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1. Introduction

An LA-semigroup (LA-semigroup) [2] is a groupoid S with left invertive law

(1.1) (ab)c = (cb)a, for all a, b, c ∈ S.

Every LA-semigroup S satisfy the medial law [2]

(1.2) (ab)(cd) = (ac)(bd), for all a,b,c,d ∈ S.

In every LA-semigroup with left identity the following laws [5] hold

(1.3) (ab)(cd) = (db)(ca), for all a,b,c,d ∈ S.

(1.4) a(bc) = b(ac), for all a,b,c,d ∈ S.

Many characteristics of LA-semigroups are similar to a commutative semigroup. Some
of these are studied in [3] and [4].

The aim of this short paper is to show that in appropriate LA-semigroups, certain inter-
esting sets of ideals are in fact closed under arbitrary union and finite intersection. This is
accomplished via the introduction of new topological structures to this setting.

As in [1], a subset I of an LA-semigroup S is called a right (left) ideal if IS⊆ I (SI ⊆ I),
and is called an ideal if it is two sided ideal. If I is a left ideal of an LA-semigroup S with
left identity then using (1.1) and (1.4), I2 becomes an ideal of S. By a bi-ideal of an LA-
semigroup S, we mean an LA-sub-semigroup B of S such that (BS)B ⊆ B. It is easy to see
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that each right ideal is a bi-ideal. If S has a left identity and B is a bi-ideal of S then, using
the fact that ab = (ba)e for any {a,b} ⊆ S, it follows that B2 is a bi-ideal of S and that
B2 ⊆ SB2 = B2S because

[(b1b2)s](b3b4) = [(b1b2)b3](sb4) = [(b1b2)b3][(b4s)e]

= [(b1b2)(b4s)](b3e) = {[(b4s)b2]b1}(b3e)

= [(b3e)b1][(b4s)b2] ∈ B2.

Also
s(b1b2) = (es)[(b2b1)e] = [e(b2b1)](se) ∈ B2S.

Then
(b1b2)s = (sb2)b1 = [(es)b2](eb1) = [(es)e](b2b1) ∈ SB2.

If E(BS) denotes the set of all idempotents subsets of S with left identity e, then E(BS)
forms a semilattice structure. Also, if C = C2 then (CS)C ∈ E(BS). The intersection of any
set of bi-ideals of an LA-semigroup S is either empty or a bi-ideal of S. Also the intersection
of prime bi-ideals of an LA-semigroup S is a semiprime bi-ideal of S.

An element a0 of an LA-semigroup S is called a left (right) zero if a0a = a0(aa0 = a0)
for all a ∈ S and is called zero if a0a = aa0 = a0, for all a ∈ S. We denote the zero element
of S (if it contains one) by 0. Now if 0 ∈ S, then 0s = s0 = 0, for all s in S. Let us denote an
LA-semigroup S with 0 by S0.

Example 1.1. Let S0 = {0,1,2,3}. Then S0 under the binary operation “·” defined below
is an LA-semigroup with 0.

· 0 1 2 3
0 0 0 0 0
1 0 2 3 1
2 0 1 2 3
3 0 3 1 2

Proposition 1.1. If T is a left ideal and B is a bi-ideal of an LA-semigroup S with left
identity, then BT and T 2B are bi-ideals of S.

Proof. Using (1.2), we get

((BT )S)(BT ) = ((BT )B)(ST )⊆ ((BS)B)T ⊆ BT,

and (BT )(BT ) = (BB)(T T )⊆ BT .

Hence BT is a bi-ideal of S. By using (1.2), we obtain

((T 2B)S)(T 2B) = ((T 2S)(BS))(T 2B)⊆ (T 2(BS))(T 2B)

= (T 2T 2)((BS)B)⊆ T 2B, and

(T 2B)(T 2B) = (T 2T 2)(BB)⊆ T 2B.

Hence T 2B is a bi-ideal of S.

Proposition 1.2. The product of two bi-ideals of an LA-semigroup S with left identity is a
bi-ideal of S.
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Proof. Using (1.2), we get

((B1B2)S)(B1B2) = ((B1B2)(SS))(B1B2) = ((B1S)(B2S))(B1B2)

= ((B1S)B1)((B2S)B2)⊆ B1B2.

The above proposition leads to easy generalizations. That is, if B1, B2, B3,... and Bn are
bi-ideals of an LA-semigroup S with left identity, then

(...((B1B2)B3)...)Bn and (...((B2
1B2

2)B
2
3)...)B

2
n

are bi-ideals of S. Consequently, the set {(SB) of bi-ideals, forms an LA-semigroup.
If S is an LA-semigroup with left identity e then 〈a〉L = Sa, 〈a〉R = aS and 〈a〉S = (Sa)S

are bi-ideals of S. It is then easy to show that 〈ab〉L = 〈a〉L〈b〉L, 〈ab〉R = 〈a〉R〈b〉R, and
〈ab〉R = 〈b〉L〈a〉. This implies that 〈a〉R〈b〉R = 〈b〉L〈a〉L and 〈a〉L〈b〉L = 〈b〉R〈a〉R. Also
〈a〉L〈b〉R = 〈b〉L〈a〉R, 〈a2〉L = [〈a〉L]2, 〈a2〉R = [〈a〉R]2, 〈a2〉L = 〈a2〉R and 〈a〉L = 〈a〉R pro-
vided a is an idempotent. Consequently, 〈a2〉L = 〈a2〉R implying further that 〈a〉Ra2 =
a2〈a〉L.

Lemma 1.1. If B is an idempotent bi-ideal of an LA-semigroup S with left identity, then B
is an ideal of S.

Proof. Using (1.1),

BS = (BB)S = (SB)B = (SB2)B = (B2S)B = (BS)B,

imply that every right ideal in S with left identity is left.

Lemma 1.2. If B is a proper bi-ideal of an LA-semigroup S with left identity e, then e /∈ B.

Proof. Let e ∈ B. Then sb = (es)b ∈ B together with (1.1), imply that s = (ee)s = (se)e ∈
(SB)B⊆ B.

Proposition 1.3. If A, B are bi-ideals of an LA-semigroup S with left identity, then the
following assertions are equivalent.

(i) Every bi-ideal of S is idempotent,
(ii) A∩B = AB, and

(iii) the ideals of S form a semilattice (LS,∧) where A∧B = AB.

Proof. (i)⇒ (ii): Using Lemma 1.1, it is easy to deduce that AB⊆ A∩B. Since A∩B⊆ A,
B implies that (A∩B)2 ⊆ AB, and so A∩B⊆ AB.

(ii)⇒(iii): A∧B = AB = A∩B = B∩A = B∧A and A∧A = AA = A∩A = A. Associativity
follows similarly. Hence (LS,∧) is a semilattice.

(iii)⇒(i):
A = A∧A = AA.

A bi-ideal B of an LA-semigroup S is called a prime bi-ideal if B1B2 ⊆ B implies either
B1 ⊆ B or B2 ⊆ B for every bi-ideal B1 and B2 of S. The set of bi-ideals of S is totally
ordered under inclusion if for all bi-ideals I, J either I ⊆ J or J ⊆ I.

Theorem 1.1. Let S be an LA-semigroup with left identity e. Then every bi-ideal of S is
prime if and only if every bi-ideal of S is idempotent and the set of bi-ideals of S is totally
ordered under inclusion.
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Proof. Let B be a bi-ideal of S. By Proposition 1.2, B2 is prime. This implies that B ⊆ B2

and hence B is idempotent. Therefore, if B1 and B2 are bi-ideals of S, then by Proposition
1.3, B1 ∩B2 is a bi-ideal of S and therefore by the hypothesis is prime. By Lemma 1.1,
B1B2 ⊆ B1∩B2 and therefore either B1 ⊆ B1∩B2 or B2 ⊆ B1∩B2. That is, either B1 ⊆ B2
or B2 ⊆ B1.

Conversely, let B1, B2 and B be bi-ideals of S with B1B2 ⊆ B. Assume that B1 ⊆ B2.
Since B1 is idempotent, B1 = B1B1 ⊆ B1B2 ⊆ B implies that B1 ⊆ B. Similarly, B2 ⊆ B1
implies that B2 ⊆ B. Hence B is prime.

An element a of an LA-semigroup S is called intra-regular if there exist elements x,
y ∈ S such that a = (xa2)y. An LA-semigroup S is called intra-regular if every element of S
is intra-regular.

Example 1.2. Let S = {1, 2, 3, 4, 5} be an LA-semigroup, with left identity 4, defined by
the following multiplication table.

· 1 2 3 4 5
1 4 5 1 2 3
2 3 4 5 1 2
3 2 3 4 5 1
4 1 2 3 4 5
5 5 1 2 3 4

Clearly (S, ·) is intra-regular because (2 · 12) · 3 = 1, (1 · 22) · 5 = 2, (2 · 32) · 5 = 3, (4 ·
42) ·4 = 4 and (3 ·52) ·1 = 5.

Lemma 1.3. If B1 and B2 are bi-ideals of an intra-regular LA-semigroup S with left identity,
then B1∪B2 is a bi-ideal of S.

Proof.

[(B1∪B2)S](B1∪B2) = (B1S∪B2S)(B1∪B2)

= (B1S)(B1∪B2)∪B2S(B1∪B2)

= (B1S)B1∪ (B1S)B2∪ (B2S)B1∪ (B2S)B2

⊆ B1∪ (B1S)B2∪ (B2S)B1∪B2.

Let (bs)a ∈ (B1S)B2, where b ∈ B1, s ∈ S and a ∈ B2. Since S is intra-regular, therefore
for a ∈ S there exist x,y ∈ S such that (xa2)y. Using (1.4), (1.1), (1.3) and (1.2), we obtain

(bs)a = (bs)((xa2)y) = (xa2)((bs)y) = (x(aa))((bs)y)

= (a(xa))((bs)y) = [((bs)y)(xa)]a

= [((bs)y)(x((xa2)y))]a = [((bs)y)((xa2)(xy))]a

= [(xa2)(((bs)y)(xy))]a = [((xy)((bs)y))(a2x)]a

= [a2(((xy)((bs)y))x)]a ∈ (B2S)B2 ⊆ B2.

Similarly, we can show that (B2S)B1 ⊆ B1. Therefore [(B1 ∪B2)S](B1 ∪B2) ⊆ B1 ∪ B2.
Hence B1∪B2 is a bi-ideal of S.

A bi-ideal B of an LA-semigroup S is called a strongly irreducible bi-ideal if
B1∩B2 ⊆ B implies that either B1 ⊆ B or B2 ⊆ B for every bi-ideal B1 and B2 of S.
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Theorem 1.2. The set D̄ of all bi-ideals of an intra-regular LA semi-group S0 with 0 and
left identity, is closed under finite intersection and arbitrary union.

Proof. Let Ω be the set of all strongly irreducible proper bi-ideals of S0. Then Γ(Ω) =
{OB : B ∈ D̄}, forms a topology on the set Ω, where OB = {J ∈ Ω;B * J} and φ : bi-
ideal(S0) −→ Γ(Ω) preserves finite intersection and arbitrary union between the set of bi-
ideals of S0 and open subsets of Ω. As {0} is a bi-ideal of S0, and 0 belongs to every bi-ideal
of S0, therefore O{0} = {J ∈Ω,{0}* J}= { }. Also OS0 = {J ∈Ω, S * J}= Ω which is
the first axiom for the topology. If {OBα

: α ∈ I} ⊆ Γ(Ω), then ∪OBα
= {J ∈Ω, Bα * J, for

some α ∈ I}= {J ∈Ω, <∪Bα > * J}= O∪Bα
, where <∪Bα > is a bi-ideal of S0 generated

by ∪Bα and by Lemma 1.3, ∪Bα is a bi-ideal. Let OB1 and OB2 ∈ Γ(Ω). If J ∈ OB1 ∩OB2 ,
then J ∈ Ω and B1 * J, B2 * J. Suppose B1 ∩B2 ⊆ J. This implies that either B1 ⊆ J or
B2 ⊆ J, implying a contradiction. Hence B1∩B2 * J which further implies that J ∈OB1∩B2 .
Thus OB1 ∩OB2 ⊆ OB1∩B2 . Now if J ∈ OB1∩B2 , then J ∈ Ω and B1∩B2 * J. Thus J ∈ OB1
and J ∈OB2 . Therefore J ∈OB1 ∩OB2 , which implies that OB1∩B2 ⊆OB1 ∩OB2 . Hence Γ(Ω)
is the topology on Ω. Define φ : bi-ideal(S0) −→ Γ(Ω) by φ(B) = OB. Then it is easy to
see that φ preserves finite intersection and arbitrary union.

An ideal P of an LA-semigroup S is called a strongly irreducible ideal if A∩ B ⊆ P
implies that either A⊆ P or B⊆ P for all ideals A and B in S.

Let PS0 denote the set of proper strongly irreducible ideals of an LA-semigroup S0. For
an ideal I of S0 define the set ΘI = { J ∈ PS0 : I * J} and Γ(PS0) = {ΘI , I is an ideal of S0}.

Theorem 1.3. The set Γ(PS0) constitute a topology on the set PS0 .

Proof. Let ΘI1 , ΘI2 ∈ Γ(PS0). If J ∈ ΘI1 ∩ΘI2 , then J ∈ PS0 and I1 * J and I2 * J. Let
I1 ∩ I2 ⊆ J which implies that either I1 ⊆ J or I2 ⊆ J; implying a contradiction. Hence
J ∈ ΘI1∩I2 . Similarly ΘI1∩I2 ⊆ ΘI1 ∩ΘI2 . The rest of the proof follows immediately from
the proof of Theorem 1.2.

The assignment I −→ ΘI preserves finite intersection and arbitrary union between the
ideal(S0) and their corresponding open subsets of ΘI .

Let P be a left ideal of an LA-semigroup S. Then P is called quasi-prime if for left ideals
A, B of S such that AB⊆ P, we have A⊆ P or B⊆ P.

Theorem 1.4. If S is an LA-semigroup S with left identity e, then a left ideal P of S is
quasi-prime if and only if (Sa)b⊆ P implies that either a ∈ P or b ∈ P.

Proof. Let P be a left ideal of an LA-semigroup S with left identity e. If (Sa)b⊆ P then

S((Sa)b)⊆ SP⊆ P, that is

S((Sa)b) = (Sa)(Sb).

Hence, either a ∈ P or b ∈ P.
Conversely, assume that AB⊆ P where A and B are left ideals of S such that A * P. Then

there exists x∈A such that x /∈P. Now using the hypothesis we get (Sx)y⊆ (SA)B⊆AB⊆P
for all y∈ B. Since x /∈ P, so by hypothesis, y∈ P for all y∈ B, we obtain B⊆ P. This shows
that P is quasi-prime.

An LA-semigroup S is said to be an anti-rectangular if a = (ba)b, for all a,b in S. It is
straight forward to see that S = S2.
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Proposition 1.4. If A and B are ideals of an anti-rectangular LA-semigroup S, then AB is
an ideal.

Proof. Using (1.2), we get

(AB)S = (AB)(SS) = (AS)(BS)⊆ AB, andS(AB) = (SS)(AB) = (SA)(SB)⊆ AB

which shows that AB is an ideal.
Consequently, if I1, I2, I3,... and In are ideals of S, then

(...((I1I2)I3)...In) and (...((I2
1 I2

2 )I2
3 )...I2

n )

are ideals of S and the set SI of ideals of S form an anti-rectangular LA-semigroup.

Lemma 1.4. Any subset of an anti-rectangular LA-semigroup S is left ideal if and only if it
is right.

Proof. Let I be a right ideal of S, then using (1.1), we get, si = ((xs)x)i = (ix)(xs) ∈ I.
Conversely, suppose that I be a left prime ideal of S, then using (1.1), we get, is =

((yi)y)s = (sy)(yi) ∈ I.
Therefore SI = IS. From above lemma we remark that each quasi prime ideal in an

anti-rectangular LA-semigroup is in fact prime.

Lemma 1.5. If I is an ideal of an anti-rectangular LA-semigroup S then, H(a) = {x ∈ S :
(xa)x = a, for a ∈ I} ⊆ I.

Proof. If y ∈ H(a), then y = (ya)y ∈ (SI)S⊆ I. Hence H(a)⊆ I.
Also H(a) = {x ∈ S : (xa)x = x, for a ∈ I} ⊆ I.
An ideal I of an LA-semigroup S is called an idempotent if I2 = I. An LA-semigroup S

is said to be fully idempotent if every ideal of S is idempotent.

Proposition 1.5. If S is an anti-rectangular LA-semigroup and A, B are ideals of S, then the
following assertions are equivalent.

(i) S is fully idempotent,
(ii) A∩B = AB, and

(iii) the ideals of S form a semilattice (LS,∧) where A∧B = AB.

It follows easily from Proposition 1.4.
The set of ideals of S is totally ordered under inclusion if for all ideals I, J either I ⊆ J

or J ⊆ I . It is denoted by ideal(S).

Theorem 1.5. Every ideal of an anti-rectangular LA-semigroup S is prime if and only it is
idempotent and ideal(S) is totally ordered under inclusion.

It follows easily from Theorem 1.1.
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