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Departamento de Matemáticas. Universidad de Jaén, E.P.S. Linares,
C/Alfonso X el Sabio, 28, 23700 Linares (Jaén) Spain

jmalmira@ujaen.es

Abstract. In this paper we show a lethargy result in the non-Archimedean context, for gen-
eral ultrametric approximation schemes and, as a consequence, we prove the existence of
p-adic transcendental numbers whose best approximation errors by algebraic p-adic num-
bers of degree ≤ n decays slowly.
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1. Motivation

Let (X ,‖ · ‖) be an ultrametric Banach space over a non-Archimedean valued field K, and
let {0} = A0 ⊂ A1 ⊂ . . . ⊂ An ⊂ . . . ⊂ X be an infinite chain of subsets of X , where all
inclusions are strict.

Definition 1.1. We say that (X ,{An}) is an ultrametric approximation scheme (or that (An)
is an approximation scheme in X) if:

(i) There exists a map K : N→N such that K(n)≥ n and An +An ⊆ AK(n) for all n∈N.
(ii) λAn ⊂ An for all n ∈ N and all scalars λ ∈K.
(iii)

⋃
n∈N An is a dense subset of X

The approximation scheme is called non-trivial if X 6= ∪nAn.

A particular example is a linear approximation scheme, arising when the sets An are
linear subspaces of X . Approximation schemes were introduced, for X a quasi-Banach
space over R or C, by Butzer and Scherer in 1968 [7], and are a natural object to study in
classical approximation theory. Their study leads to the theory of approximation spaces and,
in particular, the problem of characterizing membership to several functional approximation
spaces in terms of smoothness. To be more precise, the so called Central Theorems in
approximation theory show that, in general, there exists a strong relation between the rate
of decay of the best approximation errors E( f ,An) and the smoothness properties of f [8, 13,
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19]. On the other hand, one of the most remarkable early results in the constructive theory of
functions is Bernstein Lethargy Theorem, which states that if X0 ( X1 ( X2 ( · · ·( X is an
ascending chain of finite dimensional vector subspaces of a Banach space X , and {εn}↘ 0
is a non-increasing sequence of positive real numbers that converges to zero, then there
exists an element x ∈ X such that the n-th error of best approximation by elements of Xn
satisfies E(x,Xn) = εn for all n ∈ N. This result was first obtained in 1938 by Bernstein [5]
for X = C([0,1]) and Xn = Πn, the vector space of real polynomials of degree≤ n. The case
of arbitrary finite dimensional Xn is treated, for instance, in [23, Section II.5.3].

There are several generalizations of Bernstein’s result to arbitrary chains of (possibly
infinite dimensional) closed subspaces X1 ( X2 ( . . . of a Banach space X . For example,
Tjuriemskih [24] and Nikolskii [15, 16] (see also [23, Section I.6.3]) proved that a sufficient
(resp. necessary) condition for the existence of x ∈ X verifying E(x,Xn) = εn is that X is a
Hilbert space (resp. X is reflexive). These results were proved independently and by other
means by Almira and Luther [3, 4] and Almira and Del Toro [1, 2]. Also, Bernstein Lethargy
Theorem has been generalized to chains of finite-dimensional subspaces in non-Banach
spaces (such as SF-spaces) by Lewicki [11, 12]. These two approaches were successfully
combined by Micherda [14]. Finally, thanks to the work by Plesniak [20], the lethargy
theorem has become a very useful tool for the theory of quasianalytic functions of several
complex variables.

In 1964 Shapiro [22] used Baire Category Theorem to prove that, for any sequence
X1 ( X2 ( . . . ( X of closed (not necessarily finite dimensional) subspaces of a Banach
space X , and any sequence {εn} ↘ 0, there exists an x ∈ X such that E(x,Xn) 6= O(εn).
This result was strengthened by Tjuriemskih [25] who, under the very same conditions of
Shapiro’s Theorem, proved the existence of x ∈ X such that E(x,Xn) ≥ εn, n = 0,1,2, · · · .
Moreover, Borodin [6] gave an easy proof of this result and proved that, for arbitrary infi-
nite dimensional Banach spaces X and for sequences {εn} ↘ 0 satisfying εn > ∑

∞
k=n+1 εk,

n = 0,1,2, · · · , there exists x ∈ X such that E(x,Xn) = εn, n = 0,1,2, · · · .
In this paper we show a result analogous to Shapiro’s Theorem, but in the non-Archimede-

an context and for general ultrametric approximation schemes (Theorem 2.1) and, as a con-
sequence, we prove the existence of p-adic transcendental numbers whose best approxima-
tion errors by algebraic p-adic numbers of degree ≤ n decays slowly (Theorem 3.1).

Throughout the paper we consider (X ,‖ · ‖) an ultrametric Banach space over a non-
Archimedean complete valued field (K, | · |) which is nontrivial. By nontrivial, we mean
that the absolute value | · | is not the trivial one, which is given by |x| = 1 for x 6= 0 and
|0|= 0. If K is such a field and

pK = sup{|λ | : λ ∈K, |λ |< 1},

then either pK < 1, in which case, the set |K×| := {|λ | : λ ∈K\{0}} satisfies |K×|= {pn
K :

n ∈ Z} and there exists ρ ∈K such that pK = |ρ|, or pK = 1, in which case, |K×| is a dense
subset of (0,∞). If pK < 1 we say that the absolute value of K is discrete. If pK = 1, we
say that K is densely valued. The most important examples of non-Archimedean complete
valued fields we deal with are the fields of p-adic numbers Qp and Cp. Concretely, the
elements of Qp are the expressions of the form

(1.1) x = am pm +am+1 pm+1 + · · ·+a0 +a1 p+a2 p2 + · · ·+an pn + · · ·= ∑
n≥m

an pn,
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where m∈Z, 1≤ am ≤ p−1 and 0≤ ak ≤ p−1 for all k > m. Given x as in (1.1), its p-adic
absolute value is given by |x|p = p−m. Obviously, the set of rational numbers Q is a dense
subset of Qp. Indeed, Qp results from Q by topological completion, when we consider over
Q the topology defined by the p-adic absolute value | · |p. The construction of Cp is a little
bit more difficult. As a first step, it is shown that if K is an algebraic extension of Qp, there
exists a unique absolute value over K extending the absolute value of Qp. This implies that
there exists a unique absolute value over Qa

p, the field of algebraic numbers over Qp, which
extends the p-adic absolute value | · |p. Then Cp results from Qa

p by topological completion
(see, for example, [9], [21] for the definition and basic properties of Qp and Cp ).

Finally, we use the following standard notation: Given A,B⊆ X and x ∈ X , we define the
best approximation error E(x,A) = infa∈A ‖x−a‖ and the deviation of B from A is given by
E(B,A) = supb∈B E(b,A). Furthermore, B(X) = {x ∈ X : ‖x‖ ≤ 1} denotes the unit ball of
X and, for r > 0, B(x,r) = {y ∈ X : ‖x− y‖ ≤ r}.

2. An ultrametric lethargy result

Let us state the main result of this section:

Theorem 2.1. Let (X ,{An}) be an ultrametric approximation scheme. The following claims
are equivalent:

(a) For every sequence of real numbers {εn}↘ 0, there exists x∈X such that E(x,An) 6=
O(εn).

(b) inf
n∈N

E(B(X),An) = c > 0.

Remark 2.1. Let (X ,‖ · ‖) be an ultrametric Banach space. If X is re-normed with an
equivalent ultrametric norm ‖ · ‖∗, and we denote B(X)∗ = {x ∈ X : ‖x‖∗ ≤ 1}, E(x,An)∗ =
infa∈An ‖x−a‖∗, and E(B(X),An)∗ = supx∈B(X)∗ E(x,An)∗, we have that

inf
n∈N

E(B(X),An) > 0 if and only if inf
n∈N

E(B(X)∗,An)∗ > 0.

This observation is specially useful when pK < 1, since every ultrametric normed space
(X ,‖ · ‖) over a discretely valued field K can be equivalently renormed with a norm ‖ · ‖∗
which satisfies ‖X‖∗ = {‖x‖∗ : x ∈ X} ⊆ |K| (see, for example, [18, Theorem 2.1.9]).

The proof of Theorem 2.1 is based on the following three technical results:

Lemma 2.1. Let h : N→ N be a map such that h(n)≥ n for all n, and let {εn} ↘ 0. Then
there exists a sequence {ξn}↘ 0 such that ξn ≥ εn and ξn ≤ 2ξh(n) for every n.

Lemma 2.2. Let ρ ∈K with |ρ|< 1. Let x ∈ X \{0} and r ∈ (0,∞). Then:
(a) There exists λ ∈K such that

|ρ|< ‖λx‖ ≤ 1

(b) There exists λ ∈K such that

‖λx‖ ≤ r and
1
|λ |
≤ 1
|ρ|2
‖x‖

r
.

Lemma 2.3. Let (X ,{An}) be an ultrametric approximation scheme and assume that {ξn}↘
0 satisfies

(2.1) ξn ≤CξK(n+1)−1 (n ∈ N)
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for a certain constant C > 0. Then the following are equivalent claims:
(a) For all x ∈ X there exists C(x) > 0 such that

(2.2) E(x,An)≤C(x)ξn, (n ∈ N).

(b) There exists a constant D > 0 such that,

(2.3) E(x,An)≤ D‖x‖ξn, (n ∈ N,x ∈ X).

Proof of Theorem 2.1. Let us prove (b)⇒ (a) or, equivalently, we show that the negation
of (a) implies the negation of (b). Assume that (An) fails Shapiro’s theorem. Then there
exists a sequence {εn} ↘ 0 and a function C : X → R+ such that E(x,An) ≤C(x)εn for all
n ∈ N and all x ∈ X . Then taking the sequence {ξn} ↘ 0 given by Lemma 2.1 for the case
h(n) = K(n + 1)− 1, and applying Lemma 2.3 to this sequence, we have that (2.3) holds
true. It follows that

E(B(X),An) = sup
‖x‖≤1

E(x,An)≤ Dξn (n ∈ N),

so that limn→∞ E(B(X),An) = 0, which contradicts (b). This ends the proof.
Let us now prove (a)⇒ (b). Assume that (b) fails. Then limn→∞ E(B(X),An) = 0. Take

x ∈ X \{0} and ρ ∈K such that 0 < |ρ|< 1. Then part (a) of Lemma 2.2 says us that there
exists λ ∈K such that |ρ|< ‖λx‖ ≤ 1, so that 1

|λ | <
1
|ρ|‖x‖. It follows that

E(x,An) =
1
|λ |

E(λx,An)≤
1
|λ |

E(B(X),An)≤
1
|ρ|
‖x‖E(B(X),An)

and (a) fails with εn = E(B(X),An). This completes the proof of the theorem.
Lemma 2.1 is an easy exercise on real sequences:

Proof of Lemma 2.1. Passing from the original function h to h′(n) = max1≤k≤n h(k)+n, we
can assume that (i) h(n) > n for every n, and (ii) the function h is strictly increasing. Set
m0 = 0, and, for k ≥ 1, mk = h(mk−1). Set β0 = ε1, and βk = max{εmk ,βk−1/2} for k ≥ 1.
For n ∈ N, find k ≥ 0 such that n ∈ [mk,mk+1), and set ξn = βk.

Then the sequence (ξn) has the desired properties. For n ∈ [mk,mk+1), ξn = βk ≥ εmk ≥
εn. Furthermore, as h is strictly increasing, h(n) ∈ [mk+1,mk+2), hence ξh(n) = βk+1 ≥
βk/2 = ξn/2. It remains to show that limξn = 0, or in other words, that limβk = 0. If
βk = εmk for infinitely many values of k, then limβk = limεmk = 0. Otherwise, βk = βk−1/2
for any k ≥ k0. In this case, too, limβk = 0.
Proof of Lemma 2.2. Let ρ ∈ K be such that 0 < |ρ| < 1. Then there exists a,b ∈ Z such
that |ρ|a+1 < r ≤ |ρ|a and |ρ|b+1 < ‖x‖ ≤ |ρ|b. Hence

|ρ|= |ρ|
b+1

|ρ|b
<
‖x‖
|ρ|b

= ‖ x
ρb ‖ ≤ 1,

which proves (a). On the other hand,

‖ρa−b+1x‖= |ρ|a+1‖ x
ρb ‖ ≤ r,

and
1

|ρa−b+1|
= |ρb−(a+1)|= 1

|ρ|2
|ρ|b+1 1

|ρ|a
≤ 1
|ρ|2
‖x‖1

r
,

which proves part (b) of the lemma.
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Lemma 2.3 is, in our opinion, the difficult part of Theorem 2.1.
Proof of Lemma 2.3. Obviously (b)⇒ (a) (just take C(x) = D‖x‖). Let us prove (a)⇒ (b).
If (a) holds, then X =

⋃
m∈N Γm, where

Γm = {x ∈ X : E(x,An)≤ mξn, (n ∈ N)}.

The sets Γm satisfy the following nice properties:

(i) Γm = Γm
X for all m ∈ N.

(ii) Γm =−Γm
(iii) Γm +Γm⊆Γ([C]+1)m for all m∈N, where C is the constant such that ξn≤CξK(n+1)−1,

(n ∈ N).
Property (i) follows from the continuity of the functions fn(x) = E(x,An) and (ii) is a direct
consequence of E(−x,An) = E(x,An). To prove (iii), let us take x,y ∈ Γm. Then

E(x+ y,AK(n))≤max{E(x,An),E(y,An)} ≤ mξn (n ∈ N).

Thus, given j ∈ N, K(n)≤ j ≤ K(n+1)−1, we have that

E(x+ y,A j)≤ E(x+ y,AK(n))≤ mξn ≤ mCξK(n+1)−1 ≤ m([C]+1)ξ j.

This proves Γm +Γm ⊆ Γ([C]+1)m.
Taking into account Baire category theorem, there exists m0 ∈ N such that Γm0 contains

a ball B(x0,r0) for a certain x0 ∈ X and r0 > 0. Then B(−x0,r0) = −B(x0,r0) ⊆ Γm0 and,
thanks to (iii),

B(0,r0) =−x0 +B(x0,r0)⊆−Γm0 +Γm0 = Γm0 +Γm0 ⊆ Γ([C]+1)m0 .

Take x ∈ X , x 6= 0. If ρ ∈K satisfies |ρ|< 1, part (b) of Lemma 2.2 implies that there exists
λ ∈K such that ‖λx‖ ≤ r0 and 1

|λ | ≤
1
|ρ|2
‖x‖
r0

. Hence λx ∈ Γ([C]+1)m0 and

E(x,An) =
1
|λ |

E(λx,An)≤
1
|ρ|2
‖x‖
r0

([C]+1)m0ξn (n ∈ N,x ∈ X),

which proves (b).
Once we have proved Theorem 2.1, several questions arise. The first one is: Do we have

some nice example where the conditions of Theorem 2.1 are satisfied? Another question
is: What can we say about constant c appearing in part (b) of Theorem 2.1? We solve both
questions with the results below.

Theorem 2.2 (Ultrametric Shapiro’s Theorem). If the ultrametric approximation scheme
(X ,{An}) is such that An is a closed linear subspace of X for all n, then

inf
n∈N

E(B(X),An)≥ pK > 0.

Proof. We just need to prove that, if Y is a proper closed subspace of X then there exists
x ∈ X such that ‖x‖ ≤ 1 and E(x,Y ) ≥ pK. Let y ∈ X \Y then E(y,Y ) = d > 0 since Y is
closed. Let ε ∈ (0,1) and let z ∈Y be such that ‖y− z‖ ≤ d(1+ ε

1−ε
). If pK < 1, let us take

ρ ∈K such that 0 < |ρ|< 1 and apply Lemma 2.2 with x = y− z. Thus, there exists λ ∈K
such that |ρ|< ‖λx‖ ≤ 1. Furthermore, by construction,

1
‖x‖

=
1

‖y− z‖
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≥ 1
d

1
1+ ε

1−ε

=
1
d

(1− ε)

Hence λx ∈ B(X) and

E(λx,Y ) = |λ |E(x,Y ) = |λ |E(y,Y )≥ |ρ|
‖x‖

d ≥ |ρ|(1− ε).

This proves that

(2.4) inf
n∈N

E(B(X),An)≥ |ρ|,

since ε was arbitrarily small. The theorem follows since relation (2.4) holds for all ρ ∈ K
with 0 < |ρ|< 1.

Theorem 2.3 (Dichotomy). Let (X ,‖ · ‖) be an ultrametric normed space. The following
are equivalent claims:

(a)
inf
n∈N

E(B(X),An) = c > 0.

(b)
inf
n∈N

E(B(X),An)≥ p3
K > 0.

Furthermore, if E(B(X),Am) < p3
K for a certain m ∈ N and the jump function satisfies

K(n) ≤ Cn for all n and a certain C > 0, then E(B(X),Ak) = O(τk
1

log2 C
) for a certain

0 < τ < 1. In particular, if C ≤ 2 then the sequence {E(B(X),An)} decays exponentially to
zero.

Proof. Take ρ ∈K such that 0 < |ρ|< 1. We prove that, if An +Am ⊆ Ah(n,m), then

(2.5) E(B(X),Ah(n,m))≤
1
|ρ|2

E(B(X),An)E(B(X),Am).

Now, the inequality (2.5) implies that

inf
n∈N

E(B(X),Am)≥ |ρ|3

since, if E(B(X),Am0) < |ρ|3 for a certain m0 ∈ N, then

E(B(X),AK(m0))≤
(

E(B(X),Am0)
|ρ|

)2

≤ |ρ|4

and, if we denote by Ks(m) = K(Ks−1(m)), K0(m) = m, K1(m) = K(m), then

E(B(X),AKs(m0))≤ |ρ|rs , where r0 = 3 and rs+1 = 2(rs−1).

Obviously, the sequence (rs) goes to infinity, so that E(B(X),AKs(m0)) decreases exponen-
tially. In particular, due to the non-increasing character of the sequence E(B(X),An), we
have that limn→∞ E(B(X),An) = 0. This proves the first part of the theorem, since ρ was an
arbitrary element of {x ∈K : 0 < |x|< 1}.

Let us now assume that K(n)≤Cn. We claim that E(k) := E(B(X),Ak) = O(|ρ| 12 k
1

log2 C
).

To prove this, we assume with no loss of generality that K(1) > 1, E(B(X),A1) < |ρ|3, and
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C > 1 is a natural number. Then Ks(1) converges to infinity and Ks(1) ≤Cs for all s. On
the other hand, it is clear that (rs) satisfies 2s ≤ rs, s = 0,1, · · · , so that

E(Cs)≤ E(Ks(1)) = E(B(X),AKs(1))≤ |ρ|rs ≤ |ρ|2s
.

Thus, taking s = logC k, we have that

E(k) = E(Cs)≤ E(C[s])≤ |ρ|2[s] ≤ |ρ|2s−1

=
(
|ρ|

1
2

)2
log2 k
log2 C

= |ρ|
1
2 k

1
log2 C

Obviously, for C ≤ 2, E(k) decreases exponentially.
Let us now prove the inequality (2.5). Let δ > 0 be fixed and let x∈ X \{0}. Use Lemma

2.2 to find λ ∈K such that
|ρ|< ‖λx‖ ≤ 1.

Then, by definition of E(B(X),An), there exists an ∈ An such that

‖λx−an‖ ≤ (1+δ )E(λx,An)≤ (1+δ )E(B(X),An).

Hence

‖x− 1
λ

an‖ ≤
1
|λ |

(1+δ )E(B(X),An) <
‖x‖
|ρ|

(1+δ )E(B(X),An).

It follows that, for all x ∈ X and all n ∈ N,

(2.6) E(x,An)≤
‖x‖
|ρ|

E(B(X),An),

since δ > 0 was arbitrary. Apply (2.6) to y = x− 1
λ

an, taking into account that An + Am ⊆
Ah(n,m). Then

E(x,Ah(n,m))≤ E(y,Am)≤ ‖y‖
|ρ|

E(B(X),Am)≤
‖x‖
|ρ| (1+δ )E(B(X),An)

|ρ|
E(B(X),Am).

This proves (2.5), since δ > 0 was arbitrary.

3. Application to p-adic number theory

Let us consider Cp as an ultrametric Banach space over Qp, and let

An = {α ∈ Cp : ∃p(t) ∈Qp[t],deg(p)≤ n, p(α) = 0}
denote the set of p-adic algebraic elements of degree≤ n. Obviously,

⋃
An = Qa

p is the field
of p-adic algebraic numbers over Qp, which is a dense subset of Cp. Furthermore, it is well
known that An is a closed subset of Cp for all n, and λAn ⊆An for all λ ∈Qp and all n (see
[21, page 130]). Finally, it is also known that An +Am ⊂Anm. This proves that (Cp,{An})
is an ultrametric approximation scheme with jump function K(n) = n2. The main result in
this section is the following theorem about transcendental p-adic numbers:

Theorem 3.1. Let {εn}↘ 0. Then there exists α ∈ Cp \Qa
p such that

E(α,An) = inf
a∈An
|α−a|p 6= O(εn).
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To prove this theorem, we will use Theorem 2.1, in conjunction with the following well
known result from number theory:

Theorem 3.2 (Krasner’s Lemma). Let K be a non-Archimedean complete valued field of
characteristic zero, and let a and b be elements of the algebraic closure of K. Let a1 =
a,a2, · · · ,aN be the algebraic conjugates of a over K. Suppose that b is closer to a than any
other of the conjugates of a, i.e.,

|b−a|< min
i=2,3,··· ,N

|a−ai|.

Then K(a)⊆ K(b).

This result was initially proved by Ostrowski in 1917 [17] and rediscovered by Krasner
in 1946 [10] and it is usually named as Krasner’s Lemma [9, p. 178, Theorem 5.7.2].
Proof of Theorem 3.1. Let n∈N, n≥ 1, and let σn ∈Cp be a primitive pn-th root of 1. Then
σn is algebraic of degree pn− pn−1, and its minimal polynomial is given by g(t) = h(t pn−1

),
where h(t) = t p−1 + t p−2 + · · ·+ t + 1. This is well known, but a direct proof follows by
applying Eisenstein’s irreducibility criterium to g(t) and taking into account that t p− 1 =
(t−1)(t p−1 + t p−2 + · · ·+ t +1), so that

(σ pn−1

n −1)g(σn) = (σ pn−1

n −1)h(σ pn−1

n ) = (σ pn−1

n )p−1 = σ
pn

n −1 = 0,

which implies that g(σn) = 0. Moreover, it is also well known ([21, page 107]) that

|σn−1|= 1

p
1

pn−pn−1
.

If τn denotes an algebraic conjugate of σn, then

|σn− τn|= |τn||
σn

τn
−1|= 1

p
1

pn−pn−1
≥ 1

p
1

p−1
= 2c0 > 0.

since σn
τn

is also a pn-th root of 1. Moreover, it is easy to check that

inf
n≥1

1

p
1

pn−pn−1
=

1

p
1

p−1
= 2c0 > 0.

Let us now assume that α ∈ An and |σn−α| ≤ c0. Then Krasner’s Lemma implies that
Qp(σn) ⊆ Qp(α), which is impossible, since [Qp(σn) : Qp] = pn− pn−1 > n ≥ [Qp(α) :
Qp]. In particular, this implies that E(σn,An) ≥ c0, so that infn∈N E(B(Cp),An) ≥ c0 > 0
and we can apply Theorem 2.1. This completes the proof.

Acknowledgement. The author is very grateful to the anonymous referees of this paper for
their many interesting comments. Their advice has greatly improved the readability of this
paper.
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