :_R x$, and therefore $r_i \in I_j :_R x$, for some $i \neq j$, which is a contradiction. Thus the covering is not efficient, and so $I + e \subseteq I_i$ for some i with $1 \leq i \leq n$.

Acknowledgement. We would like to thank the referee for a careful reading of our article and insightful comments which saved us from several errors.

References

- [1] D. F. Anderson and A. Badawi, On *n*-absorbing ideals of commutative rings, *Comm. Algebra* **39** (2011), no. 5, 1646–1672.
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417–429.
- [3] C. Gottlieb, On finite unions of ideals and cosets, Comm. Algebra 22 (1994), no. 8, 3087–3097.
- [4] A. Li, Associated prime filtrations of finitely generated modules over Noetherian rings, *Comm. Algebra* 23 (1995), no. 4, 1511–1526.
- [5] C.-P. Lu, Unions of prime submodules, *Houston J. Math.* 23 (1997), no. 2, 203–213.
- [6] R. Y. Sharp, *Steps in Commutative Algebra*, second edition, London Mathematical Society Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.