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Abstract. In this paper, we introduce three new iteration methods, which are implicit and
converge strongly, based on the steepest descent method with a strongly accretive and strictly
pseudocontractive mapping and the modified Halpern’s iterative scheme, for finding a so-
lution of variational inequalities over the set of common fixed points of a nonexpansive
semigroup on a real Banach space which has a uniformly Gâteaux differentiable norm.
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1. Introduction

Let E be a Banach space with the dual space E∗. For the sake of simplicity, the norms of
E and E∗ are denoted by the symbol ‖.‖. We write 〈x,x∗〉 instead of x∗(x) for x∗ ∈ E∗ and
x ∈ E.

A mapping J from E into E∗, satisfying the following condition

J(x) = {x∗ ∈ E∗ : 〈x,x∗〉= ‖x‖2 and ‖x∗‖= ‖x‖},

is called a normalized duality mapping of E. It is well known that if x 6= 0, then J(tx) =
tJ(x), for all t > 0 and x ∈ E, and J(−x) =−J(x).

Let T be a nonexpansive mapping on a nonempty, closed and convex subset C of a
Banach space E, i.e., T : C→C and ‖T x−Ty‖ ≤ ‖x−y‖, for all x,y ∈C. Denote the set of
fixed points of T by Fix(T ), i.e., Fix(T ) = {x ∈C : x = T (x)}.

Let {T (s) : s > 0} be a nonexpansive semigroup on C, that is,
(1) for each s > 0,T (s) is a nonexpansive mapping on C;
(2) T (0)x = x for all x ∈C;
(3) T (s1 + s2) = T (s1)◦T (s2) for all s1,s2 > 0;
(4) for each x ∈C, the mapping T (.)x from (0,∞) into C is continuous.
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Let F : E → E be an η-strongly accretive and γ-strictly pseudocontractive mapping, i.e., F
satisfies, respectively, the following conditions:

(1.1) 〈F(x)−F(y), j(x− y)〉 ≥ η‖x− y‖2,

and

(1.2) 〈F(x)−F(y), j(x− y)〉 ≤ ‖x− y‖2− γ‖(I−F)x− (I−F)y‖2,

for all x,y ∈ E and some element j(x− y) ∈ J(x− y), where I denotes the identity mapping
of E, η and γ ∈ (0,1) are some positive constants.

The problem, considered in this paper, is to present some new implicit iteration schemes
for finding a point p∗ ∈ E such that

(1.3) p∗ ∈F : 〈F(p∗), j(p∗− p)〉 ≤ 0 ∀p ∈F ,

where F :=∩s>0 Fix(T (s)) and {T (s) : s > 0} is a nonexpansive semigroup on a uniformly
convex Banach space E with a uniformly Gâteaux differentiable norm. Problem (1.3) is
named a variational inequality, which was firstly studied by Stampacchia in [21]. In [14],
Stampacchia and Lions extended the result of [21] and announced the full proofs of their
results. Ever since, variational inequalities have been widely investigated, because it cov-
ers as diverse disciplines, as partial differential equations, optimal control, optimization,
mathematical programming, mechanics, and finance (see, e.g., [7, 8, 11, 13, 17, 26]).

Clearly, from (1.2), it follows that ‖F(x)−F(y)‖ ≤ L‖x− y‖ with L = 1 + 1/γ and, in
this case, F is called L-Lipschitz continuous. If L ∈ [0,1), then F is called contractive and
if F satisfies (1.2) with γ = 0, then it is said to be pseudocontractive. It is easy to see that
every nonexpansive mapping is pseudocontractive. The convergence of a parallel iterative
algorithm for two finite families of uniformly L-Lipschitzian mappings was considered in
[9].

In the case that {T (s) : s > 0} is a nonexpansive semigroup on C, a closed and convex
subset of a uniformly convex Banach space with a uniformly Gâteaux differentiable norm,
in [4], Chen and Song proposed the following implicit algorithm:

(1.4) xk = γk f (xk)+(1− γk)
1
tk

∫ tk

0
T (s)xkds,

where f is a contractive mapping on C and γk, tk are two positive parameters of iteration.
They proved the following result.

Theorem 1.1. [4] Let C be a closed and convex subset of a uniformly convex Banach space
E, whose norm is uniformly Gâteaux differentible and let {T (s) : s > 0} be a nonexpansive
semigroup on C such that F := ∩s>0 Fix(T (s)) 6= /0. Then, the sequence {xk}, defined by
(1.4) with the conditions tk → ∞ and γk → 0 as k→ ∞, converges strongly to an element
p∗ ∈F , solving (1.3) with F = I− f .

A special case of (1.4) has been considered by Shijoi and Takahashi in [20], as follows:

xk = γku+(1− γk)
1
tk

∫ tk

0
T (s)xkds,

where u is a fixed element in C, {γk} ⊂ (0,1) and {tk} is a real positive and divergent
sequence. Next, in [22], Suzuki improved the Shijoi and Takahashi’s result and proved the
following theorem.
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Theorem 1.2. Let {T (s) : s > 0} be a nonexpansive semigroup on C, a nonempty, closed
and convex subset of a Hilbert space H, such that

F := ∩s>0 Fix(T (s)) 6= /0,

and let {γk} and {tk} be sequences of real numbers, satisfying

(1.5) 0 < γk < 1, tk > 0, lim
k→∞

tk = lim
k→∞

γk

tk
= 0.

Fix u ∈C and define a sequence {xk} in C by

(1.6) xk = γku+(1− γk)T (tk)xk.

Then, {xk} converges strongly to the p∗, an element in F with minimal norm.

Further, in [12], He and Chen considered a more general scheme

(1.7) xk = γk f (xk)+(1− γk)T (tk)xk

and obtained the following result.

Theorem 1.3. Let C be a nonempty, closed and convex subset of a Hilbert space H. Sup-
pose that f is a contractive mapping on C with coefficient α ∈ (0,1), {T (s) : s > 0} is a
nonexpansive semigroup on C such that ∩s>0 Fix(T (s)) 6= /0. Assume that {γk} and {tk} are
two sequences of real numbers, satisfying (1.5). Then, the sequence {xk}, defined by (1.7),
converges strongly to the p∗, solving the following variational inequality

(1.8) 〈F(p∗), p∗− p〉 ≤ 0 ∀p ∈F .

with F = I− f .

In [24], Xu established a Banach space version of (1.6). Recently, in [3], Chen and He
studied the strong convergence of algorithm (1.7) in Banach spaces, and in [15], Li et al.
extended the result in Hilbert spaces to that in a uniformly convex Banach space with an
additional condition:

(1.9) lim
s→0

sup
x∈K
‖T (s)x− x‖= 0,

for any bounded subset K ⊂C and an η-strongly accretive and γ-strictly pseudocontractive
mapping f . In [1], Ceng et al. investigated (1.7) for the case that E is a strictly convex
and reflexive Banach space with a uniformly Gâteaux differentiable norm, {T (s) : s > 0}
is a weakly uniformly asymptotically regular nonexpansive semigroup and that tk → ∞ as
k→ ∞.

When F = A− γ f , where A is a strongly positive, linear and bounded mapping, defined
on a Hilbert space H, in [16], Li et al. studied the following algorithm

(1.10) xk = γkγ f (xk)+(I−λkA)
1
tk

∫ tk

0
T (s)xkds

and proved the following result.

Theorem 1.4. Let C be a nonempty, closed and convex subset of a Hilbert space H. Sup-
pose that f is a contractive mapping on C with coefficient α ∈ (0,1), {T (s) : s > 0} is a
nonexpansive semigroup on C such that ∩s>0 Fix(T (s)) 6= /0, and A is a strongly positive,
linear and bounded mapping with coefficient γ̃ > 0. Let {γk} ⊂ [0,1], {tk} ⊂ (0,∞) satisfy
the conditions γk → 0 and tk → ∞, as k→ ∞. Then, for any 0 < γ < γ̃/α , there exists a
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unique element xk ∈C, solving (1.10), and the sequence {xk} converges strongly to the p∗,
a unique solution of (1.8).

Very recently, in [25], Yao and Liou introduced the implicit algorithm,

(1.11) xt = PC

[
tγ f (xt)+βxt +((1−β )I− tA)

1
λt

∫
λt

0
T (s)xtds

]
, t ∈ (0,1),

where PC denotes the metric projection of H onto a closed and convex subset C in H, and
proved the following result.

Theorem 1.5. Let C be a nonempty, closed and convex subset of a Hilbert space H. Suppose
that f : C → H is a contractive mapping (possibly non-self) with coefficient α ∈ (0,1),
{T (s) : s > 0} is a nonexpansive semigroup on C such that F := ∩s>0 Fix(T (s)) 6= /0, and
A is a strongly positive, linear and bounded mapping with coefficient γ̃ > 0. Let {λt}0<t<1
be a continuous net of positive and real numbers such that limt→0 λt = ∞. Then, for any
0 < γ < γ̃/α and β ∈ [0,1), there exists a unique element xt ∈C, solving (1.11), and the net
{xt} converges strongly to the p∗, a unique solution of (1.8) with F = A− γ f , as t→ 0.

At this time, in [5], Cho and Kang proved the following result.

Theorem 1.6. Let H be a real Hilbert space and let {T (s) : s > 0} be a nonexpansive
semigroup on H such that F := ∩s>0 Fix(T (s)) 6= /0. Let f be a contractive mapping on
H with coefficient α ∈ (0,1), and let A be a strongly positive, linear and bounded mapping
with coefficient γ̃ > 0. Assume that 0 < γ < γ̃/α . Let {γk} and {tk} be two sequences of
real numbers, satisfying (1.5). Define a sequence {xk} in the manner:

(1.12) xk = γkγ f (xk)+(1− γkA)T (tk)xk ∀k ≥ 1.

Then, {xk} converges strongly to the p∗, solving (1.8) with F = A− γ f .

Clearly, all algorithms, listed above, are some different modifications of the explicit
Halpern’s iteration method (see [10]),

xk+1 = γku+(1− γk)T xk,

for finding a fixed point for a nonexpansive mapping T on a closed and convex subset C in
a Hilbert space. Qin et al. motivated by Halpern and many others to introduce an iterative
method for an infinite family of nonexpansive mappings in the framework of Hilbert spaces
(see [19]).

Recently, to solve (1.3) with F = Fix(T ), the set of fixed points of a continuous pseu-
docontractive mapping T on a Banach space E, in [2], Ceng et al. proposed a new implicit
algorithm:

(1.13) xt = t(I−µtF)xt +(1− t)T xt .

They proved the following results.

Theorem 1.7. Let E be a real reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm. Suppose that T : E → E is a continuous pseudocontractive
mapping and F = Fix(T ) 6= /0. Assume that F : E → E is η-strongly accretive and λ -
strictly pseudocontractive with η +λ > 1. For each t ∈ (0,1), choose a number µt ∈ (0,1)
arbitrarily and let {xt} be defined by (1.13). Then, as t → 0+, xt converges strongly to the
unique solution of (1.3).
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Motivated by (1.7)-(1.13), in this paper, we obtain strong convergence theorems for three
new implicit algorithms for solving problem (1.3). The first algorithm is a modification of
(1.13) as follows:

(1.14) xk = γk(I−λkF)xk +(1− γk)
1
tk

∫ tk

0
T (s)xkds, k ≥ 1,

where the real numbers λk and γk are, respectively, in (0,1] and (0,1). The second algorithm
is a modification of (1.7) and (1.13), generated by

(1.15) xk = γk(I−λkF)xk +(1− γk)T (tk)xk, k ≥ 1.

The third iteration scheme is generated by

(1.16) xk =
1
tk

∫ tk

0
T (s)(I−λkF)xkds, k ≥ 1,

where λk→ 0, as k→ ∞. In both algorithms (1.14) and (1.16), we assume that 0 < tk→ ∞

as k→ ∞. Meantimes, in (1.15), 0 < tk→ 0.
In Section 2, we give some preliminaries. In Section 3, we prove our main results, strong

convergence of (1.14)-(1.16).

2. Preliminaries

Let E be a real normed linear space. Let S1(0) := {x ∈ E : ‖x‖= 1}. The space E is said to
have a Gâteaux differentiable norm (or to be smooth) if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

exists for each x,y ∈ S1(0). The space E is said to have a uniformly Gâteaux differentiable
norm if the limit is attained uniformly for x ∈ S1(0).

It is well known that if E is smooth, then the normalized duality mapping is single val-
ued; and if the norm of E is uniformly Gâteaux differentiable, then the normalized duality
mapping is norm to weak star uniformly continuous on every bounded subset of E (see [6]).
In the sequel, we shall denote the single valued normalized duality mapping by j.

Recall that a Banach space E is said to be strictly convex, if for x,y ∈ S1(0) with x 6= y,
then

‖(1−λ )x+λy‖< 1 ∀λ ∈ (0,1),

and uniformly convex, if for any ε , 0 < ε ≤ 2, the inequalities ‖x‖ ≤ 1,‖ y‖ ≤ 1, and
‖x− y‖ ≥ ε imply that there exists a δ = δ (ε) ≥ 0 such that ‖(x + y)/2‖ ≤ 1− δ . It is
well-known that every uniformly convex Banach space is reflexive and strictly convex.

Let µ be a continuous linear functional on l∞ and let (a1,a2, ...) ∈ l∞. We write µk(ak)
instead of µ((a1,a2, ...)). We recall that µ is a Banach limit when µ satisfies ‖µ‖= µk(1) =
1 and µk(ak+1) = µk(ak) for each (a1,a2, ...) ∈ l∞. For a Banach limit µ , we know that

lim inf
k→∞

ak ≤ µk(ak)≤ lim sup
k→∞

ak

for all (a1,a2, ...)∈ l∞. If a = (a1,a2, ...)∈ l∞, b = (b1,b2, ...)∈ l∞ and ak→ c (respectively,
ak−bk→ 0), as k→ ∞, we have µk(ak) = µ(a) = c (respectively, µk(ak) = µk(bk)).

We will make use the following well-known results.



922 N. T. T. Thuy and P. T. Hieu

Lemma 2.1. [18] Let E be a real-normed linear space. Then, the following inequality holds

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉 ∀x,y ∈ E, ∀ j(x+ y) ∈ J(x+ y).

Lemma 2.2. [2] Let E and F : E → E be a real smooth Banach space and an η-strongly
accretive and γ-strictly pseudocontractive mapping with η + γ > 1, respectively. Then, for
any λ ∈ (0,1), I−λF is contractive with constant 1−λτ, where τ = 1−

√
(1−η)/γ ∈

(0,1).

Lemma 2.3. [4] Let C be a nonempty, bounded, closed and convex subset of a uniformly
convex Banach space E and let {T (s) : s > 0} be a nonexpansive semigroup on C. Then, for
any r > 0 and h > 0,

lim
t→∞

sup
y∈C∩Br

∥∥∥∥T (h)
(

1
t

∫ t

0
T (s)yds

)
−1

t

∫ t

0
T (s)yds

∥∥∥∥= 0,

where Br = {x ∈ E : ‖x‖ ≤ r}.

Lemma 2.4. [23] Let C be a closed and convex subset of a Banach space E whose norm is
uniformly Gâteaux differentiable. Let {xk} be a bounded subset of E, let z be an element of
C and µ be a Banach limit. Then,

µk‖xk− z‖2 = min
u∈C

µk‖xk−u‖2

if and only if µk〈u− z, j(xk− z)〉 ≤ 0 for all u ∈C.

3. Main results

Now, we are in a position to prove the following results.

Theorem 3.1. Let F be an η-strongly accretive and γ-strictly pseudocontractive mapping
with η + γ > 1 and let {T (s) : s > 0} be a nonexpansive semigroup on E, which is a real
uniformly convex Banach space with a uniformly Gâteaux differentiable norm, such that
F := ∩s>0 Fix(T (s)) 6= /0. Then, the sequence {xk}, defined by (1.14) with γk ∈ (0,1),
λk ∈ (0,1] and tk > 0 such that γk→ 0 and tk→∞, as k→∞, converges strongly to a unique
element p∗, solving (1.3).

Proof. Consider the mapping

Tkx = γk(I−λkF)x+(1− γk)
1
tk

∫ tk

0
T (s)xds,

for all k ≥ 1 and x ∈ E. Then, by Lemma 2.2, we have

‖Tkx−Tky‖

=
∥∥∥∥γk(I−λkF)x+(1− γk)

1
tk

∫ tk

0
T (s)xds−

[
γk(I−λkF)y+(1− γk)

1
tk

∫ tk

0
T (s)yds

]∥∥∥∥
=
∥∥∥∥γk[(I−λkF)x− (I−λkF)y]+ (1− γk)

1
tk

∫ tk

0
(T (s)x−T (s)y)ds

∥∥∥∥
≤ γk(1−λkτ)‖x− y‖+(1− γk)‖x− y‖= (1− γkλkτ)‖x− y‖

with γkλkτ ∈ (0,1). So, Tk is a contraction in E. By Banach’s Contraction Principle, there
exists a unique element xk ∈ E such that xk = Tkxk for all k ≥ 1.
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By putting

zk =
1
tk

∫ tk

0
T (s)xkds,

and noting that ‖zk− p‖ ≤ ‖xk− p‖ for any fixed p ∈F , we have

‖xk− p‖2 = ‖γk(I−λkF)xk +(1− γk)zk− p‖2

= γk〈λk(I−F)xk +(1−λk)xk− p, j(xk− p)〉+(1− γk)〈zk− p, j(xk− p)〉

≤ γkλk〈(I−F)xk− p, j(xk− p)〉+ γk(1−λk)‖xk− p‖2 +(1− γk)‖xk− p‖2

≤ γkλk〈(I−F)xk− p, j(xk− p)〉+(1− γkλk)‖xk− p‖2

= γkλk〈(I−F)xk− (I−F)p−F(p), j(xk− p)〉+(1− γkλk)‖xk− p‖2.

Therefore, by Lemma 2.2, we have

‖xk− p‖2 ≤ (1− τ)‖xk− p‖2−〈F(p), j(xk− p)〉

and hence

(3.1) ‖xk− p‖2 ≤ τ
−1〈F(p), j(p− xk)〉.

Consequently, ‖xk− p‖ ≤ τ−1‖F(p)‖. It means that {xk} is bounded. So, are the sequences
{zk} and {F(xk)}. Further,

‖xk− zk‖= ‖γk(xk− zk)− γkλkF(xk)‖ ≤ γk‖xk− zk‖+ γkλk‖F(xk)‖,

which implies that

‖xk− zk‖ ≤
γkλk

1− γk
‖F(xk)‖.

Since γk→ 0,λk ∈ (0,1] and {F(xk)} is bounded,

(3.2) lim
k→∞
‖xk− zk‖= 0.

Next, we show that

(3.3) lim
k→∞
‖xk−T (h)xk‖= 0 ∀h > 0.

Consider the set
D = {z ∈ E : ‖z− p‖ ≤ τ

−1‖F(p)‖}.
Clearly, D is a nonempty, closed, convex and T (h)-invariant subset of E. So, by Lemma
2.3,

(3.4) ‖zk−T (h)zk‖→ 0,

as k→ ∞. This fact together with (3.2) implies (3.3).
Now, for a Banach limit µ , we can define a mapping ϕ : E→ R by

ϕ(u) = µk‖xk−u‖2 ∀u ∈ E.

We see that ϕ(u)→ ∞ as ‖u‖ → ∞, ϕ is continuous and convex, so as E is reflexive, there
exists p̃ ∈ E such that ϕ(p̃) = minu∈E ϕ(u). Moreover, the element p̃ is unique (see, [26]).
From (3.3) it follows that

ϕ(T (h)p̃) = µk‖xk−T (h)p̃‖2 = µk‖T (h)xk−T (h)p̃‖2 ≤ µk‖xk− p̃‖2 = ϕ(p̃)
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which implies that T (h)p̃ = p̃, that is p̃ ∈F . From Lemma 2.4, we know that p̃ is a mini-
mizer of ϕ(u) on E, if and only if

(3.5) µk〈u− p̃, j(xk− p̃)〉 ≤ 0 ∀u ∈ E.

Taking u = (I−F)(p̃) in (3.5), we obtain that

(3.6) µk〈F(p̃), j(p̃− xk)〉 ≤ 0.

Using (3.1) and (3.6), we obtain that µk‖xk− p̃‖2 = 0. Hence, there exists a subsequence
{xki} of {xk} which strongly converges to p̃ as i→ ∞. Again, from (3.1) and the norm to
weak star continuous property of the normalized duality mapping j on bounded subsets of
E, we obtain that

(3.7) 〈F(p), j(p̃− p)〉 ≤ 0 ∀p ∈F .

Since p and p̃ belong to F , a closed and convex subset, by replacing p in (3.7) by sp+(1−
s)p̃ for s∈ (0,1), using the well-known property j(s(p̃− p)) = s j(p̃− p) for s > 0, dividing
by s and taking s→ 0, we obtain

〈F(p̃), j(p̃− p)〉 ≤ 0 ∀p ∈F .

The uniqueness of p∗ in (1.3) guarantees that p̃ = p∗. So, all the sequence {xk} converges
strongly to p∗ as k→ ∞. This completes the proof.

Theorem 3.2. Let F be an η-strongly accretive and γ-strictly pseudocontractive map-
ping with η + γ > 1 and let {T (s) : s > 0} be a nonexpansive semigroup on E, which
is a real reflexive Banach space with a uniformly Gâteaux differentiable norm, such that
F := ∩s>0 Fix(T (s)) 6= /0 and condition (1.9) is satisfied for any bounded subset K of E.
Then, the sequence {xk}, defined by (1.15) with λk ∈ (0,1], γk ∈ (0,1) and tk > 0, satisfying
(1.5), converges strongly to a unique element p∗, solving (1.3).

Proof. Consider the mapping

Tkx = γk(I−λkF)x+(1− γk)T (tk)x,

for all k ≥ 1 and x ∈ E. Then, as in the proof of Theorem 3.1, there exists a unique xk,
satisfying (1.15), the sequence {xk} is bounded and satisfies (3.1). Since E is reflexive and
{xk} is bounded, there exists a subsequence {xk j} ⊂ {xk}, that converges weakly to some
element p̃ ∈ E.

Now, we prove that p̃ = T (t)p̃ for a fixed t > 0. It is easy to see that

‖xk j −T (t)xk j‖ ≤
[t/tk j ]−1

∑
l=0

‖T (ltk j)xk j −T ((l +1)tk j)xk j‖+‖T (t)xk j −T ([t/tk j ]tk j)xk j‖

≤ [t/tk j ]‖xk j −T (tk j)xk j‖+‖T (t− [t/tk j ]tk j)xk j − xk j‖

≤
γk j

tk j

t‖(I−λk j F)xk j −T (tk j)xk j‖+ sup{‖T (s)xk j − xk j‖ : 0≤ s≤ tk j}.

This fact together with the boundedness of {xk} and {F(xk)}, tk j ,γk j/tk j → 0 and (1.9)
implies that

lim sup
j→∞

‖xk j −T (t)xk j‖= 0.

Further, by the argument as in the proof of Theorem 3.1, we obtain the conclusion. This
completes the proof.
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Theorem 3.3. Let F be an η-strongly accretive and γ-strictly pseudocontractive mapping
with η + γ > 1 and let {T (s) : s > 0} be a nonexpansive semigroup on E, which is a real
uniformly convex Banach space with a uniformly Gâteaux differentiable norm, such that
F := ∩s>0 Fix(T (s)) 6= /0. Then, the sequence {xk}, defined by (1.16) with λk ∈ (0,1] and
tk > 0 such that λk→ 0 and tk→∞, as k→∞, converges strongly to an element p∗, solving
(1.3).

Proof. Consider the mapping

T̃kx =
1
tk

∫ tk

0
T (s)(I−λkF)xds ∀x ∈ E.

From Lemma 2.2, it follows

‖T̃kx− T̃ky‖=
1
tk

∥∥∥∥∫ tk

0
T (s)[(I−λkF)x− (I−λkF)y]ds

∥∥∥∥
≤ ‖(I−λkF)x− (I−λkF)y‖ ≤ (1−λkτ)‖x− y‖ ∀x,y ∈ E.

So, T̃k is a contraction in E. By Banach’s Contraction Principle, there exists a unique ele-
ment xk ∈ E, satisfying (1.16).

Next, we show that {xk} is bounded. Indeed, for a point p∈F , we have, by Lemma 2.2,

‖xk− p‖=
∥∥∥∥ 1

tk

∫ tk

0
T (s)(I−λkF)xkds− 1

tk

∫ tk

0
T (s)pds

∥∥∥∥≤ ‖(I−λkF)xk− p‖

= ‖(I−λkF)xk− (I−λkF)p−λkF(p)‖ ≤ (1−λkτ)‖xk− p‖+λk‖F(p)‖.

Therefore, ‖xk− p‖ ≤ ‖F(p)‖/τ , that implies the boundedness of {xk}. So, is the sequence
{F(xk)}. Consider the set C = {z ∈ E : ‖z− p‖ ≤ ‖F(p)‖/τ}. As in the proof of Theorem
3.1, we obtain (3.4). On the other hand,

‖xk− zk‖=
∥∥∥∥ 1

tk

∫ tk

0
T (s)(I−λkF)xkds− 1

tk

∫ tk

0
T (s)xkds

∥∥∥∥
=
∥∥∥∥ 1

tk

∫ tk

0
[T (s)(I−λkF)xk−T (s)xk]ds

∥∥∥∥
≤ 1

tk

∫ tk

0
‖(I−λkF)xk− xk‖ds = λk‖F(xk)‖→ 0,

because λk → 0, as k → ∞, and hence (3.3) holds. Next, by the convexity of ‖ · ‖2 and
Lemmas 2.1 and 2.2, for any p ∈F , we have

‖xk− p‖2 ≤ ‖(I−λkF)xk− p‖2 = ‖(I−λkF)xk− (I−λkF)p−λkF(p)‖2

≤ (1−λkτ)‖xk− p‖2−2λk〈F(p), j(xk− p−λkF(xk)〉.

So,

(3.8) ‖xk− p‖2 ≤ 2
τ
〈F(p), j(p− xk)〉+

2
τ
〈F(p), j(p− xk +λkF(xk))− j(p− xk)〉.

By using (3.3), (3.8) instead of (3.1), the normalized duality mapping is norm to weak
star uniformly continuous on every bounded subset of E, and repeating the rest proof of
Theorem 3.1, we obtain the conclusion. This completes the proof.
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